Input: wacom - revert "Cintiq 21UX2 does not have menu strips"
[linux-btrfs-devel.git] / fs / btrfs / volumes.c
blob1efa56e18f9b905ceac4dbcb3faa0221ab331ce2
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
36 static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
41 static DEFINE_MUTEX(uuid_mutex);
42 static LIST_HEAD(fs_uuids);
44 static void lock_chunks(struct btrfs_root *root)
46 mutex_lock(&root->fs_info->chunk_mutex);
49 static void unlock_chunks(struct btrfs_root *root)
51 mutex_unlock(&root->fs_info->chunk_mutex);
54 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
56 struct btrfs_device *device;
57 WARN_ON(fs_devices->opened);
58 while (!list_empty(&fs_devices->devices)) {
59 device = list_entry(fs_devices->devices.next,
60 struct btrfs_device, dev_list);
61 list_del(&device->dev_list);
62 kfree(device->name);
63 kfree(device);
65 kfree(fs_devices);
68 int btrfs_cleanup_fs_uuids(void)
70 struct btrfs_fs_devices *fs_devices;
72 while (!list_empty(&fs_uuids)) {
73 fs_devices = list_entry(fs_uuids.next,
74 struct btrfs_fs_devices, list);
75 list_del(&fs_devices->list);
76 free_fs_devices(fs_devices);
78 return 0;
81 static noinline struct btrfs_device *__find_device(struct list_head *head,
82 u64 devid, u8 *uuid)
84 struct btrfs_device *dev;
86 list_for_each_entry(dev, head, dev_list) {
87 if (dev->devid == devid &&
88 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
89 return dev;
92 return NULL;
95 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
97 struct btrfs_fs_devices *fs_devices;
99 list_for_each_entry(fs_devices, &fs_uuids, list) {
100 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
101 return fs_devices;
103 return NULL;
106 static void requeue_list(struct btrfs_pending_bios *pending_bios,
107 struct bio *head, struct bio *tail)
110 struct bio *old_head;
112 old_head = pending_bios->head;
113 pending_bios->head = head;
114 if (pending_bios->tail)
115 tail->bi_next = old_head;
116 else
117 pending_bios->tail = tail;
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
131 static noinline int run_scheduled_bios(struct btrfs_device *device)
133 struct bio *pending;
134 struct backing_dev_info *bdi;
135 struct btrfs_fs_info *fs_info;
136 struct btrfs_pending_bios *pending_bios;
137 struct bio *tail;
138 struct bio *cur;
139 int again = 0;
140 unsigned long num_run;
141 unsigned long batch_run = 0;
142 unsigned long limit;
143 unsigned long last_waited = 0;
144 int force_reg = 0;
145 struct blk_plug plug;
148 * this function runs all the bios we've collected for
149 * a particular device. We don't want to wander off to
150 * another device without first sending all of these down.
151 * So, setup a plug here and finish it off before we return
153 blk_start_plug(&plug);
155 bdi = blk_get_backing_dev_info(device->bdev);
156 fs_info = device->dev_root->fs_info;
157 limit = btrfs_async_submit_limit(fs_info);
158 limit = limit * 2 / 3;
160 loop:
161 spin_lock(&device->io_lock);
163 loop_lock:
164 num_run = 0;
166 /* take all the bios off the list at once and process them
167 * later on (without the lock held). But, remember the
168 * tail and other pointers so the bios can be properly reinserted
169 * into the list if we hit congestion
171 if (!force_reg && device->pending_sync_bios.head) {
172 pending_bios = &device->pending_sync_bios;
173 force_reg = 1;
174 } else {
175 pending_bios = &device->pending_bios;
176 force_reg = 0;
179 pending = pending_bios->head;
180 tail = pending_bios->tail;
181 WARN_ON(pending && !tail);
184 * if pending was null this time around, no bios need processing
185 * at all and we can stop. Otherwise it'll loop back up again
186 * and do an additional check so no bios are missed.
188 * device->running_pending is used to synchronize with the
189 * schedule_bio code.
191 if (device->pending_sync_bios.head == NULL &&
192 device->pending_bios.head == NULL) {
193 again = 0;
194 device->running_pending = 0;
195 } else {
196 again = 1;
197 device->running_pending = 1;
200 pending_bios->head = NULL;
201 pending_bios->tail = NULL;
203 spin_unlock(&device->io_lock);
205 while (pending) {
207 rmb();
208 /* we want to work on both lists, but do more bios on the
209 * sync list than the regular list
211 if ((num_run > 32 &&
212 pending_bios != &device->pending_sync_bios &&
213 device->pending_sync_bios.head) ||
214 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
215 device->pending_bios.head)) {
216 spin_lock(&device->io_lock);
217 requeue_list(pending_bios, pending, tail);
218 goto loop_lock;
221 cur = pending;
222 pending = pending->bi_next;
223 cur->bi_next = NULL;
224 atomic_dec(&fs_info->nr_async_bios);
226 if (atomic_read(&fs_info->nr_async_bios) < limit &&
227 waitqueue_active(&fs_info->async_submit_wait))
228 wake_up(&fs_info->async_submit_wait);
230 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
232 submit_bio(cur->bi_rw, cur);
233 num_run++;
234 batch_run++;
235 if (need_resched())
236 cond_resched();
239 * we made progress, there is more work to do and the bdi
240 * is now congested. Back off and let other work structs
241 * run instead
243 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
244 fs_info->fs_devices->open_devices > 1) {
245 struct io_context *ioc;
247 ioc = current->io_context;
250 * the main goal here is that we don't want to
251 * block if we're going to be able to submit
252 * more requests without blocking.
254 * This code does two great things, it pokes into
255 * the elevator code from a filesystem _and_
256 * it makes assumptions about how batching works.
258 if (ioc && ioc->nr_batch_requests > 0 &&
259 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
260 (last_waited == 0 ||
261 ioc->last_waited == last_waited)) {
263 * we want to go through our batch of
264 * requests and stop. So, we copy out
265 * the ioc->last_waited time and test
266 * against it before looping
268 last_waited = ioc->last_waited;
269 if (need_resched())
270 cond_resched();
271 continue;
273 spin_lock(&device->io_lock);
274 requeue_list(pending_bios, pending, tail);
275 device->running_pending = 1;
277 spin_unlock(&device->io_lock);
278 btrfs_requeue_work(&device->work);
279 goto done;
283 cond_resched();
284 if (again)
285 goto loop;
287 spin_lock(&device->io_lock);
288 if (device->pending_bios.head || device->pending_sync_bios.head)
289 goto loop_lock;
290 spin_unlock(&device->io_lock);
292 done:
293 blk_finish_plug(&plug);
294 return 0;
297 static void pending_bios_fn(struct btrfs_work *work)
299 struct btrfs_device *device;
301 device = container_of(work, struct btrfs_device, work);
302 run_scheduled_bios(device);
305 static noinline int device_list_add(const char *path,
306 struct btrfs_super_block *disk_super,
307 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
309 struct btrfs_device *device;
310 struct btrfs_fs_devices *fs_devices;
311 u64 found_transid = btrfs_super_generation(disk_super);
312 char *name;
314 fs_devices = find_fsid(disk_super->fsid);
315 if (!fs_devices) {
316 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
317 if (!fs_devices)
318 return -ENOMEM;
319 INIT_LIST_HEAD(&fs_devices->devices);
320 INIT_LIST_HEAD(&fs_devices->alloc_list);
321 list_add(&fs_devices->list, &fs_uuids);
322 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
323 fs_devices->latest_devid = devid;
324 fs_devices->latest_trans = found_transid;
325 mutex_init(&fs_devices->device_list_mutex);
326 device = NULL;
327 } else {
328 device = __find_device(&fs_devices->devices, devid,
329 disk_super->dev_item.uuid);
331 if (!device) {
332 if (fs_devices->opened)
333 return -EBUSY;
335 device = kzalloc(sizeof(*device), GFP_NOFS);
336 if (!device) {
337 /* we can safely leave the fs_devices entry around */
338 return -ENOMEM;
340 device->devid = devid;
341 device->work.func = pending_bios_fn;
342 memcpy(device->uuid, disk_super->dev_item.uuid,
343 BTRFS_UUID_SIZE);
344 spin_lock_init(&device->io_lock);
345 device->name = kstrdup(path, GFP_NOFS);
346 if (!device->name) {
347 kfree(device);
348 return -ENOMEM;
350 INIT_LIST_HEAD(&device->dev_alloc_list);
352 mutex_lock(&fs_devices->device_list_mutex);
353 list_add_rcu(&device->dev_list, &fs_devices->devices);
354 mutex_unlock(&fs_devices->device_list_mutex);
356 device->fs_devices = fs_devices;
357 fs_devices->num_devices++;
358 } else if (!device->name || strcmp(device->name, path)) {
359 name = kstrdup(path, GFP_NOFS);
360 if (!name)
361 return -ENOMEM;
362 kfree(device->name);
363 device->name = name;
364 if (device->missing) {
365 fs_devices->missing_devices--;
366 device->missing = 0;
370 if (found_transid > fs_devices->latest_trans) {
371 fs_devices->latest_devid = devid;
372 fs_devices->latest_trans = found_transid;
374 *fs_devices_ret = fs_devices;
375 return 0;
378 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
380 struct btrfs_fs_devices *fs_devices;
381 struct btrfs_device *device;
382 struct btrfs_device *orig_dev;
384 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
385 if (!fs_devices)
386 return ERR_PTR(-ENOMEM);
388 INIT_LIST_HEAD(&fs_devices->devices);
389 INIT_LIST_HEAD(&fs_devices->alloc_list);
390 INIT_LIST_HEAD(&fs_devices->list);
391 mutex_init(&fs_devices->device_list_mutex);
392 fs_devices->latest_devid = orig->latest_devid;
393 fs_devices->latest_trans = orig->latest_trans;
394 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
396 /* We have held the volume lock, it is safe to get the devices. */
397 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
398 device = kzalloc(sizeof(*device), GFP_NOFS);
399 if (!device)
400 goto error;
402 device->name = kstrdup(orig_dev->name, GFP_NOFS);
403 if (!device->name) {
404 kfree(device);
405 goto error;
408 device->devid = orig_dev->devid;
409 device->work.func = pending_bios_fn;
410 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
411 spin_lock_init(&device->io_lock);
412 INIT_LIST_HEAD(&device->dev_list);
413 INIT_LIST_HEAD(&device->dev_alloc_list);
415 list_add(&device->dev_list, &fs_devices->devices);
416 device->fs_devices = fs_devices;
417 fs_devices->num_devices++;
419 return fs_devices;
420 error:
421 free_fs_devices(fs_devices);
422 return ERR_PTR(-ENOMEM);
425 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
427 struct btrfs_device *device, *next;
429 mutex_lock(&uuid_mutex);
430 again:
431 /* This is the initialized path, it is safe to release the devices. */
432 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
433 if (device->in_fs_metadata)
434 continue;
436 if (device->bdev) {
437 blkdev_put(device->bdev, device->mode);
438 device->bdev = NULL;
439 fs_devices->open_devices--;
441 if (device->writeable) {
442 list_del_init(&device->dev_alloc_list);
443 device->writeable = 0;
444 fs_devices->rw_devices--;
446 list_del_init(&device->dev_list);
447 fs_devices->num_devices--;
448 kfree(device->name);
449 kfree(device);
452 if (fs_devices->seed) {
453 fs_devices = fs_devices->seed;
454 goto again;
457 mutex_unlock(&uuid_mutex);
458 return 0;
461 static void __free_device(struct work_struct *work)
463 struct btrfs_device *device;
465 device = container_of(work, struct btrfs_device, rcu_work);
467 if (device->bdev)
468 blkdev_put(device->bdev, device->mode);
470 kfree(device->name);
471 kfree(device);
474 static void free_device(struct rcu_head *head)
476 struct btrfs_device *device;
478 device = container_of(head, struct btrfs_device, rcu);
480 INIT_WORK(&device->rcu_work, __free_device);
481 schedule_work(&device->rcu_work);
484 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
486 struct btrfs_device *device;
488 if (--fs_devices->opened > 0)
489 return 0;
491 mutex_lock(&fs_devices->device_list_mutex);
492 list_for_each_entry(device, &fs_devices->devices, dev_list) {
493 struct btrfs_device *new_device;
495 if (device->bdev)
496 fs_devices->open_devices--;
498 if (device->writeable) {
499 list_del_init(&device->dev_alloc_list);
500 fs_devices->rw_devices--;
503 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
504 BUG_ON(!new_device);
505 memcpy(new_device, device, sizeof(*new_device));
506 new_device->name = kstrdup(device->name, GFP_NOFS);
507 BUG_ON(device->name && !new_device->name);
508 new_device->bdev = NULL;
509 new_device->writeable = 0;
510 new_device->in_fs_metadata = 0;
511 list_replace_rcu(&device->dev_list, &new_device->dev_list);
513 call_rcu(&device->rcu, free_device);
515 mutex_unlock(&fs_devices->device_list_mutex);
517 WARN_ON(fs_devices->open_devices);
518 WARN_ON(fs_devices->rw_devices);
519 fs_devices->opened = 0;
520 fs_devices->seeding = 0;
522 return 0;
525 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
527 struct btrfs_fs_devices *seed_devices = NULL;
528 int ret;
530 mutex_lock(&uuid_mutex);
531 ret = __btrfs_close_devices(fs_devices);
532 if (!fs_devices->opened) {
533 seed_devices = fs_devices->seed;
534 fs_devices->seed = NULL;
536 mutex_unlock(&uuid_mutex);
538 while (seed_devices) {
539 fs_devices = seed_devices;
540 seed_devices = fs_devices->seed;
541 __btrfs_close_devices(fs_devices);
542 free_fs_devices(fs_devices);
544 return ret;
547 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
548 fmode_t flags, void *holder)
550 struct block_device *bdev;
551 struct list_head *head = &fs_devices->devices;
552 struct btrfs_device *device;
553 struct block_device *latest_bdev = NULL;
554 struct buffer_head *bh;
555 struct btrfs_super_block *disk_super;
556 u64 latest_devid = 0;
557 u64 latest_transid = 0;
558 u64 devid;
559 int seeding = 1;
560 int ret = 0;
562 flags |= FMODE_EXCL;
564 list_for_each_entry(device, head, dev_list) {
565 if (device->bdev)
566 continue;
567 if (!device->name)
568 continue;
570 bdev = blkdev_get_by_path(device->name, flags, holder);
571 if (IS_ERR(bdev)) {
572 printk(KERN_INFO "open %s failed\n", device->name);
573 goto error;
575 set_blocksize(bdev, 4096);
577 bh = btrfs_read_dev_super(bdev);
578 if (!bh) {
579 ret = -EINVAL;
580 goto error_close;
583 disk_super = (struct btrfs_super_block *)bh->b_data;
584 devid = btrfs_stack_device_id(&disk_super->dev_item);
585 if (devid != device->devid)
586 goto error_brelse;
588 if (memcmp(device->uuid, disk_super->dev_item.uuid,
589 BTRFS_UUID_SIZE))
590 goto error_brelse;
592 device->generation = btrfs_super_generation(disk_super);
593 if (!latest_transid || device->generation > latest_transid) {
594 latest_devid = devid;
595 latest_transid = device->generation;
596 latest_bdev = bdev;
599 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
600 device->writeable = 0;
601 } else {
602 device->writeable = !bdev_read_only(bdev);
603 seeding = 0;
606 device->bdev = bdev;
607 device->in_fs_metadata = 0;
608 device->mode = flags;
610 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
611 fs_devices->rotating = 1;
613 fs_devices->open_devices++;
614 if (device->writeable) {
615 fs_devices->rw_devices++;
616 list_add(&device->dev_alloc_list,
617 &fs_devices->alloc_list);
619 brelse(bh);
620 continue;
622 error_brelse:
623 brelse(bh);
624 error_close:
625 blkdev_put(bdev, flags);
626 error:
627 continue;
629 if (fs_devices->open_devices == 0) {
630 ret = -EIO;
631 goto out;
633 fs_devices->seeding = seeding;
634 fs_devices->opened = 1;
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
638 fs_devices->total_rw_bytes = 0;
639 out:
640 return ret;
643 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
644 fmode_t flags, void *holder)
646 int ret;
648 mutex_lock(&uuid_mutex);
649 if (fs_devices->opened) {
650 fs_devices->opened++;
651 ret = 0;
652 } else {
653 ret = __btrfs_open_devices(fs_devices, flags, holder);
655 mutex_unlock(&uuid_mutex);
656 return ret;
659 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
660 struct btrfs_fs_devices **fs_devices_ret)
662 struct btrfs_super_block *disk_super;
663 struct block_device *bdev;
664 struct buffer_head *bh;
665 int ret;
666 u64 devid;
667 u64 transid;
669 mutex_lock(&uuid_mutex);
671 flags |= FMODE_EXCL;
672 bdev = blkdev_get_by_path(path, flags, holder);
674 if (IS_ERR(bdev)) {
675 ret = PTR_ERR(bdev);
676 goto error;
679 ret = set_blocksize(bdev, 4096);
680 if (ret)
681 goto error_close;
682 bh = btrfs_read_dev_super(bdev);
683 if (!bh) {
684 ret = -EINVAL;
685 goto error_close;
687 disk_super = (struct btrfs_super_block *)bh->b_data;
688 devid = btrfs_stack_device_id(&disk_super->dev_item);
689 transid = btrfs_super_generation(disk_super);
690 if (disk_super->label[0])
691 printk(KERN_INFO "device label %s ", disk_super->label);
692 else
693 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
694 printk(KERN_CONT "devid %llu transid %llu %s\n",
695 (unsigned long long)devid, (unsigned long long)transid, path);
696 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
698 brelse(bh);
699 error_close:
700 blkdev_put(bdev, flags);
701 error:
702 mutex_unlock(&uuid_mutex);
703 return ret;
706 /* helper to account the used device space in the range */
707 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
708 u64 end, u64 *length)
710 struct btrfs_key key;
711 struct btrfs_root *root = device->dev_root;
712 struct btrfs_dev_extent *dev_extent;
713 struct btrfs_path *path;
714 u64 extent_end;
715 int ret;
716 int slot;
717 struct extent_buffer *l;
719 *length = 0;
721 if (start >= device->total_bytes)
722 return 0;
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
727 path->reada = 2;
729 key.objectid = device->devid;
730 key.offset = start;
731 key.type = BTRFS_DEV_EXTENT_KEY;
733 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
734 if (ret < 0)
735 goto out;
736 if (ret > 0) {
737 ret = btrfs_previous_item(root, path, key.objectid, key.type);
738 if (ret < 0)
739 goto out;
742 while (1) {
743 l = path->nodes[0];
744 slot = path->slots[0];
745 if (slot >= btrfs_header_nritems(l)) {
746 ret = btrfs_next_leaf(root, path);
747 if (ret == 0)
748 continue;
749 if (ret < 0)
750 goto out;
752 break;
754 btrfs_item_key_to_cpu(l, &key, slot);
756 if (key.objectid < device->devid)
757 goto next;
759 if (key.objectid > device->devid)
760 break;
762 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
763 goto next;
765 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
766 extent_end = key.offset + btrfs_dev_extent_length(l,
767 dev_extent);
768 if (key.offset <= start && extent_end > end) {
769 *length = end - start + 1;
770 break;
771 } else if (key.offset <= start && extent_end > start)
772 *length += extent_end - start;
773 else if (key.offset > start && extent_end <= end)
774 *length += extent_end - key.offset;
775 else if (key.offset > start && key.offset <= end) {
776 *length += end - key.offset + 1;
777 break;
778 } else if (key.offset > end)
779 break;
781 next:
782 path->slots[0]++;
784 ret = 0;
785 out:
786 btrfs_free_path(path);
787 return ret;
791 * find_free_dev_extent - find free space in the specified device
792 * @trans: transaction handler
793 * @device: the device which we search the free space in
794 * @num_bytes: the size of the free space that we need
795 * @start: store the start of the free space.
796 * @len: the size of the free space. that we find, or the size of the max
797 * free space if we don't find suitable free space
799 * this uses a pretty simple search, the expectation is that it is
800 * called very infrequently and that a given device has a small number
801 * of extents
803 * @start is used to store the start of the free space if we find. But if we
804 * don't find suitable free space, it will be used to store the start position
805 * of the max free space.
807 * @len is used to store the size of the free space that we find.
808 * But if we don't find suitable free space, it is used to store the size of
809 * the max free space.
811 int find_free_dev_extent(struct btrfs_trans_handle *trans,
812 struct btrfs_device *device, u64 num_bytes,
813 u64 *start, u64 *len)
815 struct btrfs_key key;
816 struct btrfs_root *root = device->dev_root;
817 struct btrfs_dev_extent *dev_extent;
818 struct btrfs_path *path;
819 u64 hole_size;
820 u64 max_hole_start;
821 u64 max_hole_size;
822 u64 extent_end;
823 u64 search_start;
824 u64 search_end = device->total_bytes;
825 int ret;
826 int slot;
827 struct extent_buffer *l;
829 /* FIXME use last free of some kind */
831 /* we don't want to overwrite the superblock on the drive,
832 * so we make sure to start at an offset of at least 1MB
834 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
836 max_hole_start = search_start;
837 max_hole_size = 0;
839 if (search_start >= search_end) {
840 ret = -ENOSPC;
841 goto error;
844 path = btrfs_alloc_path();
845 if (!path) {
846 ret = -ENOMEM;
847 goto error;
849 path->reada = 2;
851 key.objectid = device->devid;
852 key.offset = search_start;
853 key.type = BTRFS_DEV_EXTENT_KEY;
855 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
856 if (ret < 0)
857 goto out;
858 if (ret > 0) {
859 ret = btrfs_previous_item(root, path, key.objectid, key.type);
860 if (ret < 0)
861 goto out;
864 while (1) {
865 l = path->nodes[0];
866 slot = path->slots[0];
867 if (slot >= btrfs_header_nritems(l)) {
868 ret = btrfs_next_leaf(root, path);
869 if (ret == 0)
870 continue;
871 if (ret < 0)
872 goto out;
874 break;
876 btrfs_item_key_to_cpu(l, &key, slot);
878 if (key.objectid < device->devid)
879 goto next;
881 if (key.objectid > device->devid)
882 break;
884 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
885 goto next;
887 if (key.offset > search_start) {
888 hole_size = key.offset - search_start;
890 if (hole_size > max_hole_size) {
891 max_hole_start = search_start;
892 max_hole_size = hole_size;
896 * If this free space is greater than which we need,
897 * it must be the max free space that we have found
898 * until now, so max_hole_start must point to the start
899 * of this free space and the length of this free space
900 * is stored in max_hole_size. Thus, we return
901 * max_hole_start and max_hole_size and go back to the
902 * caller.
904 if (hole_size >= num_bytes) {
905 ret = 0;
906 goto out;
910 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
911 extent_end = key.offset + btrfs_dev_extent_length(l,
912 dev_extent);
913 if (extent_end > search_start)
914 search_start = extent_end;
915 next:
916 path->slots[0]++;
917 cond_resched();
920 hole_size = search_end- search_start;
921 if (hole_size > max_hole_size) {
922 max_hole_start = search_start;
923 max_hole_size = hole_size;
926 /* See above. */
927 if (hole_size < num_bytes)
928 ret = -ENOSPC;
929 else
930 ret = 0;
932 out:
933 btrfs_free_path(path);
934 error:
935 *start = max_hole_start;
936 if (len)
937 *len = max_hole_size;
938 return ret;
941 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
942 struct btrfs_device *device,
943 u64 start)
945 int ret;
946 struct btrfs_path *path;
947 struct btrfs_root *root = device->dev_root;
948 struct btrfs_key key;
949 struct btrfs_key found_key;
950 struct extent_buffer *leaf = NULL;
951 struct btrfs_dev_extent *extent = NULL;
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
957 key.objectid = device->devid;
958 key.offset = start;
959 key.type = BTRFS_DEV_EXTENT_KEY;
961 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
962 if (ret > 0) {
963 ret = btrfs_previous_item(root, path, key.objectid,
964 BTRFS_DEV_EXTENT_KEY);
965 if (ret)
966 goto out;
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
969 extent = btrfs_item_ptr(leaf, path->slots[0],
970 struct btrfs_dev_extent);
971 BUG_ON(found_key.offset > start || found_key.offset +
972 btrfs_dev_extent_length(leaf, extent) < start);
973 } else if (ret == 0) {
974 leaf = path->nodes[0];
975 extent = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_dev_extent);
978 BUG_ON(ret);
980 if (device->bytes_used > 0)
981 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
982 ret = btrfs_del_item(trans, root, path);
984 out:
985 btrfs_free_path(path);
986 return ret;
989 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
990 struct btrfs_device *device,
991 u64 chunk_tree, u64 chunk_objectid,
992 u64 chunk_offset, u64 start, u64 num_bytes)
994 int ret;
995 struct btrfs_path *path;
996 struct btrfs_root *root = device->dev_root;
997 struct btrfs_dev_extent *extent;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1001 WARN_ON(!device->in_fs_metadata);
1002 path = btrfs_alloc_path();
1003 if (!path)
1004 return -ENOMEM;
1006 key.objectid = device->devid;
1007 key.offset = start;
1008 key.type = BTRFS_DEV_EXTENT_KEY;
1009 ret = btrfs_insert_empty_item(trans, root, path, &key,
1010 sizeof(*extent));
1011 BUG_ON(ret);
1013 leaf = path->nodes[0];
1014 extent = btrfs_item_ptr(leaf, path->slots[0],
1015 struct btrfs_dev_extent);
1016 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1017 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1018 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1020 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1021 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1022 BTRFS_UUID_SIZE);
1024 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1025 btrfs_mark_buffer_dirty(leaf);
1026 btrfs_free_path(path);
1027 return ret;
1030 static noinline int find_next_chunk(struct btrfs_root *root,
1031 u64 objectid, u64 *offset)
1033 struct btrfs_path *path;
1034 int ret;
1035 struct btrfs_key key;
1036 struct btrfs_chunk *chunk;
1037 struct btrfs_key found_key;
1039 path = btrfs_alloc_path();
1040 BUG_ON(!path);
1042 key.objectid = objectid;
1043 key.offset = (u64)-1;
1044 key.type = BTRFS_CHUNK_ITEM_KEY;
1046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1047 if (ret < 0)
1048 goto error;
1050 BUG_ON(ret == 0);
1052 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1053 if (ret) {
1054 *offset = 0;
1055 } else {
1056 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1057 path->slots[0]);
1058 if (found_key.objectid != objectid)
1059 *offset = 0;
1060 else {
1061 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1062 struct btrfs_chunk);
1063 *offset = found_key.offset +
1064 btrfs_chunk_length(path->nodes[0], chunk);
1067 ret = 0;
1068 error:
1069 btrfs_free_path(path);
1070 return ret;
1073 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1075 int ret;
1076 struct btrfs_key key;
1077 struct btrfs_key found_key;
1078 struct btrfs_path *path;
1080 root = root->fs_info->chunk_root;
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return -ENOMEM;
1086 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1087 key.type = BTRFS_DEV_ITEM_KEY;
1088 key.offset = (u64)-1;
1090 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1091 if (ret < 0)
1092 goto error;
1094 BUG_ON(ret == 0);
1096 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1097 BTRFS_DEV_ITEM_KEY);
1098 if (ret) {
1099 *objectid = 1;
1100 } else {
1101 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1102 path->slots[0]);
1103 *objectid = found_key.offset + 1;
1105 ret = 0;
1106 error:
1107 btrfs_free_path(path);
1108 return ret;
1112 * the device information is stored in the chunk root
1113 * the btrfs_device struct should be fully filled in
1115 int btrfs_add_device(struct btrfs_trans_handle *trans,
1116 struct btrfs_root *root,
1117 struct btrfs_device *device)
1119 int ret;
1120 struct btrfs_path *path;
1121 struct btrfs_dev_item *dev_item;
1122 struct extent_buffer *leaf;
1123 struct btrfs_key key;
1124 unsigned long ptr;
1126 root = root->fs_info->chunk_root;
1128 path = btrfs_alloc_path();
1129 if (!path)
1130 return -ENOMEM;
1132 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1133 key.type = BTRFS_DEV_ITEM_KEY;
1134 key.offset = device->devid;
1136 ret = btrfs_insert_empty_item(trans, root, path, &key,
1137 sizeof(*dev_item));
1138 if (ret)
1139 goto out;
1141 leaf = path->nodes[0];
1142 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1144 btrfs_set_device_id(leaf, dev_item, device->devid);
1145 btrfs_set_device_generation(leaf, dev_item, 0);
1146 btrfs_set_device_type(leaf, dev_item, device->type);
1147 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1148 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1149 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1150 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1151 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1152 btrfs_set_device_group(leaf, dev_item, 0);
1153 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1154 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1155 btrfs_set_device_start_offset(leaf, dev_item, 0);
1157 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1158 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1159 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1160 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1161 btrfs_mark_buffer_dirty(leaf);
1163 ret = 0;
1164 out:
1165 btrfs_free_path(path);
1166 return ret;
1169 static int btrfs_rm_dev_item(struct btrfs_root *root,
1170 struct btrfs_device *device)
1172 int ret;
1173 struct btrfs_path *path;
1174 struct btrfs_key key;
1175 struct btrfs_trans_handle *trans;
1177 root = root->fs_info->chunk_root;
1179 path = btrfs_alloc_path();
1180 if (!path)
1181 return -ENOMEM;
1183 trans = btrfs_start_transaction(root, 0);
1184 if (IS_ERR(trans)) {
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1189 key.type = BTRFS_DEV_ITEM_KEY;
1190 key.offset = device->devid;
1191 lock_chunks(root);
1193 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1194 if (ret < 0)
1195 goto out;
1197 if (ret > 0) {
1198 ret = -ENOENT;
1199 goto out;
1202 ret = btrfs_del_item(trans, root, path);
1203 if (ret)
1204 goto out;
1205 out:
1206 btrfs_free_path(path);
1207 unlock_chunks(root);
1208 btrfs_commit_transaction(trans, root);
1209 return ret;
1212 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1214 struct btrfs_device *device;
1215 struct btrfs_device *next_device;
1216 struct block_device *bdev;
1217 struct buffer_head *bh = NULL;
1218 struct btrfs_super_block *disk_super;
1219 struct btrfs_fs_devices *cur_devices;
1220 u64 all_avail;
1221 u64 devid;
1222 u64 num_devices;
1223 u8 *dev_uuid;
1224 int ret = 0;
1225 bool clear_super = false;
1227 mutex_lock(&uuid_mutex);
1228 mutex_lock(&root->fs_info->volume_mutex);
1230 all_avail = root->fs_info->avail_data_alloc_bits |
1231 root->fs_info->avail_system_alloc_bits |
1232 root->fs_info->avail_metadata_alloc_bits;
1234 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1235 root->fs_info->fs_devices->num_devices <= 4) {
1236 printk(KERN_ERR "btrfs: unable to go below four devices "
1237 "on raid10\n");
1238 ret = -EINVAL;
1239 goto out;
1242 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1243 root->fs_info->fs_devices->num_devices <= 2) {
1244 printk(KERN_ERR "btrfs: unable to go below two "
1245 "devices on raid1\n");
1246 ret = -EINVAL;
1247 goto out;
1250 if (strcmp(device_path, "missing") == 0) {
1251 struct list_head *devices;
1252 struct btrfs_device *tmp;
1254 device = NULL;
1255 devices = &root->fs_info->fs_devices->devices;
1257 * It is safe to read the devices since the volume_mutex
1258 * is held.
1260 list_for_each_entry(tmp, devices, dev_list) {
1261 if (tmp->in_fs_metadata && !tmp->bdev) {
1262 device = tmp;
1263 break;
1266 bdev = NULL;
1267 bh = NULL;
1268 disk_super = NULL;
1269 if (!device) {
1270 printk(KERN_ERR "btrfs: no missing devices found to "
1271 "remove\n");
1272 goto out;
1274 } else {
1275 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1276 root->fs_info->bdev_holder);
1277 if (IS_ERR(bdev)) {
1278 ret = PTR_ERR(bdev);
1279 goto out;
1282 set_blocksize(bdev, 4096);
1283 bh = btrfs_read_dev_super(bdev);
1284 if (!bh) {
1285 ret = -EINVAL;
1286 goto error_close;
1288 disk_super = (struct btrfs_super_block *)bh->b_data;
1289 devid = btrfs_stack_device_id(&disk_super->dev_item);
1290 dev_uuid = disk_super->dev_item.uuid;
1291 device = btrfs_find_device(root, devid, dev_uuid,
1292 disk_super->fsid);
1293 if (!device) {
1294 ret = -ENOENT;
1295 goto error_brelse;
1299 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1300 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1301 "device\n");
1302 ret = -EINVAL;
1303 goto error_brelse;
1306 if (device->writeable) {
1307 lock_chunks(root);
1308 list_del_init(&device->dev_alloc_list);
1309 unlock_chunks(root);
1310 root->fs_info->fs_devices->rw_devices--;
1311 clear_super = true;
1314 ret = btrfs_shrink_device(device, 0);
1315 if (ret)
1316 goto error_undo;
1318 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1319 if (ret)
1320 goto error_undo;
1322 device->in_fs_metadata = 0;
1323 btrfs_scrub_cancel_dev(root, device);
1326 * the device list mutex makes sure that we don't change
1327 * the device list while someone else is writing out all
1328 * the device supers.
1331 cur_devices = device->fs_devices;
1332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1333 list_del_rcu(&device->dev_list);
1335 device->fs_devices->num_devices--;
1337 if (device->missing)
1338 root->fs_info->fs_devices->missing_devices--;
1340 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1341 struct btrfs_device, dev_list);
1342 if (device->bdev == root->fs_info->sb->s_bdev)
1343 root->fs_info->sb->s_bdev = next_device->bdev;
1344 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1345 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1347 if (device->bdev)
1348 device->fs_devices->open_devices--;
1350 call_rcu(&device->rcu, free_device);
1351 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1353 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1354 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1356 if (cur_devices->open_devices == 0) {
1357 struct btrfs_fs_devices *fs_devices;
1358 fs_devices = root->fs_info->fs_devices;
1359 while (fs_devices) {
1360 if (fs_devices->seed == cur_devices)
1361 break;
1362 fs_devices = fs_devices->seed;
1364 fs_devices->seed = cur_devices->seed;
1365 cur_devices->seed = NULL;
1366 lock_chunks(root);
1367 __btrfs_close_devices(cur_devices);
1368 unlock_chunks(root);
1369 free_fs_devices(cur_devices);
1373 * at this point, the device is zero sized. We want to
1374 * remove it from the devices list and zero out the old super
1376 if (clear_super) {
1377 /* make sure this device isn't detected as part of
1378 * the FS anymore
1380 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1381 set_buffer_dirty(bh);
1382 sync_dirty_buffer(bh);
1385 ret = 0;
1387 error_brelse:
1388 brelse(bh);
1389 error_close:
1390 if (bdev)
1391 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1392 out:
1393 mutex_unlock(&root->fs_info->volume_mutex);
1394 mutex_unlock(&uuid_mutex);
1395 return ret;
1396 error_undo:
1397 if (device->writeable) {
1398 lock_chunks(root);
1399 list_add(&device->dev_alloc_list,
1400 &root->fs_info->fs_devices->alloc_list);
1401 unlock_chunks(root);
1402 root->fs_info->fs_devices->rw_devices++;
1404 goto error_brelse;
1408 * does all the dirty work required for changing file system's UUID.
1410 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *root)
1413 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1414 struct btrfs_fs_devices *old_devices;
1415 struct btrfs_fs_devices *seed_devices;
1416 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1417 struct btrfs_device *device;
1418 u64 super_flags;
1420 BUG_ON(!mutex_is_locked(&uuid_mutex));
1421 if (!fs_devices->seeding)
1422 return -EINVAL;
1424 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1425 if (!seed_devices)
1426 return -ENOMEM;
1428 old_devices = clone_fs_devices(fs_devices);
1429 if (IS_ERR(old_devices)) {
1430 kfree(seed_devices);
1431 return PTR_ERR(old_devices);
1434 list_add(&old_devices->list, &fs_uuids);
1436 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1437 seed_devices->opened = 1;
1438 INIT_LIST_HEAD(&seed_devices->devices);
1439 INIT_LIST_HEAD(&seed_devices->alloc_list);
1440 mutex_init(&seed_devices->device_list_mutex);
1442 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1443 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1444 synchronize_rcu);
1445 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1447 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1448 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1449 device->fs_devices = seed_devices;
1452 fs_devices->seeding = 0;
1453 fs_devices->num_devices = 0;
1454 fs_devices->open_devices = 0;
1455 fs_devices->seed = seed_devices;
1457 generate_random_uuid(fs_devices->fsid);
1458 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1459 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1460 super_flags = btrfs_super_flags(disk_super) &
1461 ~BTRFS_SUPER_FLAG_SEEDING;
1462 btrfs_set_super_flags(disk_super, super_flags);
1464 return 0;
1468 * strore the expected generation for seed devices in device items.
1470 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root)
1473 struct btrfs_path *path;
1474 struct extent_buffer *leaf;
1475 struct btrfs_dev_item *dev_item;
1476 struct btrfs_device *device;
1477 struct btrfs_key key;
1478 u8 fs_uuid[BTRFS_UUID_SIZE];
1479 u8 dev_uuid[BTRFS_UUID_SIZE];
1480 u64 devid;
1481 int ret;
1483 path = btrfs_alloc_path();
1484 if (!path)
1485 return -ENOMEM;
1487 root = root->fs_info->chunk_root;
1488 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1489 key.offset = 0;
1490 key.type = BTRFS_DEV_ITEM_KEY;
1492 while (1) {
1493 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1494 if (ret < 0)
1495 goto error;
1497 leaf = path->nodes[0];
1498 next_slot:
1499 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1500 ret = btrfs_next_leaf(root, path);
1501 if (ret > 0)
1502 break;
1503 if (ret < 0)
1504 goto error;
1505 leaf = path->nodes[0];
1506 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1507 btrfs_release_path(path);
1508 continue;
1511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1512 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1513 key.type != BTRFS_DEV_ITEM_KEY)
1514 break;
1516 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1517 struct btrfs_dev_item);
1518 devid = btrfs_device_id(leaf, dev_item);
1519 read_extent_buffer(leaf, dev_uuid,
1520 (unsigned long)btrfs_device_uuid(dev_item),
1521 BTRFS_UUID_SIZE);
1522 read_extent_buffer(leaf, fs_uuid,
1523 (unsigned long)btrfs_device_fsid(dev_item),
1524 BTRFS_UUID_SIZE);
1525 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1526 BUG_ON(!device);
1528 if (device->fs_devices->seeding) {
1529 btrfs_set_device_generation(leaf, dev_item,
1530 device->generation);
1531 btrfs_mark_buffer_dirty(leaf);
1534 path->slots[0]++;
1535 goto next_slot;
1537 ret = 0;
1538 error:
1539 btrfs_free_path(path);
1540 return ret;
1543 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1545 struct btrfs_trans_handle *trans;
1546 struct btrfs_device *device;
1547 struct block_device *bdev;
1548 struct list_head *devices;
1549 struct super_block *sb = root->fs_info->sb;
1550 u64 total_bytes;
1551 int seeding_dev = 0;
1552 int ret = 0;
1554 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1555 return -EINVAL;
1557 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1558 root->fs_info->bdev_holder);
1559 if (IS_ERR(bdev))
1560 return PTR_ERR(bdev);
1562 if (root->fs_info->fs_devices->seeding) {
1563 seeding_dev = 1;
1564 down_write(&sb->s_umount);
1565 mutex_lock(&uuid_mutex);
1568 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1569 mutex_lock(&root->fs_info->volume_mutex);
1571 devices = &root->fs_info->fs_devices->devices;
1573 * we have the volume lock, so we don't need the extra
1574 * device list mutex while reading the list here.
1576 list_for_each_entry(device, devices, dev_list) {
1577 if (device->bdev == bdev) {
1578 ret = -EEXIST;
1579 goto error;
1583 device = kzalloc(sizeof(*device), GFP_NOFS);
1584 if (!device) {
1585 /* we can safely leave the fs_devices entry around */
1586 ret = -ENOMEM;
1587 goto error;
1590 device->name = kstrdup(device_path, GFP_NOFS);
1591 if (!device->name) {
1592 kfree(device);
1593 ret = -ENOMEM;
1594 goto error;
1597 ret = find_next_devid(root, &device->devid);
1598 if (ret) {
1599 kfree(device->name);
1600 kfree(device);
1601 goto error;
1604 trans = btrfs_start_transaction(root, 0);
1605 if (IS_ERR(trans)) {
1606 kfree(device->name);
1607 kfree(device);
1608 ret = PTR_ERR(trans);
1609 goto error;
1612 lock_chunks(root);
1614 device->writeable = 1;
1615 device->work.func = pending_bios_fn;
1616 generate_random_uuid(device->uuid);
1617 spin_lock_init(&device->io_lock);
1618 device->generation = trans->transid;
1619 device->io_width = root->sectorsize;
1620 device->io_align = root->sectorsize;
1621 device->sector_size = root->sectorsize;
1622 device->total_bytes = i_size_read(bdev->bd_inode);
1623 device->disk_total_bytes = device->total_bytes;
1624 device->dev_root = root->fs_info->dev_root;
1625 device->bdev = bdev;
1626 device->in_fs_metadata = 1;
1627 device->mode = FMODE_EXCL;
1628 set_blocksize(device->bdev, 4096);
1630 if (seeding_dev) {
1631 sb->s_flags &= ~MS_RDONLY;
1632 ret = btrfs_prepare_sprout(trans, root);
1633 BUG_ON(ret);
1636 device->fs_devices = root->fs_info->fs_devices;
1639 * we don't want write_supers to jump in here with our device
1640 * half setup
1642 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1643 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1644 list_add(&device->dev_alloc_list,
1645 &root->fs_info->fs_devices->alloc_list);
1646 root->fs_info->fs_devices->num_devices++;
1647 root->fs_info->fs_devices->open_devices++;
1648 root->fs_info->fs_devices->rw_devices++;
1649 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1651 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1652 root->fs_info->fs_devices->rotating = 1;
1654 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1655 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1656 total_bytes + device->total_bytes);
1658 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1659 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1660 total_bytes + 1);
1661 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1663 if (seeding_dev) {
1664 ret = init_first_rw_device(trans, root, device);
1665 BUG_ON(ret);
1666 ret = btrfs_finish_sprout(trans, root);
1667 BUG_ON(ret);
1668 } else {
1669 ret = btrfs_add_device(trans, root, device);
1673 * we've got more storage, clear any full flags on the space
1674 * infos
1676 btrfs_clear_space_info_full(root->fs_info);
1678 unlock_chunks(root);
1679 btrfs_commit_transaction(trans, root);
1681 if (seeding_dev) {
1682 mutex_unlock(&uuid_mutex);
1683 up_write(&sb->s_umount);
1685 ret = btrfs_relocate_sys_chunks(root);
1686 BUG_ON(ret);
1688 out:
1689 mutex_unlock(&root->fs_info->volume_mutex);
1690 return ret;
1691 error:
1692 blkdev_put(bdev, FMODE_EXCL);
1693 if (seeding_dev) {
1694 mutex_unlock(&uuid_mutex);
1695 up_write(&sb->s_umount);
1697 goto out;
1700 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device)
1703 int ret;
1704 struct btrfs_path *path;
1705 struct btrfs_root *root;
1706 struct btrfs_dev_item *dev_item;
1707 struct extent_buffer *leaf;
1708 struct btrfs_key key;
1710 root = device->dev_root->fs_info->chunk_root;
1712 path = btrfs_alloc_path();
1713 if (!path)
1714 return -ENOMEM;
1716 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1717 key.type = BTRFS_DEV_ITEM_KEY;
1718 key.offset = device->devid;
1720 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1721 if (ret < 0)
1722 goto out;
1724 if (ret > 0) {
1725 ret = -ENOENT;
1726 goto out;
1729 leaf = path->nodes[0];
1730 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1732 btrfs_set_device_id(leaf, dev_item, device->devid);
1733 btrfs_set_device_type(leaf, dev_item, device->type);
1734 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1735 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1736 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1737 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1738 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1739 btrfs_mark_buffer_dirty(leaf);
1741 out:
1742 btrfs_free_path(path);
1743 return ret;
1746 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1747 struct btrfs_device *device, u64 new_size)
1749 struct btrfs_super_block *super_copy =
1750 &device->dev_root->fs_info->super_copy;
1751 u64 old_total = btrfs_super_total_bytes(super_copy);
1752 u64 diff = new_size - device->total_bytes;
1754 if (!device->writeable)
1755 return -EACCES;
1756 if (new_size <= device->total_bytes)
1757 return -EINVAL;
1759 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1760 device->fs_devices->total_rw_bytes += diff;
1762 device->total_bytes = new_size;
1763 device->disk_total_bytes = new_size;
1764 btrfs_clear_space_info_full(device->dev_root->fs_info);
1766 return btrfs_update_device(trans, device);
1769 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1770 struct btrfs_device *device, u64 new_size)
1772 int ret;
1773 lock_chunks(device->dev_root);
1774 ret = __btrfs_grow_device(trans, device, new_size);
1775 unlock_chunks(device->dev_root);
1776 return ret;
1779 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1780 struct btrfs_root *root,
1781 u64 chunk_tree, u64 chunk_objectid,
1782 u64 chunk_offset)
1784 int ret;
1785 struct btrfs_path *path;
1786 struct btrfs_key key;
1788 root = root->fs_info->chunk_root;
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1793 key.objectid = chunk_objectid;
1794 key.offset = chunk_offset;
1795 key.type = BTRFS_CHUNK_ITEM_KEY;
1797 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1798 BUG_ON(ret);
1800 ret = btrfs_del_item(trans, root, path);
1802 btrfs_free_path(path);
1803 return ret;
1806 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1807 chunk_offset)
1809 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1810 struct btrfs_disk_key *disk_key;
1811 struct btrfs_chunk *chunk;
1812 u8 *ptr;
1813 int ret = 0;
1814 u32 num_stripes;
1815 u32 array_size;
1816 u32 len = 0;
1817 u32 cur;
1818 struct btrfs_key key;
1820 array_size = btrfs_super_sys_array_size(super_copy);
1822 ptr = super_copy->sys_chunk_array;
1823 cur = 0;
1825 while (cur < array_size) {
1826 disk_key = (struct btrfs_disk_key *)ptr;
1827 btrfs_disk_key_to_cpu(&key, disk_key);
1829 len = sizeof(*disk_key);
1831 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1832 chunk = (struct btrfs_chunk *)(ptr + len);
1833 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1834 len += btrfs_chunk_item_size(num_stripes);
1835 } else {
1836 ret = -EIO;
1837 break;
1839 if (key.objectid == chunk_objectid &&
1840 key.offset == chunk_offset) {
1841 memmove(ptr, ptr + len, array_size - (cur + len));
1842 array_size -= len;
1843 btrfs_set_super_sys_array_size(super_copy, array_size);
1844 } else {
1845 ptr += len;
1846 cur += len;
1849 return ret;
1852 static int btrfs_relocate_chunk(struct btrfs_root *root,
1853 u64 chunk_tree, u64 chunk_objectid,
1854 u64 chunk_offset)
1856 struct extent_map_tree *em_tree;
1857 struct btrfs_root *extent_root;
1858 struct btrfs_trans_handle *trans;
1859 struct extent_map *em;
1860 struct map_lookup *map;
1861 int ret;
1862 int i;
1864 root = root->fs_info->chunk_root;
1865 extent_root = root->fs_info->extent_root;
1866 em_tree = &root->fs_info->mapping_tree.map_tree;
1868 ret = btrfs_can_relocate(extent_root, chunk_offset);
1869 if (ret)
1870 return -ENOSPC;
1872 /* step one, relocate all the extents inside this chunk */
1873 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1874 if (ret)
1875 return ret;
1877 trans = btrfs_start_transaction(root, 0);
1878 BUG_ON(IS_ERR(trans));
1880 lock_chunks(root);
1883 * step two, delete the device extents and the
1884 * chunk tree entries
1886 read_lock(&em_tree->lock);
1887 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1888 read_unlock(&em_tree->lock);
1890 BUG_ON(em->start > chunk_offset ||
1891 em->start + em->len < chunk_offset);
1892 map = (struct map_lookup *)em->bdev;
1894 for (i = 0; i < map->num_stripes; i++) {
1895 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1896 map->stripes[i].physical);
1897 BUG_ON(ret);
1899 if (map->stripes[i].dev) {
1900 ret = btrfs_update_device(trans, map->stripes[i].dev);
1901 BUG_ON(ret);
1904 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1905 chunk_offset);
1907 BUG_ON(ret);
1909 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1911 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1912 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1913 BUG_ON(ret);
1916 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1917 BUG_ON(ret);
1919 write_lock(&em_tree->lock);
1920 remove_extent_mapping(em_tree, em);
1921 write_unlock(&em_tree->lock);
1923 kfree(map);
1924 em->bdev = NULL;
1926 /* once for the tree */
1927 free_extent_map(em);
1928 /* once for us */
1929 free_extent_map(em);
1931 unlock_chunks(root);
1932 btrfs_end_transaction(trans, root);
1933 return 0;
1936 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1938 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1939 struct btrfs_path *path;
1940 struct extent_buffer *leaf;
1941 struct btrfs_chunk *chunk;
1942 struct btrfs_key key;
1943 struct btrfs_key found_key;
1944 u64 chunk_tree = chunk_root->root_key.objectid;
1945 u64 chunk_type;
1946 bool retried = false;
1947 int failed = 0;
1948 int ret;
1950 path = btrfs_alloc_path();
1951 if (!path)
1952 return -ENOMEM;
1954 again:
1955 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1956 key.offset = (u64)-1;
1957 key.type = BTRFS_CHUNK_ITEM_KEY;
1959 while (1) {
1960 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1961 if (ret < 0)
1962 goto error;
1963 BUG_ON(ret == 0);
1965 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1966 key.type);
1967 if (ret < 0)
1968 goto error;
1969 if (ret > 0)
1970 break;
1972 leaf = path->nodes[0];
1973 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1975 chunk = btrfs_item_ptr(leaf, path->slots[0],
1976 struct btrfs_chunk);
1977 chunk_type = btrfs_chunk_type(leaf, chunk);
1978 btrfs_release_path(path);
1980 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1981 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1982 found_key.objectid,
1983 found_key.offset);
1984 if (ret == -ENOSPC)
1985 failed++;
1986 else if (ret)
1987 BUG();
1990 if (found_key.offset == 0)
1991 break;
1992 key.offset = found_key.offset - 1;
1994 ret = 0;
1995 if (failed && !retried) {
1996 failed = 0;
1997 retried = true;
1998 goto again;
1999 } else if (failed && retried) {
2000 WARN_ON(1);
2001 ret = -ENOSPC;
2003 error:
2004 btrfs_free_path(path);
2005 return ret;
2008 static u64 div_factor(u64 num, int factor)
2010 if (factor == 10)
2011 return num;
2012 num *= factor;
2013 do_div(num, 10);
2014 return num;
2017 int btrfs_balance(struct btrfs_root *dev_root)
2019 int ret;
2020 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2021 struct btrfs_device *device;
2022 u64 old_size;
2023 u64 size_to_free;
2024 struct btrfs_path *path;
2025 struct btrfs_key key;
2026 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2027 struct btrfs_trans_handle *trans;
2028 struct btrfs_key found_key;
2030 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2031 return -EROFS;
2033 if (!capable(CAP_SYS_ADMIN))
2034 return -EPERM;
2036 mutex_lock(&dev_root->fs_info->volume_mutex);
2037 dev_root = dev_root->fs_info->dev_root;
2039 /* step one make some room on all the devices */
2040 list_for_each_entry(device, devices, dev_list) {
2041 old_size = device->total_bytes;
2042 size_to_free = div_factor(old_size, 1);
2043 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2044 if (!device->writeable ||
2045 device->total_bytes - device->bytes_used > size_to_free)
2046 continue;
2048 ret = btrfs_shrink_device(device, old_size - size_to_free);
2049 if (ret == -ENOSPC)
2050 break;
2051 BUG_ON(ret);
2053 trans = btrfs_start_transaction(dev_root, 0);
2054 BUG_ON(IS_ERR(trans));
2056 ret = btrfs_grow_device(trans, device, old_size);
2057 BUG_ON(ret);
2059 btrfs_end_transaction(trans, dev_root);
2062 /* step two, relocate all the chunks */
2063 path = btrfs_alloc_path();
2064 BUG_ON(!path);
2066 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2067 key.offset = (u64)-1;
2068 key.type = BTRFS_CHUNK_ITEM_KEY;
2070 while (1) {
2071 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2072 if (ret < 0)
2073 goto error;
2076 * this shouldn't happen, it means the last relocate
2077 * failed
2079 if (ret == 0)
2080 break;
2082 ret = btrfs_previous_item(chunk_root, path, 0,
2083 BTRFS_CHUNK_ITEM_KEY);
2084 if (ret)
2085 break;
2087 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2088 path->slots[0]);
2089 if (found_key.objectid != key.objectid)
2090 break;
2092 /* chunk zero is special */
2093 if (found_key.offset == 0)
2094 break;
2096 btrfs_release_path(path);
2097 ret = btrfs_relocate_chunk(chunk_root,
2098 chunk_root->root_key.objectid,
2099 found_key.objectid,
2100 found_key.offset);
2101 BUG_ON(ret && ret != -ENOSPC);
2102 key.offset = found_key.offset - 1;
2104 ret = 0;
2105 error:
2106 btrfs_free_path(path);
2107 mutex_unlock(&dev_root->fs_info->volume_mutex);
2108 return ret;
2112 * shrinking a device means finding all of the device extents past
2113 * the new size, and then following the back refs to the chunks.
2114 * The chunk relocation code actually frees the device extent
2116 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2118 struct btrfs_trans_handle *trans;
2119 struct btrfs_root *root = device->dev_root;
2120 struct btrfs_dev_extent *dev_extent = NULL;
2121 struct btrfs_path *path;
2122 u64 length;
2123 u64 chunk_tree;
2124 u64 chunk_objectid;
2125 u64 chunk_offset;
2126 int ret;
2127 int slot;
2128 int failed = 0;
2129 bool retried = false;
2130 struct extent_buffer *l;
2131 struct btrfs_key key;
2132 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2133 u64 old_total = btrfs_super_total_bytes(super_copy);
2134 u64 old_size = device->total_bytes;
2135 u64 diff = device->total_bytes - new_size;
2137 if (new_size >= device->total_bytes)
2138 return -EINVAL;
2140 path = btrfs_alloc_path();
2141 if (!path)
2142 return -ENOMEM;
2144 path->reada = 2;
2146 lock_chunks(root);
2148 device->total_bytes = new_size;
2149 if (device->writeable)
2150 device->fs_devices->total_rw_bytes -= diff;
2151 unlock_chunks(root);
2153 again:
2154 key.objectid = device->devid;
2155 key.offset = (u64)-1;
2156 key.type = BTRFS_DEV_EXTENT_KEY;
2158 while (1) {
2159 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2160 if (ret < 0)
2161 goto done;
2163 ret = btrfs_previous_item(root, path, 0, key.type);
2164 if (ret < 0)
2165 goto done;
2166 if (ret) {
2167 ret = 0;
2168 btrfs_release_path(path);
2169 break;
2172 l = path->nodes[0];
2173 slot = path->slots[0];
2174 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2176 if (key.objectid != device->devid) {
2177 btrfs_release_path(path);
2178 break;
2181 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2182 length = btrfs_dev_extent_length(l, dev_extent);
2184 if (key.offset + length <= new_size) {
2185 btrfs_release_path(path);
2186 break;
2189 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2190 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2191 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2192 btrfs_release_path(path);
2194 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2195 chunk_offset);
2196 if (ret && ret != -ENOSPC)
2197 goto done;
2198 if (ret == -ENOSPC)
2199 failed++;
2200 key.offset -= 1;
2203 if (failed && !retried) {
2204 failed = 0;
2205 retried = true;
2206 goto again;
2207 } else if (failed && retried) {
2208 ret = -ENOSPC;
2209 lock_chunks(root);
2211 device->total_bytes = old_size;
2212 if (device->writeable)
2213 device->fs_devices->total_rw_bytes += diff;
2214 unlock_chunks(root);
2215 goto done;
2218 /* Shrinking succeeded, else we would be at "done". */
2219 trans = btrfs_start_transaction(root, 0);
2220 if (IS_ERR(trans)) {
2221 ret = PTR_ERR(trans);
2222 goto done;
2225 lock_chunks(root);
2227 device->disk_total_bytes = new_size;
2228 /* Now btrfs_update_device() will change the on-disk size. */
2229 ret = btrfs_update_device(trans, device);
2230 if (ret) {
2231 unlock_chunks(root);
2232 btrfs_end_transaction(trans, root);
2233 goto done;
2235 WARN_ON(diff > old_total);
2236 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2237 unlock_chunks(root);
2238 btrfs_end_transaction(trans, root);
2239 done:
2240 btrfs_free_path(path);
2241 return ret;
2244 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_key *key,
2247 struct btrfs_chunk *chunk, int item_size)
2249 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2250 struct btrfs_disk_key disk_key;
2251 u32 array_size;
2252 u8 *ptr;
2254 array_size = btrfs_super_sys_array_size(super_copy);
2255 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2256 return -EFBIG;
2258 ptr = super_copy->sys_chunk_array + array_size;
2259 btrfs_cpu_key_to_disk(&disk_key, key);
2260 memcpy(ptr, &disk_key, sizeof(disk_key));
2261 ptr += sizeof(disk_key);
2262 memcpy(ptr, chunk, item_size);
2263 item_size += sizeof(disk_key);
2264 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2265 return 0;
2269 * sort the devices in descending order by max_avail, total_avail
2271 static int btrfs_cmp_device_info(const void *a, const void *b)
2273 const struct btrfs_device_info *di_a = a;
2274 const struct btrfs_device_info *di_b = b;
2276 if (di_a->max_avail > di_b->max_avail)
2277 return -1;
2278 if (di_a->max_avail < di_b->max_avail)
2279 return 1;
2280 if (di_a->total_avail > di_b->total_avail)
2281 return -1;
2282 if (di_a->total_avail < di_b->total_avail)
2283 return 1;
2284 return 0;
2287 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2288 struct btrfs_root *extent_root,
2289 struct map_lookup **map_ret,
2290 u64 *num_bytes_out, u64 *stripe_size_out,
2291 u64 start, u64 type)
2293 struct btrfs_fs_info *info = extent_root->fs_info;
2294 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2295 struct list_head *cur;
2296 struct map_lookup *map = NULL;
2297 struct extent_map_tree *em_tree;
2298 struct extent_map *em;
2299 struct btrfs_device_info *devices_info = NULL;
2300 u64 total_avail;
2301 int num_stripes; /* total number of stripes to allocate */
2302 int sub_stripes; /* sub_stripes info for map */
2303 int dev_stripes; /* stripes per dev */
2304 int devs_max; /* max devs to use */
2305 int devs_min; /* min devs needed */
2306 int devs_increment; /* ndevs has to be a multiple of this */
2307 int ncopies; /* how many copies to data has */
2308 int ret;
2309 u64 max_stripe_size;
2310 u64 max_chunk_size;
2311 u64 stripe_size;
2312 u64 num_bytes;
2313 int ndevs;
2314 int i;
2315 int j;
2317 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2318 (type & BTRFS_BLOCK_GROUP_DUP)) {
2319 WARN_ON(1);
2320 type &= ~BTRFS_BLOCK_GROUP_DUP;
2323 if (list_empty(&fs_devices->alloc_list))
2324 return -ENOSPC;
2326 sub_stripes = 1;
2327 dev_stripes = 1;
2328 devs_increment = 1;
2329 ncopies = 1;
2330 devs_max = 0; /* 0 == as many as possible */
2331 devs_min = 1;
2334 * define the properties of each RAID type.
2335 * FIXME: move this to a global table and use it in all RAID
2336 * calculation code
2338 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2339 dev_stripes = 2;
2340 ncopies = 2;
2341 devs_max = 1;
2342 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2343 devs_min = 2;
2344 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2345 devs_increment = 2;
2346 ncopies = 2;
2347 devs_max = 2;
2348 devs_min = 2;
2349 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2350 sub_stripes = 2;
2351 devs_increment = 2;
2352 ncopies = 2;
2353 devs_min = 4;
2354 } else {
2355 devs_max = 1;
2358 if (type & BTRFS_BLOCK_GROUP_DATA) {
2359 max_stripe_size = 1024 * 1024 * 1024;
2360 max_chunk_size = 10 * max_stripe_size;
2361 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2362 max_stripe_size = 256 * 1024 * 1024;
2363 max_chunk_size = max_stripe_size;
2364 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2365 max_stripe_size = 8 * 1024 * 1024;
2366 max_chunk_size = 2 * max_stripe_size;
2367 } else {
2368 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
2369 type);
2370 BUG_ON(1);
2373 /* we don't want a chunk larger than 10% of writeable space */
2374 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2375 max_chunk_size);
2377 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2378 GFP_NOFS);
2379 if (!devices_info)
2380 return -ENOMEM;
2382 cur = fs_devices->alloc_list.next;
2385 * in the first pass through the devices list, we gather information
2386 * about the available holes on each device.
2388 ndevs = 0;
2389 while (cur != &fs_devices->alloc_list) {
2390 struct btrfs_device *device;
2391 u64 max_avail;
2392 u64 dev_offset;
2394 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2396 cur = cur->next;
2398 if (!device->writeable) {
2399 printk(KERN_ERR
2400 "btrfs: read-only device in alloc_list\n");
2401 WARN_ON(1);
2402 continue;
2405 if (!device->in_fs_metadata)
2406 continue;
2408 if (device->total_bytes > device->bytes_used)
2409 total_avail = device->total_bytes - device->bytes_used;
2410 else
2411 total_avail = 0;
2412 /* avail is off by max(alloc_start, 1MB), but that is the same
2413 * for all devices, so it doesn't hurt the sorting later on
2416 ret = find_free_dev_extent(trans, device,
2417 max_stripe_size * dev_stripes,
2418 &dev_offset, &max_avail);
2419 if (ret && ret != -ENOSPC)
2420 goto error;
2422 if (ret == 0)
2423 max_avail = max_stripe_size * dev_stripes;
2425 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
2426 continue;
2428 devices_info[ndevs].dev_offset = dev_offset;
2429 devices_info[ndevs].max_avail = max_avail;
2430 devices_info[ndevs].total_avail = total_avail;
2431 devices_info[ndevs].dev = device;
2432 ++ndevs;
2436 * now sort the devices by hole size / available space
2438 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
2439 btrfs_cmp_device_info, NULL);
2441 /* round down to number of usable stripes */
2442 ndevs -= ndevs % devs_increment;
2444 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
2445 ret = -ENOSPC;
2446 goto error;
2449 if (devs_max && ndevs > devs_max)
2450 ndevs = devs_max;
2452 * the primary goal is to maximize the number of stripes, so use as many
2453 * devices as possible, even if the stripes are not maximum sized.
2455 stripe_size = devices_info[ndevs-1].max_avail;
2456 num_stripes = ndevs * dev_stripes;
2458 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
2459 stripe_size = max_chunk_size * ncopies;
2460 do_div(stripe_size, num_stripes);
2463 do_div(stripe_size, dev_stripes);
2464 do_div(stripe_size, BTRFS_STRIPE_LEN);
2465 stripe_size *= BTRFS_STRIPE_LEN;
2467 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2468 if (!map) {
2469 ret = -ENOMEM;
2470 goto error;
2472 map->num_stripes = num_stripes;
2474 for (i = 0; i < ndevs; ++i) {
2475 for (j = 0; j < dev_stripes; ++j) {
2476 int s = i * dev_stripes + j;
2477 map->stripes[s].dev = devices_info[i].dev;
2478 map->stripes[s].physical = devices_info[i].dev_offset +
2479 j * stripe_size;
2482 map->sector_size = extent_root->sectorsize;
2483 map->stripe_len = BTRFS_STRIPE_LEN;
2484 map->io_align = BTRFS_STRIPE_LEN;
2485 map->io_width = BTRFS_STRIPE_LEN;
2486 map->type = type;
2487 map->sub_stripes = sub_stripes;
2489 *map_ret = map;
2490 num_bytes = stripe_size * (num_stripes / ncopies);
2492 *stripe_size_out = stripe_size;
2493 *num_bytes_out = num_bytes;
2495 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
2497 em = alloc_extent_map();
2498 if (!em) {
2499 ret = -ENOMEM;
2500 goto error;
2502 em->bdev = (struct block_device *)map;
2503 em->start = start;
2504 em->len = num_bytes;
2505 em->block_start = 0;
2506 em->block_len = em->len;
2508 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2509 write_lock(&em_tree->lock);
2510 ret = add_extent_mapping(em_tree, em);
2511 write_unlock(&em_tree->lock);
2512 BUG_ON(ret);
2513 free_extent_map(em);
2515 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2516 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2517 start, num_bytes);
2518 BUG_ON(ret);
2520 for (i = 0; i < map->num_stripes; ++i) {
2521 struct btrfs_device *device;
2522 u64 dev_offset;
2524 device = map->stripes[i].dev;
2525 dev_offset = map->stripes[i].physical;
2527 ret = btrfs_alloc_dev_extent(trans, device,
2528 info->chunk_root->root_key.objectid,
2529 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2530 start, dev_offset, stripe_size);
2531 BUG_ON(ret);
2534 kfree(devices_info);
2535 return 0;
2537 error:
2538 kfree(map);
2539 kfree(devices_info);
2540 return ret;
2543 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2544 struct btrfs_root *extent_root,
2545 struct map_lookup *map, u64 chunk_offset,
2546 u64 chunk_size, u64 stripe_size)
2548 u64 dev_offset;
2549 struct btrfs_key key;
2550 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2551 struct btrfs_device *device;
2552 struct btrfs_chunk *chunk;
2553 struct btrfs_stripe *stripe;
2554 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2555 int index = 0;
2556 int ret;
2558 chunk = kzalloc(item_size, GFP_NOFS);
2559 if (!chunk)
2560 return -ENOMEM;
2562 index = 0;
2563 while (index < map->num_stripes) {
2564 device = map->stripes[index].dev;
2565 device->bytes_used += stripe_size;
2566 ret = btrfs_update_device(trans, device);
2567 BUG_ON(ret);
2568 index++;
2571 index = 0;
2572 stripe = &chunk->stripe;
2573 while (index < map->num_stripes) {
2574 device = map->stripes[index].dev;
2575 dev_offset = map->stripes[index].physical;
2577 btrfs_set_stack_stripe_devid(stripe, device->devid);
2578 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2579 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2580 stripe++;
2581 index++;
2584 btrfs_set_stack_chunk_length(chunk, chunk_size);
2585 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2586 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2587 btrfs_set_stack_chunk_type(chunk, map->type);
2588 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2589 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2590 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2591 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2592 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2594 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2595 key.type = BTRFS_CHUNK_ITEM_KEY;
2596 key.offset = chunk_offset;
2598 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2599 BUG_ON(ret);
2601 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2602 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2603 item_size);
2604 BUG_ON(ret);
2607 kfree(chunk);
2608 return 0;
2612 * Chunk allocation falls into two parts. The first part does works
2613 * that make the new allocated chunk useable, but not do any operation
2614 * that modifies the chunk tree. The second part does the works that
2615 * require modifying the chunk tree. This division is important for the
2616 * bootstrap process of adding storage to a seed btrfs.
2618 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2619 struct btrfs_root *extent_root, u64 type)
2621 u64 chunk_offset;
2622 u64 chunk_size;
2623 u64 stripe_size;
2624 struct map_lookup *map;
2625 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2626 int ret;
2628 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2629 &chunk_offset);
2630 if (ret)
2631 return ret;
2633 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2634 &stripe_size, chunk_offset, type);
2635 if (ret)
2636 return ret;
2638 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2639 chunk_size, stripe_size);
2640 BUG_ON(ret);
2641 return 0;
2644 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root,
2646 struct btrfs_device *device)
2648 u64 chunk_offset;
2649 u64 sys_chunk_offset;
2650 u64 chunk_size;
2651 u64 sys_chunk_size;
2652 u64 stripe_size;
2653 u64 sys_stripe_size;
2654 u64 alloc_profile;
2655 struct map_lookup *map;
2656 struct map_lookup *sys_map;
2657 struct btrfs_fs_info *fs_info = root->fs_info;
2658 struct btrfs_root *extent_root = fs_info->extent_root;
2659 int ret;
2661 ret = find_next_chunk(fs_info->chunk_root,
2662 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2663 BUG_ON(ret);
2665 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2666 (fs_info->metadata_alloc_profile &
2667 fs_info->avail_metadata_alloc_bits);
2668 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2670 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2671 &stripe_size, chunk_offset, alloc_profile);
2672 BUG_ON(ret);
2674 sys_chunk_offset = chunk_offset + chunk_size;
2676 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2677 (fs_info->system_alloc_profile &
2678 fs_info->avail_system_alloc_bits);
2679 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2681 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2682 &sys_chunk_size, &sys_stripe_size,
2683 sys_chunk_offset, alloc_profile);
2684 BUG_ON(ret);
2686 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2687 BUG_ON(ret);
2690 * Modifying chunk tree needs allocating new blocks from both
2691 * system block group and metadata block group. So we only can
2692 * do operations require modifying the chunk tree after both
2693 * block groups were created.
2695 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2696 chunk_size, stripe_size);
2697 BUG_ON(ret);
2699 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2700 sys_chunk_offset, sys_chunk_size,
2701 sys_stripe_size);
2702 BUG_ON(ret);
2703 return 0;
2706 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2708 struct extent_map *em;
2709 struct map_lookup *map;
2710 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2711 int readonly = 0;
2712 int i;
2714 read_lock(&map_tree->map_tree.lock);
2715 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2716 read_unlock(&map_tree->map_tree.lock);
2717 if (!em)
2718 return 1;
2720 if (btrfs_test_opt(root, DEGRADED)) {
2721 free_extent_map(em);
2722 return 0;
2725 map = (struct map_lookup *)em->bdev;
2726 for (i = 0; i < map->num_stripes; i++) {
2727 if (!map->stripes[i].dev->writeable) {
2728 readonly = 1;
2729 break;
2732 free_extent_map(em);
2733 return readonly;
2736 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2738 extent_map_tree_init(&tree->map_tree);
2741 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2743 struct extent_map *em;
2745 while (1) {
2746 write_lock(&tree->map_tree.lock);
2747 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2748 if (em)
2749 remove_extent_mapping(&tree->map_tree, em);
2750 write_unlock(&tree->map_tree.lock);
2751 if (!em)
2752 break;
2753 kfree(em->bdev);
2754 /* once for us */
2755 free_extent_map(em);
2756 /* once for the tree */
2757 free_extent_map(em);
2761 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2763 struct extent_map *em;
2764 struct map_lookup *map;
2765 struct extent_map_tree *em_tree = &map_tree->map_tree;
2766 int ret;
2768 read_lock(&em_tree->lock);
2769 em = lookup_extent_mapping(em_tree, logical, len);
2770 read_unlock(&em_tree->lock);
2771 BUG_ON(!em);
2773 BUG_ON(em->start > logical || em->start + em->len < logical);
2774 map = (struct map_lookup *)em->bdev;
2775 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2776 ret = map->num_stripes;
2777 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2778 ret = map->sub_stripes;
2779 else
2780 ret = 1;
2781 free_extent_map(em);
2782 return ret;
2785 static int find_live_mirror(struct map_lookup *map, int first, int num,
2786 int optimal)
2788 int i;
2789 if (map->stripes[optimal].dev->bdev)
2790 return optimal;
2791 for (i = first; i < first + num; i++) {
2792 if (map->stripes[i].dev->bdev)
2793 return i;
2795 /* we couldn't find one that doesn't fail. Just return something
2796 * and the io error handling code will clean up eventually
2798 return optimal;
2801 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2802 u64 logical, u64 *length,
2803 struct btrfs_multi_bio **multi_ret,
2804 int mirror_num)
2806 struct extent_map *em;
2807 struct map_lookup *map;
2808 struct extent_map_tree *em_tree = &map_tree->map_tree;
2809 u64 offset;
2810 u64 stripe_offset;
2811 u64 stripe_end_offset;
2812 u64 stripe_nr;
2813 u64 stripe_nr_orig;
2814 u64 stripe_nr_end;
2815 int stripes_allocated = 8;
2816 int stripes_required = 1;
2817 int stripe_index;
2818 int i;
2819 int num_stripes;
2820 int max_errors = 0;
2821 struct btrfs_multi_bio *multi = NULL;
2823 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2824 stripes_allocated = 1;
2825 again:
2826 if (multi_ret) {
2827 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2828 GFP_NOFS);
2829 if (!multi)
2830 return -ENOMEM;
2832 atomic_set(&multi->error, 0);
2835 read_lock(&em_tree->lock);
2836 em = lookup_extent_mapping(em_tree, logical, *length);
2837 read_unlock(&em_tree->lock);
2839 if (!em) {
2840 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2841 (unsigned long long)logical,
2842 (unsigned long long)*length);
2843 BUG();
2846 BUG_ON(em->start > logical || em->start + em->len < logical);
2847 map = (struct map_lookup *)em->bdev;
2848 offset = logical - em->start;
2850 if (mirror_num > map->num_stripes)
2851 mirror_num = 0;
2853 /* if our multi bio struct is too small, back off and try again */
2854 if (rw & REQ_WRITE) {
2855 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2856 BTRFS_BLOCK_GROUP_DUP)) {
2857 stripes_required = map->num_stripes;
2858 max_errors = 1;
2859 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2860 stripes_required = map->sub_stripes;
2861 max_errors = 1;
2864 if (rw & REQ_DISCARD) {
2865 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2866 BTRFS_BLOCK_GROUP_RAID1 |
2867 BTRFS_BLOCK_GROUP_DUP |
2868 BTRFS_BLOCK_GROUP_RAID10)) {
2869 stripes_required = map->num_stripes;
2872 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
2873 stripes_allocated < stripes_required) {
2874 stripes_allocated = map->num_stripes;
2875 free_extent_map(em);
2876 kfree(multi);
2877 goto again;
2879 stripe_nr = offset;
2881 * stripe_nr counts the total number of stripes we have to stride
2882 * to get to this block
2884 do_div(stripe_nr, map->stripe_len);
2886 stripe_offset = stripe_nr * map->stripe_len;
2887 BUG_ON(offset < stripe_offset);
2889 /* stripe_offset is the offset of this block in its stripe*/
2890 stripe_offset = offset - stripe_offset;
2892 if (rw & REQ_DISCARD)
2893 *length = min_t(u64, em->len - offset, *length);
2894 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2895 BTRFS_BLOCK_GROUP_RAID1 |
2896 BTRFS_BLOCK_GROUP_RAID10 |
2897 BTRFS_BLOCK_GROUP_DUP)) {
2898 /* we limit the length of each bio to what fits in a stripe */
2899 *length = min_t(u64, em->len - offset,
2900 map->stripe_len - stripe_offset);
2901 } else {
2902 *length = em->len - offset;
2905 if (!multi_ret)
2906 goto out;
2908 num_stripes = 1;
2909 stripe_index = 0;
2910 stripe_nr_orig = stripe_nr;
2911 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
2912 (~(map->stripe_len - 1));
2913 do_div(stripe_nr_end, map->stripe_len);
2914 stripe_end_offset = stripe_nr_end * map->stripe_len -
2915 (offset + *length);
2916 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2917 if (rw & REQ_DISCARD)
2918 num_stripes = min_t(u64, map->num_stripes,
2919 stripe_nr_end - stripe_nr_orig);
2920 stripe_index = do_div(stripe_nr, map->num_stripes);
2921 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2922 if (rw & (REQ_WRITE | REQ_DISCARD))
2923 num_stripes = map->num_stripes;
2924 else if (mirror_num)
2925 stripe_index = mirror_num - 1;
2926 else {
2927 stripe_index = find_live_mirror(map, 0,
2928 map->num_stripes,
2929 current->pid % map->num_stripes);
2932 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2933 if (rw & (REQ_WRITE | REQ_DISCARD))
2934 num_stripes = map->num_stripes;
2935 else if (mirror_num)
2936 stripe_index = mirror_num - 1;
2938 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2939 int factor = map->num_stripes / map->sub_stripes;
2941 stripe_index = do_div(stripe_nr, factor);
2942 stripe_index *= map->sub_stripes;
2944 if (rw & REQ_WRITE)
2945 num_stripes = map->sub_stripes;
2946 else if (rw & REQ_DISCARD)
2947 num_stripes = min_t(u64, map->sub_stripes *
2948 (stripe_nr_end - stripe_nr_orig),
2949 map->num_stripes);
2950 else if (mirror_num)
2951 stripe_index += mirror_num - 1;
2952 else {
2953 stripe_index = find_live_mirror(map, stripe_index,
2954 map->sub_stripes, stripe_index +
2955 current->pid % map->sub_stripes);
2957 } else {
2959 * after this do_div call, stripe_nr is the number of stripes
2960 * on this device we have to walk to find the data, and
2961 * stripe_index is the number of our device in the stripe array
2963 stripe_index = do_div(stripe_nr, map->num_stripes);
2965 BUG_ON(stripe_index >= map->num_stripes);
2967 if (rw & REQ_DISCARD) {
2968 for (i = 0; i < num_stripes; i++) {
2969 multi->stripes[i].physical =
2970 map->stripes[stripe_index].physical +
2971 stripe_offset + stripe_nr * map->stripe_len;
2972 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2974 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2975 u64 stripes;
2976 u32 last_stripe = 0;
2977 int j;
2979 div_u64_rem(stripe_nr_end - 1,
2980 map->num_stripes,
2981 &last_stripe);
2983 for (j = 0; j < map->num_stripes; j++) {
2984 u32 test;
2986 div_u64_rem(stripe_nr_end - 1 - j,
2987 map->num_stripes, &test);
2988 if (test == stripe_index)
2989 break;
2991 stripes = stripe_nr_end - 1 - j;
2992 do_div(stripes, map->num_stripes);
2993 multi->stripes[i].length = map->stripe_len *
2994 (stripes - stripe_nr + 1);
2996 if (i == 0) {
2997 multi->stripes[i].length -=
2998 stripe_offset;
2999 stripe_offset = 0;
3001 if (stripe_index == last_stripe)
3002 multi->stripes[i].length -=
3003 stripe_end_offset;
3004 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3005 u64 stripes;
3006 int j;
3007 int factor = map->num_stripes /
3008 map->sub_stripes;
3009 u32 last_stripe = 0;
3011 div_u64_rem(stripe_nr_end - 1,
3012 factor, &last_stripe);
3013 last_stripe *= map->sub_stripes;
3015 for (j = 0; j < factor; j++) {
3016 u32 test;
3018 div_u64_rem(stripe_nr_end - 1 - j,
3019 factor, &test);
3021 if (test ==
3022 stripe_index / map->sub_stripes)
3023 break;
3025 stripes = stripe_nr_end - 1 - j;
3026 do_div(stripes, factor);
3027 multi->stripes[i].length = map->stripe_len *
3028 (stripes - stripe_nr + 1);
3030 if (i < map->sub_stripes) {
3031 multi->stripes[i].length -=
3032 stripe_offset;
3033 if (i == map->sub_stripes - 1)
3034 stripe_offset = 0;
3036 if (stripe_index >= last_stripe &&
3037 stripe_index <= (last_stripe +
3038 map->sub_stripes - 1)) {
3039 multi->stripes[i].length -=
3040 stripe_end_offset;
3042 } else
3043 multi->stripes[i].length = *length;
3045 stripe_index++;
3046 if (stripe_index == map->num_stripes) {
3047 /* This could only happen for RAID0/10 */
3048 stripe_index = 0;
3049 stripe_nr++;
3052 } else {
3053 for (i = 0; i < num_stripes; i++) {
3054 multi->stripes[i].physical =
3055 map->stripes[stripe_index].physical +
3056 stripe_offset +
3057 stripe_nr * map->stripe_len;
3058 multi->stripes[i].dev =
3059 map->stripes[stripe_index].dev;
3060 stripe_index++;
3063 if (multi_ret) {
3064 *multi_ret = multi;
3065 multi->num_stripes = num_stripes;
3066 multi->max_errors = max_errors;
3068 out:
3069 free_extent_map(em);
3070 return 0;
3073 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3074 u64 logical, u64 *length,
3075 struct btrfs_multi_bio **multi_ret, int mirror_num)
3077 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3078 mirror_num);
3081 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3082 u64 chunk_start, u64 physical, u64 devid,
3083 u64 **logical, int *naddrs, int *stripe_len)
3085 struct extent_map_tree *em_tree = &map_tree->map_tree;
3086 struct extent_map *em;
3087 struct map_lookup *map;
3088 u64 *buf;
3089 u64 bytenr;
3090 u64 length;
3091 u64 stripe_nr;
3092 int i, j, nr = 0;
3094 read_lock(&em_tree->lock);
3095 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3096 read_unlock(&em_tree->lock);
3098 BUG_ON(!em || em->start != chunk_start);
3099 map = (struct map_lookup *)em->bdev;
3101 length = em->len;
3102 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3103 do_div(length, map->num_stripes / map->sub_stripes);
3104 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3105 do_div(length, map->num_stripes);
3107 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3108 BUG_ON(!buf);
3110 for (i = 0; i < map->num_stripes; i++) {
3111 if (devid && map->stripes[i].dev->devid != devid)
3112 continue;
3113 if (map->stripes[i].physical > physical ||
3114 map->stripes[i].physical + length <= physical)
3115 continue;
3117 stripe_nr = physical - map->stripes[i].physical;
3118 do_div(stripe_nr, map->stripe_len);
3120 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3121 stripe_nr = stripe_nr * map->num_stripes + i;
3122 do_div(stripe_nr, map->sub_stripes);
3123 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3124 stripe_nr = stripe_nr * map->num_stripes + i;
3126 bytenr = chunk_start + stripe_nr * map->stripe_len;
3127 WARN_ON(nr >= map->num_stripes);
3128 for (j = 0; j < nr; j++) {
3129 if (buf[j] == bytenr)
3130 break;
3132 if (j == nr) {
3133 WARN_ON(nr >= map->num_stripes);
3134 buf[nr++] = bytenr;
3138 *logical = buf;
3139 *naddrs = nr;
3140 *stripe_len = map->stripe_len;
3142 free_extent_map(em);
3143 return 0;
3146 static void end_bio_multi_stripe(struct bio *bio, int err)
3148 struct btrfs_multi_bio *multi = bio->bi_private;
3149 int is_orig_bio = 0;
3151 if (err)
3152 atomic_inc(&multi->error);
3154 if (bio == multi->orig_bio)
3155 is_orig_bio = 1;
3157 if (atomic_dec_and_test(&multi->stripes_pending)) {
3158 if (!is_orig_bio) {
3159 bio_put(bio);
3160 bio = multi->orig_bio;
3162 bio->bi_private = multi->private;
3163 bio->bi_end_io = multi->end_io;
3164 /* only send an error to the higher layers if it is
3165 * beyond the tolerance of the multi-bio
3167 if (atomic_read(&multi->error) > multi->max_errors) {
3168 err = -EIO;
3169 } else if (err) {
3171 * this bio is actually up to date, we didn't
3172 * go over the max number of errors
3174 set_bit(BIO_UPTODATE, &bio->bi_flags);
3175 err = 0;
3177 kfree(multi);
3179 bio_endio(bio, err);
3180 } else if (!is_orig_bio) {
3181 bio_put(bio);
3185 struct async_sched {
3186 struct bio *bio;
3187 int rw;
3188 struct btrfs_fs_info *info;
3189 struct btrfs_work work;
3193 * see run_scheduled_bios for a description of why bios are collected for
3194 * async submit.
3196 * This will add one bio to the pending list for a device and make sure
3197 * the work struct is scheduled.
3199 static noinline int schedule_bio(struct btrfs_root *root,
3200 struct btrfs_device *device,
3201 int rw, struct bio *bio)
3203 int should_queue = 1;
3204 struct btrfs_pending_bios *pending_bios;
3206 /* don't bother with additional async steps for reads, right now */
3207 if (!(rw & REQ_WRITE)) {
3208 bio_get(bio);
3209 submit_bio(rw, bio);
3210 bio_put(bio);
3211 return 0;
3215 * nr_async_bios allows us to reliably return congestion to the
3216 * higher layers. Otherwise, the async bio makes it appear we have
3217 * made progress against dirty pages when we've really just put it
3218 * on a queue for later
3220 atomic_inc(&root->fs_info->nr_async_bios);
3221 WARN_ON(bio->bi_next);
3222 bio->bi_next = NULL;
3223 bio->bi_rw |= rw;
3225 spin_lock(&device->io_lock);
3226 if (bio->bi_rw & REQ_SYNC)
3227 pending_bios = &device->pending_sync_bios;
3228 else
3229 pending_bios = &device->pending_bios;
3231 if (pending_bios->tail)
3232 pending_bios->tail->bi_next = bio;
3234 pending_bios->tail = bio;
3235 if (!pending_bios->head)
3236 pending_bios->head = bio;
3237 if (device->running_pending)
3238 should_queue = 0;
3240 spin_unlock(&device->io_lock);
3242 if (should_queue)
3243 btrfs_queue_worker(&root->fs_info->submit_workers,
3244 &device->work);
3245 return 0;
3248 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3249 int mirror_num, int async_submit)
3251 struct btrfs_mapping_tree *map_tree;
3252 struct btrfs_device *dev;
3253 struct bio *first_bio = bio;
3254 u64 logical = (u64)bio->bi_sector << 9;
3255 u64 length = 0;
3256 u64 map_length;
3257 struct btrfs_multi_bio *multi = NULL;
3258 int ret;
3259 int dev_nr = 0;
3260 int total_devs = 1;
3262 length = bio->bi_size;
3263 map_tree = &root->fs_info->mapping_tree;
3264 map_length = length;
3266 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3267 mirror_num);
3268 BUG_ON(ret);
3270 total_devs = multi->num_stripes;
3271 if (map_length < length) {
3272 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3273 "len %llu\n", (unsigned long long)logical,
3274 (unsigned long long)length,
3275 (unsigned long long)map_length);
3276 BUG();
3278 multi->end_io = first_bio->bi_end_io;
3279 multi->private = first_bio->bi_private;
3280 multi->orig_bio = first_bio;
3281 atomic_set(&multi->stripes_pending, multi->num_stripes);
3283 while (dev_nr < total_devs) {
3284 if (total_devs > 1) {
3285 if (dev_nr < total_devs - 1) {
3286 bio = bio_clone(first_bio, GFP_NOFS);
3287 BUG_ON(!bio);
3288 } else {
3289 bio = first_bio;
3291 bio->bi_private = multi;
3292 bio->bi_end_io = end_bio_multi_stripe;
3294 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3295 dev = multi->stripes[dev_nr].dev;
3296 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3297 bio->bi_bdev = dev->bdev;
3298 if (async_submit)
3299 schedule_bio(root, dev, rw, bio);
3300 else
3301 submit_bio(rw, bio);
3302 } else {
3303 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3304 bio->bi_sector = logical >> 9;
3305 bio_endio(bio, -EIO);
3307 dev_nr++;
3309 if (total_devs == 1)
3310 kfree(multi);
3311 return 0;
3314 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3315 u8 *uuid, u8 *fsid)
3317 struct btrfs_device *device;
3318 struct btrfs_fs_devices *cur_devices;
3320 cur_devices = root->fs_info->fs_devices;
3321 while (cur_devices) {
3322 if (!fsid ||
3323 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3324 device = __find_device(&cur_devices->devices,
3325 devid, uuid);
3326 if (device)
3327 return device;
3329 cur_devices = cur_devices->seed;
3331 return NULL;
3334 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3335 u64 devid, u8 *dev_uuid)
3337 struct btrfs_device *device;
3338 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3340 device = kzalloc(sizeof(*device), GFP_NOFS);
3341 if (!device)
3342 return NULL;
3343 list_add(&device->dev_list,
3344 &fs_devices->devices);
3345 device->dev_root = root->fs_info->dev_root;
3346 device->devid = devid;
3347 device->work.func = pending_bios_fn;
3348 device->fs_devices = fs_devices;
3349 device->missing = 1;
3350 fs_devices->num_devices++;
3351 fs_devices->missing_devices++;
3352 spin_lock_init(&device->io_lock);
3353 INIT_LIST_HEAD(&device->dev_alloc_list);
3354 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3355 return device;
3358 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3359 struct extent_buffer *leaf,
3360 struct btrfs_chunk *chunk)
3362 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3363 struct map_lookup *map;
3364 struct extent_map *em;
3365 u64 logical;
3366 u64 length;
3367 u64 devid;
3368 u8 uuid[BTRFS_UUID_SIZE];
3369 int num_stripes;
3370 int ret;
3371 int i;
3373 logical = key->offset;
3374 length = btrfs_chunk_length(leaf, chunk);
3376 read_lock(&map_tree->map_tree.lock);
3377 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3378 read_unlock(&map_tree->map_tree.lock);
3380 /* already mapped? */
3381 if (em && em->start <= logical && em->start + em->len > logical) {
3382 free_extent_map(em);
3383 return 0;
3384 } else if (em) {
3385 free_extent_map(em);
3388 em = alloc_extent_map();
3389 if (!em)
3390 return -ENOMEM;
3391 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3392 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3393 if (!map) {
3394 free_extent_map(em);
3395 return -ENOMEM;
3398 em->bdev = (struct block_device *)map;
3399 em->start = logical;
3400 em->len = length;
3401 em->block_start = 0;
3402 em->block_len = em->len;
3404 map->num_stripes = num_stripes;
3405 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3406 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3407 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3408 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3409 map->type = btrfs_chunk_type(leaf, chunk);
3410 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3411 for (i = 0; i < num_stripes; i++) {
3412 map->stripes[i].physical =
3413 btrfs_stripe_offset_nr(leaf, chunk, i);
3414 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3415 read_extent_buffer(leaf, uuid, (unsigned long)
3416 btrfs_stripe_dev_uuid_nr(chunk, i),
3417 BTRFS_UUID_SIZE);
3418 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3419 NULL);
3420 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3421 kfree(map);
3422 free_extent_map(em);
3423 return -EIO;
3425 if (!map->stripes[i].dev) {
3426 map->stripes[i].dev =
3427 add_missing_dev(root, devid, uuid);
3428 if (!map->stripes[i].dev) {
3429 kfree(map);
3430 free_extent_map(em);
3431 return -EIO;
3434 map->stripes[i].dev->in_fs_metadata = 1;
3437 write_lock(&map_tree->map_tree.lock);
3438 ret = add_extent_mapping(&map_tree->map_tree, em);
3439 write_unlock(&map_tree->map_tree.lock);
3440 BUG_ON(ret);
3441 free_extent_map(em);
3443 return 0;
3446 static int fill_device_from_item(struct extent_buffer *leaf,
3447 struct btrfs_dev_item *dev_item,
3448 struct btrfs_device *device)
3450 unsigned long ptr;
3452 device->devid = btrfs_device_id(leaf, dev_item);
3453 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3454 device->total_bytes = device->disk_total_bytes;
3455 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3456 device->type = btrfs_device_type(leaf, dev_item);
3457 device->io_align = btrfs_device_io_align(leaf, dev_item);
3458 device->io_width = btrfs_device_io_width(leaf, dev_item);
3459 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3461 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3462 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3464 return 0;
3467 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3469 struct btrfs_fs_devices *fs_devices;
3470 int ret;
3472 mutex_lock(&uuid_mutex);
3474 fs_devices = root->fs_info->fs_devices->seed;
3475 while (fs_devices) {
3476 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3477 ret = 0;
3478 goto out;
3480 fs_devices = fs_devices->seed;
3483 fs_devices = find_fsid(fsid);
3484 if (!fs_devices) {
3485 ret = -ENOENT;
3486 goto out;
3489 fs_devices = clone_fs_devices(fs_devices);
3490 if (IS_ERR(fs_devices)) {
3491 ret = PTR_ERR(fs_devices);
3492 goto out;
3495 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3496 root->fs_info->bdev_holder);
3497 if (ret)
3498 goto out;
3500 if (!fs_devices->seeding) {
3501 __btrfs_close_devices(fs_devices);
3502 free_fs_devices(fs_devices);
3503 ret = -EINVAL;
3504 goto out;
3507 fs_devices->seed = root->fs_info->fs_devices->seed;
3508 root->fs_info->fs_devices->seed = fs_devices;
3509 out:
3510 mutex_unlock(&uuid_mutex);
3511 return ret;
3514 static int read_one_dev(struct btrfs_root *root,
3515 struct extent_buffer *leaf,
3516 struct btrfs_dev_item *dev_item)
3518 struct btrfs_device *device;
3519 u64 devid;
3520 int ret;
3521 u8 fs_uuid[BTRFS_UUID_SIZE];
3522 u8 dev_uuid[BTRFS_UUID_SIZE];
3524 devid = btrfs_device_id(leaf, dev_item);
3525 read_extent_buffer(leaf, dev_uuid,
3526 (unsigned long)btrfs_device_uuid(dev_item),
3527 BTRFS_UUID_SIZE);
3528 read_extent_buffer(leaf, fs_uuid,
3529 (unsigned long)btrfs_device_fsid(dev_item),
3530 BTRFS_UUID_SIZE);
3532 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3533 ret = open_seed_devices(root, fs_uuid);
3534 if (ret && !btrfs_test_opt(root, DEGRADED))
3535 return ret;
3538 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3539 if (!device || !device->bdev) {
3540 if (!btrfs_test_opt(root, DEGRADED))
3541 return -EIO;
3543 if (!device) {
3544 printk(KERN_WARNING "warning devid %llu missing\n",
3545 (unsigned long long)devid);
3546 device = add_missing_dev(root, devid, dev_uuid);
3547 if (!device)
3548 return -ENOMEM;
3549 } else if (!device->missing) {
3551 * this happens when a device that was properly setup
3552 * in the device info lists suddenly goes bad.
3553 * device->bdev is NULL, and so we have to set
3554 * device->missing to one here
3556 root->fs_info->fs_devices->missing_devices++;
3557 device->missing = 1;
3561 if (device->fs_devices != root->fs_info->fs_devices) {
3562 BUG_ON(device->writeable);
3563 if (device->generation !=
3564 btrfs_device_generation(leaf, dev_item))
3565 return -EINVAL;
3568 fill_device_from_item(leaf, dev_item, device);
3569 device->dev_root = root->fs_info->dev_root;
3570 device->in_fs_metadata = 1;
3571 if (device->writeable)
3572 device->fs_devices->total_rw_bytes += device->total_bytes;
3573 ret = 0;
3574 return ret;
3577 int btrfs_read_sys_array(struct btrfs_root *root)
3579 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3580 struct extent_buffer *sb;
3581 struct btrfs_disk_key *disk_key;
3582 struct btrfs_chunk *chunk;
3583 u8 *ptr;
3584 unsigned long sb_ptr;
3585 int ret = 0;
3586 u32 num_stripes;
3587 u32 array_size;
3588 u32 len = 0;
3589 u32 cur;
3590 struct btrfs_key key;
3592 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3593 BTRFS_SUPER_INFO_SIZE);
3594 if (!sb)
3595 return -ENOMEM;
3596 btrfs_set_buffer_uptodate(sb);
3597 btrfs_set_buffer_lockdep_class(sb, 0);
3599 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3600 array_size = btrfs_super_sys_array_size(super_copy);
3602 ptr = super_copy->sys_chunk_array;
3603 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3604 cur = 0;
3606 while (cur < array_size) {
3607 disk_key = (struct btrfs_disk_key *)ptr;
3608 btrfs_disk_key_to_cpu(&key, disk_key);
3610 len = sizeof(*disk_key); ptr += len;
3611 sb_ptr += len;
3612 cur += len;
3614 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3615 chunk = (struct btrfs_chunk *)sb_ptr;
3616 ret = read_one_chunk(root, &key, sb, chunk);
3617 if (ret)
3618 break;
3619 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3620 len = btrfs_chunk_item_size(num_stripes);
3621 } else {
3622 ret = -EIO;
3623 break;
3625 ptr += len;
3626 sb_ptr += len;
3627 cur += len;
3629 free_extent_buffer(sb);
3630 return ret;
3633 int btrfs_read_chunk_tree(struct btrfs_root *root)
3635 struct btrfs_path *path;
3636 struct extent_buffer *leaf;
3637 struct btrfs_key key;
3638 struct btrfs_key found_key;
3639 int ret;
3640 int slot;
3642 root = root->fs_info->chunk_root;
3644 path = btrfs_alloc_path();
3645 if (!path)
3646 return -ENOMEM;
3648 /* first we search for all of the device items, and then we
3649 * read in all of the chunk items. This way we can create chunk
3650 * mappings that reference all of the devices that are afound
3652 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3653 key.offset = 0;
3654 key.type = 0;
3655 again:
3656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3657 if (ret < 0)
3658 goto error;
3659 while (1) {
3660 leaf = path->nodes[0];
3661 slot = path->slots[0];
3662 if (slot >= btrfs_header_nritems(leaf)) {
3663 ret = btrfs_next_leaf(root, path);
3664 if (ret == 0)
3665 continue;
3666 if (ret < 0)
3667 goto error;
3668 break;
3670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3671 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3672 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3673 break;
3674 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3675 struct btrfs_dev_item *dev_item;
3676 dev_item = btrfs_item_ptr(leaf, slot,
3677 struct btrfs_dev_item);
3678 ret = read_one_dev(root, leaf, dev_item);
3679 if (ret)
3680 goto error;
3682 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3683 struct btrfs_chunk *chunk;
3684 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3685 ret = read_one_chunk(root, &found_key, leaf, chunk);
3686 if (ret)
3687 goto error;
3689 path->slots[0]++;
3691 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3692 key.objectid = 0;
3693 btrfs_release_path(path);
3694 goto again;
3696 ret = 0;
3697 error:
3698 btrfs_free_path(path);
3699 return ret;