Input: wacom - revert "Cintiq 21UX2 does not have menu strips"
[linux-btrfs-devel.git] / tools / perf / builtin-timechart.c
blobaa26f4d66d1020eb075942dc42fdc874d7dfaddc
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #include "builtin.h"
17 #include "util/util.h"
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/callchain.h"
25 #include "util/strlist.h"
27 #include "perf.h"
28 #include "util/header.h"
29 #include "util/parse-options.h"
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
35 #define SUPPORT_OLD_POWER_EVENTS 1
36 #define PWR_EVENT_EXIT -1
39 static char const *input_name = "perf.data";
40 static char const *output_name = "output.svg";
42 static unsigned int numcpus;
43 static u64 min_freq; /* Lowest CPU frequency seen */
44 static u64 max_freq; /* Highest CPU frequency seen */
45 static u64 turbo_frequency;
47 static u64 first_time, last_time;
49 static bool power_only;
52 struct per_pid;
53 struct per_pidcomm;
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
59 struct sample_wrapper;
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
71 struct per_pid {
72 struct per_pid *next;
74 int pid;
75 int ppid;
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
87 struct per_pidcomm {
88 struct per_pidcomm *next;
90 u64 start_time;
91 u64 end_time;
92 u64 total_time;
94 int Y;
95 int display;
97 long state;
98 u64 state_since;
100 char *comm;
102 struct cpu_sample *samples;
105 struct sample_wrapper {
106 struct sample_wrapper *next;
108 u64 timestamp;
109 unsigned char data[0];
112 #define TYPE_NONE 0
113 #define TYPE_RUNNING 1
114 #define TYPE_WAITING 2
115 #define TYPE_BLOCKED 3
117 struct cpu_sample {
118 struct cpu_sample *next;
120 u64 start_time;
121 u64 end_time;
122 int type;
123 int cpu;
126 static struct per_pid *all_data;
128 #define CSTATE 1
129 #define PSTATE 2
131 struct power_event {
132 struct power_event *next;
133 int type;
134 int state;
135 u64 start_time;
136 u64 end_time;
137 int cpu;
140 struct wake_event {
141 struct wake_event *next;
142 int waker;
143 int wakee;
144 u64 time;
147 static struct power_event *power_events;
148 static struct wake_event *wake_events;
150 struct process_filter;
151 struct process_filter {
152 char *name;
153 int pid;
154 struct process_filter *next;
157 static struct process_filter *process_filter;
160 static struct per_pid *find_create_pid(int pid)
162 struct per_pid *cursor = all_data;
164 while (cursor) {
165 if (cursor->pid == pid)
166 return cursor;
167 cursor = cursor->next;
169 cursor = malloc(sizeof(struct per_pid));
170 assert(cursor != NULL);
171 memset(cursor, 0, sizeof(struct per_pid));
172 cursor->pid = pid;
173 cursor->next = all_data;
174 all_data = cursor;
175 return cursor;
178 static void pid_set_comm(int pid, char *comm)
180 struct per_pid *p;
181 struct per_pidcomm *c;
182 p = find_create_pid(pid);
183 c = p->all;
184 while (c) {
185 if (c->comm && strcmp(c->comm, comm) == 0) {
186 p->current = c;
187 return;
189 if (!c->comm) {
190 c->comm = strdup(comm);
191 p->current = c;
192 return;
194 c = c->next;
196 c = malloc(sizeof(struct per_pidcomm));
197 assert(c != NULL);
198 memset(c, 0, sizeof(struct per_pidcomm));
199 c->comm = strdup(comm);
200 p->current = c;
201 c->next = p->all;
202 p->all = c;
205 static void pid_fork(int pid, int ppid, u64 timestamp)
207 struct per_pid *p, *pp;
208 p = find_create_pid(pid);
209 pp = find_create_pid(ppid);
210 p->ppid = ppid;
211 if (pp->current && pp->current->comm && !p->current)
212 pid_set_comm(pid, pp->current->comm);
214 p->start_time = timestamp;
215 if (p->current) {
216 p->current->start_time = timestamp;
217 p->current->state_since = timestamp;
221 static void pid_exit(int pid, u64 timestamp)
223 struct per_pid *p;
224 p = find_create_pid(pid);
225 p->end_time = timestamp;
226 if (p->current)
227 p->current->end_time = timestamp;
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
233 struct per_pid *p;
234 struct per_pidcomm *c;
235 struct cpu_sample *sample;
237 p = find_create_pid(pid);
238 c = p->current;
239 if (!c) {
240 c = malloc(sizeof(struct per_pidcomm));
241 assert(c != NULL);
242 memset(c, 0, sizeof(struct per_pidcomm));
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
248 sample = malloc(sizeof(struct cpu_sample));
249 assert(sample != NULL);
250 memset(sample, 0, sizeof(struct cpu_sample));
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 c->samples = sample;
258 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259 c->total_time += (end-start);
260 p->total_time += (end-start);
263 if (c->start_time == 0 || c->start_time > start)
264 c->start_time = start;
265 if (p->start_time == 0 || p->start_time > start)
266 p->start_time = start;
269 #define MAX_CPUS 4096
271 static u64 cpus_cstate_start_times[MAX_CPUS];
272 static int cpus_cstate_state[MAX_CPUS];
273 static u64 cpus_pstate_start_times[MAX_CPUS];
274 static u64 cpus_pstate_state[MAX_CPUS];
276 static int process_comm_event(union perf_event *event,
277 struct perf_sample *sample __used,
278 struct perf_session *session __used)
280 pid_set_comm(event->comm.tid, event->comm.comm);
281 return 0;
284 static int process_fork_event(union perf_event *event,
285 struct perf_sample *sample __used,
286 struct perf_session *session __used)
288 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289 return 0;
292 static int process_exit_event(union perf_event *event,
293 struct perf_sample *sample __used,
294 struct perf_session *session __used)
296 pid_exit(event->fork.pid, event->fork.time);
297 return 0;
300 struct trace_entry {
301 unsigned short type;
302 unsigned char flags;
303 unsigned char preempt_count;
304 int pid;
305 int lock_depth;
308 #ifdef SUPPORT_OLD_POWER_EVENTS
309 static int use_old_power_events;
310 struct power_entry_old {
311 struct trace_entry te;
312 u64 type;
313 u64 value;
314 u64 cpu_id;
316 #endif
318 struct power_processor_entry {
319 struct trace_entry te;
320 u32 state;
321 u32 cpu_id;
324 #define TASK_COMM_LEN 16
325 struct wakeup_entry {
326 struct trace_entry te;
327 char comm[TASK_COMM_LEN];
328 int pid;
329 int prio;
330 int success;
334 * trace_flag_type is an enumeration that holds different
335 * states when a trace occurs. These are:
336 * IRQS_OFF - interrupts were disabled
337 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
338 * NEED_RESCED - reschedule is requested
339 * HARDIRQ - inside an interrupt handler
340 * SOFTIRQ - inside a softirq handler
342 enum trace_flag_type {
343 TRACE_FLAG_IRQS_OFF = 0x01,
344 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
345 TRACE_FLAG_NEED_RESCHED = 0x04,
346 TRACE_FLAG_HARDIRQ = 0x08,
347 TRACE_FLAG_SOFTIRQ = 0x10,
352 struct sched_switch {
353 struct trace_entry te;
354 char prev_comm[TASK_COMM_LEN];
355 int prev_pid;
356 int prev_prio;
357 long prev_state; /* Arjan weeps. */
358 char next_comm[TASK_COMM_LEN];
359 int next_pid;
360 int next_prio;
363 static void c_state_start(int cpu, u64 timestamp, int state)
365 cpus_cstate_start_times[cpu] = timestamp;
366 cpus_cstate_state[cpu] = state;
369 static void c_state_end(int cpu, u64 timestamp)
371 struct power_event *pwr;
372 pwr = malloc(sizeof(struct power_event));
373 if (!pwr)
374 return;
375 memset(pwr, 0, sizeof(struct power_event));
377 pwr->state = cpus_cstate_state[cpu];
378 pwr->start_time = cpus_cstate_start_times[cpu];
379 pwr->end_time = timestamp;
380 pwr->cpu = cpu;
381 pwr->type = CSTATE;
382 pwr->next = power_events;
384 power_events = pwr;
387 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
389 struct power_event *pwr;
390 pwr = malloc(sizeof(struct power_event));
392 if (new_freq > 8000000) /* detect invalid data */
393 return;
395 if (!pwr)
396 return;
397 memset(pwr, 0, sizeof(struct power_event));
399 pwr->state = cpus_pstate_state[cpu];
400 pwr->start_time = cpus_pstate_start_times[cpu];
401 pwr->end_time = timestamp;
402 pwr->cpu = cpu;
403 pwr->type = PSTATE;
404 pwr->next = power_events;
406 if (!pwr->start_time)
407 pwr->start_time = first_time;
409 power_events = pwr;
411 cpus_pstate_state[cpu] = new_freq;
412 cpus_pstate_start_times[cpu] = timestamp;
414 if ((u64)new_freq > max_freq)
415 max_freq = new_freq;
417 if (new_freq < min_freq || min_freq == 0)
418 min_freq = new_freq;
420 if (new_freq == max_freq - 1000)
421 turbo_frequency = max_freq;
424 static void
425 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
427 struct wake_event *we;
428 struct per_pid *p;
429 struct wakeup_entry *wake = (void *)te;
431 we = malloc(sizeof(struct wake_event));
432 if (!we)
433 return;
435 memset(we, 0, sizeof(struct wake_event));
436 we->time = timestamp;
437 we->waker = pid;
439 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440 we->waker = -1;
442 we->wakee = wake->pid;
443 we->next = wake_events;
444 wake_events = we;
445 p = find_create_pid(we->wakee);
447 if (p && p->current && p->current->state == TYPE_NONE) {
448 p->current->state_since = timestamp;
449 p->current->state = TYPE_WAITING;
451 if (p && p->current && p->current->state == TYPE_BLOCKED) {
452 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
458 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
460 struct per_pid *p = NULL, *prev_p;
461 struct sched_switch *sw = (void *)te;
464 prev_p = find_create_pid(sw->prev_pid);
466 p = find_create_pid(sw->next_pid);
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470 if (p && p->current) {
471 if (p->current->state != TYPE_NONE)
472 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
474 p->current->state_since = timestamp;
475 p->current->state = TYPE_RUNNING;
478 if (prev_p->current) {
479 prev_p->current->state = TYPE_NONE;
480 prev_p->current->state_since = timestamp;
481 if (sw->prev_state & 2)
482 prev_p->current->state = TYPE_BLOCKED;
483 if (sw->prev_state == 0)
484 prev_p->current->state = TYPE_WAITING;
489 static int process_sample_event(union perf_event *event __used,
490 struct perf_sample *sample,
491 struct perf_evsel *evsel __used,
492 struct perf_session *session)
494 struct trace_entry *te;
496 if (session->sample_type & PERF_SAMPLE_TIME) {
497 if (!first_time || first_time > sample->time)
498 first_time = sample->time;
499 if (last_time < sample->time)
500 last_time = sample->time;
503 te = (void *)sample->raw_data;
504 if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
505 char *event_str;
506 #ifdef SUPPORT_OLD_POWER_EVENTS
507 struct power_entry_old *peo;
508 peo = (void *)te;
509 #endif
511 * FIXME: use evsel, its already mapped from id to perf_evsel,
512 * remove perf_header__find_event infrastructure bits.
513 * Mapping all these "power:cpu_idle" strings to the tracepoint
514 * ID and then just comparing against evsel->attr.config.
516 * e.g.:
518 * if (evsel->attr.config == power_cpu_idle_id)
520 event_str = perf_header__find_event(te->type);
522 if (!event_str)
523 return 0;
525 if (sample->cpu > numcpus)
526 numcpus = sample->cpu;
528 if (strcmp(event_str, "power:cpu_idle") == 0) {
529 struct power_processor_entry *ppe = (void *)te;
530 if (ppe->state == (u32)PWR_EVENT_EXIT)
531 c_state_end(ppe->cpu_id, sample->time);
532 else
533 c_state_start(ppe->cpu_id, sample->time,
534 ppe->state);
536 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
537 struct power_processor_entry *ppe = (void *)te;
538 p_state_change(ppe->cpu_id, sample->time, ppe->state);
541 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
542 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
544 else if (strcmp(event_str, "sched:sched_switch") == 0)
545 sched_switch(sample->cpu, sample->time, te);
547 #ifdef SUPPORT_OLD_POWER_EVENTS
548 if (use_old_power_events) {
549 if (strcmp(event_str, "power:power_start") == 0)
550 c_state_start(peo->cpu_id, sample->time,
551 peo->value);
553 else if (strcmp(event_str, "power:power_end") == 0)
554 c_state_end(sample->cpu, sample->time);
556 else if (strcmp(event_str,
557 "power:power_frequency") == 0)
558 p_state_change(peo->cpu_id, sample->time,
559 peo->value);
561 #endif
563 return 0;
567 * After the last sample we need to wrap up the current C/P state
568 * and close out each CPU for these.
570 static void end_sample_processing(void)
572 u64 cpu;
573 struct power_event *pwr;
575 for (cpu = 0; cpu <= numcpus; cpu++) {
576 pwr = malloc(sizeof(struct power_event));
577 if (!pwr)
578 return;
579 memset(pwr, 0, sizeof(struct power_event));
581 /* C state */
582 #if 0
583 pwr->state = cpus_cstate_state[cpu];
584 pwr->start_time = cpus_cstate_start_times[cpu];
585 pwr->end_time = last_time;
586 pwr->cpu = cpu;
587 pwr->type = CSTATE;
588 pwr->next = power_events;
590 power_events = pwr;
591 #endif
592 /* P state */
594 pwr = malloc(sizeof(struct power_event));
595 if (!pwr)
596 return;
597 memset(pwr, 0, sizeof(struct power_event));
599 pwr->state = cpus_pstate_state[cpu];
600 pwr->start_time = cpus_pstate_start_times[cpu];
601 pwr->end_time = last_time;
602 pwr->cpu = cpu;
603 pwr->type = PSTATE;
604 pwr->next = power_events;
606 if (!pwr->start_time)
607 pwr->start_time = first_time;
608 if (!pwr->state)
609 pwr->state = min_freq;
610 power_events = pwr;
615 * Sort the pid datastructure
617 static void sort_pids(void)
619 struct per_pid *new_list, *p, *cursor, *prev;
620 /* sort by ppid first, then by pid, lowest to highest */
622 new_list = NULL;
624 while (all_data) {
625 p = all_data;
626 all_data = p->next;
627 p->next = NULL;
629 if (new_list == NULL) {
630 new_list = p;
631 p->next = NULL;
632 continue;
634 prev = NULL;
635 cursor = new_list;
636 while (cursor) {
637 if (cursor->ppid > p->ppid ||
638 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
639 /* must insert before */
640 if (prev) {
641 p->next = prev->next;
642 prev->next = p;
643 cursor = NULL;
644 continue;
645 } else {
646 p->next = new_list;
647 new_list = p;
648 cursor = NULL;
649 continue;
653 prev = cursor;
654 cursor = cursor->next;
655 if (!cursor)
656 prev->next = p;
659 all_data = new_list;
663 static void draw_c_p_states(void)
665 struct power_event *pwr;
666 pwr = power_events;
669 * two pass drawing so that the P state bars are on top of the C state blocks
671 while (pwr) {
672 if (pwr->type == CSTATE)
673 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
674 pwr = pwr->next;
677 pwr = power_events;
678 while (pwr) {
679 if (pwr->type == PSTATE) {
680 if (!pwr->state)
681 pwr->state = min_freq;
682 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
684 pwr = pwr->next;
688 static void draw_wakeups(void)
690 struct wake_event *we;
691 struct per_pid *p;
692 struct per_pidcomm *c;
694 we = wake_events;
695 while (we) {
696 int from = 0, to = 0;
697 char *task_from = NULL, *task_to = NULL;
699 /* locate the column of the waker and wakee */
700 p = all_data;
701 while (p) {
702 if (p->pid == we->waker || p->pid == we->wakee) {
703 c = p->all;
704 while (c) {
705 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
706 if (p->pid == we->waker && !from) {
707 from = c->Y;
708 task_from = strdup(c->comm);
710 if (p->pid == we->wakee && !to) {
711 to = c->Y;
712 task_to = strdup(c->comm);
715 c = c->next;
717 c = p->all;
718 while (c) {
719 if (p->pid == we->waker && !from) {
720 from = c->Y;
721 task_from = strdup(c->comm);
723 if (p->pid == we->wakee && !to) {
724 to = c->Y;
725 task_to = strdup(c->comm);
727 c = c->next;
730 p = p->next;
733 if (!task_from) {
734 task_from = malloc(40);
735 sprintf(task_from, "[%i]", we->waker);
737 if (!task_to) {
738 task_to = malloc(40);
739 sprintf(task_to, "[%i]", we->wakee);
742 if (we->waker == -1)
743 svg_interrupt(we->time, to);
744 else if (from && to && abs(from - to) == 1)
745 svg_wakeline(we->time, from, to);
746 else
747 svg_partial_wakeline(we->time, from, task_from, to, task_to);
748 we = we->next;
750 free(task_from);
751 free(task_to);
755 static void draw_cpu_usage(void)
757 struct per_pid *p;
758 struct per_pidcomm *c;
759 struct cpu_sample *sample;
760 p = all_data;
761 while (p) {
762 c = p->all;
763 while (c) {
764 sample = c->samples;
765 while (sample) {
766 if (sample->type == TYPE_RUNNING)
767 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
769 sample = sample->next;
771 c = c->next;
773 p = p->next;
777 static void draw_process_bars(void)
779 struct per_pid *p;
780 struct per_pidcomm *c;
781 struct cpu_sample *sample;
782 int Y = 0;
784 Y = 2 * numcpus + 2;
786 p = all_data;
787 while (p) {
788 c = p->all;
789 while (c) {
790 if (!c->display) {
791 c->Y = 0;
792 c = c->next;
793 continue;
796 svg_box(Y, c->start_time, c->end_time, "process");
797 sample = c->samples;
798 while (sample) {
799 if (sample->type == TYPE_RUNNING)
800 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
801 if (sample->type == TYPE_BLOCKED)
802 svg_box(Y, sample->start_time, sample->end_time, "blocked");
803 if (sample->type == TYPE_WAITING)
804 svg_waiting(Y, sample->start_time, sample->end_time);
805 sample = sample->next;
808 if (c->comm) {
809 char comm[256];
810 if (c->total_time > 5000000000) /* 5 seconds */
811 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
812 else
813 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
815 svg_text(Y, c->start_time, comm);
817 c->Y = Y;
818 Y++;
819 c = c->next;
821 p = p->next;
825 static void add_process_filter(const char *string)
827 struct process_filter *filt;
828 int pid;
830 pid = strtoull(string, NULL, 10);
831 filt = malloc(sizeof(struct process_filter));
832 if (!filt)
833 return;
835 filt->name = strdup(string);
836 filt->pid = pid;
837 filt->next = process_filter;
839 process_filter = filt;
842 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
844 struct process_filter *filt;
845 if (!process_filter)
846 return 1;
848 filt = process_filter;
849 while (filt) {
850 if (filt->pid && p->pid == filt->pid)
851 return 1;
852 if (strcmp(filt->name, c->comm) == 0)
853 return 1;
854 filt = filt->next;
856 return 0;
859 static int determine_display_tasks_filtered(void)
861 struct per_pid *p;
862 struct per_pidcomm *c;
863 int count = 0;
865 p = all_data;
866 while (p) {
867 p->display = 0;
868 if (p->start_time == 1)
869 p->start_time = first_time;
871 /* no exit marker, task kept running to the end */
872 if (p->end_time == 0)
873 p->end_time = last_time;
875 c = p->all;
877 while (c) {
878 c->display = 0;
880 if (c->start_time == 1)
881 c->start_time = first_time;
883 if (passes_filter(p, c)) {
884 c->display = 1;
885 p->display = 1;
886 count++;
889 if (c->end_time == 0)
890 c->end_time = last_time;
892 c = c->next;
894 p = p->next;
896 return count;
899 static int determine_display_tasks(u64 threshold)
901 struct per_pid *p;
902 struct per_pidcomm *c;
903 int count = 0;
905 if (process_filter)
906 return determine_display_tasks_filtered();
908 p = all_data;
909 while (p) {
910 p->display = 0;
911 if (p->start_time == 1)
912 p->start_time = first_time;
914 /* no exit marker, task kept running to the end */
915 if (p->end_time == 0)
916 p->end_time = last_time;
917 if (p->total_time >= threshold && !power_only)
918 p->display = 1;
920 c = p->all;
922 while (c) {
923 c->display = 0;
925 if (c->start_time == 1)
926 c->start_time = first_time;
928 if (c->total_time >= threshold && !power_only) {
929 c->display = 1;
930 count++;
933 if (c->end_time == 0)
934 c->end_time = last_time;
936 c = c->next;
938 p = p->next;
940 return count;
945 #define TIME_THRESH 10000000
947 static void write_svg_file(const char *filename)
949 u64 i;
950 int count;
952 numcpus++;
955 count = determine_display_tasks(TIME_THRESH);
957 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
958 if (count < 15)
959 count = determine_display_tasks(TIME_THRESH / 10);
961 open_svg(filename, numcpus, count, first_time, last_time);
963 svg_time_grid();
964 svg_legenda();
966 for (i = 0; i < numcpus; i++)
967 svg_cpu_box(i, max_freq, turbo_frequency);
969 draw_cpu_usage();
970 draw_process_bars();
971 draw_c_p_states();
972 draw_wakeups();
974 svg_close();
977 static struct perf_event_ops event_ops = {
978 .comm = process_comm_event,
979 .fork = process_fork_event,
980 .exit = process_exit_event,
981 .sample = process_sample_event,
982 .ordered_samples = true,
985 static int __cmd_timechart(void)
987 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
988 0, false, &event_ops);
989 int ret = -EINVAL;
991 if (session == NULL)
992 return -ENOMEM;
994 if (!perf_session__has_traces(session, "timechart record"))
995 goto out_delete;
997 ret = perf_session__process_events(session, &event_ops);
998 if (ret)
999 goto out_delete;
1001 end_sample_processing();
1003 sort_pids();
1005 write_svg_file(output_name);
1007 pr_info("Written %2.1f seconds of trace to %s.\n",
1008 (last_time - first_time) / 1000000000.0, output_name);
1009 out_delete:
1010 perf_session__delete(session);
1011 return ret;
1014 static const char * const timechart_usage[] = {
1015 "perf timechart [<options>] {record}",
1016 NULL
1019 #ifdef SUPPORT_OLD_POWER_EVENTS
1020 static const char * const record_old_args[] = {
1021 "record",
1022 "-a",
1023 "-R",
1024 "-f",
1025 "-c", "1",
1026 "-e", "power:power_start",
1027 "-e", "power:power_end",
1028 "-e", "power:power_frequency",
1029 "-e", "sched:sched_wakeup",
1030 "-e", "sched:sched_switch",
1032 #endif
1034 static const char * const record_new_args[] = {
1035 "record",
1036 "-a",
1037 "-R",
1038 "-f",
1039 "-c", "1",
1040 "-e", "power:cpu_frequency",
1041 "-e", "power:cpu_idle",
1042 "-e", "sched:sched_wakeup",
1043 "-e", "sched:sched_switch",
1046 static int __cmd_record(int argc, const char **argv)
1048 unsigned int rec_argc, i, j;
1049 const char **rec_argv;
1050 const char * const *record_args = record_new_args;
1051 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1053 #ifdef SUPPORT_OLD_POWER_EVENTS
1054 if (!is_valid_tracepoint("power:cpu_idle") &&
1055 is_valid_tracepoint("power:power_start")) {
1056 use_old_power_events = 1;
1057 record_args = record_old_args;
1058 record_elems = ARRAY_SIZE(record_old_args);
1060 #endif
1062 rec_argc = record_elems + argc - 1;
1063 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1065 if (rec_argv == NULL)
1066 return -ENOMEM;
1068 for (i = 0; i < record_elems; i++)
1069 rec_argv[i] = strdup(record_args[i]);
1071 for (j = 1; j < (unsigned int)argc; j++, i++)
1072 rec_argv[i] = argv[j];
1074 return cmd_record(i, rec_argv, NULL);
1077 static int
1078 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1080 if (arg)
1081 add_process_filter(arg);
1082 return 0;
1085 static const struct option options[] = {
1086 OPT_STRING('i', "input", &input_name, "file",
1087 "input file name"),
1088 OPT_STRING('o', "output", &output_name, "file",
1089 "output file name"),
1090 OPT_INTEGER('w', "width", &svg_page_width,
1091 "page width"),
1092 OPT_BOOLEAN('P', "power-only", &power_only,
1093 "output power data only"),
1094 OPT_CALLBACK('p', "process", NULL, "process",
1095 "process selector. Pass a pid or process name.",
1096 parse_process),
1097 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098 "Look for files with symbols relative to this directory"),
1099 OPT_END()
1103 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1105 argc = parse_options(argc, argv, options, timechart_usage,
1106 PARSE_OPT_STOP_AT_NON_OPTION);
1108 symbol__init();
1110 if (argc && !strncmp(argv[0], "rec", 3))
1111 return __cmd_record(argc, argv);
1112 else if (argc)
1113 usage_with_options(timechart_usage, options);
1115 setup_pager();
1117 return __cmd_timechart();