SFFSDR: Update to board code to support FPGA and lyrvpss drivers
[linux-davinci-sffsdr.git] / drivers / gpu / drm / i915 / i915_gem.c
blob85685bfd12daf02fb26bea88a90e521d6e3237c2
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
47 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 unsigned long end)
61 drm_i915_private_t *dev_priv = dev->dev_private;
63 if (start >= end ||
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
66 return -EINVAL;
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 end - start);
72 dev->gtt_total = (uint32_t) (end - start);
74 return 0;
77 int
78 i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
81 struct drm_i915_gem_init *args = data;
82 int ret;
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
86 mutex_unlock(&dev->struct_mutex);
88 return ret;
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
95 struct drm_i915_gem_get_aperture *args = data;
97 if (!(dev->driver->driver_features & DRIVER_GEM))
98 return -ENODEV;
100 args->aper_size = dev->gtt_total;
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
104 return 0;
109 * Creates a new mm object and returns a handle to it.
112 i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
117 int handle, ret;
119 args->size = roundup(args->size, PAGE_SIZE);
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
123 if (obj == NULL)
124 return -ENOMEM;
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
131 if (ret)
132 return ret;
134 args->handle = handle;
136 return 0;
140 * Reads data from the object referenced by handle.
142 * On error, the contents of *data are undefined.
145 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file_priv)
148 struct drm_i915_gem_pread *args = data;
149 struct drm_gem_object *obj;
150 struct drm_i915_gem_object *obj_priv;
151 ssize_t read;
152 loff_t offset;
153 int ret;
155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
156 if (obj == NULL)
157 return -EBADF;
158 obj_priv = obj->driver_private;
160 /* Bounds check source.
162 * XXX: This could use review for overflow issues...
164 if (args->offset > obj->size || args->size > obj->size ||
165 args->offset + args->size > obj->size) {
166 drm_gem_object_unreference(obj);
167 return -EINVAL;
170 mutex_lock(&dev->struct_mutex);
172 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
173 args->size);
174 if (ret != 0) {
175 drm_gem_object_unreference(obj);
176 mutex_unlock(&dev->struct_mutex);
177 return ret;
180 offset = args->offset;
182 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
183 args->size, &offset);
184 if (read != args->size) {
185 drm_gem_object_unreference(obj);
186 mutex_unlock(&dev->struct_mutex);
187 if (read < 0)
188 return read;
189 else
190 return -EINVAL;
193 drm_gem_object_unreference(obj);
194 mutex_unlock(&dev->struct_mutex);
196 return 0;
199 /* This is the fast write path which cannot handle
200 * page faults in the source data
203 static inline int
204 fast_user_write(struct io_mapping *mapping,
205 loff_t page_base, int page_offset,
206 char __user *user_data,
207 int length)
209 char *vaddr_atomic;
210 unsigned long unwritten;
212 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
213 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
214 user_data, length);
215 io_mapping_unmap_atomic(vaddr_atomic);
216 if (unwritten)
217 return -EFAULT;
218 return 0;
221 /* Here's the write path which can sleep for
222 * page faults
225 static inline int
226 slow_user_write(struct io_mapping *mapping,
227 loff_t page_base, int page_offset,
228 char __user *user_data,
229 int length)
231 char __iomem *vaddr;
232 unsigned long unwritten;
234 vaddr = io_mapping_map_wc(mapping, page_base);
235 if (vaddr == NULL)
236 return -EFAULT;
237 unwritten = __copy_from_user(vaddr + page_offset,
238 user_data, length);
239 io_mapping_unmap(vaddr);
240 if (unwritten)
241 return -EFAULT;
242 return 0;
245 static int
246 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
247 struct drm_i915_gem_pwrite *args,
248 struct drm_file *file_priv)
250 struct drm_i915_gem_object *obj_priv = obj->driver_private;
251 drm_i915_private_t *dev_priv = dev->dev_private;
252 ssize_t remain;
253 loff_t offset, page_base;
254 char __user *user_data;
255 int page_offset, page_length;
256 int ret;
258 user_data = (char __user *) (uintptr_t) args->data_ptr;
259 remain = args->size;
260 if (!access_ok(VERIFY_READ, user_data, remain))
261 return -EFAULT;
264 mutex_lock(&dev->struct_mutex);
265 ret = i915_gem_object_pin(obj, 0);
266 if (ret) {
267 mutex_unlock(&dev->struct_mutex);
268 return ret;
270 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
271 if (ret)
272 goto fail;
274 obj_priv = obj->driver_private;
275 offset = obj_priv->gtt_offset + args->offset;
276 obj_priv->dirty = 1;
278 while (remain > 0) {
279 /* Operation in this page
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
291 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
292 page_offset, user_data, page_length);
294 /* If we get a fault while copying data, then (presumably) our
295 * source page isn't available. In this case, use the
296 * non-atomic function
298 if (ret) {
299 ret = slow_user_write (dev_priv->mm.gtt_mapping,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail;
306 remain -= page_length;
307 user_data += page_length;
308 offset += page_length;
311 fail:
312 i915_gem_object_unpin(obj);
313 mutex_unlock(&dev->struct_mutex);
315 return ret;
318 static int
319 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
320 struct drm_i915_gem_pwrite *args,
321 struct drm_file *file_priv)
323 int ret;
324 loff_t offset;
325 ssize_t written;
327 mutex_lock(&dev->struct_mutex);
329 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
330 if (ret) {
331 mutex_unlock(&dev->struct_mutex);
332 return ret;
335 offset = args->offset;
337 written = vfs_write(obj->filp,
338 (char __user *)(uintptr_t) args->data_ptr,
339 args->size, &offset);
340 if (written != args->size) {
341 mutex_unlock(&dev->struct_mutex);
342 if (written < 0)
343 return written;
344 else
345 return -EINVAL;
348 mutex_unlock(&dev->struct_mutex);
350 return 0;
354 * Writes data to the object referenced by handle.
356 * On error, the contents of the buffer that were to be modified are undefined.
359 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
360 struct drm_file *file_priv)
362 struct drm_i915_gem_pwrite *args = data;
363 struct drm_gem_object *obj;
364 struct drm_i915_gem_object *obj_priv;
365 int ret = 0;
367 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
368 if (obj == NULL)
369 return -EBADF;
370 obj_priv = obj->driver_private;
372 /* Bounds check destination.
374 * XXX: This could use review for overflow issues...
376 if (args->offset > obj->size || args->size > obj->size ||
377 args->offset + args->size > obj->size) {
378 drm_gem_object_unreference(obj);
379 return -EINVAL;
382 /* We can only do the GTT pwrite on untiled buffers, as otherwise
383 * it would end up going through the fenced access, and we'll get
384 * different detiling behavior between reading and writing.
385 * pread/pwrite currently are reading and writing from the CPU
386 * perspective, requiring manual detiling by the client.
388 if (obj_priv->phys_obj)
389 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
390 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
391 dev->gtt_total != 0)
392 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
393 else
394 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
396 #if WATCH_PWRITE
397 if (ret)
398 DRM_INFO("pwrite failed %d\n", ret);
399 #endif
401 drm_gem_object_unreference(obj);
403 return ret;
407 * Called when user space prepares to use an object with the CPU, either
408 * through the mmap ioctl's mapping or a GTT mapping.
411 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
412 struct drm_file *file_priv)
414 struct drm_i915_gem_set_domain *args = data;
415 struct drm_gem_object *obj;
416 uint32_t read_domains = args->read_domains;
417 uint32_t write_domain = args->write_domain;
418 int ret;
420 if (!(dev->driver->driver_features & DRIVER_GEM))
421 return -ENODEV;
423 /* Only handle setting domains to types used by the CPU. */
424 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
425 return -EINVAL;
427 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
428 return -EINVAL;
430 /* Having something in the write domain implies it's in the read
431 * domain, and only that read domain. Enforce that in the request.
433 if (write_domain != 0 && read_domains != write_domain)
434 return -EINVAL;
436 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
437 if (obj == NULL)
438 return -EBADF;
440 mutex_lock(&dev->struct_mutex);
441 #if WATCH_BUF
442 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
443 obj, obj->size, read_domains, write_domain);
444 #endif
445 if (read_domains & I915_GEM_DOMAIN_GTT) {
446 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
448 /* Silently promote "you're not bound, there was nothing to do"
449 * to success, since the client was just asking us to
450 * make sure everything was done.
452 if (ret == -EINVAL)
453 ret = 0;
454 } else {
455 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
458 drm_gem_object_unreference(obj);
459 mutex_unlock(&dev->struct_mutex);
460 return ret;
464 * Called when user space has done writes to this buffer
467 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
468 struct drm_file *file_priv)
470 struct drm_i915_gem_sw_finish *args = data;
471 struct drm_gem_object *obj;
472 struct drm_i915_gem_object *obj_priv;
473 int ret = 0;
475 if (!(dev->driver->driver_features & DRIVER_GEM))
476 return -ENODEV;
478 mutex_lock(&dev->struct_mutex);
479 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
480 if (obj == NULL) {
481 mutex_unlock(&dev->struct_mutex);
482 return -EBADF;
485 #if WATCH_BUF
486 DRM_INFO("%s: sw_finish %d (%p %d)\n",
487 __func__, args->handle, obj, obj->size);
488 #endif
489 obj_priv = obj->driver_private;
491 /* Pinned buffers may be scanout, so flush the cache */
492 if (obj_priv->pin_count)
493 i915_gem_object_flush_cpu_write_domain(obj);
495 drm_gem_object_unreference(obj);
496 mutex_unlock(&dev->struct_mutex);
497 return ret;
501 * Maps the contents of an object, returning the address it is mapped
502 * into.
504 * While the mapping holds a reference on the contents of the object, it doesn't
505 * imply a ref on the object itself.
508 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
509 struct drm_file *file_priv)
511 struct drm_i915_gem_mmap *args = data;
512 struct drm_gem_object *obj;
513 loff_t offset;
514 unsigned long addr;
516 if (!(dev->driver->driver_features & DRIVER_GEM))
517 return -ENODEV;
519 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
520 if (obj == NULL)
521 return -EBADF;
523 offset = args->offset;
525 down_write(&current->mm->mmap_sem);
526 addr = do_mmap(obj->filp, 0, args->size,
527 PROT_READ | PROT_WRITE, MAP_SHARED,
528 args->offset);
529 up_write(&current->mm->mmap_sem);
530 mutex_lock(&dev->struct_mutex);
531 drm_gem_object_unreference(obj);
532 mutex_unlock(&dev->struct_mutex);
533 if (IS_ERR((void *)addr))
534 return addr;
536 args->addr_ptr = (uint64_t) addr;
538 return 0;
542 * i915_gem_fault - fault a page into the GTT
543 * vma: VMA in question
544 * vmf: fault info
546 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
547 * from userspace. The fault handler takes care of binding the object to
548 * the GTT (if needed), allocating and programming a fence register (again,
549 * only if needed based on whether the old reg is still valid or the object
550 * is tiled) and inserting a new PTE into the faulting process.
552 * Note that the faulting process may involve evicting existing objects
553 * from the GTT and/or fence registers to make room. So performance may
554 * suffer if the GTT working set is large or there are few fence registers
555 * left.
557 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
559 struct drm_gem_object *obj = vma->vm_private_data;
560 struct drm_device *dev = obj->dev;
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 struct drm_i915_gem_object *obj_priv = obj->driver_private;
563 pgoff_t page_offset;
564 unsigned long pfn;
565 int ret = 0;
566 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
568 /* We don't use vmf->pgoff since that has the fake offset */
569 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
570 PAGE_SHIFT;
572 /* Now bind it into the GTT if needed */
573 mutex_lock(&dev->struct_mutex);
574 if (!obj_priv->gtt_space) {
575 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
576 if (ret) {
577 mutex_unlock(&dev->struct_mutex);
578 return VM_FAULT_SIGBUS;
580 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
583 /* Need a new fence register? */
584 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
585 obj_priv->tiling_mode != I915_TILING_NONE) {
586 ret = i915_gem_object_get_fence_reg(obj, write);
587 if (ret) {
588 mutex_unlock(&dev->struct_mutex);
589 return VM_FAULT_SIGBUS;
593 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
594 page_offset;
596 /* Finally, remap it using the new GTT offset */
597 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
599 mutex_unlock(&dev->struct_mutex);
601 switch (ret) {
602 case -ENOMEM:
603 case -EAGAIN:
604 return VM_FAULT_OOM;
605 case -EFAULT:
606 return VM_FAULT_SIGBUS;
607 default:
608 return VM_FAULT_NOPAGE;
613 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
614 * @obj: obj in question
616 * GEM memory mapping works by handing back to userspace a fake mmap offset
617 * it can use in a subsequent mmap(2) call. The DRM core code then looks
618 * up the object based on the offset and sets up the various memory mapping
619 * structures.
621 * This routine allocates and attaches a fake offset for @obj.
623 static int
624 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
626 struct drm_device *dev = obj->dev;
627 struct drm_gem_mm *mm = dev->mm_private;
628 struct drm_i915_gem_object *obj_priv = obj->driver_private;
629 struct drm_map_list *list;
630 struct drm_map *map;
631 int ret = 0;
633 /* Set the object up for mmap'ing */
634 list = &obj->map_list;
635 list->map = drm_calloc(1, sizeof(struct drm_map_list),
636 DRM_MEM_DRIVER);
637 if (!list->map)
638 return -ENOMEM;
640 map = list->map;
641 map->type = _DRM_GEM;
642 map->size = obj->size;
643 map->handle = obj;
645 /* Get a DRM GEM mmap offset allocated... */
646 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
647 obj->size / PAGE_SIZE, 0, 0);
648 if (!list->file_offset_node) {
649 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
650 ret = -ENOMEM;
651 goto out_free_list;
654 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
655 obj->size / PAGE_SIZE, 0);
656 if (!list->file_offset_node) {
657 ret = -ENOMEM;
658 goto out_free_list;
661 list->hash.key = list->file_offset_node->start;
662 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
663 DRM_ERROR("failed to add to map hash\n");
664 goto out_free_mm;
667 /* By now we should be all set, any drm_mmap request on the offset
668 * below will get to our mmap & fault handler */
669 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
671 return 0;
673 out_free_mm:
674 drm_mm_put_block(list->file_offset_node);
675 out_free_list:
676 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
678 return ret;
681 static void
682 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
684 struct drm_device *dev = obj->dev;
685 struct drm_i915_gem_object *obj_priv = obj->driver_private;
686 struct drm_gem_mm *mm = dev->mm_private;
687 struct drm_map_list *list;
689 list = &obj->map_list;
690 drm_ht_remove_item(&mm->offset_hash, &list->hash);
692 if (list->file_offset_node) {
693 drm_mm_put_block(list->file_offset_node);
694 list->file_offset_node = NULL;
697 if (list->map) {
698 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
699 list->map = NULL;
702 obj_priv->mmap_offset = 0;
706 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
707 * @obj: object to check
709 * Return the required GTT alignment for an object, taking into account
710 * potential fence register mapping if needed.
712 static uint32_t
713 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
715 struct drm_device *dev = obj->dev;
716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
717 int start, i;
720 * Minimum alignment is 4k (GTT page size), but might be greater
721 * if a fence register is needed for the object.
723 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
724 return 4096;
727 * Previous chips need to be aligned to the size of the smallest
728 * fence register that can contain the object.
730 if (IS_I9XX(dev))
731 start = 1024*1024;
732 else
733 start = 512*1024;
735 for (i = start; i < obj->size; i <<= 1)
738 return i;
742 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
743 * @dev: DRM device
744 * @data: GTT mapping ioctl data
745 * @file_priv: GEM object info
747 * Simply returns the fake offset to userspace so it can mmap it.
748 * The mmap call will end up in drm_gem_mmap(), which will set things
749 * up so we can get faults in the handler above.
751 * The fault handler will take care of binding the object into the GTT
752 * (since it may have been evicted to make room for something), allocating
753 * a fence register, and mapping the appropriate aperture address into
754 * userspace.
757 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
758 struct drm_file *file_priv)
760 struct drm_i915_gem_mmap_gtt *args = data;
761 struct drm_i915_private *dev_priv = dev->dev_private;
762 struct drm_gem_object *obj;
763 struct drm_i915_gem_object *obj_priv;
764 int ret;
766 if (!(dev->driver->driver_features & DRIVER_GEM))
767 return -ENODEV;
769 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
770 if (obj == NULL)
771 return -EBADF;
773 mutex_lock(&dev->struct_mutex);
775 obj_priv = obj->driver_private;
777 if (!obj_priv->mmap_offset) {
778 ret = i915_gem_create_mmap_offset(obj);
779 if (ret) {
780 drm_gem_object_unreference(obj);
781 mutex_unlock(&dev->struct_mutex);
782 return ret;
786 args->offset = obj_priv->mmap_offset;
788 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
790 /* Make sure the alignment is correct for fence regs etc */
791 if (obj_priv->agp_mem &&
792 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
793 drm_gem_object_unreference(obj);
794 mutex_unlock(&dev->struct_mutex);
795 return -EINVAL;
799 * Pull it into the GTT so that we have a page list (makes the
800 * initial fault faster and any subsequent flushing possible).
802 if (!obj_priv->agp_mem) {
803 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
804 if (ret) {
805 drm_gem_object_unreference(obj);
806 mutex_unlock(&dev->struct_mutex);
807 return ret;
809 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
812 drm_gem_object_unreference(obj);
813 mutex_unlock(&dev->struct_mutex);
815 return 0;
818 static void
819 i915_gem_object_free_page_list(struct drm_gem_object *obj)
821 struct drm_i915_gem_object *obj_priv = obj->driver_private;
822 int page_count = obj->size / PAGE_SIZE;
823 int i;
825 if (obj_priv->page_list == NULL)
826 return;
829 for (i = 0; i < page_count; i++)
830 if (obj_priv->page_list[i] != NULL) {
831 if (obj_priv->dirty)
832 set_page_dirty(obj_priv->page_list[i]);
833 mark_page_accessed(obj_priv->page_list[i]);
834 page_cache_release(obj_priv->page_list[i]);
836 obj_priv->dirty = 0;
838 drm_free(obj_priv->page_list,
839 page_count * sizeof(struct page *),
840 DRM_MEM_DRIVER);
841 obj_priv->page_list = NULL;
844 static void
845 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
847 struct drm_device *dev = obj->dev;
848 drm_i915_private_t *dev_priv = dev->dev_private;
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
851 /* Add a reference if we're newly entering the active list. */
852 if (!obj_priv->active) {
853 drm_gem_object_reference(obj);
854 obj_priv->active = 1;
856 /* Move from whatever list we were on to the tail of execution. */
857 list_move_tail(&obj_priv->list,
858 &dev_priv->mm.active_list);
859 obj_priv->last_rendering_seqno = seqno;
862 static void
863 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
865 struct drm_device *dev = obj->dev;
866 drm_i915_private_t *dev_priv = dev->dev_private;
867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
869 BUG_ON(!obj_priv->active);
870 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
871 obj_priv->last_rendering_seqno = 0;
874 static void
875 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
877 struct drm_device *dev = obj->dev;
878 drm_i915_private_t *dev_priv = dev->dev_private;
879 struct drm_i915_gem_object *obj_priv = obj->driver_private;
881 i915_verify_inactive(dev, __FILE__, __LINE__);
882 if (obj_priv->pin_count != 0)
883 list_del_init(&obj_priv->list);
884 else
885 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
887 obj_priv->last_rendering_seqno = 0;
888 if (obj_priv->active) {
889 obj_priv->active = 0;
890 drm_gem_object_unreference(obj);
892 i915_verify_inactive(dev, __FILE__, __LINE__);
896 * Creates a new sequence number, emitting a write of it to the status page
897 * plus an interrupt, which will trigger i915_user_interrupt_handler.
899 * Must be called with struct_lock held.
901 * Returned sequence numbers are nonzero on success.
903 static uint32_t
904 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
906 drm_i915_private_t *dev_priv = dev->dev_private;
907 struct drm_i915_gem_request *request;
908 uint32_t seqno;
909 int was_empty;
910 RING_LOCALS;
912 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
913 if (request == NULL)
914 return 0;
916 /* Grab the seqno we're going to make this request be, and bump the
917 * next (skipping 0 so it can be the reserved no-seqno value).
919 seqno = dev_priv->mm.next_gem_seqno;
920 dev_priv->mm.next_gem_seqno++;
921 if (dev_priv->mm.next_gem_seqno == 0)
922 dev_priv->mm.next_gem_seqno++;
924 BEGIN_LP_RING(4);
925 OUT_RING(MI_STORE_DWORD_INDEX);
926 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
927 OUT_RING(seqno);
929 OUT_RING(MI_USER_INTERRUPT);
930 ADVANCE_LP_RING();
932 DRM_DEBUG("%d\n", seqno);
934 request->seqno = seqno;
935 request->emitted_jiffies = jiffies;
936 was_empty = list_empty(&dev_priv->mm.request_list);
937 list_add_tail(&request->list, &dev_priv->mm.request_list);
939 /* Associate any objects on the flushing list matching the write
940 * domain we're flushing with our flush.
942 if (flush_domains != 0) {
943 struct drm_i915_gem_object *obj_priv, *next;
945 list_for_each_entry_safe(obj_priv, next,
946 &dev_priv->mm.flushing_list, list) {
947 struct drm_gem_object *obj = obj_priv->obj;
949 if ((obj->write_domain & flush_domains) ==
950 obj->write_domain) {
951 obj->write_domain = 0;
952 i915_gem_object_move_to_active(obj, seqno);
958 if (was_empty && !dev_priv->mm.suspended)
959 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
960 return seqno;
964 * Command execution barrier
966 * Ensures that all commands in the ring are finished
967 * before signalling the CPU
969 static uint32_t
970 i915_retire_commands(struct drm_device *dev)
972 drm_i915_private_t *dev_priv = dev->dev_private;
973 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
974 uint32_t flush_domains = 0;
975 RING_LOCALS;
977 /* The sampler always gets flushed on i965 (sigh) */
978 if (IS_I965G(dev))
979 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
980 BEGIN_LP_RING(2);
981 OUT_RING(cmd);
982 OUT_RING(0); /* noop */
983 ADVANCE_LP_RING();
984 return flush_domains;
988 * Moves buffers associated only with the given active seqno from the active
989 * to inactive list, potentially freeing them.
991 static void
992 i915_gem_retire_request(struct drm_device *dev,
993 struct drm_i915_gem_request *request)
995 drm_i915_private_t *dev_priv = dev->dev_private;
997 /* Move any buffers on the active list that are no longer referenced
998 * by the ringbuffer to the flushing/inactive lists as appropriate.
1000 while (!list_empty(&dev_priv->mm.active_list)) {
1001 struct drm_gem_object *obj;
1002 struct drm_i915_gem_object *obj_priv;
1004 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1005 struct drm_i915_gem_object,
1006 list);
1007 obj = obj_priv->obj;
1009 /* If the seqno being retired doesn't match the oldest in the
1010 * list, then the oldest in the list must still be newer than
1011 * this seqno.
1013 if (obj_priv->last_rendering_seqno != request->seqno)
1014 return;
1016 #if WATCH_LRU
1017 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1018 __func__, request->seqno, obj);
1019 #endif
1021 if (obj->write_domain != 0)
1022 i915_gem_object_move_to_flushing(obj);
1023 else
1024 i915_gem_object_move_to_inactive(obj);
1029 * Returns true if seq1 is later than seq2.
1031 static int
1032 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1034 return (int32_t)(seq1 - seq2) >= 0;
1037 uint32_t
1038 i915_get_gem_seqno(struct drm_device *dev)
1040 drm_i915_private_t *dev_priv = dev->dev_private;
1042 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1046 * This function clears the request list as sequence numbers are passed.
1048 void
1049 i915_gem_retire_requests(struct drm_device *dev)
1051 drm_i915_private_t *dev_priv = dev->dev_private;
1052 uint32_t seqno;
1054 if (!dev_priv->hw_status_page)
1055 return;
1057 seqno = i915_get_gem_seqno(dev);
1059 while (!list_empty(&dev_priv->mm.request_list)) {
1060 struct drm_i915_gem_request *request;
1061 uint32_t retiring_seqno;
1063 request = list_first_entry(&dev_priv->mm.request_list,
1064 struct drm_i915_gem_request,
1065 list);
1066 retiring_seqno = request->seqno;
1068 if (i915_seqno_passed(seqno, retiring_seqno) ||
1069 dev_priv->mm.wedged) {
1070 i915_gem_retire_request(dev, request);
1072 list_del(&request->list);
1073 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1074 } else
1075 break;
1079 void
1080 i915_gem_retire_work_handler(struct work_struct *work)
1082 drm_i915_private_t *dev_priv;
1083 struct drm_device *dev;
1085 dev_priv = container_of(work, drm_i915_private_t,
1086 mm.retire_work.work);
1087 dev = dev_priv->dev;
1089 mutex_lock(&dev->struct_mutex);
1090 i915_gem_retire_requests(dev);
1091 if (!dev_priv->mm.suspended &&
1092 !list_empty(&dev_priv->mm.request_list))
1093 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1094 mutex_unlock(&dev->struct_mutex);
1098 * Waits for a sequence number to be signaled, and cleans up the
1099 * request and object lists appropriately for that event.
1101 static int
1102 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1104 drm_i915_private_t *dev_priv = dev->dev_private;
1105 int ret = 0;
1107 BUG_ON(seqno == 0);
1109 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1110 dev_priv->mm.waiting_gem_seqno = seqno;
1111 i915_user_irq_get(dev);
1112 ret = wait_event_interruptible(dev_priv->irq_queue,
1113 i915_seqno_passed(i915_get_gem_seqno(dev),
1114 seqno) ||
1115 dev_priv->mm.wedged);
1116 i915_user_irq_put(dev);
1117 dev_priv->mm.waiting_gem_seqno = 0;
1119 if (dev_priv->mm.wedged)
1120 ret = -EIO;
1122 if (ret && ret != -ERESTARTSYS)
1123 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1124 __func__, ret, seqno, i915_get_gem_seqno(dev));
1126 /* Directly dispatch request retiring. While we have the work queue
1127 * to handle this, the waiter on a request often wants an associated
1128 * buffer to have made it to the inactive list, and we would need
1129 * a separate wait queue to handle that.
1131 if (ret == 0)
1132 i915_gem_retire_requests(dev);
1134 return ret;
1137 static void
1138 i915_gem_flush(struct drm_device *dev,
1139 uint32_t invalidate_domains,
1140 uint32_t flush_domains)
1142 drm_i915_private_t *dev_priv = dev->dev_private;
1143 uint32_t cmd;
1144 RING_LOCALS;
1146 #if WATCH_EXEC
1147 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1148 invalidate_domains, flush_domains);
1149 #endif
1151 if (flush_domains & I915_GEM_DOMAIN_CPU)
1152 drm_agp_chipset_flush(dev);
1154 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1155 I915_GEM_DOMAIN_GTT)) {
1157 * read/write caches:
1159 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1160 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1161 * also flushed at 2d versus 3d pipeline switches.
1163 * read-only caches:
1165 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1166 * MI_READ_FLUSH is set, and is always flushed on 965.
1168 * I915_GEM_DOMAIN_COMMAND may not exist?
1170 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1171 * invalidated when MI_EXE_FLUSH is set.
1173 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1174 * invalidated with every MI_FLUSH.
1176 * TLBs:
1178 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1179 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1180 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1181 * are flushed at any MI_FLUSH.
1184 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1185 if ((invalidate_domains|flush_domains) &
1186 I915_GEM_DOMAIN_RENDER)
1187 cmd &= ~MI_NO_WRITE_FLUSH;
1188 if (!IS_I965G(dev)) {
1190 * On the 965, the sampler cache always gets flushed
1191 * and this bit is reserved.
1193 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1194 cmd |= MI_READ_FLUSH;
1196 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1197 cmd |= MI_EXE_FLUSH;
1199 #if WATCH_EXEC
1200 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1201 #endif
1202 BEGIN_LP_RING(2);
1203 OUT_RING(cmd);
1204 OUT_RING(0); /* noop */
1205 ADVANCE_LP_RING();
1210 * Ensures that all rendering to the object has completed and the object is
1211 * safe to unbind from the GTT or access from the CPU.
1213 static int
1214 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1216 struct drm_device *dev = obj->dev;
1217 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218 int ret;
1220 /* This function only exists to support waiting for existing rendering,
1221 * not for emitting required flushes.
1223 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1225 /* If there is rendering queued on the buffer being evicted, wait for
1226 * it.
1228 if (obj_priv->active) {
1229 #if WATCH_BUF
1230 DRM_INFO("%s: object %p wait for seqno %08x\n",
1231 __func__, obj, obj_priv->last_rendering_seqno);
1232 #endif
1233 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1234 if (ret != 0)
1235 return ret;
1238 return 0;
1242 * Unbinds an object from the GTT aperture.
1245 i915_gem_object_unbind(struct drm_gem_object *obj)
1247 struct drm_device *dev = obj->dev;
1248 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1249 loff_t offset;
1250 int ret = 0;
1252 #if WATCH_BUF
1253 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1254 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1255 #endif
1256 if (obj_priv->gtt_space == NULL)
1257 return 0;
1259 if (obj_priv->pin_count != 0) {
1260 DRM_ERROR("Attempting to unbind pinned buffer\n");
1261 return -EINVAL;
1264 /* Move the object to the CPU domain to ensure that
1265 * any possible CPU writes while it's not in the GTT
1266 * are flushed when we go to remap it. This will
1267 * also ensure that all pending GPU writes are finished
1268 * before we unbind.
1270 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1271 if (ret) {
1272 if (ret != -ERESTARTSYS)
1273 DRM_ERROR("set_domain failed: %d\n", ret);
1274 return ret;
1277 if (obj_priv->agp_mem != NULL) {
1278 drm_unbind_agp(obj_priv->agp_mem);
1279 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1280 obj_priv->agp_mem = NULL;
1283 BUG_ON(obj_priv->active);
1285 /* blow away mappings if mapped through GTT */
1286 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1287 if (dev->dev_mapping)
1288 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1290 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1291 i915_gem_clear_fence_reg(obj);
1293 i915_gem_object_free_page_list(obj);
1295 if (obj_priv->gtt_space) {
1296 atomic_dec(&dev->gtt_count);
1297 atomic_sub(obj->size, &dev->gtt_memory);
1299 drm_mm_put_block(obj_priv->gtt_space);
1300 obj_priv->gtt_space = NULL;
1303 /* Remove ourselves from the LRU list if present. */
1304 if (!list_empty(&obj_priv->list))
1305 list_del_init(&obj_priv->list);
1307 return 0;
1310 static int
1311 i915_gem_evict_something(struct drm_device *dev)
1313 drm_i915_private_t *dev_priv = dev->dev_private;
1314 struct drm_gem_object *obj;
1315 struct drm_i915_gem_object *obj_priv;
1316 int ret = 0;
1318 for (;;) {
1319 /* If there's an inactive buffer available now, grab it
1320 * and be done.
1322 if (!list_empty(&dev_priv->mm.inactive_list)) {
1323 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1324 struct drm_i915_gem_object,
1325 list);
1326 obj = obj_priv->obj;
1327 BUG_ON(obj_priv->pin_count != 0);
1328 #if WATCH_LRU
1329 DRM_INFO("%s: evicting %p\n", __func__, obj);
1330 #endif
1331 BUG_ON(obj_priv->active);
1333 /* Wait on the rendering and unbind the buffer. */
1334 ret = i915_gem_object_unbind(obj);
1335 break;
1338 /* If we didn't get anything, but the ring is still processing
1339 * things, wait for one of those things to finish and hopefully
1340 * leave us a buffer to evict.
1342 if (!list_empty(&dev_priv->mm.request_list)) {
1343 struct drm_i915_gem_request *request;
1345 request = list_first_entry(&dev_priv->mm.request_list,
1346 struct drm_i915_gem_request,
1347 list);
1349 ret = i915_wait_request(dev, request->seqno);
1350 if (ret)
1351 break;
1353 /* if waiting caused an object to become inactive,
1354 * then loop around and wait for it. Otherwise, we
1355 * assume that waiting freed and unbound something,
1356 * so there should now be some space in the GTT
1358 if (!list_empty(&dev_priv->mm.inactive_list))
1359 continue;
1360 break;
1363 /* If we didn't have anything on the request list but there
1364 * are buffers awaiting a flush, emit one and try again.
1365 * When we wait on it, those buffers waiting for that flush
1366 * will get moved to inactive.
1368 if (!list_empty(&dev_priv->mm.flushing_list)) {
1369 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1370 struct drm_i915_gem_object,
1371 list);
1372 obj = obj_priv->obj;
1374 i915_gem_flush(dev,
1375 obj->write_domain,
1376 obj->write_domain);
1377 i915_add_request(dev, obj->write_domain);
1379 obj = NULL;
1380 continue;
1383 DRM_ERROR("inactive empty %d request empty %d "
1384 "flushing empty %d\n",
1385 list_empty(&dev_priv->mm.inactive_list),
1386 list_empty(&dev_priv->mm.request_list),
1387 list_empty(&dev_priv->mm.flushing_list));
1388 /* If we didn't do any of the above, there's nothing to be done
1389 * and we just can't fit it in.
1391 return -ENOMEM;
1393 return ret;
1396 static int
1397 i915_gem_evict_everything(struct drm_device *dev)
1399 int ret;
1401 for (;;) {
1402 ret = i915_gem_evict_something(dev);
1403 if (ret != 0)
1404 break;
1406 if (ret == -ENOMEM)
1407 return 0;
1408 return ret;
1411 static int
1412 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1414 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1415 int page_count, i;
1416 struct address_space *mapping;
1417 struct inode *inode;
1418 struct page *page;
1419 int ret;
1421 if (obj_priv->page_list)
1422 return 0;
1424 /* Get the list of pages out of our struct file. They'll be pinned
1425 * at this point until we release them.
1427 page_count = obj->size / PAGE_SIZE;
1428 BUG_ON(obj_priv->page_list != NULL);
1429 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1430 DRM_MEM_DRIVER);
1431 if (obj_priv->page_list == NULL) {
1432 DRM_ERROR("Faled to allocate page list\n");
1433 return -ENOMEM;
1436 inode = obj->filp->f_path.dentry->d_inode;
1437 mapping = inode->i_mapping;
1438 for (i = 0; i < page_count; i++) {
1439 page = read_mapping_page(mapping, i, NULL);
1440 if (IS_ERR(page)) {
1441 ret = PTR_ERR(page);
1442 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1443 i915_gem_object_free_page_list(obj);
1444 return ret;
1446 obj_priv->page_list[i] = page;
1448 return 0;
1451 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1453 struct drm_gem_object *obj = reg->obj;
1454 struct drm_device *dev = obj->dev;
1455 drm_i915_private_t *dev_priv = dev->dev_private;
1456 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1457 int regnum = obj_priv->fence_reg;
1458 uint64_t val;
1460 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1461 0xfffff000) << 32;
1462 val |= obj_priv->gtt_offset & 0xfffff000;
1463 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1464 if (obj_priv->tiling_mode == I915_TILING_Y)
1465 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1466 val |= I965_FENCE_REG_VALID;
1468 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1471 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1473 struct drm_gem_object *obj = reg->obj;
1474 struct drm_device *dev = obj->dev;
1475 drm_i915_private_t *dev_priv = dev->dev_private;
1476 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1477 int regnum = obj_priv->fence_reg;
1478 int tile_width;
1479 uint32_t val;
1480 uint32_t pitch_val;
1482 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1483 (obj_priv->gtt_offset & (obj->size - 1))) {
1484 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1485 __func__, obj_priv->gtt_offset, obj->size);
1486 return;
1489 if (obj_priv->tiling_mode == I915_TILING_Y &&
1490 HAS_128_BYTE_Y_TILING(dev))
1491 tile_width = 128;
1492 else
1493 tile_width = 512;
1495 /* Note: pitch better be a power of two tile widths */
1496 pitch_val = obj_priv->stride / tile_width;
1497 pitch_val = ffs(pitch_val) - 1;
1499 val = obj_priv->gtt_offset;
1500 if (obj_priv->tiling_mode == I915_TILING_Y)
1501 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1502 val |= I915_FENCE_SIZE_BITS(obj->size);
1503 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1504 val |= I830_FENCE_REG_VALID;
1506 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1509 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1511 struct drm_gem_object *obj = reg->obj;
1512 struct drm_device *dev = obj->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1515 int regnum = obj_priv->fence_reg;
1516 uint32_t val;
1517 uint32_t pitch_val;
1519 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1520 (obj_priv->gtt_offset & (obj->size - 1))) {
1521 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1522 __func__, obj_priv->gtt_offset);
1523 return;
1526 pitch_val = (obj_priv->stride / 128) - 1;
1528 val = obj_priv->gtt_offset;
1529 if (obj_priv->tiling_mode == I915_TILING_Y)
1530 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1531 val |= I830_FENCE_SIZE_BITS(obj->size);
1532 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1533 val |= I830_FENCE_REG_VALID;
1535 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1540 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1541 * @obj: object to map through a fence reg
1542 * @write: object is about to be written
1544 * When mapping objects through the GTT, userspace wants to be able to write
1545 * to them without having to worry about swizzling if the object is tiled.
1547 * This function walks the fence regs looking for a free one for @obj,
1548 * stealing one if it can't find any.
1550 * It then sets up the reg based on the object's properties: address, pitch
1551 * and tiling format.
1553 static int
1554 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
1556 struct drm_device *dev = obj->dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1559 struct drm_i915_fence_reg *reg = NULL;
1560 int i, ret;
1562 switch (obj_priv->tiling_mode) {
1563 case I915_TILING_NONE:
1564 WARN(1, "allocating a fence for non-tiled object?\n");
1565 break;
1566 case I915_TILING_X:
1567 if (!obj_priv->stride)
1568 return -EINVAL;
1569 WARN((obj_priv->stride & (512 - 1)),
1570 "object 0x%08x is X tiled but has non-512B pitch\n",
1571 obj_priv->gtt_offset);
1572 break;
1573 case I915_TILING_Y:
1574 if (!obj_priv->stride)
1575 return -EINVAL;
1576 WARN((obj_priv->stride & (128 - 1)),
1577 "object 0x%08x is Y tiled but has non-128B pitch\n",
1578 obj_priv->gtt_offset);
1579 break;
1582 /* First try to find a free reg */
1583 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1584 reg = &dev_priv->fence_regs[i];
1585 if (!reg->obj)
1586 break;
1589 /* None available, try to steal one or wait for a user to finish */
1590 if (i == dev_priv->num_fence_regs) {
1591 struct drm_i915_gem_object *old_obj_priv = NULL;
1592 loff_t offset;
1594 try_again:
1595 /* Could try to use LRU here instead... */
1596 for (i = dev_priv->fence_reg_start;
1597 i < dev_priv->num_fence_regs; i++) {
1598 reg = &dev_priv->fence_regs[i];
1599 old_obj_priv = reg->obj->driver_private;
1600 if (!old_obj_priv->pin_count)
1601 break;
1605 * Now things get ugly... we have to wait for one of the
1606 * objects to finish before trying again.
1608 if (i == dev_priv->num_fence_regs) {
1609 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
1610 if (ret) {
1611 WARN(ret != -ERESTARTSYS,
1612 "switch to GTT domain failed: %d\n", ret);
1613 return ret;
1615 goto try_again;
1619 * Zap this virtual mapping so we can set up a fence again
1620 * for this object next time we need it.
1622 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1623 if (dev->dev_mapping)
1624 unmap_mapping_range(dev->dev_mapping, offset,
1625 reg->obj->size, 1);
1626 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1629 obj_priv->fence_reg = i;
1630 reg->obj = obj;
1632 if (IS_I965G(dev))
1633 i965_write_fence_reg(reg);
1634 else if (IS_I9XX(dev))
1635 i915_write_fence_reg(reg);
1636 else
1637 i830_write_fence_reg(reg);
1639 return 0;
1643 * i915_gem_clear_fence_reg - clear out fence register info
1644 * @obj: object to clear
1646 * Zeroes out the fence register itself and clears out the associated
1647 * data structures in dev_priv and obj_priv.
1649 static void
1650 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1652 struct drm_device *dev = obj->dev;
1653 drm_i915_private_t *dev_priv = dev->dev_private;
1654 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1656 if (IS_I965G(dev))
1657 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1658 else
1659 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1661 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1662 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1666 * Finds free space in the GTT aperture and binds the object there.
1668 static int
1669 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1671 struct drm_device *dev = obj->dev;
1672 drm_i915_private_t *dev_priv = dev->dev_private;
1673 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1674 struct drm_mm_node *free_space;
1675 int page_count, ret;
1677 if (dev_priv->mm.suspended)
1678 return -EBUSY;
1679 if (alignment == 0)
1680 alignment = i915_gem_get_gtt_alignment(obj);
1681 if (alignment & (PAGE_SIZE - 1)) {
1682 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1683 return -EINVAL;
1686 search_free:
1687 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1688 obj->size, alignment, 0);
1689 if (free_space != NULL) {
1690 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1691 alignment);
1692 if (obj_priv->gtt_space != NULL) {
1693 obj_priv->gtt_space->private = obj;
1694 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1697 if (obj_priv->gtt_space == NULL) {
1698 /* If the gtt is empty and we're still having trouble
1699 * fitting our object in, we're out of memory.
1701 #if WATCH_LRU
1702 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1703 #endif
1704 if (list_empty(&dev_priv->mm.inactive_list) &&
1705 list_empty(&dev_priv->mm.flushing_list) &&
1706 list_empty(&dev_priv->mm.active_list)) {
1707 DRM_ERROR("GTT full, but LRU list empty\n");
1708 return -ENOMEM;
1711 ret = i915_gem_evict_something(dev);
1712 if (ret != 0) {
1713 if (ret != -ERESTARTSYS)
1714 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1715 return ret;
1717 goto search_free;
1720 #if WATCH_BUF
1721 DRM_INFO("Binding object of size %d at 0x%08x\n",
1722 obj->size, obj_priv->gtt_offset);
1723 #endif
1724 ret = i915_gem_object_get_page_list(obj);
1725 if (ret) {
1726 drm_mm_put_block(obj_priv->gtt_space);
1727 obj_priv->gtt_space = NULL;
1728 return ret;
1731 page_count = obj->size / PAGE_SIZE;
1732 /* Create an AGP memory structure pointing at our pages, and bind it
1733 * into the GTT.
1735 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1736 obj_priv->page_list,
1737 page_count,
1738 obj_priv->gtt_offset,
1739 obj_priv->agp_type);
1740 if (obj_priv->agp_mem == NULL) {
1741 i915_gem_object_free_page_list(obj);
1742 drm_mm_put_block(obj_priv->gtt_space);
1743 obj_priv->gtt_space = NULL;
1744 return -ENOMEM;
1746 atomic_inc(&dev->gtt_count);
1747 atomic_add(obj->size, &dev->gtt_memory);
1749 /* Assert that the object is not currently in any GPU domain. As it
1750 * wasn't in the GTT, there shouldn't be any way it could have been in
1751 * a GPU cache
1753 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1754 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1756 return 0;
1759 void
1760 i915_gem_clflush_object(struct drm_gem_object *obj)
1762 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1764 /* If we don't have a page list set up, then we're not pinned
1765 * to GPU, and we can ignore the cache flush because it'll happen
1766 * again at bind time.
1768 if (obj_priv->page_list == NULL)
1769 return;
1771 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1774 /** Flushes any GPU write domain for the object if it's dirty. */
1775 static void
1776 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1778 struct drm_device *dev = obj->dev;
1779 uint32_t seqno;
1781 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1782 return;
1784 /* Queue the GPU write cache flushing we need. */
1785 i915_gem_flush(dev, 0, obj->write_domain);
1786 seqno = i915_add_request(dev, obj->write_domain);
1787 obj->write_domain = 0;
1788 i915_gem_object_move_to_active(obj, seqno);
1791 /** Flushes the GTT write domain for the object if it's dirty. */
1792 static void
1793 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1795 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1796 return;
1798 /* No actual flushing is required for the GTT write domain. Writes
1799 * to it immediately go to main memory as far as we know, so there's
1800 * no chipset flush. It also doesn't land in render cache.
1802 obj->write_domain = 0;
1805 /** Flushes the CPU write domain for the object if it's dirty. */
1806 static void
1807 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1809 struct drm_device *dev = obj->dev;
1811 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1812 return;
1814 i915_gem_clflush_object(obj);
1815 drm_agp_chipset_flush(dev);
1816 obj->write_domain = 0;
1820 * Moves a single object to the GTT read, and possibly write domain.
1822 * This function returns when the move is complete, including waiting on
1823 * flushes to occur.
1826 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1828 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1829 int ret;
1831 /* Not valid to be called on unbound objects. */
1832 if (obj_priv->gtt_space == NULL)
1833 return -EINVAL;
1835 i915_gem_object_flush_gpu_write_domain(obj);
1836 /* Wait on any GPU rendering and flushing to occur. */
1837 ret = i915_gem_object_wait_rendering(obj);
1838 if (ret != 0)
1839 return ret;
1841 /* If we're writing through the GTT domain, then CPU and GPU caches
1842 * will need to be invalidated at next use.
1844 if (write)
1845 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1847 i915_gem_object_flush_cpu_write_domain(obj);
1849 /* It should now be out of any other write domains, and we can update
1850 * the domain values for our changes.
1852 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1853 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1854 if (write) {
1855 obj->write_domain = I915_GEM_DOMAIN_GTT;
1856 obj_priv->dirty = 1;
1859 return 0;
1863 * Moves a single object to the CPU read, and possibly write domain.
1865 * This function returns when the move is complete, including waiting on
1866 * flushes to occur.
1868 static int
1869 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1871 struct drm_device *dev = obj->dev;
1872 int ret;
1874 i915_gem_object_flush_gpu_write_domain(obj);
1875 /* Wait on any GPU rendering and flushing to occur. */
1876 ret = i915_gem_object_wait_rendering(obj);
1877 if (ret != 0)
1878 return ret;
1880 i915_gem_object_flush_gtt_write_domain(obj);
1882 /* If we have a partially-valid cache of the object in the CPU,
1883 * finish invalidating it and free the per-page flags.
1885 i915_gem_object_set_to_full_cpu_read_domain(obj);
1887 /* Flush the CPU cache if it's still invalid. */
1888 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1889 i915_gem_clflush_object(obj);
1890 drm_agp_chipset_flush(dev);
1892 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1895 /* It should now be out of any other write domains, and we can update
1896 * the domain values for our changes.
1898 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1900 /* If we're writing through the CPU, then the GPU read domains will
1901 * need to be invalidated at next use.
1903 if (write) {
1904 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1905 obj->write_domain = I915_GEM_DOMAIN_CPU;
1908 return 0;
1912 * Set the next domain for the specified object. This
1913 * may not actually perform the necessary flushing/invaliding though,
1914 * as that may want to be batched with other set_domain operations
1916 * This is (we hope) the only really tricky part of gem. The goal
1917 * is fairly simple -- track which caches hold bits of the object
1918 * and make sure they remain coherent. A few concrete examples may
1919 * help to explain how it works. For shorthand, we use the notation
1920 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1921 * a pair of read and write domain masks.
1923 * Case 1: the batch buffer
1925 * 1. Allocated
1926 * 2. Written by CPU
1927 * 3. Mapped to GTT
1928 * 4. Read by GPU
1929 * 5. Unmapped from GTT
1930 * 6. Freed
1932 * Let's take these a step at a time
1934 * 1. Allocated
1935 * Pages allocated from the kernel may still have
1936 * cache contents, so we set them to (CPU, CPU) always.
1937 * 2. Written by CPU (using pwrite)
1938 * The pwrite function calls set_domain (CPU, CPU) and
1939 * this function does nothing (as nothing changes)
1940 * 3. Mapped by GTT
1941 * This function asserts that the object is not
1942 * currently in any GPU-based read or write domains
1943 * 4. Read by GPU
1944 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1945 * As write_domain is zero, this function adds in the
1946 * current read domains (CPU+COMMAND, 0).
1947 * flush_domains is set to CPU.
1948 * invalidate_domains is set to COMMAND
1949 * clflush is run to get data out of the CPU caches
1950 * then i915_dev_set_domain calls i915_gem_flush to
1951 * emit an MI_FLUSH and drm_agp_chipset_flush
1952 * 5. Unmapped from GTT
1953 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1954 * flush_domains and invalidate_domains end up both zero
1955 * so no flushing/invalidating happens
1956 * 6. Freed
1957 * yay, done
1959 * Case 2: The shared render buffer
1961 * 1. Allocated
1962 * 2. Mapped to GTT
1963 * 3. Read/written by GPU
1964 * 4. set_domain to (CPU,CPU)
1965 * 5. Read/written by CPU
1966 * 6. Read/written by GPU
1968 * 1. Allocated
1969 * Same as last example, (CPU, CPU)
1970 * 2. Mapped to GTT
1971 * Nothing changes (assertions find that it is not in the GPU)
1972 * 3. Read/written by GPU
1973 * execbuffer calls set_domain (RENDER, RENDER)
1974 * flush_domains gets CPU
1975 * invalidate_domains gets GPU
1976 * clflush (obj)
1977 * MI_FLUSH and drm_agp_chipset_flush
1978 * 4. set_domain (CPU, CPU)
1979 * flush_domains gets GPU
1980 * invalidate_domains gets CPU
1981 * wait_rendering (obj) to make sure all drawing is complete.
1982 * This will include an MI_FLUSH to get the data from GPU
1983 * to memory
1984 * clflush (obj) to invalidate the CPU cache
1985 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1986 * 5. Read/written by CPU
1987 * cache lines are loaded and dirtied
1988 * 6. Read written by GPU
1989 * Same as last GPU access
1991 * Case 3: The constant buffer
1993 * 1. Allocated
1994 * 2. Written by CPU
1995 * 3. Read by GPU
1996 * 4. Updated (written) by CPU again
1997 * 5. Read by GPU
1999 * 1. Allocated
2000 * (CPU, CPU)
2001 * 2. Written by CPU
2002 * (CPU, CPU)
2003 * 3. Read by GPU
2004 * (CPU+RENDER, 0)
2005 * flush_domains = CPU
2006 * invalidate_domains = RENDER
2007 * clflush (obj)
2008 * MI_FLUSH
2009 * drm_agp_chipset_flush
2010 * 4. Updated (written) by CPU again
2011 * (CPU, CPU)
2012 * flush_domains = 0 (no previous write domain)
2013 * invalidate_domains = 0 (no new read domains)
2014 * 5. Read by GPU
2015 * (CPU+RENDER, 0)
2016 * flush_domains = CPU
2017 * invalidate_domains = RENDER
2018 * clflush (obj)
2019 * MI_FLUSH
2020 * drm_agp_chipset_flush
2022 static void
2023 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2025 struct drm_device *dev = obj->dev;
2026 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2027 uint32_t invalidate_domains = 0;
2028 uint32_t flush_domains = 0;
2030 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2031 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2033 #if WATCH_BUF
2034 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2035 __func__, obj,
2036 obj->read_domains, obj->pending_read_domains,
2037 obj->write_domain, obj->pending_write_domain);
2038 #endif
2040 * If the object isn't moving to a new write domain,
2041 * let the object stay in multiple read domains
2043 if (obj->pending_write_domain == 0)
2044 obj->pending_read_domains |= obj->read_domains;
2045 else
2046 obj_priv->dirty = 1;
2049 * Flush the current write domain if
2050 * the new read domains don't match. Invalidate
2051 * any read domains which differ from the old
2052 * write domain
2054 if (obj->write_domain &&
2055 obj->write_domain != obj->pending_read_domains) {
2056 flush_domains |= obj->write_domain;
2057 invalidate_domains |=
2058 obj->pending_read_domains & ~obj->write_domain;
2061 * Invalidate any read caches which may have
2062 * stale data. That is, any new read domains.
2064 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2065 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2066 #if WATCH_BUF
2067 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2068 __func__, flush_domains, invalidate_domains);
2069 #endif
2070 i915_gem_clflush_object(obj);
2073 /* The actual obj->write_domain will be updated with
2074 * pending_write_domain after we emit the accumulated flush for all
2075 * of our domain changes in execbuffers (which clears objects'
2076 * write_domains). So if we have a current write domain that we
2077 * aren't changing, set pending_write_domain to that.
2079 if (flush_domains == 0 && obj->pending_write_domain == 0)
2080 obj->pending_write_domain = obj->write_domain;
2081 obj->read_domains = obj->pending_read_domains;
2083 dev->invalidate_domains |= invalidate_domains;
2084 dev->flush_domains |= flush_domains;
2085 #if WATCH_BUF
2086 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2087 __func__,
2088 obj->read_domains, obj->write_domain,
2089 dev->invalidate_domains, dev->flush_domains);
2090 #endif
2094 * Moves the object from a partially CPU read to a full one.
2096 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2097 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2099 static void
2100 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2102 struct drm_device *dev = obj->dev;
2103 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2105 if (!obj_priv->page_cpu_valid)
2106 return;
2108 /* If we're partially in the CPU read domain, finish moving it in.
2110 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2111 int i;
2113 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2114 if (obj_priv->page_cpu_valid[i])
2115 continue;
2116 drm_clflush_pages(obj_priv->page_list + i, 1);
2118 drm_agp_chipset_flush(dev);
2121 /* Free the page_cpu_valid mappings which are now stale, whether
2122 * or not we've got I915_GEM_DOMAIN_CPU.
2124 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2125 DRM_MEM_DRIVER);
2126 obj_priv->page_cpu_valid = NULL;
2130 * Set the CPU read domain on a range of the object.
2132 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2133 * not entirely valid. The page_cpu_valid member of the object flags which
2134 * pages have been flushed, and will be respected by
2135 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2136 * of the whole object.
2138 * This function returns when the move is complete, including waiting on
2139 * flushes to occur.
2141 static int
2142 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2143 uint64_t offset, uint64_t size)
2145 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2146 int i, ret;
2148 if (offset == 0 && size == obj->size)
2149 return i915_gem_object_set_to_cpu_domain(obj, 0);
2151 i915_gem_object_flush_gpu_write_domain(obj);
2152 /* Wait on any GPU rendering and flushing to occur. */
2153 ret = i915_gem_object_wait_rendering(obj);
2154 if (ret != 0)
2155 return ret;
2156 i915_gem_object_flush_gtt_write_domain(obj);
2158 /* If we're already fully in the CPU read domain, we're done. */
2159 if (obj_priv->page_cpu_valid == NULL &&
2160 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2161 return 0;
2163 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2164 * newly adding I915_GEM_DOMAIN_CPU
2166 if (obj_priv->page_cpu_valid == NULL) {
2167 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2168 DRM_MEM_DRIVER);
2169 if (obj_priv->page_cpu_valid == NULL)
2170 return -ENOMEM;
2171 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2172 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2174 /* Flush the cache on any pages that are still invalid from the CPU's
2175 * perspective.
2177 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2178 i++) {
2179 if (obj_priv->page_cpu_valid[i])
2180 continue;
2182 drm_clflush_pages(obj_priv->page_list + i, 1);
2184 obj_priv->page_cpu_valid[i] = 1;
2187 /* It should now be out of any other write domains, and we can update
2188 * the domain values for our changes.
2190 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2192 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2194 return 0;
2198 * Pin an object to the GTT and evaluate the relocations landing in it.
2200 static int
2201 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2202 struct drm_file *file_priv,
2203 struct drm_i915_gem_exec_object *entry)
2205 struct drm_device *dev = obj->dev;
2206 drm_i915_private_t *dev_priv = dev->dev_private;
2207 struct drm_i915_gem_relocation_entry reloc;
2208 struct drm_i915_gem_relocation_entry __user *relocs;
2209 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2210 int i, ret;
2211 void __iomem *reloc_page;
2213 /* Choose the GTT offset for our buffer and put it there. */
2214 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2215 if (ret)
2216 return ret;
2218 entry->offset = obj_priv->gtt_offset;
2220 relocs = (struct drm_i915_gem_relocation_entry __user *)
2221 (uintptr_t) entry->relocs_ptr;
2222 /* Apply the relocations, using the GTT aperture to avoid cache
2223 * flushing requirements.
2225 for (i = 0; i < entry->relocation_count; i++) {
2226 struct drm_gem_object *target_obj;
2227 struct drm_i915_gem_object *target_obj_priv;
2228 uint32_t reloc_val, reloc_offset;
2229 uint32_t __iomem *reloc_entry;
2231 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2232 if (ret != 0) {
2233 i915_gem_object_unpin(obj);
2234 return ret;
2237 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2238 reloc.target_handle);
2239 if (target_obj == NULL) {
2240 i915_gem_object_unpin(obj);
2241 return -EBADF;
2243 target_obj_priv = target_obj->driver_private;
2245 /* The target buffer should have appeared before us in the
2246 * exec_object list, so it should have a GTT space bound by now.
2248 if (target_obj_priv->gtt_space == NULL) {
2249 DRM_ERROR("No GTT space found for object %d\n",
2250 reloc.target_handle);
2251 drm_gem_object_unreference(target_obj);
2252 i915_gem_object_unpin(obj);
2253 return -EINVAL;
2256 if (reloc.offset > obj->size - 4) {
2257 DRM_ERROR("Relocation beyond object bounds: "
2258 "obj %p target %d offset %d size %d.\n",
2259 obj, reloc.target_handle,
2260 (int) reloc.offset, (int) obj->size);
2261 drm_gem_object_unreference(target_obj);
2262 i915_gem_object_unpin(obj);
2263 return -EINVAL;
2265 if (reloc.offset & 3) {
2266 DRM_ERROR("Relocation not 4-byte aligned: "
2267 "obj %p target %d offset %d.\n",
2268 obj, reloc.target_handle,
2269 (int) reloc.offset);
2270 drm_gem_object_unreference(target_obj);
2271 i915_gem_object_unpin(obj);
2272 return -EINVAL;
2275 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2276 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2277 DRM_ERROR("reloc with read/write CPU domains: "
2278 "obj %p target %d offset %d "
2279 "read %08x write %08x",
2280 obj, reloc.target_handle,
2281 (int) reloc.offset,
2282 reloc.read_domains,
2283 reloc.write_domain);
2284 drm_gem_object_unreference(target_obj);
2285 i915_gem_object_unpin(obj);
2286 return -EINVAL;
2289 if (reloc.write_domain && target_obj->pending_write_domain &&
2290 reloc.write_domain != target_obj->pending_write_domain) {
2291 DRM_ERROR("Write domain conflict: "
2292 "obj %p target %d offset %d "
2293 "new %08x old %08x\n",
2294 obj, reloc.target_handle,
2295 (int) reloc.offset,
2296 reloc.write_domain,
2297 target_obj->pending_write_domain);
2298 drm_gem_object_unreference(target_obj);
2299 i915_gem_object_unpin(obj);
2300 return -EINVAL;
2303 #if WATCH_RELOC
2304 DRM_INFO("%s: obj %p offset %08x target %d "
2305 "read %08x write %08x gtt %08x "
2306 "presumed %08x delta %08x\n",
2307 __func__,
2308 obj,
2309 (int) reloc.offset,
2310 (int) reloc.target_handle,
2311 (int) reloc.read_domains,
2312 (int) reloc.write_domain,
2313 (int) target_obj_priv->gtt_offset,
2314 (int) reloc.presumed_offset,
2315 reloc.delta);
2316 #endif
2318 target_obj->pending_read_domains |= reloc.read_domains;
2319 target_obj->pending_write_domain |= reloc.write_domain;
2321 /* If the relocation already has the right value in it, no
2322 * more work needs to be done.
2324 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2325 drm_gem_object_unreference(target_obj);
2326 continue;
2329 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2330 if (ret != 0) {
2331 drm_gem_object_unreference(target_obj);
2332 i915_gem_object_unpin(obj);
2333 return -EINVAL;
2336 /* Map the page containing the relocation we're going to
2337 * perform.
2339 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2340 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2341 (reloc_offset &
2342 ~(PAGE_SIZE - 1)));
2343 reloc_entry = (uint32_t __iomem *)(reloc_page +
2344 (reloc_offset & (PAGE_SIZE - 1)));
2345 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2347 #if WATCH_BUF
2348 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2349 obj, (unsigned int) reloc.offset,
2350 readl(reloc_entry), reloc_val);
2351 #endif
2352 writel(reloc_val, reloc_entry);
2353 io_mapping_unmap_atomic(reloc_page);
2355 /* Write the updated presumed offset for this entry back out
2356 * to the user.
2358 reloc.presumed_offset = target_obj_priv->gtt_offset;
2359 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2360 if (ret != 0) {
2361 drm_gem_object_unreference(target_obj);
2362 i915_gem_object_unpin(obj);
2363 return ret;
2366 drm_gem_object_unreference(target_obj);
2369 #if WATCH_BUF
2370 if (0)
2371 i915_gem_dump_object(obj, 128, __func__, ~0);
2372 #endif
2373 return 0;
2376 /** Dispatch a batchbuffer to the ring
2378 static int
2379 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2380 struct drm_i915_gem_execbuffer *exec,
2381 uint64_t exec_offset)
2383 drm_i915_private_t *dev_priv = dev->dev_private;
2384 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2385 (uintptr_t) exec->cliprects_ptr;
2386 int nbox = exec->num_cliprects;
2387 int i = 0, count;
2388 uint32_t exec_start, exec_len;
2389 RING_LOCALS;
2391 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2392 exec_len = (uint32_t) exec->batch_len;
2394 if ((exec_start | exec_len) & 0x7) {
2395 DRM_ERROR("alignment\n");
2396 return -EINVAL;
2399 if (!exec_start)
2400 return -EINVAL;
2402 count = nbox ? nbox : 1;
2404 for (i = 0; i < count; i++) {
2405 if (i < nbox) {
2406 int ret = i915_emit_box(dev, boxes, i,
2407 exec->DR1, exec->DR4);
2408 if (ret)
2409 return ret;
2412 if (IS_I830(dev) || IS_845G(dev)) {
2413 BEGIN_LP_RING(4);
2414 OUT_RING(MI_BATCH_BUFFER);
2415 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2416 OUT_RING(exec_start + exec_len - 4);
2417 OUT_RING(0);
2418 ADVANCE_LP_RING();
2419 } else {
2420 BEGIN_LP_RING(2);
2421 if (IS_I965G(dev)) {
2422 OUT_RING(MI_BATCH_BUFFER_START |
2423 (2 << 6) |
2424 MI_BATCH_NON_SECURE_I965);
2425 OUT_RING(exec_start);
2426 } else {
2427 OUT_RING(MI_BATCH_BUFFER_START |
2428 (2 << 6));
2429 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2431 ADVANCE_LP_RING();
2435 /* XXX breadcrumb */
2436 return 0;
2439 /* Throttle our rendering by waiting until the ring has completed our requests
2440 * emitted over 20 msec ago.
2442 * This should get us reasonable parallelism between CPU and GPU but also
2443 * relatively low latency when blocking on a particular request to finish.
2445 static int
2446 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2448 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2449 int ret = 0;
2450 uint32_t seqno;
2452 mutex_lock(&dev->struct_mutex);
2453 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2454 i915_file_priv->mm.last_gem_throttle_seqno =
2455 i915_file_priv->mm.last_gem_seqno;
2456 if (seqno)
2457 ret = i915_wait_request(dev, seqno);
2458 mutex_unlock(&dev->struct_mutex);
2459 return ret;
2463 i915_gem_execbuffer(struct drm_device *dev, void *data,
2464 struct drm_file *file_priv)
2466 drm_i915_private_t *dev_priv = dev->dev_private;
2467 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2468 struct drm_i915_gem_execbuffer *args = data;
2469 struct drm_i915_gem_exec_object *exec_list = NULL;
2470 struct drm_gem_object **object_list = NULL;
2471 struct drm_gem_object *batch_obj;
2472 int ret, i, pinned = 0;
2473 uint64_t exec_offset;
2474 uint32_t seqno, flush_domains;
2475 int pin_tries;
2477 #if WATCH_EXEC
2478 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2479 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2480 #endif
2482 if (args->buffer_count < 1) {
2483 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2484 return -EINVAL;
2486 /* Copy in the exec list from userland */
2487 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2488 DRM_MEM_DRIVER);
2489 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2490 DRM_MEM_DRIVER);
2491 if (exec_list == NULL || object_list == NULL) {
2492 DRM_ERROR("Failed to allocate exec or object list "
2493 "for %d buffers\n",
2494 args->buffer_count);
2495 ret = -ENOMEM;
2496 goto pre_mutex_err;
2498 ret = copy_from_user(exec_list,
2499 (struct drm_i915_relocation_entry __user *)
2500 (uintptr_t) args->buffers_ptr,
2501 sizeof(*exec_list) * args->buffer_count);
2502 if (ret != 0) {
2503 DRM_ERROR("copy %d exec entries failed %d\n",
2504 args->buffer_count, ret);
2505 goto pre_mutex_err;
2508 mutex_lock(&dev->struct_mutex);
2510 i915_verify_inactive(dev, __FILE__, __LINE__);
2512 if (dev_priv->mm.wedged) {
2513 DRM_ERROR("Execbuf while wedged\n");
2514 mutex_unlock(&dev->struct_mutex);
2515 ret = -EIO;
2516 goto pre_mutex_err;
2519 if (dev_priv->mm.suspended) {
2520 DRM_ERROR("Execbuf while VT-switched.\n");
2521 mutex_unlock(&dev->struct_mutex);
2522 ret = -EBUSY;
2523 goto pre_mutex_err;
2526 /* Look up object handles */
2527 for (i = 0; i < args->buffer_count; i++) {
2528 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2529 exec_list[i].handle);
2530 if (object_list[i] == NULL) {
2531 DRM_ERROR("Invalid object handle %d at index %d\n",
2532 exec_list[i].handle, i);
2533 ret = -EBADF;
2534 goto err;
2538 /* Pin and relocate */
2539 for (pin_tries = 0; ; pin_tries++) {
2540 ret = 0;
2541 for (i = 0; i < args->buffer_count; i++) {
2542 object_list[i]->pending_read_domains = 0;
2543 object_list[i]->pending_write_domain = 0;
2544 ret = i915_gem_object_pin_and_relocate(object_list[i],
2545 file_priv,
2546 &exec_list[i]);
2547 if (ret)
2548 break;
2549 pinned = i + 1;
2551 /* success */
2552 if (ret == 0)
2553 break;
2555 /* error other than GTT full, or we've already tried again */
2556 if (ret != -ENOMEM || pin_tries >= 1) {
2557 if (ret != -ERESTARTSYS)
2558 DRM_ERROR("Failed to pin buffers %d\n", ret);
2559 goto err;
2562 /* unpin all of our buffers */
2563 for (i = 0; i < pinned; i++)
2564 i915_gem_object_unpin(object_list[i]);
2565 pinned = 0;
2567 /* evict everyone we can from the aperture */
2568 ret = i915_gem_evict_everything(dev);
2569 if (ret)
2570 goto err;
2573 /* Set the pending read domains for the batch buffer to COMMAND */
2574 batch_obj = object_list[args->buffer_count-1];
2575 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2576 batch_obj->pending_write_domain = 0;
2578 i915_verify_inactive(dev, __FILE__, __LINE__);
2580 /* Zero the global flush/invalidate flags. These
2581 * will be modified as new domains are computed
2582 * for each object
2584 dev->invalidate_domains = 0;
2585 dev->flush_domains = 0;
2587 for (i = 0; i < args->buffer_count; i++) {
2588 struct drm_gem_object *obj = object_list[i];
2590 /* Compute new gpu domains and update invalidate/flush */
2591 i915_gem_object_set_to_gpu_domain(obj);
2594 i915_verify_inactive(dev, __FILE__, __LINE__);
2596 if (dev->invalidate_domains | dev->flush_domains) {
2597 #if WATCH_EXEC
2598 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2599 __func__,
2600 dev->invalidate_domains,
2601 dev->flush_domains);
2602 #endif
2603 i915_gem_flush(dev,
2604 dev->invalidate_domains,
2605 dev->flush_domains);
2606 if (dev->flush_domains)
2607 (void)i915_add_request(dev, dev->flush_domains);
2610 for (i = 0; i < args->buffer_count; i++) {
2611 struct drm_gem_object *obj = object_list[i];
2613 obj->write_domain = obj->pending_write_domain;
2616 i915_verify_inactive(dev, __FILE__, __LINE__);
2618 #if WATCH_COHERENCY
2619 for (i = 0; i < args->buffer_count; i++) {
2620 i915_gem_object_check_coherency(object_list[i],
2621 exec_list[i].handle);
2623 #endif
2625 exec_offset = exec_list[args->buffer_count - 1].offset;
2627 #if WATCH_EXEC
2628 i915_gem_dump_object(object_list[args->buffer_count - 1],
2629 args->batch_len,
2630 __func__,
2631 ~0);
2632 #endif
2634 /* Exec the batchbuffer */
2635 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2636 if (ret) {
2637 DRM_ERROR("dispatch failed %d\n", ret);
2638 goto err;
2642 * Ensure that the commands in the batch buffer are
2643 * finished before the interrupt fires
2645 flush_domains = i915_retire_commands(dev);
2647 i915_verify_inactive(dev, __FILE__, __LINE__);
2650 * Get a seqno representing the execution of the current buffer,
2651 * which we can wait on. We would like to mitigate these interrupts,
2652 * likely by only creating seqnos occasionally (so that we have
2653 * *some* interrupts representing completion of buffers that we can
2654 * wait on when trying to clear up gtt space).
2656 seqno = i915_add_request(dev, flush_domains);
2657 BUG_ON(seqno == 0);
2658 i915_file_priv->mm.last_gem_seqno = seqno;
2659 for (i = 0; i < args->buffer_count; i++) {
2660 struct drm_gem_object *obj = object_list[i];
2662 i915_gem_object_move_to_active(obj, seqno);
2663 #if WATCH_LRU
2664 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2665 #endif
2667 #if WATCH_LRU
2668 i915_dump_lru(dev, __func__);
2669 #endif
2671 i915_verify_inactive(dev, __FILE__, __LINE__);
2673 err:
2674 for (i = 0; i < pinned; i++)
2675 i915_gem_object_unpin(object_list[i]);
2677 for (i = 0; i < args->buffer_count; i++)
2678 drm_gem_object_unreference(object_list[i]);
2680 mutex_unlock(&dev->struct_mutex);
2682 if (!ret) {
2683 /* Copy the new buffer offsets back to the user's exec list. */
2684 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2685 (uintptr_t) args->buffers_ptr,
2686 exec_list,
2687 sizeof(*exec_list) * args->buffer_count);
2688 if (ret)
2689 DRM_ERROR("failed to copy %d exec entries "
2690 "back to user (%d)\n",
2691 args->buffer_count, ret);
2694 pre_mutex_err:
2695 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2696 DRM_MEM_DRIVER);
2697 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2698 DRM_MEM_DRIVER);
2700 return ret;
2704 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2706 struct drm_device *dev = obj->dev;
2707 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2708 int ret;
2710 i915_verify_inactive(dev, __FILE__, __LINE__);
2711 if (obj_priv->gtt_space == NULL) {
2712 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2713 if (ret != 0) {
2714 if (ret != -EBUSY && ret != -ERESTARTSYS)
2715 DRM_ERROR("Failure to bind: %d", ret);
2716 return ret;
2719 * Pre-965 chips need a fence register set up in order to
2720 * properly handle tiled surfaces.
2722 if (!IS_I965G(dev) &&
2723 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2724 obj_priv->tiling_mode != I915_TILING_NONE)
2725 i915_gem_object_get_fence_reg(obj, true);
2727 obj_priv->pin_count++;
2729 /* If the object is not active and not pending a flush,
2730 * remove it from the inactive list
2732 if (obj_priv->pin_count == 1) {
2733 atomic_inc(&dev->pin_count);
2734 atomic_add(obj->size, &dev->pin_memory);
2735 if (!obj_priv->active &&
2736 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2737 I915_GEM_DOMAIN_GTT)) == 0 &&
2738 !list_empty(&obj_priv->list))
2739 list_del_init(&obj_priv->list);
2741 i915_verify_inactive(dev, __FILE__, __LINE__);
2743 return 0;
2746 void
2747 i915_gem_object_unpin(struct drm_gem_object *obj)
2749 struct drm_device *dev = obj->dev;
2750 drm_i915_private_t *dev_priv = dev->dev_private;
2751 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2753 i915_verify_inactive(dev, __FILE__, __LINE__);
2754 obj_priv->pin_count--;
2755 BUG_ON(obj_priv->pin_count < 0);
2756 BUG_ON(obj_priv->gtt_space == NULL);
2758 /* If the object is no longer pinned, and is
2759 * neither active nor being flushed, then stick it on
2760 * the inactive list
2762 if (obj_priv->pin_count == 0) {
2763 if (!obj_priv->active &&
2764 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2765 I915_GEM_DOMAIN_GTT)) == 0)
2766 list_move_tail(&obj_priv->list,
2767 &dev_priv->mm.inactive_list);
2768 atomic_dec(&dev->pin_count);
2769 atomic_sub(obj->size, &dev->pin_memory);
2771 i915_verify_inactive(dev, __FILE__, __LINE__);
2775 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2776 struct drm_file *file_priv)
2778 struct drm_i915_gem_pin *args = data;
2779 struct drm_gem_object *obj;
2780 struct drm_i915_gem_object *obj_priv;
2781 int ret;
2783 mutex_lock(&dev->struct_mutex);
2785 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2786 if (obj == NULL) {
2787 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2788 args->handle);
2789 mutex_unlock(&dev->struct_mutex);
2790 return -EBADF;
2792 obj_priv = obj->driver_private;
2794 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2795 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2796 args->handle);
2797 drm_gem_object_unreference(obj);
2798 mutex_unlock(&dev->struct_mutex);
2799 return -EINVAL;
2802 obj_priv->user_pin_count++;
2803 obj_priv->pin_filp = file_priv;
2804 if (obj_priv->user_pin_count == 1) {
2805 ret = i915_gem_object_pin(obj, args->alignment);
2806 if (ret != 0) {
2807 drm_gem_object_unreference(obj);
2808 mutex_unlock(&dev->struct_mutex);
2809 return ret;
2813 /* XXX - flush the CPU caches for pinned objects
2814 * as the X server doesn't manage domains yet
2816 i915_gem_object_flush_cpu_write_domain(obj);
2817 args->offset = obj_priv->gtt_offset;
2818 drm_gem_object_unreference(obj);
2819 mutex_unlock(&dev->struct_mutex);
2821 return 0;
2825 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2826 struct drm_file *file_priv)
2828 struct drm_i915_gem_pin *args = data;
2829 struct drm_gem_object *obj;
2830 struct drm_i915_gem_object *obj_priv;
2832 mutex_lock(&dev->struct_mutex);
2834 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2835 if (obj == NULL) {
2836 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2837 args->handle);
2838 mutex_unlock(&dev->struct_mutex);
2839 return -EBADF;
2842 obj_priv = obj->driver_private;
2843 if (obj_priv->pin_filp != file_priv) {
2844 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2845 args->handle);
2846 drm_gem_object_unreference(obj);
2847 mutex_unlock(&dev->struct_mutex);
2848 return -EINVAL;
2850 obj_priv->user_pin_count--;
2851 if (obj_priv->user_pin_count == 0) {
2852 obj_priv->pin_filp = NULL;
2853 i915_gem_object_unpin(obj);
2856 drm_gem_object_unreference(obj);
2857 mutex_unlock(&dev->struct_mutex);
2858 return 0;
2862 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2863 struct drm_file *file_priv)
2865 struct drm_i915_gem_busy *args = data;
2866 struct drm_gem_object *obj;
2867 struct drm_i915_gem_object *obj_priv;
2869 mutex_lock(&dev->struct_mutex);
2870 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2871 if (obj == NULL) {
2872 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2873 args->handle);
2874 mutex_unlock(&dev->struct_mutex);
2875 return -EBADF;
2878 /* Update the active list for the hardware's current position.
2879 * Otherwise this only updates on a delayed timer or when irqs are
2880 * actually unmasked, and our working set ends up being larger than
2881 * required.
2883 i915_gem_retire_requests(dev);
2885 obj_priv = obj->driver_private;
2886 /* Don't count being on the flushing list against the object being
2887 * done. Otherwise, a buffer left on the flushing list but not getting
2888 * flushed (because nobody's flushing that domain) won't ever return
2889 * unbusy and get reused by libdrm's bo cache. The other expected
2890 * consumer of this interface, OpenGL's occlusion queries, also specs
2891 * that the objects get unbusy "eventually" without any interference.
2893 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2895 drm_gem_object_unreference(obj);
2896 mutex_unlock(&dev->struct_mutex);
2897 return 0;
2901 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2902 struct drm_file *file_priv)
2904 return i915_gem_ring_throttle(dev, file_priv);
2907 int i915_gem_init_object(struct drm_gem_object *obj)
2909 struct drm_i915_gem_object *obj_priv;
2911 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2912 if (obj_priv == NULL)
2913 return -ENOMEM;
2916 * We've just allocated pages from the kernel,
2917 * so they've just been written by the CPU with
2918 * zeros. They'll need to be clflushed before we
2919 * use them with the GPU.
2921 obj->write_domain = I915_GEM_DOMAIN_CPU;
2922 obj->read_domains = I915_GEM_DOMAIN_CPU;
2924 obj_priv->agp_type = AGP_USER_MEMORY;
2926 obj->driver_private = obj_priv;
2927 obj_priv->obj = obj;
2928 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2929 INIT_LIST_HEAD(&obj_priv->list);
2931 return 0;
2934 void i915_gem_free_object(struct drm_gem_object *obj)
2936 struct drm_device *dev = obj->dev;
2937 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2939 while (obj_priv->pin_count > 0)
2940 i915_gem_object_unpin(obj);
2942 if (obj_priv->phys_obj)
2943 i915_gem_detach_phys_object(dev, obj);
2945 i915_gem_object_unbind(obj);
2947 i915_gem_free_mmap_offset(obj);
2949 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2950 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2953 /** Unbinds all objects that are on the given buffer list. */
2954 static int
2955 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2957 struct drm_gem_object *obj;
2958 struct drm_i915_gem_object *obj_priv;
2959 int ret;
2961 while (!list_empty(head)) {
2962 obj_priv = list_first_entry(head,
2963 struct drm_i915_gem_object,
2964 list);
2965 obj = obj_priv->obj;
2967 if (obj_priv->pin_count != 0) {
2968 DRM_ERROR("Pinned object in unbind list\n");
2969 mutex_unlock(&dev->struct_mutex);
2970 return -EINVAL;
2973 ret = i915_gem_object_unbind(obj);
2974 if (ret != 0) {
2975 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2976 ret);
2977 mutex_unlock(&dev->struct_mutex);
2978 return ret;
2983 return 0;
2987 i915_gem_idle(struct drm_device *dev)
2989 drm_i915_private_t *dev_priv = dev->dev_private;
2990 uint32_t seqno, cur_seqno, last_seqno;
2991 int stuck, ret;
2993 mutex_lock(&dev->struct_mutex);
2995 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2996 mutex_unlock(&dev->struct_mutex);
2997 return 0;
3000 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3001 * We need to replace this with a semaphore, or something.
3003 dev_priv->mm.suspended = 1;
3005 /* Cancel the retire work handler, wait for it to finish if running
3007 mutex_unlock(&dev->struct_mutex);
3008 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3009 mutex_lock(&dev->struct_mutex);
3011 i915_kernel_lost_context(dev);
3013 /* Flush the GPU along with all non-CPU write domains
3015 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3016 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3017 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3019 if (seqno == 0) {
3020 mutex_unlock(&dev->struct_mutex);
3021 return -ENOMEM;
3024 dev_priv->mm.waiting_gem_seqno = seqno;
3025 last_seqno = 0;
3026 stuck = 0;
3027 for (;;) {
3028 cur_seqno = i915_get_gem_seqno(dev);
3029 if (i915_seqno_passed(cur_seqno, seqno))
3030 break;
3031 if (last_seqno == cur_seqno) {
3032 if (stuck++ > 100) {
3033 DRM_ERROR("hardware wedged\n");
3034 dev_priv->mm.wedged = 1;
3035 DRM_WAKEUP(&dev_priv->irq_queue);
3036 break;
3039 msleep(10);
3040 last_seqno = cur_seqno;
3042 dev_priv->mm.waiting_gem_seqno = 0;
3044 i915_gem_retire_requests(dev);
3046 if (!dev_priv->mm.wedged) {
3047 /* Active and flushing should now be empty as we've
3048 * waited for a sequence higher than any pending execbuffer
3050 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3051 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3052 /* Request should now be empty as we've also waited
3053 * for the last request in the list
3055 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3058 /* Empty the active and flushing lists to inactive. If there's
3059 * anything left at this point, it means that we're wedged and
3060 * nothing good's going to happen by leaving them there. So strip
3061 * the GPU domains and just stuff them onto inactive.
3063 while (!list_empty(&dev_priv->mm.active_list)) {
3064 struct drm_i915_gem_object *obj_priv;
3066 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3067 struct drm_i915_gem_object,
3068 list);
3069 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3070 i915_gem_object_move_to_inactive(obj_priv->obj);
3073 while (!list_empty(&dev_priv->mm.flushing_list)) {
3074 struct drm_i915_gem_object *obj_priv;
3076 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3077 struct drm_i915_gem_object,
3078 list);
3079 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3080 i915_gem_object_move_to_inactive(obj_priv->obj);
3084 /* Move all inactive buffers out of the GTT. */
3085 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3086 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3087 if (ret) {
3088 mutex_unlock(&dev->struct_mutex);
3089 return ret;
3092 i915_gem_cleanup_ringbuffer(dev);
3093 mutex_unlock(&dev->struct_mutex);
3095 return 0;
3098 static int
3099 i915_gem_init_hws(struct drm_device *dev)
3101 drm_i915_private_t *dev_priv = dev->dev_private;
3102 struct drm_gem_object *obj;
3103 struct drm_i915_gem_object *obj_priv;
3104 int ret;
3106 /* If we need a physical address for the status page, it's already
3107 * initialized at driver load time.
3109 if (!I915_NEED_GFX_HWS(dev))
3110 return 0;
3112 obj = drm_gem_object_alloc(dev, 4096);
3113 if (obj == NULL) {
3114 DRM_ERROR("Failed to allocate status page\n");
3115 return -ENOMEM;
3117 obj_priv = obj->driver_private;
3118 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3120 ret = i915_gem_object_pin(obj, 4096);
3121 if (ret != 0) {
3122 drm_gem_object_unreference(obj);
3123 return ret;
3126 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3128 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3129 if (dev_priv->hw_status_page == NULL) {
3130 DRM_ERROR("Failed to map status page.\n");
3131 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3132 i915_gem_object_unpin(obj);
3133 drm_gem_object_unreference(obj);
3134 return -EINVAL;
3136 dev_priv->hws_obj = obj;
3137 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3138 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3139 I915_READ(HWS_PGA); /* posting read */
3140 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3142 return 0;
3145 static void
3146 i915_gem_cleanup_hws(struct drm_device *dev)
3148 drm_i915_private_t *dev_priv = dev->dev_private;
3149 struct drm_gem_object *obj;
3150 struct drm_i915_gem_object *obj_priv;
3152 if (dev_priv->hws_obj == NULL)
3153 return;
3155 obj = dev_priv->hws_obj;
3156 obj_priv = obj->driver_private;
3158 kunmap(obj_priv->page_list[0]);
3159 i915_gem_object_unpin(obj);
3160 drm_gem_object_unreference(obj);
3161 dev_priv->hws_obj = NULL;
3163 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3164 dev_priv->hw_status_page = NULL;
3166 /* Write high address into HWS_PGA when disabling. */
3167 I915_WRITE(HWS_PGA, 0x1ffff000);
3171 i915_gem_init_ringbuffer(struct drm_device *dev)
3173 drm_i915_private_t *dev_priv = dev->dev_private;
3174 struct drm_gem_object *obj;
3175 struct drm_i915_gem_object *obj_priv;
3176 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3177 int ret;
3178 u32 head;
3180 ret = i915_gem_init_hws(dev);
3181 if (ret != 0)
3182 return ret;
3184 obj = drm_gem_object_alloc(dev, 128 * 1024);
3185 if (obj == NULL) {
3186 DRM_ERROR("Failed to allocate ringbuffer\n");
3187 i915_gem_cleanup_hws(dev);
3188 return -ENOMEM;
3190 obj_priv = obj->driver_private;
3192 ret = i915_gem_object_pin(obj, 4096);
3193 if (ret != 0) {
3194 drm_gem_object_unreference(obj);
3195 i915_gem_cleanup_hws(dev);
3196 return ret;
3199 /* Set up the kernel mapping for the ring. */
3200 ring->Size = obj->size;
3201 ring->tail_mask = obj->size - 1;
3203 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3204 ring->map.size = obj->size;
3205 ring->map.type = 0;
3206 ring->map.flags = 0;
3207 ring->map.mtrr = 0;
3209 drm_core_ioremap_wc(&ring->map, dev);
3210 if (ring->map.handle == NULL) {
3211 DRM_ERROR("Failed to map ringbuffer.\n");
3212 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3213 i915_gem_object_unpin(obj);
3214 drm_gem_object_unreference(obj);
3215 i915_gem_cleanup_hws(dev);
3216 return -EINVAL;
3218 ring->ring_obj = obj;
3219 ring->virtual_start = ring->map.handle;
3221 /* Stop the ring if it's running. */
3222 I915_WRITE(PRB0_CTL, 0);
3223 I915_WRITE(PRB0_TAIL, 0);
3224 I915_WRITE(PRB0_HEAD, 0);
3226 /* Initialize the ring. */
3227 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3228 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3230 /* G45 ring initialization fails to reset head to zero */
3231 if (head != 0) {
3232 DRM_ERROR("Ring head not reset to zero "
3233 "ctl %08x head %08x tail %08x start %08x\n",
3234 I915_READ(PRB0_CTL),
3235 I915_READ(PRB0_HEAD),
3236 I915_READ(PRB0_TAIL),
3237 I915_READ(PRB0_START));
3238 I915_WRITE(PRB0_HEAD, 0);
3240 DRM_ERROR("Ring head forced to zero "
3241 "ctl %08x head %08x tail %08x start %08x\n",
3242 I915_READ(PRB0_CTL),
3243 I915_READ(PRB0_HEAD),
3244 I915_READ(PRB0_TAIL),
3245 I915_READ(PRB0_START));
3248 I915_WRITE(PRB0_CTL,
3249 ((obj->size - 4096) & RING_NR_PAGES) |
3250 RING_NO_REPORT |
3251 RING_VALID);
3253 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3255 /* If the head is still not zero, the ring is dead */
3256 if (head != 0) {
3257 DRM_ERROR("Ring initialization failed "
3258 "ctl %08x head %08x tail %08x start %08x\n",
3259 I915_READ(PRB0_CTL),
3260 I915_READ(PRB0_HEAD),
3261 I915_READ(PRB0_TAIL),
3262 I915_READ(PRB0_START));
3263 return -EIO;
3266 /* Update our cache of the ring state */
3267 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3268 i915_kernel_lost_context(dev);
3269 else {
3270 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3271 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3272 ring->space = ring->head - (ring->tail + 8);
3273 if (ring->space < 0)
3274 ring->space += ring->Size;
3277 return 0;
3280 void
3281 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3283 drm_i915_private_t *dev_priv = dev->dev_private;
3285 if (dev_priv->ring.ring_obj == NULL)
3286 return;
3288 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3290 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3291 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3292 dev_priv->ring.ring_obj = NULL;
3293 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3295 i915_gem_cleanup_hws(dev);
3299 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3300 struct drm_file *file_priv)
3302 drm_i915_private_t *dev_priv = dev->dev_private;
3303 int ret;
3305 if (drm_core_check_feature(dev, DRIVER_MODESET))
3306 return 0;
3308 if (dev_priv->mm.wedged) {
3309 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3310 dev_priv->mm.wedged = 0;
3313 mutex_lock(&dev->struct_mutex);
3314 dev_priv->mm.suspended = 0;
3316 ret = i915_gem_init_ringbuffer(dev);
3317 if (ret != 0)
3318 return ret;
3320 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3321 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3322 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3323 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3324 mutex_unlock(&dev->struct_mutex);
3326 drm_irq_install(dev);
3328 return 0;
3332 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3333 struct drm_file *file_priv)
3335 int ret;
3337 if (drm_core_check_feature(dev, DRIVER_MODESET))
3338 return 0;
3340 ret = i915_gem_idle(dev);
3341 drm_irq_uninstall(dev);
3343 return ret;
3346 void
3347 i915_gem_lastclose(struct drm_device *dev)
3349 int ret;
3351 if (drm_core_check_feature(dev, DRIVER_MODESET))
3352 return;
3354 ret = i915_gem_idle(dev);
3355 if (ret)
3356 DRM_ERROR("failed to idle hardware: %d\n", ret);
3359 void
3360 i915_gem_load(struct drm_device *dev)
3362 drm_i915_private_t *dev_priv = dev->dev_private;
3364 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3365 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3366 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3367 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3368 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3369 i915_gem_retire_work_handler);
3370 dev_priv->mm.next_gem_seqno = 1;
3372 /* Old X drivers will take 0-2 for front, back, depth buffers */
3373 dev_priv->fence_reg_start = 3;
3375 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3376 dev_priv->num_fence_regs = 16;
3377 else
3378 dev_priv->num_fence_regs = 8;
3380 i915_gem_detect_bit_6_swizzle(dev);
3384 * Create a physically contiguous memory object for this object
3385 * e.g. for cursor + overlay regs
3387 int i915_gem_init_phys_object(struct drm_device *dev,
3388 int id, int size)
3390 drm_i915_private_t *dev_priv = dev->dev_private;
3391 struct drm_i915_gem_phys_object *phys_obj;
3392 int ret;
3394 if (dev_priv->mm.phys_objs[id - 1] || !size)
3395 return 0;
3397 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3398 if (!phys_obj)
3399 return -ENOMEM;
3401 phys_obj->id = id;
3403 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3404 if (!phys_obj->handle) {
3405 ret = -ENOMEM;
3406 goto kfree_obj;
3408 #ifdef CONFIG_X86
3409 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3410 #endif
3412 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3414 return 0;
3415 kfree_obj:
3416 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3417 return ret;
3420 void i915_gem_free_phys_object(struct drm_device *dev, int id)
3422 drm_i915_private_t *dev_priv = dev->dev_private;
3423 struct drm_i915_gem_phys_object *phys_obj;
3425 if (!dev_priv->mm.phys_objs[id - 1])
3426 return;
3428 phys_obj = dev_priv->mm.phys_objs[id - 1];
3429 if (phys_obj->cur_obj) {
3430 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3433 #ifdef CONFIG_X86
3434 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3435 #endif
3436 drm_pci_free(dev, phys_obj->handle);
3437 kfree(phys_obj);
3438 dev_priv->mm.phys_objs[id - 1] = NULL;
3441 void i915_gem_free_all_phys_object(struct drm_device *dev)
3443 int i;
3445 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3446 i915_gem_free_phys_object(dev, i);
3449 void i915_gem_detach_phys_object(struct drm_device *dev,
3450 struct drm_gem_object *obj)
3452 struct drm_i915_gem_object *obj_priv;
3453 int i;
3454 int ret;
3455 int page_count;
3457 obj_priv = obj->driver_private;
3458 if (!obj_priv->phys_obj)
3459 return;
3461 ret = i915_gem_object_get_page_list(obj);
3462 if (ret)
3463 goto out;
3465 page_count = obj->size / PAGE_SIZE;
3467 for (i = 0; i < page_count; i++) {
3468 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3469 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3471 memcpy(dst, src, PAGE_SIZE);
3472 kunmap_atomic(dst, KM_USER0);
3474 drm_clflush_pages(obj_priv->page_list, page_count);
3475 drm_agp_chipset_flush(dev);
3476 out:
3477 obj_priv->phys_obj->cur_obj = NULL;
3478 obj_priv->phys_obj = NULL;
3482 i915_gem_attach_phys_object(struct drm_device *dev,
3483 struct drm_gem_object *obj, int id)
3485 drm_i915_private_t *dev_priv = dev->dev_private;
3486 struct drm_i915_gem_object *obj_priv;
3487 int ret = 0;
3488 int page_count;
3489 int i;
3491 if (id > I915_MAX_PHYS_OBJECT)
3492 return -EINVAL;
3494 obj_priv = obj->driver_private;
3496 if (obj_priv->phys_obj) {
3497 if (obj_priv->phys_obj->id == id)
3498 return 0;
3499 i915_gem_detach_phys_object(dev, obj);
3503 /* create a new object */
3504 if (!dev_priv->mm.phys_objs[id - 1]) {
3505 ret = i915_gem_init_phys_object(dev, id,
3506 obj->size);
3507 if (ret) {
3508 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
3509 goto out;
3513 /* bind to the object */
3514 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3515 obj_priv->phys_obj->cur_obj = obj;
3517 ret = i915_gem_object_get_page_list(obj);
3518 if (ret) {
3519 DRM_ERROR("failed to get page list\n");
3520 goto out;
3523 page_count = obj->size / PAGE_SIZE;
3525 for (i = 0; i < page_count; i++) {
3526 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3527 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3529 memcpy(dst, src, PAGE_SIZE);
3530 kunmap_atomic(src, KM_USER0);
3533 return 0;
3534 out:
3535 return ret;
3538 static int
3539 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3540 struct drm_i915_gem_pwrite *args,
3541 struct drm_file *file_priv)
3543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3544 void *obj_addr;
3545 int ret;
3546 char __user *user_data;
3548 user_data = (char __user *) (uintptr_t) args->data_ptr;
3549 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3551 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
3552 ret = copy_from_user(obj_addr, user_data, args->size);
3553 if (ret)
3554 return -EFAULT;
3556 drm_agp_chipset_flush(dev);
3557 return 0;