OMAP3 PM: CPUFreq driver for OMAP3
[linux-ginger.git] / drivers / mtd / devices / m25p80.c
blob4c19269de91a4ad8afb3383ea7f27d10e02325a5
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/mutex.h>
23 #include <linux/math64.h>
24 #include <linux/sched.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/flash.h>
33 #define FLASH_PAGESIZE 256
35 /* Flash opcodes. */
36 #define OPCODE_WREN 0x06 /* Write enable */
37 #define OPCODE_RDSR 0x05 /* Read status register */
38 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
39 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
40 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
41 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
42 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
43 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
44 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
45 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
46 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
48 /* Used for SST flashes only. */
49 #define OPCODE_BP 0x02 /* Byte program */
50 #define OPCODE_WRDI 0x04 /* Write disable */
51 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
53 /* Status Register bits. */
54 #define SR_WIP 1 /* Write in progress */
55 #define SR_WEL 2 /* Write enable latch */
56 /* meaning of other SR_* bits may differ between vendors */
57 #define SR_BP0 4 /* Block protect 0 */
58 #define SR_BP1 8 /* Block protect 1 */
59 #define SR_BP2 0x10 /* Block protect 2 */
60 #define SR_SRWD 0x80 /* SR write protect */
62 /* Define max times to check status register before we give up. */
63 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
64 #define CMD_SIZE 4
66 #ifdef CONFIG_M25PXX_USE_FAST_READ
67 #define OPCODE_READ OPCODE_FAST_READ
68 #define FAST_READ_DUMMY_BYTE 1
69 #else
70 #define OPCODE_READ OPCODE_NORM_READ
71 #define FAST_READ_DUMMY_BYTE 0
72 #endif
74 /****************************************************************************/
76 struct m25p {
77 struct spi_device *spi;
78 struct mutex lock;
79 struct mtd_info mtd;
80 unsigned partitioned:1;
81 u8 erase_opcode;
82 u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
85 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
87 return container_of(mtd, struct m25p, mtd);
90 /****************************************************************************/
93 * Internal helper functions
97 * Read the status register, returning its value in the location
98 * Return the status register value.
99 * Returns negative if error occurred.
101 static int read_sr(struct m25p *flash)
103 ssize_t retval;
104 u8 code = OPCODE_RDSR;
105 u8 val;
107 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
109 if (retval < 0) {
110 dev_err(&flash->spi->dev, "error %d reading SR\n",
111 (int) retval);
112 return retval;
115 return val;
119 * Write status register 1 byte
120 * Returns negative if error occurred.
122 static int write_sr(struct m25p *flash, u8 val)
124 flash->command[0] = OPCODE_WRSR;
125 flash->command[1] = val;
127 return spi_write(flash->spi, flash->command, 2);
131 * Set write enable latch with Write Enable command.
132 * Returns negative if error occurred.
134 static inline int write_enable(struct m25p *flash)
136 u8 code = OPCODE_WREN;
138 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
142 * Send write disble instruction to the chip.
144 static inline int write_disable(struct m25p *flash)
146 u8 code = OPCODE_WRDI;
148 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 * Service routine to read status register until ready, or timeout occurs.
153 * Returns non-zero if error.
155 static int wait_till_ready(struct m25p *flash)
157 unsigned long deadline;
158 int sr;
160 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
162 do {
163 if ((sr = read_sr(flash)) < 0)
164 break;
165 else if (!(sr & SR_WIP))
166 return 0;
168 cond_resched();
170 } while (!time_after_eq(jiffies, deadline));
172 return 1;
176 * Erase the whole flash memory
178 * Returns 0 if successful, non-zero otherwise.
180 static int erase_chip(struct m25p *flash)
182 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
183 dev_name(&flash->spi->dev), __func__,
184 (long long)(flash->mtd.size >> 10));
186 /* Wait until finished previous write command. */
187 if (wait_till_ready(flash))
188 return 1;
190 /* Send write enable, then erase commands. */
191 write_enable(flash);
193 /* Set up command buffer. */
194 flash->command[0] = OPCODE_CHIP_ERASE;
196 spi_write(flash->spi, flash->command, 1);
198 return 0;
202 * Erase one sector of flash memory at offset ``offset'' which is any
203 * address within the sector which should be erased.
205 * Returns 0 if successful, non-zero otherwise.
207 static int erase_sector(struct m25p *flash, u32 offset)
209 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
210 dev_name(&flash->spi->dev), __func__,
211 flash->mtd.erasesize / 1024, offset);
213 /* Wait until finished previous write command. */
214 if (wait_till_ready(flash))
215 return 1;
217 /* Send write enable, then erase commands. */
218 write_enable(flash);
220 /* Set up command buffer. */
221 flash->command[0] = flash->erase_opcode;
222 flash->command[1] = offset >> 16;
223 flash->command[2] = offset >> 8;
224 flash->command[3] = offset;
226 spi_write(flash->spi, flash->command, CMD_SIZE);
228 return 0;
231 /****************************************************************************/
234 * MTD implementation
238 * Erase an address range on the flash chip. The address range may extend
239 * one or more erase sectors. Return an error is there is a problem erasing.
241 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
243 struct m25p *flash = mtd_to_m25p(mtd);
244 u32 addr,len;
245 uint32_t rem;
247 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
248 dev_name(&flash->spi->dev), __func__, "at",
249 (long long)instr->addr, (long long)instr->len);
251 /* sanity checks */
252 if (instr->addr + instr->len > flash->mtd.size)
253 return -EINVAL;
254 div_u64_rem(instr->len, mtd->erasesize, &rem);
255 if (rem)
256 return -EINVAL;
258 addr = instr->addr;
259 len = instr->len;
261 mutex_lock(&flash->lock);
263 /* whole-chip erase? */
264 if (len == flash->mtd.size) {
265 if (erase_chip(flash)) {
266 instr->state = MTD_ERASE_FAILED;
267 mutex_unlock(&flash->lock);
268 return -EIO;
271 /* REVISIT in some cases we could speed up erasing large regions
272 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
273 * to use "small sector erase", but that's not always optimal.
276 /* "sector"-at-a-time erase */
277 } else {
278 while (len) {
279 if (erase_sector(flash, addr)) {
280 instr->state = MTD_ERASE_FAILED;
281 mutex_unlock(&flash->lock);
282 return -EIO;
285 addr += mtd->erasesize;
286 len -= mtd->erasesize;
290 mutex_unlock(&flash->lock);
292 instr->state = MTD_ERASE_DONE;
293 mtd_erase_callback(instr);
295 return 0;
299 * Read an address range from the flash chip. The address range
300 * may be any size provided it is within the physical boundaries.
302 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
303 size_t *retlen, u_char *buf)
305 struct m25p *flash = mtd_to_m25p(mtd);
306 struct spi_transfer t[2];
307 struct spi_message m;
309 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
310 dev_name(&flash->spi->dev), __func__, "from",
311 (u32)from, len);
313 /* sanity checks */
314 if (!len)
315 return 0;
317 if (from + len > flash->mtd.size)
318 return -EINVAL;
320 spi_message_init(&m);
321 memset(t, 0, (sizeof t));
323 /* NOTE:
324 * OPCODE_FAST_READ (if available) is faster.
325 * Should add 1 byte DUMMY_BYTE.
327 t[0].tx_buf = flash->command;
328 t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
329 spi_message_add_tail(&t[0], &m);
331 t[1].rx_buf = buf;
332 t[1].len = len;
333 spi_message_add_tail(&t[1], &m);
335 /* Byte count starts at zero. */
336 if (retlen)
337 *retlen = 0;
339 mutex_lock(&flash->lock);
341 /* Wait till previous write/erase is done. */
342 if (wait_till_ready(flash)) {
343 /* REVISIT status return?? */
344 mutex_unlock(&flash->lock);
345 return 1;
348 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
349 * clocks; and at this writing, every chip this driver handles
350 * supports that opcode.
353 /* Set up the write data buffer. */
354 flash->command[0] = OPCODE_READ;
355 flash->command[1] = from >> 16;
356 flash->command[2] = from >> 8;
357 flash->command[3] = from;
359 spi_sync(flash->spi, &m);
361 *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
363 mutex_unlock(&flash->lock);
365 return 0;
369 * Write an address range to the flash chip. Data must be written in
370 * FLASH_PAGESIZE chunks. The address range may be any size provided
371 * it is within the physical boundaries.
373 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
374 size_t *retlen, const u_char *buf)
376 struct m25p *flash = mtd_to_m25p(mtd);
377 u32 page_offset, page_size;
378 struct spi_transfer t[2];
379 struct spi_message m;
381 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
382 dev_name(&flash->spi->dev), __func__, "to",
383 (u32)to, len);
385 if (retlen)
386 *retlen = 0;
388 /* sanity checks */
389 if (!len)
390 return(0);
392 if (to + len > flash->mtd.size)
393 return -EINVAL;
395 spi_message_init(&m);
396 memset(t, 0, (sizeof t));
398 t[0].tx_buf = flash->command;
399 t[0].len = CMD_SIZE;
400 spi_message_add_tail(&t[0], &m);
402 t[1].tx_buf = buf;
403 spi_message_add_tail(&t[1], &m);
405 mutex_lock(&flash->lock);
407 /* Wait until finished previous write command. */
408 if (wait_till_ready(flash)) {
409 mutex_unlock(&flash->lock);
410 return 1;
413 write_enable(flash);
415 /* Set up the opcode in the write buffer. */
416 flash->command[0] = OPCODE_PP;
417 flash->command[1] = to >> 16;
418 flash->command[2] = to >> 8;
419 flash->command[3] = to;
421 /* what page do we start with? */
422 page_offset = to % FLASH_PAGESIZE;
424 /* do all the bytes fit onto one page? */
425 if (page_offset + len <= FLASH_PAGESIZE) {
426 t[1].len = len;
428 spi_sync(flash->spi, &m);
430 *retlen = m.actual_length - CMD_SIZE;
431 } else {
432 u32 i;
434 /* the size of data remaining on the first page */
435 page_size = FLASH_PAGESIZE - page_offset;
437 t[1].len = page_size;
438 spi_sync(flash->spi, &m);
440 *retlen = m.actual_length - CMD_SIZE;
442 /* write everything in PAGESIZE chunks */
443 for (i = page_size; i < len; i += page_size) {
444 page_size = len - i;
445 if (page_size > FLASH_PAGESIZE)
446 page_size = FLASH_PAGESIZE;
448 /* write the next page to flash */
449 flash->command[1] = (to + i) >> 16;
450 flash->command[2] = (to + i) >> 8;
451 flash->command[3] = (to + i);
453 t[1].tx_buf = buf + i;
454 t[1].len = page_size;
456 wait_till_ready(flash);
458 write_enable(flash);
460 spi_sync(flash->spi, &m);
462 if (retlen)
463 *retlen += m.actual_length - CMD_SIZE;
467 mutex_unlock(&flash->lock);
469 return 0;
472 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
473 size_t *retlen, const u_char *buf)
475 struct m25p *flash = mtd_to_m25p(mtd);
476 struct spi_transfer t[2];
477 struct spi_message m;
478 size_t actual;
479 int cmd_sz, ret;
481 if (retlen)
482 *retlen = 0;
484 /* sanity checks */
485 if (!len)
486 return 0;
488 if (to + len > flash->mtd.size)
489 return -EINVAL;
491 spi_message_init(&m);
492 memset(t, 0, (sizeof t));
494 t[0].tx_buf = flash->command;
495 t[0].len = CMD_SIZE;
496 spi_message_add_tail(&t[0], &m);
498 t[1].tx_buf = buf;
499 spi_message_add_tail(&t[1], &m);
501 mutex_lock(&flash->lock);
503 /* Wait until finished previous write command. */
504 ret = wait_till_ready(flash);
505 if (ret)
506 goto time_out;
508 write_enable(flash);
510 actual = to % 2;
511 /* Start write from odd address. */
512 if (actual) {
513 flash->command[0] = OPCODE_BP;
514 flash->command[1] = to >> 16;
515 flash->command[2] = to >> 8;
516 flash->command[3] = to;
518 /* write one byte. */
519 t[1].len = 1;
520 spi_sync(flash->spi, &m);
521 ret = wait_till_ready(flash);
522 if (ret)
523 goto time_out;
524 *retlen += m.actual_length - CMD_SIZE;
526 to += actual;
528 flash->command[0] = OPCODE_AAI_WP;
529 flash->command[1] = to >> 16;
530 flash->command[2] = to >> 8;
531 flash->command[3] = to;
533 /* Write out most of the data here. */
534 cmd_sz = CMD_SIZE;
535 for (; actual < len - 1; actual += 2) {
536 t[0].len = cmd_sz;
537 /* write two bytes. */
538 t[1].len = 2;
539 t[1].tx_buf = buf + actual;
541 spi_sync(flash->spi, &m);
542 ret = wait_till_ready(flash);
543 if (ret)
544 goto time_out;
545 *retlen += m.actual_length - cmd_sz;
546 cmd_sz = 1;
547 to += 2;
549 write_disable(flash);
550 ret = wait_till_ready(flash);
551 if (ret)
552 goto time_out;
554 /* Write out trailing byte if it exists. */
555 if (actual != len) {
556 write_enable(flash);
557 flash->command[0] = OPCODE_BP;
558 flash->command[1] = to >> 16;
559 flash->command[2] = to >> 8;
560 flash->command[3] = to;
561 t[0].len = CMD_SIZE;
562 t[1].len = 1;
563 t[1].tx_buf = buf + actual;
565 spi_sync(flash->spi, &m);
566 ret = wait_till_ready(flash);
567 if (ret)
568 goto time_out;
569 *retlen += m.actual_length - CMD_SIZE;
570 write_disable(flash);
573 time_out:
574 mutex_unlock(&flash->lock);
575 return ret;
578 /****************************************************************************/
581 * SPI device driver setup and teardown
584 struct flash_info {
585 char *name;
587 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
588 * a high byte of zero plus three data bytes: the manufacturer id,
589 * then a two byte device id.
591 u32 jedec_id;
592 u16 ext_id;
594 /* The size listed here is what works with OPCODE_SE, which isn't
595 * necessarily called a "sector" by the vendor.
597 unsigned sector_size;
598 u16 n_sectors;
600 u16 flags;
601 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
605 /* NOTE: double check command sets and memory organization when you add
606 * more flash chips. This current list focusses on newer chips, which
607 * have been converging on command sets which including JEDEC ID.
609 static struct flash_info __devinitdata m25p_data [] = {
611 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
612 { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
613 { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
615 { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
616 { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
618 { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
619 { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
620 { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
621 { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
623 /* Macronix */
624 { "mx25l3205d", 0xc22016, 0, 64 * 1024, 64, },
625 { "mx25l6405d", 0xc22017, 0, 64 * 1024, 128, },
626 { "mx25l12805d", 0xc22018, 0, 64 * 1024, 256, },
627 { "mx25l12855e", 0xc22618, 0, 64 * 1024, 256, },
629 /* Spansion -- single (large) sector size only, at least
630 * for the chips listed here (without boot sectors).
632 { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
633 { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
634 { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
635 { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
636 { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
637 { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
638 { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
639 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, },
640 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, },
642 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
643 { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
644 { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
645 { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
646 { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
647 { "sst25wf512", 0xbf2501, 0, 64 * 1024, 1, SECT_4K, },
648 { "sst25wf010", 0xbf2502, 0, 64 * 1024, 2, SECT_4K, },
649 { "sst25wf020", 0xbf2503, 0, 64 * 1024, 4, SECT_4K, },
650 { "sst25wf040", 0xbf2504, 0, 64 * 1024, 8, SECT_4K, },
652 /* ST Microelectronics -- newer production may have feature updates */
653 { "m25p05", 0x202010, 0, 32 * 1024, 2, },
654 { "m25p10", 0x202011, 0, 32 * 1024, 4, },
655 { "m25p20", 0x202012, 0, 64 * 1024, 4, },
656 { "m25p40", 0x202013, 0, 64 * 1024, 8, },
657 { "m25p80", 0, 0, 64 * 1024, 16, },
658 { "m25p16", 0x202015, 0, 64 * 1024, 32, },
659 { "m25p32", 0x202016, 0, 64 * 1024, 64, },
660 { "m25p64", 0x202017, 0, 64 * 1024, 128, },
661 { "m25p128", 0x202018, 0, 256 * 1024, 64, },
663 { "m45pe10", 0x204011, 0, 64 * 1024, 2, },
664 { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
665 { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
667 { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
668 { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, },
670 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
671 { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
672 { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
673 { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
674 { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
675 { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
676 { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
677 { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
680 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
682 int tmp;
683 u8 code = OPCODE_RDID;
684 u8 id[5];
685 u32 jedec;
686 u16 ext_jedec;
687 struct flash_info *info;
689 /* JEDEC also defines an optional "extended device information"
690 * string for after vendor-specific data, after the three bytes
691 * we use here. Supporting some chips might require using it.
693 tmp = spi_write_then_read(spi, &code, 1, id, 5);
694 if (tmp < 0) {
695 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
696 dev_name(&spi->dev), tmp);
697 return NULL;
699 jedec = id[0];
700 jedec = jedec << 8;
701 jedec |= id[1];
702 jedec = jedec << 8;
703 jedec |= id[2];
705 ext_jedec = id[3] << 8 | id[4];
707 for (tmp = 0, info = m25p_data;
708 tmp < ARRAY_SIZE(m25p_data);
709 tmp++, info++) {
710 if (info->jedec_id == jedec) {
711 if (info->ext_id != 0 && info->ext_id != ext_jedec)
712 continue;
713 return info;
716 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
717 return NULL;
722 * board specific setup should have ensured the SPI clock used here
723 * matches what the READ command supports, at least until this driver
724 * understands FAST_READ (for clocks over 25 MHz).
726 static int __devinit m25p_probe(struct spi_device *spi)
728 struct flash_platform_data *data;
729 struct m25p *flash;
730 struct flash_info *info;
731 unsigned i;
733 /* Platform data helps sort out which chip type we have, as
734 * well as how this board partitions it. If we don't have
735 * a chip ID, try the JEDEC id commands; they'll work for most
736 * newer chips, even if we don't recognize the particular chip.
738 data = spi->dev.platform_data;
739 if (data && data->type) {
740 for (i = 0, info = m25p_data;
741 i < ARRAY_SIZE(m25p_data);
742 i++, info++) {
743 if (strcmp(data->type, info->name) == 0)
744 break;
747 /* unrecognized chip? */
748 if (i == ARRAY_SIZE(m25p_data)) {
749 DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
750 dev_name(&spi->dev), data->type);
751 info = NULL;
753 /* recognized; is that chip really what's there? */
754 } else if (info->jedec_id) {
755 struct flash_info *chip = jedec_probe(spi);
757 if (!chip || chip != info) {
758 dev_warn(&spi->dev, "found %s, expected %s\n",
759 chip ? chip->name : "UNKNOWN",
760 info->name);
761 info = NULL;
764 } else
765 info = jedec_probe(spi);
767 if (!info)
768 return -ENODEV;
770 flash = kzalloc(sizeof *flash, GFP_KERNEL);
771 if (!flash)
772 return -ENOMEM;
774 flash->spi = spi;
775 mutex_init(&flash->lock);
776 dev_set_drvdata(&spi->dev, flash);
779 * Atmel serial flash tend to power up
780 * with the software protection bits set
783 if (info->jedec_id >> 16 == 0x1f) {
784 write_enable(flash);
785 write_sr(flash, 0);
788 if (data && data->name)
789 flash->mtd.name = data->name;
790 else
791 flash->mtd.name = dev_name(&spi->dev);
793 flash->mtd.type = MTD_NORFLASH;
794 flash->mtd.writesize = 1;
795 flash->mtd.flags = MTD_CAP_NORFLASH;
796 flash->mtd.size = info->sector_size * info->n_sectors;
797 flash->mtd.erase = m25p80_erase;
798 flash->mtd.read = m25p80_read;
800 /* sst flash chips use AAI word program */
801 if (info->jedec_id >> 16 == 0xbf)
802 flash->mtd.write = sst_write;
803 else
804 flash->mtd.write = m25p80_write;
806 /* prefer "small sector" erase if possible */
807 if (info->flags & SECT_4K) {
808 flash->erase_opcode = OPCODE_BE_4K;
809 flash->mtd.erasesize = 4096;
810 } else {
811 flash->erase_opcode = OPCODE_SE;
812 flash->mtd.erasesize = info->sector_size;
815 flash->mtd.dev.parent = &spi->dev;
817 dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
818 (long long)flash->mtd.size >> 10);
820 DEBUG(MTD_DEBUG_LEVEL2,
821 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
822 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
823 flash->mtd.name,
824 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
825 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
826 flash->mtd.numeraseregions);
828 if (flash->mtd.numeraseregions)
829 for (i = 0; i < flash->mtd.numeraseregions; i++)
830 DEBUG(MTD_DEBUG_LEVEL2,
831 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
832 ".erasesize = 0x%.8x (%uKiB), "
833 ".numblocks = %d }\n",
834 i, (long long)flash->mtd.eraseregions[i].offset,
835 flash->mtd.eraseregions[i].erasesize,
836 flash->mtd.eraseregions[i].erasesize / 1024,
837 flash->mtd.eraseregions[i].numblocks);
840 /* partitions should match sector boundaries; and it may be good to
841 * use readonly partitions for writeprotected sectors (BP2..BP0).
843 if (mtd_has_partitions()) {
844 struct mtd_partition *parts = NULL;
845 int nr_parts = 0;
847 if (mtd_has_cmdlinepart()) {
848 static const char *part_probes[]
849 = { "cmdlinepart", NULL, };
851 nr_parts = parse_mtd_partitions(&flash->mtd,
852 part_probes, &parts, 0);
855 if (nr_parts <= 0 && data && data->parts) {
856 parts = data->parts;
857 nr_parts = data->nr_parts;
860 if (nr_parts > 0) {
861 for (i = 0; i < nr_parts; i++) {
862 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
863 "{.name = %s, .offset = 0x%llx, "
864 ".size = 0x%llx (%lldKiB) }\n",
865 i, parts[i].name,
866 (long long)parts[i].offset,
867 (long long)parts[i].size,
868 (long long)(parts[i].size >> 10));
870 flash->partitioned = 1;
871 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
873 } else if (data && data->nr_parts)
874 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
875 data->nr_parts, data->name);
877 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
881 static int __devexit m25p_remove(struct spi_device *spi)
883 struct m25p *flash = dev_get_drvdata(&spi->dev);
884 int status;
886 /* Clean up MTD stuff. */
887 if (mtd_has_partitions() && flash->partitioned)
888 status = del_mtd_partitions(&flash->mtd);
889 else
890 status = del_mtd_device(&flash->mtd);
891 if (status == 0)
892 kfree(flash);
893 return 0;
897 static struct spi_driver m25p80_driver = {
898 .driver = {
899 .name = "m25p80",
900 .bus = &spi_bus_type,
901 .owner = THIS_MODULE,
903 .probe = m25p_probe,
904 .remove = __devexit_p(m25p_remove),
906 /* REVISIT: many of these chips have deep power-down modes, which
907 * should clearly be entered on suspend() to minimize power use.
908 * And also when they're otherwise idle...
913 static int __init m25p80_init(void)
915 return spi_register_driver(&m25p80_driver);
919 static void __exit m25p80_exit(void)
921 spi_unregister_driver(&m25p80_driver);
925 module_init(m25p80_init);
926 module_exit(m25p80_exit);
928 MODULE_LICENSE("GPL");
929 MODULE_AUTHOR("Mike Lavender");
930 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");