[1/2] Revert "OMAP3: SRAM size fix for HS/EMU devices"
[linux-ginger.git] / kernel / kprobes.c
blobc0fa54b276d951042f69febb6df8c27190850dd9
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
81 return &(kretprobe_table_locks[hash].lock);
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
89 * For such cases, we now have a blacklist
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 {"preempt_schedule",},
93 {NULL} /* Terminator */
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
103 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
105 struct kprobe_insn_page {
106 struct hlist_node hlist;
107 kprobe_opcode_t *insns; /* Page of instruction slots */
108 char slot_used[INSNS_PER_PAGE];
109 int nused;
110 int ngarbage;
113 enum kprobe_slot_state {
114 SLOT_CLEAN = 0,
115 SLOT_DIRTY = 1,
116 SLOT_USED = 2,
119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
124 static int __kprobes check_safety(void)
126 int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 ret = freeze_processes();
129 if (ret == 0) {
130 struct task_struct *p, *q;
131 do_each_thread(p, q) {
132 if (p != current && p->state == TASK_RUNNING &&
133 p->pid != 0) {
134 printk("Check failed: %s is running\n",p->comm);
135 ret = -1;
136 goto loop_end;
138 } while_each_thread(p, q);
140 loop_end:
141 thaw_processes();
142 #else
143 synchronize_sched();
144 #endif
145 return ret;
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
154 struct kprobe_insn_page *kip;
155 struct hlist_node *pos;
157 retry:
158 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159 if (kip->nused < INSNS_PER_PAGE) {
160 int i;
161 for (i = 0; i < INSNS_PER_PAGE; i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * MAX_INSN_SIZE);
168 /* Surprise! No unused slots. Fix kip->nused. */
169 kip->nused = INSNS_PER_PAGE;
173 /* If there are any garbage slots, collect it and try again. */
174 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175 goto retry;
177 /* All out of space. Need to allocate a new page. Use slot 0. */
178 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179 if (!kip)
180 return NULL;
183 * Use module_alloc so this page is within +/- 2GB of where the
184 * kernel image and loaded module images reside. This is required
185 * so x86_64 can correctly handle the %rip-relative fixups.
187 kip->insns = module_alloc(PAGE_SIZE);
188 if (!kip->insns) {
189 kfree(kip);
190 return NULL;
192 INIT_HLIST_NODE(&kip->hlist);
193 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 return kip->insns;
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 kprobe_opcode_t *ret;
204 mutex_lock(&kprobe_insn_mutex);
205 ret = __get_insn_slot();
206 mutex_unlock(&kprobe_insn_mutex);
207 return ret;
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
213 kip->slot_used[idx] = SLOT_CLEAN;
214 kip->nused--;
215 if (kip->nused == 0) {
217 * Page is no longer in use. Free it unless
218 * it's the last one. We keep the last one
219 * so as not to have to set it up again the
220 * next time somebody inserts a probe.
222 hlist_del(&kip->hlist);
223 if (hlist_empty(&kprobe_insn_pages)) {
224 INIT_HLIST_NODE(&kip->hlist);
225 hlist_add_head(&kip->hlist,
226 &kprobe_insn_pages);
227 } else {
228 module_free(NULL, kip->insns);
229 kfree(kip);
231 return 1;
233 return 0;
236 static int __kprobes collect_garbage_slots(void)
238 struct kprobe_insn_page *kip;
239 struct hlist_node *pos, *next;
240 int safety;
242 /* Ensure no-one is preepmted on the garbages */
243 mutex_unlock(&kprobe_insn_mutex);
244 safety = check_safety();
245 mutex_lock(&kprobe_insn_mutex);
246 if (safety != 0)
247 return -EAGAIN;
249 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
250 int i;
251 if (kip->ngarbage == 0)
252 continue;
253 kip->ngarbage = 0; /* we will collect all garbages */
254 for (i = 0; i < INSNS_PER_PAGE; i++) {
255 if (kip->slot_used[i] == SLOT_DIRTY &&
256 collect_one_slot(kip, i))
257 break;
260 kprobe_garbage_slots = 0;
261 return 0;
264 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
266 struct kprobe_insn_page *kip;
267 struct hlist_node *pos;
269 mutex_lock(&kprobe_insn_mutex);
270 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271 if (kip->insns <= slot &&
272 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273 int i = (slot - kip->insns) / MAX_INSN_SIZE;
274 if (dirty) {
275 kip->slot_used[i] = SLOT_DIRTY;
276 kip->ngarbage++;
277 } else {
278 collect_one_slot(kip, i);
280 break;
284 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285 collect_garbage_slots();
287 mutex_unlock(&kprobe_insn_mutex);
289 #endif
291 /* We have preemption disabled.. so it is safe to use __ versions */
292 static inline void set_kprobe_instance(struct kprobe *kp)
294 __get_cpu_var(kprobe_instance) = kp;
297 static inline void reset_kprobe_instance(void)
299 __get_cpu_var(kprobe_instance) = NULL;
303 * This routine is called either:
304 * - under the kprobe_mutex - during kprobe_[un]register()
305 * OR
306 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
308 struct kprobe __kprobes *get_kprobe(void *addr)
310 struct hlist_head *head;
311 struct hlist_node *node;
312 struct kprobe *p;
314 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315 hlist_for_each_entry_rcu(p, node, head, hlist) {
316 if (p->addr == addr)
317 return p;
319 return NULL;
322 /* Arm a kprobe with text_mutex */
323 static void __kprobes arm_kprobe(struct kprobe *kp)
325 mutex_lock(&text_mutex);
326 arch_arm_kprobe(kp);
327 mutex_unlock(&text_mutex);
330 /* Disarm a kprobe with text_mutex */
331 static void __kprobes disarm_kprobe(struct kprobe *kp)
333 mutex_lock(&text_mutex);
334 arch_disarm_kprobe(kp);
335 mutex_unlock(&text_mutex);
339 * Aggregate handlers for multiple kprobes support - these handlers
340 * take care of invoking the individual kprobe handlers on p->list
342 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
344 struct kprobe *kp;
346 list_for_each_entry_rcu(kp, &p->list, list) {
347 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
348 set_kprobe_instance(kp);
349 if (kp->pre_handler(kp, regs))
350 return 1;
352 reset_kprobe_instance();
354 return 0;
357 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
358 unsigned long flags)
360 struct kprobe *kp;
362 list_for_each_entry_rcu(kp, &p->list, list) {
363 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
364 set_kprobe_instance(kp);
365 kp->post_handler(kp, regs, flags);
366 reset_kprobe_instance();
371 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
372 int trapnr)
374 struct kprobe *cur = __get_cpu_var(kprobe_instance);
377 * if we faulted "during" the execution of a user specified
378 * probe handler, invoke just that probe's fault handler
380 if (cur && cur->fault_handler) {
381 if (cur->fault_handler(cur, regs, trapnr))
382 return 1;
384 return 0;
387 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
389 struct kprobe *cur = __get_cpu_var(kprobe_instance);
390 int ret = 0;
392 if (cur && cur->break_handler) {
393 if (cur->break_handler(cur, regs))
394 ret = 1;
396 reset_kprobe_instance();
397 return ret;
400 /* Walks the list and increments nmissed count for multiprobe case */
401 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
403 struct kprobe *kp;
404 if (p->pre_handler != aggr_pre_handler) {
405 p->nmissed++;
406 } else {
407 list_for_each_entry_rcu(kp, &p->list, list)
408 kp->nmissed++;
410 return;
413 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
414 struct hlist_head *head)
416 struct kretprobe *rp = ri->rp;
418 /* remove rp inst off the rprobe_inst_table */
419 hlist_del(&ri->hlist);
420 INIT_HLIST_NODE(&ri->hlist);
421 if (likely(rp)) {
422 spin_lock(&rp->lock);
423 hlist_add_head(&ri->hlist, &rp->free_instances);
424 spin_unlock(&rp->lock);
425 } else
426 /* Unregistering */
427 hlist_add_head(&ri->hlist, head);
430 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
431 struct hlist_head **head, unsigned long *flags)
433 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
434 spinlock_t *hlist_lock;
436 *head = &kretprobe_inst_table[hash];
437 hlist_lock = kretprobe_table_lock_ptr(hash);
438 spin_lock_irqsave(hlist_lock, *flags);
441 static void __kprobes kretprobe_table_lock(unsigned long hash,
442 unsigned long *flags)
444 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445 spin_lock_irqsave(hlist_lock, *flags);
448 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
449 unsigned long *flags)
451 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
452 spinlock_t *hlist_lock;
454 hlist_lock = kretprobe_table_lock_ptr(hash);
455 spin_unlock_irqrestore(hlist_lock, *flags);
458 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
460 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
461 spin_unlock_irqrestore(hlist_lock, *flags);
465 * This function is called from finish_task_switch when task tk becomes dead,
466 * so that we can recycle any function-return probe instances associated
467 * with this task. These left over instances represent probed functions
468 * that have been called but will never return.
470 void __kprobes kprobe_flush_task(struct task_struct *tk)
472 struct kretprobe_instance *ri;
473 struct hlist_head *head, empty_rp;
474 struct hlist_node *node, *tmp;
475 unsigned long hash, flags = 0;
477 if (unlikely(!kprobes_initialized))
478 /* Early boot. kretprobe_table_locks not yet initialized. */
479 return;
481 hash = hash_ptr(tk, KPROBE_HASH_BITS);
482 head = &kretprobe_inst_table[hash];
483 kretprobe_table_lock(hash, &flags);
484 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
485 if (ri->task == tk)
486 recycle_rp_inst(ri, &empty_rp);
488 kretprobe_table_unlock(hash, &flags);
489 INIT_HLIST_HEAD(&empty_rp);
490 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
491 hlist_del(&ri->hlist);
492 kfree(ri);
496 static inline void free_rp_inst(struct kretprobe *rp)
498 struct kretprobe_instance *ri;
499 struct hlist_node *pos, *next;
501 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
502 hlist_del(&ri->hlist);
503 kfree(ri);
507 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
509 unsigned long flags, hash;
510 struct kretprobe_instance *ri;
511 struct hlist_node *pos, *next;
512 struct hlist_head *head;
514 /* No race here */
515 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
516 kretprobe_table_lock(hash, &flags);
517 head = &kretprobe_inst_table[hash];
518 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
519 if (ri->rp == rp)
520 ri->rp = NULL;
522 kretprobe_table_unlock(hash, &flags);
524 free_rp_inst(rp);
528 * Keep all fields in the kprobe consistent
530 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
532 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
533 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
537 * Add the new probe to ap->list. Fail if this is the
538 * second jprobe at the address - two jprobes can't coexist
540 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
542 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
543 if (p->break_handler) {
544 if (ap->break_handler)
545 return -EEXIST;
546 list_add_tail_rcu(&p->list, &ap->list);
547 ap->break_handler = aggr_break_handler;
548 } else
549 list_add_rcu(&p->list, &ap->list);
550 if (p->post_handler && !ap->post_handler)
551 ap->post_handler = aggr_post_handler;
553 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
554 ap->flags &= ~KPROBE_FLAG_DISABLED;
555 if (!kprobes_all_disarmed)
556 /* Arm the breakpoint again. */
557 arm_kprobe(ap);
559 return 0;
563 * Fill in the required fields of the "manager kprobe". Replace the
564 * earlier kprobe in the hlist with the manager kprobe
566 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
568 copy_kprobe(p, ap);
569 flush_insn_slot(ap);
570 ap->addr = p->addr;
571 ap->flags = p->flags;
572 ap->pre_handler = aggr_pre_handler;
573 ap->fault_handler = aggr_fault_handler;
574 /* We don't care the kprobe which has gone. */
575 if (p->post_handler && !kprobe_gone(p))
576 ap->post_handler = aggr_post_handler;
577 if (p->break_handler && !kprobe_gone(p))
578 ap->break_handler = aggr_break_handler;
580 INIT_LIST_HEAD(&ap->list);
581 list_add_rcu(&p->list, &ap->list);
583 hlist_replace_rcu(&p->hlist, &ap->hlist);
587 * This is the second or subsequent kprobe at the address - handle
588 * the intricacies
590 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
591 struct kprobe *p)
593 int ret = 0;
594 struct kprobe *ap = old_p;
596 if (old_p->pre_handler != aggr_pre_handler) {
597 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
598 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
599 if (!ap)
600 return -ENOMEM;
601 add_aggr_kprobe(ap, old_p);
604 if (kprobe_gone(ap)) {
606 * Attempting to insert new probe at the same location that
607 * had a probe in the module vaddr area which already
608 * freed. So, the instruction slot has already been
609 * released. We need a new slot for the new probe.
611 ret = arch_prepare_kprobe(ap);
612 if (ret)
614 * Even if fail to allocate new slot, don't need to
615 * free aggr_probe. It will be used next time, or
616 * freed by unregister_kprobe.
618 return ret;
621 * Clear gone flag to prevent allocating new slot again, and
622 * set disabled flag because it is not armed yet.
624 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
625 | KPROBE_FLAG_DISABLED;
628 copy_kprobe(ap, p);
629 return add_new_kprobe(ap, p);
632 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
633 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
635 struct kprobe *kp;
637 list_for_each_entry_rcu(kp, &p->list, list) {
638 if (!kprobe_disabled(kp))
640 * There is an active probe on the list.
641 * We can't disable aggr_kprobe.
643 return 0;
645 p->flags |= KPROBE_FLAG_DISABLED;
646 return 1;
649 static int __kprobes in_kprobes_functions(unsigned long addr)
651 struct kprobe_blackpoint *kb;
653 if (addr >= (unsigned long)__kprobes_text_start &&
654 addr < (unsigned long)__kprobes_text_end)
655 return -EINVAL;
657 * If there exists a kprobe_blacklist, verify and
658 * fail any probe registration in the prohibited area
660 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
661 if (kb->start_addr) {
662 if (addr >= kb->start_addr &&
663 addr < (kb->start_addr + kb->range))
664 return -EINVAL;
667 return 0;
671 * If we have a symbol_name argument, look it up and add the offset field
672 * to it. This way, we can specify a relative address to a symbol.
674 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
676 kprobe_opcode_t *addr = p->addr;
677 if (p->symbol_name) {
678 if (addr)
679 return NULL;
680 kprobe_lookup_name(p->symbol_name, addr);
683 if (!addr)
684 return NULL;
685 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
688 int __kprobes register_kprobe(struct kprobe *p)
690 int ret = 0;
691 struct kprobe *old_p;
692 struct module *probed_mod;
693 kprobe_opcode_t *addr;
695 addr = kprobe_addr(p);
696 if (!addr)
697 return -EINVAL;
698 p->addr = addr;
700 preempt_disable();
701 if (!__kernel_text_address((unsigned long) p->addr) ||
702 in_kprobes_functions((unsigned long) p->addr)) {
703 preempt_enable();
704 return -EINVAL;
707 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
708 p->flags &= KPROBE_FLAG_DISABLED;
711 * Check if are we probing a module.
713 probed_mod = __module_text_address((unsigned long) p->addr);
714 if (probed_mod) {
716 * We must hold a refcount of the probed module while updating
717 * its code to prohibit unexpected unloading.
719 if (unlikely(!try_module_get(probed_mod))) {
720 preempt_enable();
721 return -EINVAL;
724 * If the module freed .init.text, we couldn't insert
725 * kprobes in there.
727 if (within_module_init((unsigned long)p->addr, probed_mod) &&
728 probed_mod->state != MODULE_STATE_COMING) {
729 module_put(probed_mod);
730 preempt_enable();
731 return -EINVAL;
734 preempt_enable();
736 p->nmissed = 0;
737 INIT_LIST_HEAD(&p->list);
738 mutex_lock(&kprobe_mutex);
739 old_p = get_kprobe(p->addr);
740 if (old_p) {
741 ret = register_aggr_kprobe(old_p, p);
742 goto out;
745 mutex_lock(&text_mutex);
746 ret = arch_prepare_kprobe(p);
747 if (ret)
748 goto out_unlock_text;
750 INIT_HLIST_NODE(&p->hlist);
751 hlist_add_head_rcu(&p->hlist,
752 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
754 if (!kprobes_all_disarmed && !kprobe_disabled(p))
755 arch_arm_kprobe(p);
757 out_unlock_text:
758 mutex_unlock(&text_mutex);
759 out:
760 mutex_unlock(&kprobe_mutex);
762 if (probed_mod)
763 module_put(probed_mod);
765 return ret;
767 EXPORT_SYMBOL_GPL(register_kprobe);
769 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
770 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
772 struct kprobe *old_p, *list_p;
774 old_p = get_kprobe(p->addr);
775 if (unlikely(!old_p))
776 return NULL;
778 if (p != old_p) {
779 list_for_each_entry_rcu(list_p, &old_p->list, list)
780 if (list_p == p)
781 /* kprobe p is a valid probe */
782 goto valid;
783 return NULL;
785 valid:
786 return old_p;
790 * Unregister a kprobe without a scheduler synchronization.
792 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
794 struct kprobe *old_p, *list_p;
796 old_p = __get_valid_kprobe(p);
797 if (old_p == NULL)
798 return -EINVAL;
800 if (old_p == p ||
801 (old_p->pre_handler == aggr_pre_handler &&
802 list_is_singular(&old_p->list))) {
804 * Only probe on the hash list. Disarm only if kprobes are
805 * enabled and not gone - otherwise, the breakpoint would
806 * already have been removed. We save on flushing icache.
808 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
809 disarm_kprobe(p);
810 hlist_del_rcu(&old_p->hlist);
811 } else {
812 if (p->break_handler && !kprobe_gone(p))
813 old_p->break_handler = NULL;
814 if (p->post_handler && !kprobe_gone(p)) {
815 list_for_each_entry_rcu(list_p, &old_p->list, list) {
816 if ((list_p != p) && (list_p->post_handler))
817 goto noclean;
819 old_p->post_handler = NULL;
821 noclean:
822 list_del_rcu(&p->list);
823 if (!kprobe_disabled(old_p)) {
824 try_to_disable_aggr_kprobe(old_p);
825 if (!kprobes_all_disarmed && kprobe_disabled(old_p))
826 disarm_kprobe(old_p);
829 return 0;
832 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
834 struct kprobe *old_p;
836 if (list_empty(&p->list))
837 arch_remove_kprobe(p);
838 else if (list_is_singular(&p->list)) {
839 /* "p" is the last child of an aggr_kprobe */
840 old_p = list_entry(p->list.next, struct kprobe, list);
841 list_del(&p->list);
842 arch_remove_kprobe(old_p);
843 kfree(old_p);
847 int __kprobes register_kprobes(struct kprobe **kps, int num)
849 int i, ret = 0;
851 if (num <= 0)
852 return -EINVAL;
853 for (i = 0; i < num; i++) {
854 ret = register_kprobe(kps[i]);
855 if (ret < 0) {
856 if (i > 0)
857 unregister_kprobes(kps, i);
858 break;
861 return ret;
863 EXPORT_SYMBOL_GPL(register_kprobes);
865 void __kprobes unregister_kprobe(struct kprobe *p)
867 unregister_kprobes(&p, 1);
869 EXPORT_SYMBOL_GPL(unregister_kprobe);
871 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
873 int i;
875 if (num <= 0)
876 return;
877 mutex_lock(&kprobe_mutex);
878 for (i = 0; i < num; i++)
879 if (__unregister_kprobe_top(kps[i]) < 0)
880 kps[i]->addr = NULL;
881 mutex_unlock(&kprobe_mutex);
883 synchronize_sched();
884 for (i = 0; i < num; i++)
885 if (kps[i]->addr)
886 __unregister_kprobe_bottom(kps[i]);
888 EXPORT_SYMBOL_GPL(unregister_kprobes);
890 static struct notifier_block kprobe_exceptions_nb = {
891 .notifier_call = kprobe_exceptions_notify,
892 .priority = 0x7fffffff /* we need to be notified first */
895 unsigned long __weak arch_deref_entry_point(void *entry)
897 return (unsigned long)entry;
900 int __kprobes register_jprobes(struct jprobe **jps, int num)
902 struct jprobe *jp;
903 int ret = 0, i;
905 if (num <= 0)
906 return -EINVAL;
907 for (i = 0; i < num; i++) {
908 unsigned long addr;
909 jp = jps[i];
910 addr = arch_deref_entry_point(jp->entry);
912 if (!kernel_text_address(addr))
913 ret = -EINVAL;
914 else {
915 /* Todo: Verify probepoint is a function entry point */
916 jp->kp.pre_handler = setjmp_pre_handler;
917 jp->kp.break_handler = longjmp_break_handler;
918 ret = register_kprobe(&jp->kp);
920 if (ret < 0) {
921 if (i > 0)
922 unregister_jprobes(jps, i);
923 break;
926 return ret;
928 EXPORT_SYMBOL_GPL(register_jprobes);
930 int __kprobes register_jprobe(struct jprobe *jp)
932 return register_jprobes(&jp, 1);
934 EXPORT_SYMBOL_GPL(register_jprobe);
936 void __kprobes unregister_jprobe(struct jprobe *jp)
938 unregister_jprobes(&jp, 1);
940 EXPORT_SYMBOL_GPL(unregister_jprobe);
942 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
944 int i;
946 if (num <= 0)
947 return;
948 mutex_lock(&kprobe_mutex);
949 for (i = 0; i < num; i++)
950 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
951 jps[i]->kp.addr = NULL;
952 mutex_unlock(&kprobe_mutex);
954 synchronize_sched();
955 for (i = 0; i < num; i++) {
956 if (jps[i]->kp.addr)
957 __unregister_kprobe_bottom(&jps[i]->kp);
960 EXPORT_SYMBOL_GPL(unregister_jprobes);
962 #ifdef CONFIG_KRETPROBES
964 * This kprobe pre_handler is registered with every kretprobe. When probe
965 * hits it will set up the return probe.
967 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
968 struct pt_regs *regs)
970 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
971 unsigned long hash, flags = 0;
972 struct kretprobe_instance *ri;
974 /*TODO: consider to only swap the RA after the last pre_handler fired */
975 hash = hash_ptr(current, KPROBE_HASH_BITS);
976 spin_lock_irqsave(&rp->lock, flags);
977 if (!hlist_empty(&rp->free_instances)) {
978 ri = hlist_entry(rp->free_instances.first,
979 struct kretprobe_instance, hlist);
980 hlist_del(&ri->hlist);
981 spin_unlock_irqrestore(&rp->lock, flags);
983 ri->rp = rp;
984 ri->task = current;
986 if (rp->entry_handler && rp->entry_handler(ri, regs))
987 return 0;
989 arch_prepare_kretprobe(ri, regs);
991 /* XXX(hch): why is there no hlist_move_head? */
992 INIT_HLIST_NODE(&ri->hlist);
993 kretprobe_table_lock(hash, &flags);
994 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
995 kretprobe_table_unlock(hash, &flags);
996 } else {
997 rp->nmissed++;
998 spin_unlock_irqrestore(&rp->lock, flags);
1000 return 0;
1003 int __kprobes register_kretprobe(struct kretprobe *rp)
1005 int ret = 0;
1006 struct kretprobe_instance *inst;
1007 int i;
1008 void *addr;
1010 if (kretprobe_blacklist_size) {
1011 addr = kprobe_addr(&rp->kp);
1012 if (!addr)
1013 return -EINVAL;
1015 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1016 if (kretprobe_blacklist[i].addr == addr)
1017 return -EINVAL;
1021 rp->kp.pre_handler = pre_handler_kretprobe;
1022 rp->kp.post_handler = NULL;
1023 rp->kp.fault_handler = NULL;
1024 rp->kp.break_handler = NULL;
1026 /* Pre-allocate memory for max kretprobe instances */
1027 if (rp->maxactive <= 0) {
1028 #ifdef CONFIG_PREEMPT
1029 rp->maxactive = max(10, 2 * NR_CPUS);
1030 #else
1031 rp->maxactive = NR_CPUS;
1032 #endif
1034 spin_lock_init(&rp->lock);
1035 INIT_HLIST_HEAD(&rp->free_instances);
1036 for (i = 0; i < rp->maxactive; i++) {
1037 inst = kmalloc(sizeof(struct kretprobe_instance) +
1038 rp->data_size, GFP_KERNEL);
1039 if (inst == NULL) {
1040 free_rp_inst(rp);
1041 return -ENOMEM;
1043 INIT_HLIST_NODE(&inst->hlist);
1044 hlist_add_head(&inst->hlist, &rp->free_instances);
1047 rp->nmissed = 0;
1048 /* Establish function entry probe point */
1049 ret = register_kprobe(&rp->kp);
1050 if (ret != 0)
1051 free_rp_inst(rp);
1052 return ret;
1054 EXPORT_SYMBOL_GPL(register_kretprobe);
1056 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1058 int ret = 0, i;
1060 if (num <= 0)
1061 return -EINVAL;
1062 for (i = 0; i < num; i++) {
1063 ret = register_kretprobe(rps[i]);
1064 if (ret < 0) {
1065 if (i > 0)
1066 unregister_kretprobes(rps, i);
1067 break;
1070 return ret;
1072 EXPORT_SYMBOL_GPL(register_kretprobes);
1074 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1076 unregister_kretprobes(&rp, 1);
1078 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1080 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1082 int i;
1084 if (num <= 0)
1085 return;
1086 mutex_lock(&kprobe_mutex);
1087 for (i = 0; i < num; i++)
1088 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1089 rps[i]->kp.addr = NULL;
1090 mutex_unlock(&kprobe_mutex);
1092 synchronize_sched();
1093 for (i = 0; i < num; i++) {
1094 if (rps[i]->kp.addr) {
1095 __unregister_kprobe_bottom(&rps[i]->kp);
1096 cleanup_rp_inst(rps[i]);
1100 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1102 #else /* CONFIG_KRETPROBES */
1103 int __kprobes register_kretprobe(struct kretprobe *rp)
1105 return -ENOSYS;
1107 EXPORT_SYMBOL_GPL(register_kretprobe);
1109 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1111 return -ENOSYS;
1113 EXPORT_SYMBOL_GPL(register_kretprobes);
1115 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1118 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1120 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1123 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1125 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1126 struct pt_regs *regs)
1128 return 0;
1131 #endif /* CONFIG_KRETPROBES */
1133 /* Set the kprobe gone and remove its instruction buffer. */
1134 static void __kprobes kill_kprobe(struct kprobe *p)
1136 struct kprobe *kp;
1138 p->flags |= KPROBE_FLAG_GONE;
1139 if (p->pre_handler == aggr_pre_handler) {
1141 * If this is an aggr_kprobe, we have to list all the
1142 * chained probes and mark them GONE.
1144 list_for_each_entry_rcu(kp, &p->list, list)
1145 kp->flags |= KPROBE_FLAG_GONE;
1146 p->post_handler = NULL;
1147 p->break_handler = NULL;
1150 * Here, we can remove insn_slot safely, because no thread calls
1151 * the original probed function (which will be freed soon) any more.
1153 arch_remove_kprobe(p);
1156 /* Module notifier call back, checking kprobes on the module */
1157 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1158 unsigned long val, void *data)
1160 struct module *mod = data;
1161 struct hlist_head *head;
1162 struct hlist_node *node;
1163 struct kprobe *p;
1164 unsigned int i;
1165 int checkcore = (val == MODULE_STATE_GOING);
1167 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1168 return NOTIFY_DONE;
1171 * When MODULE_STATE_GOING was notified, both of module .text and
1172 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1173 * notified, only .init.text section would be freed. We need to
1174 * disable kprobes which have been inserted in the sections.
1176 mutex_lock(&kprobe_mutex);
1177 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1178 head = &kprobe_table[i];
1179 hlist_for_each_entry_rcu(p, node, head, hlist)
1180 if (within_module_init((unsigned long)p->addr, mod) ||
1181 (checkcore &&
1182 within_module_core((unsigned long)p->addr, mod))) {
1184 * The vaddr this probe is installed will soon
1185 * be vfreed buy not synced to disk. Hence,
1186 * disarming the breakpoint isn't needed.
1188 kill_kprobe(p);
1191 mutex_unlock(&kprobe_mutex);
1192 return NOTIFY_DONE;
1195 static struct notifier_block kprobe_module_nb = {
1196 .notifier_call = kprobes_module_callback,
1197 .priority = 0
1200 static int __init init_kprobes(void)
1202 int i, err = 0;
1203 unsigned long offset = 0, size = 0;
1204 char *modname, namebuf[128];
1205 const char *symbol_name;
1206 void *addr;
1207 struct kprobe_blackpoint *kb;
1209 /* FIXME allocate the probe table, currently defined statically */
1210 /* initialize all list heads */
1211 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1212 INIT_HLIST_HEAD(&kprobe_table[i]);
1213 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1214 spin_lock_init(&(kretprobe_table_locks[i].lock));
1218 * Lookup and populate the kprobe_blacklist.
1220 * Unlike the kretprobe blacklist, we'll need to determine
1221 * the range of addresses that belong to the said functions,
1222 * since a kprobe need not necessarily be at the beginning
1223 * of a function.
1225 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1226 kprobe_lookup_name(kb->name, addr);
1227 if (!addr)
1228 continue;
1230 kb->start_addr = (unsigned long)addr;
1231 symbol_name = kallsyms_lookup(kb->start_addr,
1232 &size, &offset, &modname, namebuf);
1233 if (!symbol_name)
1234 kb->range = 0;
1235 else
1236 kb->range = size;
1239 if (kretprobe_blacklist_size) {
1240 /* lookup the function address from its name */
1241 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1242 kprobe_lookup_name(kretprobe_blacklist[i].name,
1243 kretprobe_blacklist[i].addr);
1244 if (!kretprobe_blacklist[i].addr)
1245 printk("kretprobe: lookup failed: %s\n",
1246 kretprobe_blacklist[i].name);
1250 /* By default, kprobes are armed */
1251 kprobes_all_disarmed = false;
1253 err = arch_init_kprobes();
1254 if (!err)
1255 err = register_die_notifier(&kprobe_exceptions_nb);
1256 if (!err)
1257 err = register_module_notifier(&kprobe_module_nb);
1259 kprobes_initialized = (err == 0);
1261 if (!err)
1262 init_test_probes();
1263 return err;
1266 #ifdef CONFIG_DEBUG_FS
1267 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1268 const char *sym, int offset,char *modname)
1270 char *kprobe_type;
1272 if (p->pre_handler == pre_handler_kretprobe)
1273 kprobe_type = "r";
1274 else if (p->pre_handler == setjmp_pre_handler)
1275 kprobe_type = "j";
1276 else
1277 kprobe_type = "k";
1278 if (sym)
1279 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n",
1280 p->addr, kprobe_type, sym, offset,
1281 (modname ? modname : " "),
1282 (kprobe_gone(p) ? "[GONE]" : ""),
1283 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1284 "[DISABLED]" : ""));
1285 else
1286 seq_printf(pi, "%p %s %p %s%s\n",
1287 p->addr, kprobe_type, p->addr,
1288 (kprobe_gone(p) ? "[GONE]" : ""),
1289 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1290 "[DISABLED]" : ""));
1293 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1295 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1298 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1300 (*pos)++;
1301 if (*pos >= KPROBE_TABLE_SIZE)
1302 return NULL;
1303 return pos;
1306 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1308 /* Nothing to do */
1311 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1313 struct hlist_head *head;
1314 struct hlist_node *node;
1315 struct kprobe *p, *kp;
1316 const char *sym = NULL;
1317 unsigned int i = *(loff_t *) v;
1318 unsigned long offset = 0;
1319 char *modname, namebuf[128];
1321 head = &kprobe_table[i];
1322 preempt_disable();
1323 hlist_for_each_entry_rcu(p, node, head, hlist) {
1324 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1325 &offset, &modname, namebuf);
1326 if (p->pre_handler == aggr_pre_handler) {
1327 list_for_each_entry_rcu(kp, &p->list, list)
1328 report_probe(pi, kp, sym, offset, modname);
1329 } else
1330 report_probe(pi, p, sym, offset, modname);
1332 preempt_enable();
1333 return 0;
1336 static struct seq_operations kprobes_seq_ops = {
1337 .start = kprobe_seq_start,
1338 .next = kprobe_seq_next,
1339 .stop = kprobe_seq_stop,
1340 .show = show_kprobe_addr
1343 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1345 return seq_open(filp, &kprobes_seq_ops);
1348 static struct file_operations debugfs_kprobes_operations = {
1349 .open = kprobes_open,
1350 .read = seq_read,
1351 .llseek = seq_lseek,
1352 .release = seq_release,
1355 /* Disable one kprobe */
1356 int __kprobes disable_kprobe(struct kprobe *kp)
1358 int ret = 0;
1359 struct kprobe *p;
1361 mutex_lock(&kprobe_mutex);
1363 /* Check whether specified probe is valid. */
1364 p = __get_valid_kprobe(kp);
1365 if (unlikely(p == NULL)) {
1366 ret = -EINVAL;
1367 goto out;
1370 /* If the probe is already disabled (or gone), just return */
1371 if (kprobe_disabled(kp))
1372 goto out;
1374 kp->flags |= KPROBE_FLAG_DISABLED;
1375 if (p != kp)
1376 /* When kp != p, p is always enabled. */
1377 try_to_disable_aggr_kprobe(p);
1379 if (!kprobes_all_disarmed && kprobe_disabled(p))
1380 disarm_kprobe(p);
1381 out:
1382 mutex_unlock(&kprobe_mutex);
1383 return ret;
1385 EXPORT_SYMBOL_GPL(disable_kprobe);
1387 /* Enable one kprobe */
1388 int __kprobes enable_kprobe(struct kprobe *kp)
1390 int ret = 0;
1391 struct kprobe *p;
1393 mutex_lock(&kprobe_mutex);
1395 /* Check whether specified probe is valid. */
1396 p = __get_valid_kprobe(kp);
1397 if (unlikely(p == NULL)) {
1398 ret = -EINVAL;
1399 goto out;
1402 if (kprobe_gone(kp)) {
1403 /* This kprobe has gone, we couldn't enable it. */
1404 ret = -EINVAL;
1405 goto out;
1408 if (!kprobes_all_disarmed && kprobe_disabled(p))
1409 arm_kprobe(p);
1411 p->flags &= ~KPROBE_FLAG_DISABLED;
1412 if (p != kp)
1413 kp->flags &= ~KPROBE_FLAG_DISABLED;
1414 out:
1415 mutex_unlock(&kprobe_mutex);
1416 return ret;
1418 EXPORT_SYMBOL_GPL(enable_kprobe);
1420 static void __kprobes arm_all_kprobes(void)
1422 struct hlist_head *head;
1423 struct hlist_node *node;
1424 struct kprobe *p;
1425 unsigned int i;
1427 mutex_lock(&kprobe_mutex);
1429 /* If kprobes are armed, just return */
1430 if (!kprobes_all_disarmed)
1431 goto already_enabled;
1433 mutex_lock(&text_mutex);
1434 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1435 head = &kprobe_table[i];
1436 hlist_for_each_entry_rcu(p, node, head, hlist)
1437 if (!kprobe_disabled(p))
1438 arch_arm_kprobe(p);
1440 mutex_unlock(&text_mutex);
1442 kprobes_all_disarmed = false;
1443 printk(KERN_INFO "Kprobes globally enabled\n");
1445 already_enabled:
1446 mutex_unlock(&kprobe_mutex);
1447 return;
1450 static void __kprobes disarm_all_kprobes(void)
1452 struct hlist_head *head;
1453 struct hlist_node *node;
1454 struct kprobe *p;
1455 unsigned int i;
1457 mutex_lock(&kprobe_mutex);
1459 /* If kprobes are already disarmed, just return */
1460 if (kprobes_all_disarmed)
1461 goto already_disabled;
1463 kprobes_all_disarmed = true;
1464 printk(KERN_INFO "Kprobes globally disabled\n");
1465 mutex_lock(&text_mutex);
1466 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1467 head = &kprobe_table[i];
1468 hlist_for_each_entry_rcu(p, node, head, hlist) {
1469 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1470 arch_disarm_kprobe(p);
1474 mutex_unlock(&text_mutex);
1475 mutex_unlock(&kprobe_mutex);
1476 /* Allow all currently running kprobes to complete */
1477 synchronize_sched();
1478 return;
1480 already_disabled:
1481 mutex_unlock(&kprobe_mutex);
1482 return;
1486 * XXX: The debugfs bool file interface doesn't allow for callbacks
1487 * when the bool state is switched. We can reuse that facility when
1488 * available
1490 static ssize_t read_enabled_file_bool(struct file *file,
1491 char __user *user_buf, size_t count, loff_t *ppos)
1493 char buf[3];
1495 if (!kprobes_all_disarmed)
1496 buf[0] = '1';
1497 else
1498 buf[0] = '0';
1499 buf[1] = '\n';
1500 buf[2] = 0x00;
1501 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1504 static ssize_t write_enabled_file_bool(struct file *file,
1505 const char __user *user_buf, size_t count, loff_t *ppos)
1507 char buf[32];
1508 int buf_size;
1510 buf_size = min(count, (sizeof(buf)-1));
1511 if (copy_from_user(buf, user_buf, buf_size))
1512 return -EFAULT;
1514 switch (buf[0]) {
1515 case 'y':
1516 case 'Y':
1517 case '1':
1518 arm_all_kprobes();
1519 break;
1520 case 'n':
1521 case 'N':
1522 case '0':
1523 disarm_all_kprobes();
1524 break;
1527 return count;
1530 static struct file_operations fops_kp = {
1531 .read = read_enabled_file_bool,
1532 .write = write_enabled_file_bool,
1535 static int __kprobes debugfs_kprobe_init(void)
1537 struct dentry *dir, *file;
1538 unsigned int value = 1;
1540 dir = debugfs_create_dir("kprobes", NULL);
1541 if (!dir)
1542 return -ENOMEM;
1544 file = debugfs_create_file("list", 0444, dir, NULL,
1545 &debugfs_kprobes_operations);
1546 if (!file) {
1547 debugfs_remove(dir);
1548 return -ENOMEM;
1551 file = debugfs_create_file("enabled", 0600, dir,
1552 &value, &fops_kp);
1553 if (!file) {
1554 debugfs_remove(dir);
1555 return -ENOMEM;
1558 return 0;
1561 late_initcall(debugfs_kprobe_init);
1562 #endif /* CONFIG_DEBUG_FS */
1564 module_init(init_kprobes);
1566 /* defined in arch/.../kernel/kprobes.c */
1567 EXPORT_SYMBOL_GPL(jprobe_return);