1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/list.h>
32 #include <linux/netdevice.h>
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
38 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
);
39 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
42 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
43 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
46 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
49 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
50 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
);
52 static void ixgbe_enable_rar(struct ixgbe_hw
*hw
, u32 index
);
53 static void ixgbe_disable_rar(struct ixgbe_hw
*hw
, u32 index
);
54 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
55 static void ixgbe_add_uc_addr(struct ixgbe_hw
*hw
, u8
*addr
, u32 vmdq
);
58 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
59 * @hw: pointer to hardware structure
61 * Starts the hardware by filling the bus info structure and media type, clears
62 * all on chip counters, initializes receive address registers, multicast
63 * table, VLAN filter table, calls routine to set up link and flow control
64 * settings, and leaves transmit and receive units disabled and uninitialized
66 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
70 /* Set the media type */
71 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
73 /* Identify the PHY */
74 hw
->phy
.ops
.identify(hw
);
76 /* Clear the VLAN filter table */
77 hw
->mac
.ops
.clear_vfta(hw
);
79 /* Clear statistics registers */
80 hw
->mac
.ops
.clear_hw_cntrs(hw
);
82 /* Set No Snoop Disable */
83 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
84 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
85 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
86 IXGBE_WRITE_FLUSH(hw
);
88 /* Setup flow control */
89 ixgbe_setup_fc(hw
, 0);
91 /* Clear adapter stopped flag */
92 hw
->adapter_stopped
= false;
98 * ixgbe_init_hw_generic - Generic hardware initialization
99 * @hw: pointer to hardware structure
101 * Initialize the hardware by resetting the hardware, filling the bus info
102 * structure and media type, clears all on chip counters, initializes receive
103 * address registers, multicast table, VLAN filter table, calls routine to set
104 * up link and flow control settings, and leaves transmit and receive units
105 * disabled and uninitialized
107 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
111 /* Reset the hardware */
112 status
= hw
->mac
.ops
.reset_hw(hw
);
116 status
= hw
->mac
.ops
.start_hw(hw
);
123 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
124 * @hw: pointer to hardware structure
126 * Clears all hardware statistics counters by reading them from the hardware
127 * Statistics counters are clear on read.
129 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
133 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
134 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
135 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
136 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
137 for (i
= 0; i
< 8; i
++)
138 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
140 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
141 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
142 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
143 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
144 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
145 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
146 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
148 for (i
= 0; i
< 8; i
++) {
149 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
150 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
151 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
152 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
155 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
156 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
157 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
158 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
159 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
160 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
161 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
162 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
163 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
164 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
165 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
166 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
167 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
168 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
169 for (i
= 0; i
< 8; i
++)
170 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
171 IXGBE_READ_REG(hw
, IXGBE_RUC
);
172 IXGBE_READ_REG(hw
, IXGBE_RFC
);
173 IXGBE_READ_REG(hw
, IXGBE_ROC
);
174 IXGBE_READ_REG(hw
, IXGBE_RJC
);
175 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
176 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
177 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
178 IXGBE_READ_REG(hw
, IXGBE_TORL
);
179 IXGBE_READ_REG(hw
, IXGBE_TORH
);
180 IXGBE_READ_REG(hw
, IXGBE_TPR
);
181 IXGBE_READ_REG(hw
, IXGBE_TPT
);
182 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
183 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
184 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
185 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
186 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
187 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
188 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
189 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
190 for (i
= 0; i
< 16; i
++) {
191 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
192 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
193 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
194 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
201 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
202 * @hw: pointer to hardware structure
203 * @pba_num: stores the part number from the EEPROM
205 * Reads the part number from the EEPROM.
207 s32
ixgbe_read_pba_num_generic(struct ixgbe_hw
*hw
, u32
*pba_num
)
212 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
214 hw_dbg(hw
, "NVM Read Error\n");
217 *pba_num
= (u32
)(data
<< 16);
219 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &data
);
221 hw_dbg(hw
, "NVM Read Error\n");
230 * ixgbe_get_mac_addr_generic - Generic get MAC address
231 * @hw: pointer to hardware structure
232 * @mac_addr: Adapter MAC address
234 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
235 * A reset of the adapter must be performed prior to calling this function
236 * in order for the MAC address to have been loaded from the EEPROM into RAR0
238 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
244 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
245 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
247 for (i
= 0; i
< 4; i
++)
248 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
250 for (i
= 0; i
< 2; i
++)
251 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
257 * ixgbe_get_bus_info_generic - Generic set PCI bus info
258 * @hw: pointer to hardware structure
260 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
262 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
264 struct ixgbe_adapter
*adapter
= hw
->back
;
265 struct ixgbe_mac_info
*mac
= &hw
->mac
;
268 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
270 /* Get the negotiated link width and speed from PCI config space */
271 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
274 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
275 case IXGBE_PCI_LINK_WIDTH_1
:
276 hw
->bus
.width
= ixgbe_bus_width_pcie_x1
;
278 case IXGBE_PCI_LINK_WIDTH_2
:
279 hw
->bus
.width
= ixgbe_bus_width_pcie_x2
;
281 case IXGBE_PCI_LINK_WIDTH_4
:
282 hw
->bus
.width
= ixgbe_bus_width_pcie_x4
;
284 case IXGBE_PCI_LINK_WIDTH_8
:
285 hw
->bus
.width
= ixgbe_bus_width_pcie_x8
;
288 hw
->bus
.width
= ixgbe_bus_width_unknown
;
292 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
293 case IXGBE_PCI_LINK_SPEED_2500
:
294 hw
->bus
.speed
= ixgbe_bus_speed_2500
;
296 case IXGBE_PCI_LINK_SPEED_5000
:
297 hw
->bus
.speed
= ixgbe_bus_speed_5000
;
300 hw
->bus
.speed
= ixgbe_bus_speed_unknown
;
304 mac
->ops
.set_lan_id(hw
);
310 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
311 * @hw: pointer to the HW structure
313 * Determines the LAN function id by reading memory-mapped registers
314 * and swaps the port value if requested.
316 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
318 struct ixgbe_bus_info
*bus
= &hw
->bus
;
321 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
322 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
323 bus
->lan_id
= bus
->func
;
325 /* check for a port swap */
326 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
327 if (reg
& IXGBE_FACTPS_LFS
)
332 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
333 * @hw: pointer to hardware structure
335 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
336 * disables transmit and receive units. The adapter_stopped flag is used by
337 * the shared code and drivers to determine if the adapter is in a stopped
338 * state and should not touch the hardware.
340 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
342 u32 number_of_queues
;
347 * Set the adapter_stopped flag so other driver functions stop touching
350 hw
->adapter_stopped
= true;
352 /* Disable the receive unit */
353 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
354 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
355 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
356 IXGBE_WRITE_FLUSH(hw
);
359 /* Clear interrupt mask to stop from interrupts being generated */
360 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
362 /* Clear any pending interrupts */
363 IXGBE_READ_REG(hw
, IXGBE_EICR
);
365 /* Disable the transmit unit. Each queue must be disabled. */
366 number_of_queues
= hw
->mac
.max_tx_queues
;
367 for (i
= 0; i
< number_of_queues
; i
++) {
368 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
369 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
370 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
371 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
376 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
377 * access and verify no pending requests
379 if (ixgbe_disable_pcie_master(hw
) != 0)
380 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
386 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
387 * @hw: pointer to hardware structure
388 * @index: led number to turn on
390 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
392 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
394 /* To turn on the LED, set mode to ON. */
395 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
396 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
397 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
398 IXGBE_WRITE_FLUSH(hw
);
404 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
405 * @hw: pointer to hardware structure
406 * @index: led number to turn off
408 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
410 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
412 /* To turn off the LED, set mode to OFF. */
413 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
414 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
415 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
416 IXGBE_WRITE_FLUSH(hw
);
422 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
423 * @hw: pointer to hardware structure
425 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
426 * ixgbe_hw struct in order to set up EEPROM access.
428 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
430 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
434 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
435 eeprom
->type
= ixgbe_eeprom_none
;
436 /* Set default semaphore delay to 10ms which is a well
438 eeprom
->semaphore_delay
= 10;
441 * Check for EEPROM present first.
442 * If not present leave as none
444 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
445 if (eec
& IXGBE_EEC_PRES
) {
446 eeprom
->type
= ixgbe_eeprom_spi
;
449 * SPI EEPROM is assumed here. This code would need to
450 * change if a future EEPROM is not SPI.
452 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
453 IXGBE_EEC_SIZE_SHIFT
);
454 eeprom
->word_size
= 1 << (eeprom_size
+
455 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
458 if (eec
& IXGBE_EEC_ADDR_SIZE
)
459 eeprom
->address_bits
= 16;
461 eeprom
->address_bits
= 8;
462 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
463 "%d\n", eeprom
->type
, eeprom
->word_size
,
464 eeprom
->address_bits
);
471 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
472 * @hw: pointer to hardware structure
473 * @offset: offset within the EEPROM to be written to
474 * @data: 16 bit word to be written to the EEPROM
476 * If ixgbe_eeprom_update_checksum is not called after this function, the
477 * EEPROM will most likely contain an invalid checksum.
479 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
482 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
484 hw
->eeprom
.ops
.init_params(hw
);
486 if (offset
>= hw
->eeprom
.word_size
) {
487 status
= IXGBE_ERR_EEPROM
;
491 /* Prepare the EEPROM for writing */
492 status
= ixgbe_acquire_eeprom(hw
);
495 if (ixgbe_ready_eeprom(hw
) != 0) {
496 ixgbe_release_eeprom(hw
);
497 status
= IXGBE_ERR_EEPROM
;
502 ixgbe_standby_eeprom(hw
);
504 /* Send the WRITE ENABLE command (8 bit opcode ) */
505 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_WREN_OPCODE_SPI
,
506 IXGBE_EEPROM_OPCODE_BITS
);
508 ixgbe_standby_eeprom(hw
);
511 * Some SPI eeproms use the 8th address bit embedded in the
514 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
515 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
517 /* Send the Write command (8-bit opcode + addr) */
518 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
519 IXGBE_EEPROM_OPCODE_BITS
);
520 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
521 hw
->eeprom
.address_bits
);
524 data
= (data
>> 8) | (data
<< 8);
525 ixgbe_shift_out_eeprom_bits(hw
, data
, 16);
526 ixgbe_standby_eeprom(hw
);
528 msleep(hw
->eeprom
.semaphore_delay
);
529 /* Done with writing - release the EEPROM */
530 ixgbe_release_eeprom(hw
);
538 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
539 * @hw: pointer to hardware structure
540 * @offset: offset within the EEPROM to be read
541 * @data: read 16 bit value from EEPROM
543 * Reads 16 bit value from EEPROM through bit-bang method
545 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
550 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
552 hw
->eeprom
.ops
.init_params(hw
);
554 if (offset
>= hw
->eeprom
.word_size
) {
555 status
= IXGBE_ERR_EEPROM
;
559 /* Prepare the EEPROM for reading */
560 status
= ixgbe_acquire_eeprom(hw
);
563 if (ixgbe_ready_eeprom(hw
) != 0) {
564 ixgbe_release_eeprom(hw
);
565 status
= IXGBE_ERR_EEPROM
;
570 ixgbe_standby_eeprom(hw
);
573 * Some SPI eeproms use the 8th address bit embedded in the
576 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
577 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
579 /* Send the READ command (opcode + addr) */
580 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
581 IXGBE_EEPROM_OPCODE_BITS
);
582 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
583 hw
->eeprom
.address_bits
);
586 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
587 *data
= (word_in
>> 8) | (word_in
<< 8);
589 /* End this read operation */
590 ixgbe_release_eeprom(hw
);
598 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
599 * @hw: pointer to hardware structure
600 * @offset: offset of word in the EEPROM to read
601 * @data: word read from the EEPROM
603 * Reads a 16 bit word from the EEPROM using the EERD register.
605 s32
ixgbe_read_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
610 hw
->eeprom
.ops
.init_params(hw
);
612 if (offset
>= hw
->eeprom
.word_size
) {
613 status
= IXGBE_ERR_EEPROM
;
617 eerd
= (offset
<< IXGBE_EEPROM_READ_ADDR_SHIFT
) +
618 IXGBE_EEPROM_READ_REG_START
;
620 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
621 status
= ixgbe_poll_eeprom_eerd_done(hw
);
624 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
625 IXGBE_EEPROM_READ_REG_DATA
);
627 hw_dbg(hw
, "Eeprom read timed out\n");
634 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
635 * @hw: pointer to hardware structure
637 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
639 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
)
643 s32 status
= IXGBE_ERR_EEPROM
;
645 for (i
= 0; i
< IXGBE_EERD_ATTEMPTS
; i
++) {
646 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
647 if (reg
& IXGBE_EEPROM_READ_REG_DONE
) {
657 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
658 * @hw: pointer to hardware structure
660 * Prepares EEPROM for access using bit-bang method. This function should
661 * be called before issuing a command to the EEPROM.
663 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
669 if (ixgbe_acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
670 status
= IXGBE_ERR_SWFW_SYNC
;
673 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
675 /* Request EEPROM Access */
676 eec
|= IXGBE_EEC_REQ
;
677 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
679 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
680 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
681 if (eec
& IXGBE_EEC_GNT
)
686 /* Release if grant not acquired */
687 if (!(eec
& IXGBE_EEC_GNT
)) {
688 eec
&= ~IXGBE_EEC_REQ
;
689 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
690 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
692 ixgbe_release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
693 status
= IXGBE_ERR_EEPROM
;
697 /* Setup EEPROM for Read/Write */
699 /* Clear CS and SK */
700 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
701 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
702 IXGBE_WRITE_FLUSH(hw
);
709 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
710 * @hw: pointer to hardware structure
712 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
714 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
716 s32 status
= IXGBE_ERR_EEPROM
;
721 /* Set timeout value based on size of EEPROM */
722 timeout
= hw
->eeprom
.word_size
+ 1;
724 /* Get SMBI software semaphore between device drivers first */
725 for (i
= 0; i
< timeout
; i
++) {
727 * If the SMBI bit is 0 when we read it, then the bit will be
728 * set and we have the semaphore
730 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
731 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
738 /* Now get the semaphore between SW/FW through the SWESMBI bit */
740 for (i
= 0; i
< timeout
; i
++) {
741 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
743 /* Set the SW EEPROM semaphore bit to request access */
744 swsm
|= IXGBE_SWSM_SWESMBI
;
745 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
748 * If we set the bit successfully then we got the
751 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
752 if (swsm
& IXGBE_SWSM_SWESMBI
)
759 * Release semaphores and return error if SW EEPROM semaphore
760 * was not granted because we don't have access to the EEPROM
763 hw_dbg(hw
, "Driver can't access the Eeprom - Semaphore "
765 ixgbe_release_eeprom_semaphore(hw
);
766 status
= IXGBE_ERR_EEPROM
;
774 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
775 * @hw: pointer to hardware structure
777 * This function clears hardware semaphore bits.
779 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
783 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
785 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
786 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
787 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
788 IXGBE_WRITE_FLUSH(hw
);
792 * ixgbe_ready_eeprom - Polls for EEPROM ready
793 * @hw: pointer to hardware structure
795 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
802 * Read "Status Register" repeatedly until the LSB is cleared. The
803 * EEPROM will signal that the command has been completed by clearing
804 * bit 0 of the internal status register. If it's not cleared within
805 * 5 milliseconds, then error out.
807 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
808 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
809 IXGBE_EEPROM_OPCODE_BITS
);
810 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
811 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
815 ixgbe_standby_eeprom(hw
);
819 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
820 * devices (and only 0-5mSec on 5V devices)
822 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
823 hw_dbg(hw
, "SPI EEPROM Status error\n");
824 status
= IXGBE_ERR_EEPROM
;
831 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
832 * @hw: pointer to hardware structure
834 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
838 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
840 /* Toggle CS to flush commands */
842 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
843 IXGBE_WRITE_FLUSH(hw
);
845 eec
&= ~IXGBE_EEC_CS
;
846 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
847 IXGBE_WRITE_FLUSH(hw
);
852 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
853 * @hw: pointer to hardware structure
854 * @data: data to send to the EEPROM
855 * @count: number of bits to shift out
857 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
864 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
867 * Mask is used to shift "count" bits of "data" out to the EEPROM
868 * one bit at a time. Determine the starting bit based on count
870 mask
= 0x01 << (count
- 1);
872 for (i
= 0; i
< count
; i
++) {
874 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
875 * "1", and then raising and then lowering the clock (the SK
876 * bit controls the clock input to the EEPROM). A "0" is
877 * shifted out to the EEPROM by setting "DI" to "0" and then
878 * raising and then lowering the clock.
883 eec
&= ~IXGBE_EEC_DI
;
885 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
886 IXGBE_WRITE_FLUSH(hw
);
890 ixgbe_raise_eeprom_clk(hw
, &eec
);
891 ixgbe_lower_eeprom_clk(hw
, &eec
);
894 * Shift mask to signify next bit of data to shift in to the
900 /* We leave the "DI" bit set to "0" when we leave this routine. */
901 eec
&= ~IXGBE_EEC_DI
;
902 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
903 IXGBE_WRITE_FLUSH(hw
);
907 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
908 * @hw: pointer to hardware structure
910 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
917 * In order to read a register from the EEPROM, we need to shift
918 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
919 * the clock input to the EEPROM (setting the SK bit), and then reading
920 * the value of the "DO" bit. During this "shifting in" process the
921 * "DI" bit should always be clear.
923 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
925 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
927 for (i
= 0; i
< count
; i
++) {
929 ixgbe_raise_eeprom_clk(hw
, &eec
);
931 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
933 eec
&= ~(IXGBE_EEC_DI
);
934 if (eec
& IXGBE_EEC_DO
)
937 ixgbe_lower_eeprom_clk(hw
, &eec
);
944 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
945 * @hw: pointer to hardware structure
946 * @eec: EEC register's current value
948 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
951 * Raise the clock input to the EEPROM
952 * (setting the SK bit), then delay
954 *eec
= *eec
| IXGBE_EEC_SK
;
955 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
956 IXGBE_WRITE_FLUSH(hw
);
961 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
962 * @hw: pointer to hardware structure
963 * @eecd: EECD's current value
965 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
968 * Lower the clock input to the EEPROM (clearing the SK bit), then
971 *eec
= *eec
& ~IXGBE_EEC_SK
;
972 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
973 IXGBE_WRITE_FLUSH(hw
);
978 * ixgbe_release_eeprom - Release EEPROM, release semaphores
979 * @hw: pointer to hardware structure
981 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
985 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
987 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
988 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
990 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
991 IXGBE_WRITE_FLUSH(hw
);
995 /* Stop requesting EEPROM access */
996 eec
&= ~IXGBE_EEC_REQ
;
997 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
999 ixgbe_release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1003 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1004 * @hw: pointer to hardware structure
1006 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
)
1015 /* Include 0x0-0x3F in the checksum */
1016 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1017 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1018 hw_dbg(hw
, "EEPROM read failed\n");
1024 /* Include all data from pointers except for the fw pointer */
1025 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1026 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1028 /* Make sure the pointer seems valid */
1029 if (pointer
!= 0xFFFF && pointer
!= 0) {
1030 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1032 if (length
!= 0xFFFF && length
!= 0) {
1033 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1034 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1041 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1047 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1048 * @hw: pointer to hardware structure
1049 * @checksum_val: calculated checksum
1051 * Performs checksum calculation and validates the EEPROM checksum. If the
1052 * caller does not need checksum_val, the value can be NULL.
1054 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1059 u16 read_checksum
= 0;
1062 * Read the first word from the EEPROM. If this times out or fails, do
1063 * not continue or we could be in for a very long wait while every
1066 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1069 checksum
= ixgbe_calc_eeprom_checksum(hw
);
1071 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1074 * Verify read checksum from EEPROM is the same as
1075 * calculated checksum
1077 if (read_checksum
!= checksum
)
1078 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1080 /* If the user cares, return the calculated checksum */
1082 *checksum_val
= checksum
;
1084 hw_dbg(hw
, "EEPROM read failed\n");
1091 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1092 * @hw: pointer to hardware structure
1094 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1100 * Read the first word from the EEPROM. If this times out or fails, do
1101 * not continue or we could be in for a very long wait while every
1104 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1107 checksum
= ixgbe_calc_eeprom_checksum(hw
);
1108 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1111 hw_dbg(hw
, "EEPROM read failed\n");
1118 * ixgbe_validate_mac_addr - Validate MAC address
1119 * @mac_addr: pointer to MAC address.
1121 * Tests a MAC address to ensure it is a valid Individual Address
1123 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
1127 /* Make sure it is not a multicast address */
1128 if (IXGBE_IS_MULTICAST(mac_addr
))
1129 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1130 /* Not a broadcast address */
1131 else if (IXGBE_IS_BROADCAST(mac_addr
))
1132 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1133 /* Reject the zero address */
1134 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
1135 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
1136 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1142 * ixgbe_set_rar_generic - Set Rx address register
1143 * @hw: pointer to hardware structure
1144 * @index: Receive address register to write
1145 * @addr: Address to put into receive address register
1146 * @vmdq: VMDq "set" or "pool" index
1147 * @enable_addr: set flag that address is active
1149 * Puts an ethernet address into a receive address register.
1151 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1154 u32 rar_low
, rar_high
;
1155 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1157 /* setup VMDq pool selection before this RAR gets enabled */
1158 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1160 /* Make sure we are using a valid rar index range */
1161 if (index
< rar_entries
) {
1163 * HW expects these in little endian so we reverse the byte
1164 * order from network order (big endian) to little endian
1166 rar_low
= ((u32
)addr
[0] |
1167 ((u32
)addr
[1] << 8) |
1168 ((u32
)addr
[2] << 16) |
1169 ((u32
)addr
[3] << 24));
1171 * Some parts put the VMDq setting in the extra RAH bits,
1172 * so save everything except the lower 16 bits that hold part
1173 * of the address and the address valid bit.
1175 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1176 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1177 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1179 if (enable_addr
!= 0)
1180 rar_high
|= IXGBE_RAH_AV
;
1182 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1183 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1185 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1192 * ixgbe_clear_rar_generic - Remove Rx address register
1193 * @hw: pointer to hardware structure
1194 * @index: Receive address register to write
1196 * Clears an ethernet address from a receive address register.
1198 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1201 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1203 /* Make sure we are using a valid rar index range */
1204 if (index
< rar_entries
) {
1206 * Some parts put the VMDq setting in the extra RAH bits,
1207 * so save everything except the lower 16 bits that hold part
1208 * of the address and the address valid bit.
1210 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1211 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1213 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1214 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1216 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1219 /* clear VMDq pool/queue selection for this RAR */
1220 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1226 * ixgbe_enable_rar - Enable Rx address register
1227 * @hw: pointer to hardware structure
1228 * @index: index into the RAR table
1230 * Enables the select receive address register.
1232 static void ixgbe_enable_rar(struct ixgbe_hw
*hw
, u32 index
)
1236 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1237 rar_high
|= IXGBE_RAH_AV
;
1238 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1242 * ixgbe_disable_rar - Disable Rx address register
1243 * @hw: pointer to hardware structure
1244 * @index: index into the RAR table
1246 * Disables the select receive address register.
1248 static void ixgbe_disable_rar(struct ixgbe_hw
*hw
, u32 index
)
1252 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1253 rar_high
&= (~IXGBE_RAH_AV
);
1254 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1258 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1259 * @hw: pointer to hardware structure
1261 * Places the MAC address in receive address register 0 and clears the rest
1262 * of the receive address registers. Clears the multicast table. Assumes
1263 * the receiver is in reset when the routine is called.
1265 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1268 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1271 * If the current mac address is valid, assume it is a software override
1272 * to the permanent address.
1273 * Otherwise, use the permanent address from the eeprom.
1275 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
1276 IXGBE_ERR_INVALID_MAC_ADDR
) {
1277 /* Get the MAC address from the RAR0 for later reference */
1278 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1280 hw_dbg(hw
, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1281 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
1283 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
1284 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
1286 /* Setup the receive address. */
1287 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1288 hw_dbg(hw
, " New MAC Addr =%.2X %.2X %.2X ",
1289 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
1291 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
1292 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
1294 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1296 hw
->addr_ctrl
.overflow_promisc
= 0;
1298 hw
->addr_ctrl
.rar_used_count
= 1;
1300 /* Zero out the other receive addresses. */
1301 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1302 for (i
= 1; i
< rar_entries
; i
++) {
1303 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1304 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1308 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
1309 hw
->addr_ctrl
.mta_in_use
= 0;
1310 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1312 hw_dbg(hw
, " Clearing MTA\n");
1313 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1314 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1316 if (hw
->mac
.ops
.init_uta_tables
)
1317 hw
->mac
.ops
.init_uta_tables(hw
);
1323 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1324 * @hw: pointer to hardware structure
1325 * @addr: new address
1327 * Adds it to unused receive address register or goes into promiscuous mode.
1329 static void ixgbe_add_uc_addr(struct ixgbe_hw
*hw
, u8
*addr
, u32 vmdq
)
1331 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1334 hw_dbg(hw
, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1335 addr
[0], addr
[1], addr
[2], addr
[3], addr
[4], addr
[5]);
1338 * Place this address in the RAR if there is room,
1339 * else put the controller into promiscuous mode
1341 if (hw
->addr_ctrl
.rar_used_count
< rar_entries
) {
1342 rar
= hw
->addr_ctrl
.rar_used_count
-
1343 hw
->addr_ctrl
.mc_addr_in_rar_count
;
1344 hw
->mac
.ops
.set_rar(hw
, rar
, addr
, vmdq
, IXGBE_RAH_AV
);
1345 hw_dbg(hw
, "Added a secondary address to RAR[%d]\n", rar
);
1346 hw
->addr_ctrl
.rar_used_count
++;
1348 hw
->addr_ctrl
.overflow_promisc
++;
1351 hw_dbg(hw
, "ixgbe_add_uc_addr Complete\n");
1355 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1356 * @hw: pointer to hardware structure
1357 * @addr_list: the list of new addresses
1358 * @addr_count: number of addresses
1359 * @next: iterator function to walk the address list
1361 * The given list replaces any existing list. Clears the secondary addrs from
1362 * receive address registers. Uses unused receive address registers for the
1363 * first secondary addresses, and falls back to promiscuous mode as needed.
1365 * Drivers using secondary unicast addresses must set user_set_promisc when
1366 * manually putting the device into promiscuous mode.
1368 s32
ixgbe_update_uc_addr_list_generic(struct ixgbe_hw
*hw
,
1369 struct list_head
*uc_list
)
1372 u32 old_promisc_setting
= hw
->addr_ctrl
.overflow_promisc
;
1375 struct netdev_hw_addr
*ha
;
1378 * Clear accounting of old secondary address list,
1379 * don't count RAR[0]
1381 uc_addr_in_use
= hw
->addr_ctrl
.rar_used_count
- 1;
1382 hw
->addr_ctrl
.rar_used_count
-= uc_addr_in_use
;
1383 hw
->addr_ctrl
.overflow_promisc
= 0;
1385 /* Zero out the other receive addresses */
1386 hw_dbg(hw
, "Clearing RAR[1-%d]\n", uc_addr_in_use
);
1387 for (i
= 1; i
<= uc_addr_in_use
; i
++) {
1388 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1389 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1392 /* Add the new addresses */
1393 list_for_each_entry(ha
, uc_list
, list
) {
1394 hw_dbg(hw
, " Adding the secondary addresses:\n");
1395 ixgbe_add_uc_addr(hw
, ha
->addr
, 0);
1398 if (hw
->addr_ctrl
.overflow_promisc
) {
1399 /* enable promisc if not already in overflow or set by user */
1400 if (!old_promisc_setting
&& !hw
->addr_ctrl
.user_set_promisc
) {
1401 hw_dbg(hw
, " Entering address overflow promisc mode\n");
1402 fctrl
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
1403 fctrl
|= IXGBE_FCTRL_UPE
;
1404 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, fctrl
);
1407 /* only disable if set by overflow, not by user */
1408 if (old_promisc_setting
&& !hw
->addr_ctrl
.user_set_promisc
) {
1409 hw_dbg(hw
, " Leaving address overflow promisc mode\n");
1410 fctrl
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
1411 fctrl
&= ~IXGBE_FCTRL_UPE
;
1412 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, fctrl
);
1416 hw_dbg(hw
, "ixgbe_update_uc_addr_list_generic Complete\n");
1421 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1422 * @hw: pointer to hardware structure
1423 * @mc_addr: the multicast address
1425 * Extracts the 12 bits, from a multicast address, to determine which
1426 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1427 * incoming rx multicast addresses, to determine the bit-vector to check in
1428 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1429 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1430 * to mc_filter_type.
1432 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1436 switch (hw
->mac
.mc_filter_type
) {
1437 case 0: /* use bits [47:36] of the address */
1438 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1440 case 1: /* use bits [46:35] of the address */
1441 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1443 case 2: /* use bits [45:34] of the address */
1444 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1446 case 3: /* use bits [43:32] of the address */
1447 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1449 default: /* Invalid mc_filter_type */
1450 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1454 /* vector can only be 12-bits or boundary will be exceeded */
1460 * ixgbe_set_mta - Set bit-vector in multicast table
1461 * @hw: pointer to hardware structure
1462 * @hash_value: Multicast address hash value
1464 * Sets the bit-vector in the multicast table.
1466 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1473 hw
->addr_ctrl
.mta_in_use
++;
1475 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1476 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1479 * The MTA is a register array of 128 32-bit registers. It is treated
1480 * like an array of 4096 bits. We want to set bit
1481 * BitArray[vector_value]. So we figure out what register the bit is
1482 * in, read it, OR in the new bit, then write back the new value. The
1483 * register is determined by the upper 7 bits of the vector value and
1484 * the bit within that register are determined by the lower 5 bits of
1487 vector_reg
= (vector
>> 5) & 0x7F;
1488 vector_bit
= vector
& 0x1F;
1489 mta_reg
= IXGBE_READ_REG(hw
, IXGBE_MTA(vector_reg
));
1490 mta_reg
|= (1 << vector_bit
);
1491 IXGBE_WRITE_REG(hw
, IXGBE_MTA(vector_reg
), mta_reg
);
1495 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1496 * @hw: pointer to hardware structure
1497 * @mc_addr_list: the list of new multicast addresses
1498 * @mc_addr_count: number of addresses
1499 * @next: iterator function to walk the multicast address list
1501 * The given list replaces any existing list. Clears the MC addrs from receive
1502 * address registers and the multicast table. Uses unused receive address
1503 * registers for the first multicast addresses, and hashes the rest into the
1506 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
, u8
*mc_addr_list
,
1507 u32 mc_addr_count
, ixgbe_mc_addr_itr next
)
1513 * Set the new number of MC addresses that we are being requested to
1516 hw
->addr_ctrl
.num_mc_addrs
= mc_addr_count
;
1517 hw
->addr_ctrl
.mta_in_use
= 0;
1520 hw_dbg(hw
, " Clearing MTA\n");
1521 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1522 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1524 /* Add the new addresses */
1525 for (i
= 0; i
< mc_addr_count
; i
++) {
1526 hw_dbg(hw
, " Adding the multicast addresses:\n");
1527 ixgbe_set_mta(hw
, next(hw
, &mc_addr_list
, &vmdq
));
1531 if (hw
->addr_ctrl
.mta_in_use
> 0)
1532 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
1533 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
1535 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
1540 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1541 * @hw: pointer to hardware structure
1543 * Enables multicast address in RAR and the use of the multicast hash table.
1545 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
1548 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1549 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1551 if (a
->mc_addr_in_rar_count
> 0)
1552 for (i
= (rar_entries
- a
->mc_addr_in_rar_count
);
1553 i
< rar_entries
; i
++)
1554 ixgbe_enable_rar(hw
, i
);
1556 if (a
->mta_in_use
> 0)
1557 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
1558 hw
->mac
.mc_filter_type
);
1564 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1565 * @hw: pointer to hardware structure
1567 * Disables multicast address in RAR and the use of the multicast hash table.
1569 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
1572 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1573 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1575 if (a
->mc_addr_in_rar_count
> 0)
1576 for (i
= (rar_entries
- a
->mc_addr_in_rar_count
);
1577 i
< rar_entries
; i
++)
1578 ixgbe_disable_rar(hw
, i
);
1580 if (a
->mta_in_use
> 0)
1581 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1587 * ixgbe_fc_enable_generic - Enable flow control
1588 * @hw: pointer to hardware structure
1589 * @packetbuf_num: packet buffer number (0-7)
1591 * Enable flow control according to the current settings.
1593 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1596 u32 mflcn_reg
, fccfg_reg
;
1601 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
)
1604 #endif /* CONFIG_DCB */
1605 /* Negotiate the fc mode to use */
1606 ret_val
= ixgbe_fc_autoneg(hw
);
1610 /* Disable any previous flow control settings */
1611 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
1612 mflcn_reg
&= ~(IXGBE_MFLCN_RFCE
| IXGBE_MFLCN_RPFCE
);
1614 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
1615 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
1618 * The possible values of fc.current_mode are:
1619 * 0: Flow control is completely disabled
1620 * 1: Rx flow control is enabled (we can receive pause frames,
1621 * but not send pause frames).
1622 * 2: Tx flow control is enabled (we can send pause frames but
1623 * we do not support receiving pause frames).
1624 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1625 * 4: Priority Flow Control is enabled.
1628 switch (hw
->fc
.current_mode
) {
1631 * Flow control is disabled by software override or autoneg.
1632 * The code below will actually disable it in the HW.
1635 case ixgbe_fc_rx_pause
:
1637 * Rx Flow control is enabled and Tx Flow control is
1638 * disabled by software override. Since there really
1639 * isn't a way to advertise that we are capable of RX
1640 * Pause ONLY, we will advertise that we support both
1641 * symmetric and asymmetric Rx PAUSE. Later, we will
1642 * disable the adapter's ability to send PAUSE frames.
1644 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1646 case ixgbe_fc_tx_pause
:
1648 * Tx Flow control is enabled, and Rx Flow control is
1649 * disabled by software override.
1651 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1654 /* Flow control (both Rx and Tx) is enabled by SW override. */
1655 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1656 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1662 #endif /* CONFIG_DCB */
1664 hw_dbg(hw
, "Flow control param set incorrectly\n");
1665 ret_val
= -IXGBE_ERR_CONFIG
;
1670 /* Set 802.3x based flow control settings. */
1671 mflcn_reg
|= IXGBE_MFLCN_DPF
;
1672 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
1673 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
1675 reg
= IXGBE_READ_REG(hw
, IXGBE_MTQC
);
1676 /* Thresholds are different for link flow control when in DCB mode */
1677 if (reg
& IXGBE_MTQC_RT_ENA
) {
1678 rx_pba_size
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(packetbuf_num
));
1680 /* Always disable XON for LFC when in DCB mode */
1681 reg
= (rx_pba_size
>> 5) & 0xFFE0;
1682 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(packetbuf_num
), reg
);
1684 reg
= (rx_pba_size
>> 2) & 0xFFE0;
1685 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
)
1686 reg
|= IXGBE_FCRTH_FCEN
;
1687 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
), reg
);
1690 * Set up and enable Rx high/low water mark thresholds,
1693 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) {
1694 if (hw
->fc
.send_xon
) {
1696 IXGBE_FCRTL_82599(packetbuf_num
),
1701 IXGBE_FCRTL_82599(packetbuf_num
),
1705 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
),
1706 (hw
->fc
.high_water
| IXGBE_FCRTH_FCEN
));
1710 /* Configure pause time (2 TCs per register) */
1711 reg
= IXGBE_READ_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2));
1712 if ((packetbuf_num
& 1) == 0)
1713 reg
= (reg
& 0xFFFF0000) | hw
->fc
.pause_time
;
1715 reg
= (reg
& 0x0000FFFF) | (hw
->fc
.pause_time
<< 16);
1716 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2), reg
);
1718 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1725 * ixgbe_fc_autoneg - Configure flow control
1726 * @hw: pointer to hardware structure
1728 * Compares our advertised flow control capabilities to those advertised by
1729 * our link partner, and determines the proper flow control mode to use.
1731 s32
ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
1734 ixgbe_link_speed speed
;
1735 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
1739 * AN should have completed when the cable was plugged in.
1740 * Look for reasons to bail out. Bail out if:
1741 * - FC autoneg is disabled, or if
1742 * - we don't have multispeed fiber, or if
1743 * - we're not running at 1G, or if
1744 * - link is not up, or if
1745 * - link is up but AN did not complete, or if
1746 * - link is up and AN completed but timed out
1748 * Since we're being called from an LSC, link is already know to be up.
1749 * So use link_up_wait_to_complete=false.
1751 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
1752 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
1754 if (hw
->fc
.disable_fc_autoneg
||
1755 !hw
->phy
.multispeed_fiber
||
1756 (speed
!= IXGBE_LINK_SPEED_1GB_FULL
) ||
1758 ((linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
1759 ((linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1)) {
1760 hw
->fc
.fc_was_autonegged
= false;
1761 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1762 hw_dbg(hw
, "Autoneg FC was skipped.\n");
1767 * Read the AN advertisement and LP ability registers and resolve
1768 * local flow control settings accordingly
1770 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1771 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
1772 if ((pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1773 (pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
)) {
1775 * Now we need to check if the user selected Rx ONLY
1776 * of pause frames. In this case, we had to advertise
1777 * FULL flow control because we could not advertise RX
1778 * ONLY. Hence, we must now check to see if we need to
1779 * turn OFF the TRANSMISSION of PAUSE frames.
1781 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
1782 hw
->fc
.current_mode
= ixgbe_fc_full
;
1783 hw_dbg(hw
, "Flow Control = FULL.\n");
1785 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1786 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1788 } else if (!(pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1789 (pcs_anadv_reg
& IXGBE_PCS1GANA_ASM_PAUSE
) &&
1790 (pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1791 (pcs_lpab_reg
& IXGBE_PCS1GANA_ASM_PAUSE
)) {
1792 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
1793 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
1794 } else if ((pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1795 (pcs_anadv_reg
& IXGBE_PCS1GANA_ASM_PAUSE
) &&
1796 !(pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1797 (pcs_lpab_reg
& IXGBE_PCS1GANA_ASM_PAUSE
)) {
1798 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1799 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1801 hw
->fc
.current_mode
= ixgbe_fc_none
;
1802 hw_dbg(hw
, "Flow Control = NONE.\n");
1805 /* Record that current_mode is the result of a successful autoneg */
1806 hw
->fc
.fc_was_autonegged
= true;
1813 * ixgbe_setup_fc - Set up flow control
1814 * @hw: pointer to hardware structure
1816 * Called at init time to set up flow control.
1818 s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1824 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
) {
1825 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1830 /* Validate the packetbuf configuration */
1831 if (packetbuf_num
< 0 || packetbuf_num
> 7) {
1832 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
1833 "is 0-7\n", packetbuf_num
);
1834 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1839 * Validate the water mark configuration. Zero water marks are invalid
1840 * because it causes the controller to just blast out fc packets.
1842 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
1843 hw_dbg(hw
, "Invalid water mark configuration\n");
1844 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1849 * Validate the requested mode. Strict IEEE mode does not allow
1850 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1852 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
1853 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict "
1855 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1860 * 10gig parts do not have a word in the EEPROM to determine the
1861 * default flow control setting, so we explicitly set it to full.
1863 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
1864 hw
->fc
.requested_mode
= ixgbe_fc_full
;
1867 * Set up the 1G flow control advertisement registers so the HW will be
1868 * able to do fc autoneg once the cable is plugged in. If we end up
1869 * using 10g instead, this is harmless.
1871 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1874 * The possible values of fc.requested_mode are:
1875 * 0: Flow control is completely disabled
1876 * 1: Rx flow control is enabled (we can receive pause frames,
1877 * but not send pause frames).
1878 * 2: Tx flow control is enabled (we can send pause frames but
1879 * we do not support receiving pause frames).
1880 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1882 * 4: Priority Flow Control is enabled.
1886 switch (hw
->fc
.requested_mode
) {
1888 /* Flow control completely disabled by software override. */
1889 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1891 case ixgbe_fc_rx_pause
:
1893 * Rx Flow control is enabled and Tx Flow control is
1894 * disabled by software override. Since there really
1895 * isn't a way to advertise that we are capable of RX
1896 * Pause ONLY, we will advertise that we support both
1897 * symmetric and asymmetric Rx PAUSE. Later, we will
1898 * disable the adapter's ability to send PAUSE frames.
1900 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1902 case ixgbe_fc_tx_pause
:
1904 * Tx Flow control is enabled, and Rx Flow control is
1905 * disabled by software override.
1907 reg
|= (IXGBE_PCS1GANA_ASM_PAUSE
);
1908 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
);
1911 /* Flow control (both Rx and Tx) is enabled by SW override. */
1912 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1918 #endif /* CONFIG_DCB */
1920 hw_dbg(hw
, "Flow control param set incorrectly\n");
1921 ret_val
= -IXGBE_ERR_CONFIG
;
1926 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
1927 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
1929 /* Enable and restart autoneg to inform the link partner */
1930 reg
|= IXGBE_PCS1GLCTL_AN_ENABLE
| IXGBE_PCS1GLCTL_AN_RESTART
;
1932 /* Disable AN timeout */
1933 if (hw
->fc
.strict_ieee
)
1934 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
1936 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
1937 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
1944 * ixgbe_disable_pcie_master - Disable PCI-express master access
1945 * @hw: pointer to hardware structure
1947 * Disables PCI-Express master access and verifies there are no pending
1948 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1949 * bit hasn't caused the master requests to be disabled, else 0
1950 * is returned signifying master requests disabled.
1952 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
1956 u32 number_of_queues
;
1957 s32 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
1959 /* Disable the receive unit by stopping each queue */
1960 number_of_queues
= hw
->mac
.max_rx_queues
;
1961 for (i
= 0; i
< number_of_queues
; i
++) {
1962 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
1963 if (reg_val
& IXGBE_RXDCTL_ENABLE
) {
1964 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
1965 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
1969 reg_val
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
1970 reg_val
|= IXGBE_CTRL_GIO_DIS
;
1971 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, reg_val
);
1973 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
1974 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
)) {
1986 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1987 * @hw: pointer to hardware structure
1988 * @mask: Mask to specify which semaphore to acquire
1990 * Acquires the SWFW semaphore thought the GSSR register for the specified
1991 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1993 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1997 u32 fwmask
= mask
<< 5;
2001 if (ixgbe_get_eeprom_semaphore(hw
))
2002 return -IXGBE_ERR_SWFW_SYNC
;
2004 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2005 if (!(gssr
& (fwmask
| swmask
)))
2009 * Firmware currently using resource (fwmask) or other software
2010 * thread currently using resource (swmask)
2012 ixgbe_release_eeprom_semaphore(hw
);
2018 hw_dbg(hw
, "Driver can't access resource, GSSR timeout.\n");
2019 return -IXGBE_ERR_SWFW_SYNC
;
2023 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2025 ixgbe_release_eeprom_semaphore(hw
);
2030 * ixgbe_release_swfw_sync - Release SWFW semaphore
2031 * @hw: pointer to hardware structure
2032 * @mask: Mask to specify which semaphore to release
2034 * Releases the SWFW semaphore thought the GSSR register for the specified
2035 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2037 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2042 ixgbe_get_eeprom_semaphore(hw
);
2044 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2046 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2048 ixgbe_release_eeprom_semaphore(hw
);
2052 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2053 * @hw: pointer to hardware structure
2054 * @regval: register value to write to RXCTRL
2056 * Enables the Rx DMA unit
2058 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2060 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2066 * ixgbe_blink_led_start_generic - Blink LED based on index.
2067 * @hw: pointer to hardware structure
2068 * @index: led number to blink
2070 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2072 ixgbe_link_speed speed
= 0;
2074 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2075 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2078 * Link must be up to auto-blink the LEDs;
2079 * Force it if link is down.
2081 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2084 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2085 autoc_reg
|= IXGBE_AUTOC_FLU
;
2086 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2090 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2091 led_reg
|= IXGBE_LED_BLINK(index
);
2092 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2093 IXGBE_WRITE_FLUSH(hw
);
2099 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2100 * @hw: pointer to hardware structure
2101 * @index: led number to stop blinking
2103 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2105 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2106 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2108 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2109 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2110 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2112 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2113 led_reg
&= ~IXGBE_LED_BLINK(index
);
2114 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2115 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2116 IXGBE_WRITE_FLUSH(hw
);