OMAP3: PM: Fix VDD2 OPP determining logic
[linux-ginger.git] / mm / swapfile.c
bloba1bc6b9af9a23634f4185e85775d94a6500bbb0e
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list = {-1, -1};
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
54 static DEFINE_MUTEX(swapon_mutex);
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59 SWAP_MAP = 0, /* ops for reference from swap users */
60 SWAP_CACHE, /* ops for reference from swap cache */
63 static inline int swap_count(unsigned short ent)
65 return ent & SWAP_COUNT_MASK;
68 static inline bool swap_has_cache(unsigned short ent)
70 return !!(ent & SWAP_HAS_CACHE);
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
75 unsigned short ret = count;
77 if (has_cache)
78 return SWAP_HAS_CACHE | ret;
79 return ret;
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
86 int type = si - swap_info;
87 swp_entry_t entry = swp_entry(type, offset);
88 struct page *page;
89 int ret = 0;
91 page = find_get_page(&swapper_space, entry.val);
92 if (!page)
93 return 0;
95 * This function is called from scan_swap_map() and it's called
96 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 * We have to use trylock for avoiding deadlock. This is a special
98 * case and you should use try_to_free_swap() with explicit lock_page()
99 * in usual operations.
101 if (trylock_page(page)) {
102 ret = try_to_free_swap(page);
103 unlock_page(page);
105 page_cache_release(page);
106 return ret;
110 * We need this because the bdev->unplug_fn can sleep and we cannot
111 * hold swap_lock while calling the unplug_fn. And swap_lock
112 * cannot be turned into a mutex.
114 static DECLARE_RWSEM(swap_unplug_sem);
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
118 swp_entry_t entry;
120 down_read(&swap_unplug_sem);
121 entry.val = page_private(page);
122 if (PageSwapCache(page)) {
123 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124 struct backing_dev_info *bdi;
127 * If the page is removed from swapcache from under us (with a
128 * racy try_to_unuse/swapoff) we need an additional reference
129 * count to avoid reading garbage from page_private(page) above.
130 * If the WARN_ON triggers during a swapoff it maybe the race
131 * condition and it's harmless. However if it triggers without
132 * swapoff it signals a problem.
134 WARN_ON(page_count(page) <= 1);
136 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137 blk_run_backing_dev(bdi, page);
139 up_read(&swap_unplug_sem);
143 * swapon tell device that all the old swap contents can be discarded,
144 * to allow the swap device to optimize its wear-levelling.
146 static int discard_swap(struct swap_info_struct *si)
148 struct swap_extent *se;
149 int err = 0;
151 list_for_each_entry(se, &si->extent_list, list) {
152 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155 if (se->start_page == 0) {
156 /* Do not discard the swap header page! */
157 start_block += 1 << (PAGE_SHIFT - 9);
158 nr_blocks -= 1 << (PAGE_SHIFT - 9);
159 if (!nr_blocks)
160 continue;
163 err = blkdev_issue_discard(si->bdev, start_block,
164 nr_blocks, GFP_KERNEL,
165 DISCARD_FL_BARRIER);
166 if (err)
167 break;
169 cond_resched();
171 return err; /* That will often be -EOPNOTSUPP */
175 * swap allocation tell device that a cluster of swap can now be discarded,
176 * to allow the swap device to optimize its wear-levelling.
178 static void discard_swap_cluster(struct swap_info_struct *si,
179 pgoff_t start_page, pgoff_t nr_pages)
181 struct swap_extent *se = si->curr_swap_extent;
182 int found_extent = 0;
184 while (nr_pages) {
185 struct list_head *lh;
187 if (se->start_page <= start_page &&
188 start_page < se->start_page + se->nr_pages) {
189 pgoff_t offset = start_page - se->start_page;
190 sector_t start_block = se->start_block + offset;
191 sector_t nr_blocks = se->nr_pages - offset;
193 if (nr_blocks > nr_pages)
194 nr_blocks = nr_pages;
195 start_page += nr_blocks;
196 nr_pages -= nr_blocks;
198 if (!found_extent++)
199 si->curr_swap_extent = se;
201 start_block <<= PAGE_SHIFT - 9;
202 nr_blocks <<= PAGE_SHIFT - 9;
203 if (blkdev_issue_discard(si->bdev, start_block,
204 nr_blocks, GFP_NOIO,
205 DISCARD_FL_BARRIER))
206 break;
209 lh = se->list.next;
210 if (lh == &si->extent_list)
211 lh = lh->next;
212 se = list_entry(lh, struct swap_extent, list);
216 static int wait_for_discard(void *word)
218 schedule();
219 return 0;
222 #define SWAPFILE_CLUSTER 256
223 #define LATENCY_LIMIT 256
225 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
226 int cache)
228 unsigned long offset;
229 unsigned long scan_base;
230 unsigned long last_in_cluster = 0;
231 int latency_ration = LATENCY_LIMIT;
232 int found_free_cluster = 0;
235 * We try to cluster swap pages by allocating them sequentially
236 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
237 * way, however, we resort to first-free allocation, starting
238 * a new cluster. This prevents us from scattering swap pages
239 * all over the entire swap partition, so that we reduce
240 * overall disk seek times between swap pages. -- sct
241 * But we do now try to find an empty cluster. -Andrea
242 * And we let swap pages go all over an SSD partition. Hugh
245 si->flags += SWP_SCANNING;
246 scan_base = offset = si->cluster_next;
248 if (unlikely(!si->cluster_nr--)) {
249 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
250 si->cluster_nr = SWAPFILE_CLUSTER - 1;
251 goto checks;
253 if (si->flags & SWP_DISCARDABLE) {
255 * Start range check on racing allocations, in case
256 * they overlap the cluster we eventually decide on
257 * (we scan without swap_lock to allow preemption).
258 * It's hardly conceivable that cluster_nr could be
259 * wrapped during our scan, but don't depend on it.
261 if (si->lowest_alloc)
262 goto checks;
263 si->lowest_alloc = si->max;
264 si->highest_alloc = 0;
266 spin_unlock(&swap_lock);
269 * If seek is expensive, start searching for new cluster from
270 * start of partition, to minimize the span of allocated swap.
271 * But if seek is cheap, search from our current position, so
272 * that swap is allocated from all over the partition: if the
273 * Flash Translation Layer only remaps within limited zones,
274 * we don't want to wear out the first zone too quickly.
276 if (!(si->flags & SWP_SOLIDSTATE))
277 scan_base = offset = si->lowest_bit;
278 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
280 /* Locate the first empty (unaligned) cluster */
281 for (; last_in_cluster <= si->highest_bit; offset++) {
282 if (si->swap_map[offset])
283 last_in_cluster = offset + SWAPFILE_CLUSTER;
284 else if (offset == last_in_cluster) {
285 spin_lock(&swap_lock);
286 offset -= SWAPFILE_CLUSTER - 1;
287 si->cluster_next = offset;
288 si->cluster_nr = SWAPFILE_CLUSTER - 1;
289 found_free_cluster = 1;
290 goto checks;
292 if (unlikely(--latency_ration < 0)) {
293 cond_resched();
294 latency_ration = LATENCY_LIMIT;
298 offset = si->lowest_bit;
299 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
301 /* Locate the first empty (unaligned) cluster */
302 for (; last_in_cluster < scan_base; offset++) {
303 if (si->swap_map[offset])
304 last_in_cluster = offset + SWAPFILE_CLUSTER;
305 else if (offset == last_in_cluster) {
306 spin_lock(&swap_lock);
307 offset -= SWAPFILE_CLUSTER - 1;
308 si->cluster_next = offset;
309 si->cluster_nr = SWAPFILE_CLUSTER - 1;
310 found_free_cluster = 1;
311 goto checks;
313 if (unlikely(--latency_ration < 0)) {
314 cond_resched();
315 latency_ration = LATENCY_LIMIT;
319 offset = scan_base;
320 spin_lock(&swap_lock);
321 si->cluster_nr = SWAPFILE_CLUSTER - 1;
322 si->lowest_alloc = 0;
325 checks:
326 if (!(si->flags & SWP_WRITEOK))
327 goto no_page;
328 if (!si->highest_bit)
329 goto no_page;
330 if (offset > si->highest_bit)
331 scan_base = offset = si->lowest_bit;
333 /* reuse swap entry of cache-only swap if not busy. */
334 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
335 int swap_was_freed;
336 spin_unlock(&swap_lock);
337 swap_was_freed = __try_to_reclaim_swap(si, offset);
338 spin_lock(&swap_lock);
339 /* entry was freed successfully, try to use this again */
340 if (swap_was_freed)
341 goto checks;
342 goto scan; /* check next one */
345 if (si->swap_map[offset])
346 goto scan;
348 if (offset == si->lowest_bit)
349 si->lowest_bit++;
350 if (offset == si->highest_bit)
351 si->highest_bit--;
352 si->inuse_pages++;
353 if (si->inuse_pages == si->pages) {
354 si->lowest_bit = si->max;
355 si->highest_bit = 0;
357 if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
358 si->swap_map[offset] = encode_swapmap(0, true);
359 else /* at suspend */
360 si->swap_map[offset] = encode_swapmap(1, false);
361 si->cluster_next = offset + 1;
362 si->flags -= SWP_SCANNING;
364 if (si->lowest_alloc) {
366 * Only set when SWP_DISCARDABLE, and there's a scan
367 * for a free cluster in progress or just completed.
369 if (found_free_cluster) {
371 * To optimize wear-levelling, discard the
372 * old data of the cluster, taking care not to
373 * discard any of its pages that have already
374 * been allocated by racing tasks (offset has
375 * already stepped over any at the beginning).
377 if (offset < si->highest_alloc &&
378 si->lowest_alloc <= last_in_cluster)
379 last_in_cluster = si->lowest_alloc - 1;
380 si->flags |= SWP_DISCARDING;
381 spin_unlock(&swap_lock);
383 if (offset < last_in_cluster)
384 discard_swap_cluster(si, offset,
385 last_in_cluster - offset + 1);
387 spin_lock(&swap_lock);
388 si->lowest_alloc = 0;
389 si->flags &= ~SWP_DISCARDING;
391 smp_mb(); /* wake_up_bit advises this */
392 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
394 } else if (si->flags & SWP_DISCARDING) {
396 * Delay using pages allocated by racing tasks
397 * until the whole discard has been issued. We
398 * could defer that delay until swap_writepage,
399 * but it's easier to keep this self-contained.
401 spin_unlock(&swap_lock);
402 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
403 wait_for_discard, TASK_UNINTERRUPTIBLE);
404 spin_lock(&swap_lock);
405 } else {
407 * Note pages allocated by racing tasks while
408 * scan for a free cluster is in progress, so
409 * that its final discard can exclude them.
411 if (offset < si->lowest_alloc)
412 si->lowest_alloc = offset;
413 if (offset > si->highest_alloc)
414 si->highest_alloc = offset;
417 return offset;
419 scan:
420 spin_unlock(&swap_lock);
421 while (++offset <= si->highest_bit) {
422 if (!si->swap_map[offset]) {
423 spin_lock(&swap_lock);
424 goto checks;
426 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427 spin_lock(&swap_lock);
428 goto checks;
430 if (unlikely(--latency_ration < 0)) {
431 cond_resched();
432 latency_ration = LATENCY_LIMIT;
435 offset = si->lowest_bit;
436 while (++offset < scan_base) {
437 if (!si->swap_map[offset]) {
438 spin_lock(&swap_lock);
439 goto checks;
441 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
442 spin_lock(&swap_lock);
443 goto checks;
445 if (unlikely(--latency_ration < 0)) {
446 cond_resched();
447 latency_ration = LATENCY_LIMIT;
450 spin_lock(&swap_lock);
452 no_page:
453 si->flags -= SWP_SCANNING;
454 return 0;
457 swp_entry_t get_swap_page(void)
459 struct swap_info_struct *si;
460 pgoff_t offset;
461 int type, next;
462 int wrapped = 0;
464 spin_lock(&swap_lock);
465 if (nr_swap_pages <= 0)
466 goto noswap;
467 nr_swap_pages--;
469 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
470 si = swap_info + type;
471 next = si->next;
472 if (next < 0 ||
473 (!wrapped && si->prio != swap_info[next].prio)) {
474 next = swap_list.head;
475 wrapped++;
478 if (!si->highest_bit)
479 continue;
480 if (!(si->flags & SWP_WRITEOK))
481 continue;
483 swap_list.next = next;
484 /* This is called for allocating swap entry for cache */
485 offset = scan_swap_map(si, SWAP_CACHE);
486 if (offset) {
487 spin_unlock(&swap_lock);
488 return swp_entry(type, offset);
490 next = swap_list.next;
493 nr_swap_pages++;
494 noswap:
495 spin_unlock(&swap_lock);
496 return (swp_entry_t) {0};
499 /* The only caller of this function is now susupend routine */
500 swp_entry_t get_swap_page_of_type(int type)
502 struct swap_info_struct *si;
503 pgoff_t offset;
505 spin_lock(&swap_lock);
506 si = swap_info + type;
507 if (si->flags & SWP_WRITEOK) {
508 nr_swap_pages--;
509 /* This is called for allocating swap entry, not cache */
510 offset = scan_swap_map(si, SWAP_MAP);
511 if (offset) {
512 spin_unlock(&swap_lock);
513 return swp_entry(type, offset);
515 nr_swap_pages++;
517 spin_unlock(&swap_lock);
518 return (swp_entry_t) {0};
521 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
523 struct swap_info_struct * p;
524 unsigned long offset, type;
526 if (!entry.val)
527 goto out;
528 type = swp_type(entry);
529 if (type >= nr_swapfiles)
530 goto bad_nofile;
531 p = & swap_info[type];
532 if (!(p->flags & SWP_USED))
533 goto bad_device;
534 offset = swp_offset(entry);
535 if (offset >= p->max)
536 goto bad_offset;
537 if (!p->swap_map[offset])
538 goto bad_free;
539 spin_lock(&swap_lock);
540 return p;
542 bad_free:
543 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
544 goto out;
545 bad_offset:
546 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
547 goto out;
548 bad_device:
549 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
550 goto out;
551 bad_nofile:
552 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
553 out:
554 return NULL;
557 static int swap_entry_free(struct swap_info_struct *p,
558 swp_entry_t ent, int cache)
560 unsigned long offset = swp_offset(ent);
561 int count = swap_count(p->swap_map[offset]);
562 bool has_cache;
564 has_cache = swap_has_cache(p->swap_map[offset]);
566 if (cache == SWAP_MAP) { /* dropping usage count of swap */
567 if (count < SWAP_MAP_MAX) {
568 count--;
569 p->swap_map[offset] = encode_swapmap(count, has_cache);
571 } else { /* dropping swap cache flag */
572 VM_BUG_ON(!has_cache);
573 p->swap_map[offset] = encode_swapmap(count, false);
576 /* return code. */
577 count = p->swap_map[offset];
578 /* free if no reference */
579 if (!count) {
580 if (offset < p->lowest_bit)
581 p->lowest_bit = offset;
582 if (offset > p->highest_bit)
583 p->highest_bit = offset;
584 if (p->prio > swap_info[swap_list.next].prio)
585 swap_list.next = p - swap_info;
586 nr_swap_pages++;
587 p->inuse_pages--;
589 if (!swap_count(count))
590 mem_cgroup_uncharge_swap(ent);
591 return count;
595 * Caller has made sure that the swapdevice corresponding to entry
596 * is still around or has not been recycled.
598 void swap_free(swp_entry_t entry)
600 struct swap_info_struct * p;
602 p = swap_info_get(entry);
603 if (p) {
604 swap_entry_free(p, entry, SWAP_MAP);
605 spin_unlock(&swap_lock);
610 * Called after dropping swapcache to decrease refcnt to swap entries.
612 void swapcache_free(swp_entry_t entry, struct page *page)
614 struct swap_info_struct *p;
615 int ret;
617 p = swap_info_get(entry);
618 if (p) {
619 ret = swap_entry_free(p, entry, SWAP_CACHE);
620 if (page) {
621 bool swapout;
622 if (ret)
623 swapout = true; /* the end of swap out */
624 else
625 swapout = false; /* no more swap users! */
626 mem_cgroup_uncharge_swapcache(page, entry, swapout);
628 spin_unlock(&swap_lock);
630 return;
634 * How many references to page are currently swapped out?
636 static inline int page_swapcount(struct page *page)
638 int count = 0;
639 struct swap_info_struct *p;
640 swp_entry_t entry;
642 entry.val = page_private(page);
643 p = swap_info_get(entry);
644 if (p) {
645 count = swap_count(p->swap_map[swp_offset(entry)]);
646 spin_unlock(&swap_lock);
648 return count;
652 * We can write to an anon page without COW if there are no other references
653 * to it. And as a side-effect, free up its swap: because the old content
654 * on disk will never be read, and seeking back there to write new content
655 * later would only waste time away from clustering.
657 int reuse_swap_page(struct page *page)
659 int count;
661 VM_BUG_ON(!PageLocked(page));
662 count = page_mapcount(page);
663 if (count <= 1 && PageSwapCache(page)) {
664 count += page_swapcount(page);
665 if (count == 1 && !PageWriteback(page)) {
666 delete_from_swap_cache(page);
667 SetPageDirty(page);
670 return count == 1;
674 * If swap is getting full, or if there are no more mappings of this page,
675 * then try_to_free_swap is called to free its swap space.
677 int try_to_free_swap(struct page *page)
679 VM_BUG_ON(!PageLocked(page));
681 if (!PageSwapCache(page))
682 return 0;
683 if (PageWriteback(page))
684 return 0;
685 if (page_swapcount(page))
686 return 0;
688 delete_from_swap_cache(page);
689 SetPageDirty(page);
690 return 1;
694 * Free the swap entry like above, but also try to
695 * free the page cache entry if it is the last user.
697 int free_swap_and_cache(swp_entry_t entry)
699 struct swap_info_struct *p;
700 struct page *page = NULL;
702 if (non_swap_entry(entry))
703 return 1;
705 p = swap_info_get(entry);
706 if (p) {
707 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
708 page = find_get_page(&swapper_space, entry.val);
709 if (page && !trylock_page(page)) {
710 page_cache_release(page);
711 page = NULL;
714 spin_unlock(&swap_lock);
716 if (page) {
718 * Not mapped elsewhere, or swap space full? Free it!
719 * Also recheck PageSwapCache now page is locked (above).
721 if (PageSwapCache(page) && !PageWriteback(page) &&
722 (!page_mapped(page) || vm_swap_full())) {
723 delete_from_swap_cache(page);
724 SetPageDirty(page);
726 unlock_page(page);
727 page_cache_release(page);
729 return p != NULL;
732 #ifdef CONFIG_HIBERNATION
734 * Find the swap type that corresponds to given device (if any).
736 * @offset - number of the PAGE_SIZE-sized block of the device, starting
737 * from 0, in which the swap header is expected to be located.
739 * This is needed for the suspend to disk (aka swsusp).
741 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
743 struct block_device *bdev = NULL;
744 int i;
746 if (device)
747 bdev = bdget(device);
749 spin_lock(&swap_lock);
750 for (i = 0; i < nr_swapfiles; i++) {
751 struct swap_info_struct *sis = swap_info + i;
753 if (!(sis->flags & SWP_WRITEOK))
754 continue;
756 if (!bdev) {
757 if (bdev_p)
758 *bdev_p = bdgrab(sis->bdev);
760 spin_unlock(&swap_lock);
761 return i;
763 if (bdev == sis->bdev) {
764 struct swap_extent *se;
766 se = list_entry(sis->extent_list.next,
767 struct swap_extent, list);
768 if (se->start_block == offset) {
769 if (bdev_p)
770 *bdev_p = bdgrab(sis->bdev);
772 spin_unlock(&swap_lock);
773 bdput(bdev);
774 return i;
778 spin_unlock(&swap_lock);
779 if (bdev)
780 bdput(bdev);
782 return -ENODEV;
786 * Return either the total number of swap pages of given type, or the number
787 * of free pages of that type (depending on @free)
789 * This is needed for software suspend
791 unsigned int count_swap_pages(int type, int free)
793 unsigned int n = 0;
795 if (type < nr_swapfiles) {
796 spin_lock(&swap_lock);
797 if (swap_info[type].flags & SWP_WRITEOK) {
798 n = swap_info[type].pages;
799 if (free)
800 n -= swap_info[type].inuse_pages;
802 spin_unlock(&swap_lock);
804 return n;
806 #endif
809 * No need to decide whether this PTE shares the swap entry with others,
810 * just let do_wp_page work it out if a write is requested later - to
811 * force COW, vm_page_prot omits write permission from any private vma.
813 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
814 unsigned long addr, swp_entry_t entry, struct page *page)
816 struct mem_cgroup *ptr = NULL;
817 spinlock_t *ptl;
818 pte_t *pte;
819 int ret = 1;
821 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
822 ret = -ENOMEM;
823 goto out_nolock;
826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
827 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
828 if (ret > 0)
829 mem_cgroup_cancel_charge_swapin(ptr);
830 ret = 0;
831 goto out;
834 inc_mm_counter(vma->vm_mm, anon_rss);
835 get_page(page);
836 set_pte_at(vma->vm_mm, addr, pte,
837 pte_mkold(mk_pte(page, vma->vm_page_prot)));
838 page_add_anon_rmap(page, vma, addr);
839 mem_cgroup_commit_charge_swapin(page, ptr);
840 swap_free(entry);
842 * Move the page to the active list so it is not
843 * immediately swapped out again after swapon.
845 activate_page(page);
846 out:
847 pte_unmap_unlock(pte, ptl);
848 out_nolock:
849 return ret;
852 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
853 unsigned long addr, unsigned long end,
854 swp_entry_t entry, struct page *page)
856 pte_t swp_pte = swp_entry_to_pte(entry);
857 pte_t *pte;
858 int ret = 0;
861 * We don't actually need pte lock while scanning for swp_pte: since
862 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
863 * page table while we're scanning; though it could get zapped, and on
864 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
865 * of unmatched parts which look like swp_pte, so unuse_pte must
866 * recheck under pte lock. Scanning without pte lock lets it be
867 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
869 pte = pte_offset_map(pmd, addr);
870 do {
872 * swapoff spends a _lot_ of time in this loop!
873 * Test inline before going to call unuse_pte.
875 if (unlikely(pte_same(*pte, swp_pte))) {
876 pte_unmap(pte);
877 ret = unuse_pte(vma, pmd, addr, entry, page);
878 if (ret)
879 goto out;
880 pte = pte_offset_map(pmd, addr);
882 } while (pte++, addr += PAGE_SIZE, addr != end);
883 pte_unmap(pte - 1);
884 out:
885 return ret;
888 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
889 unsigned long addr, unsigned long end,
890 swp_entry_t entry, struct page *page)
892 pmd_t *pmd;
893 unsigned long next;
894 int ret;
896 pmd = pmd_offset(pud, addr);
897 do {
898 next = pmd_addr_end(addr, end);
899 if (pmd_none_or_clear_bad(pmd))
900 continue;
901 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
902 if (ret)
903 return ret;
904 } while (pmd++, addr = next, addr != end);
905 return 0;
908 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
909 unsigned long addr, unsigned long end,
910 swp_entry_t entry, struct page *page)
912 pud_t *pud;
913 unsigned long next;
914 int ret;
916 pud = pud_offset(pgd, addr);
917 do {
918 next = pud_addr_end(addr, end);
919 if (pud_none_or_clear_bad(pud))
920 continue;
921 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
922 if (ret)
923 return ret;
924 } while (pud++, addr = next, addr != end);
925 return 0;
928 static int unuse_vma(struct vm_area_struct *vma,
929 swp_entry_t entry, struct page *page)
931 pgd_t *pgd;
932 unsigned long addr, end, next;
933 int ret;
935 if (page->mapping) {
936 addr = page_address_in_vma(page, vma);
937 if (addr == -EFAULT)
938 return 0;
939 else
940 end = addr + PAGE_SIZE;
941 } else {
942 addr = vma->vm_start;
943 end = vma->vm_end;
946 pgd = pgd_offset(vma->vm_mm, addr);
947 do {
948 next = pgd_addr_end(addr, end);
949 if (pgd_none_or_clear_bad(pgd))
950 continue;
951 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
952 if (ret)
953 return ret;
954 } while (pgd++, addr = next, addr != end);
955 return 0;
958 static int unuse_mm(struct mm_struct *mm,
959 swp_entry_t entry, struct page *page)
961 struct vm_area_struct *vma;
962 int ret = 0;
964 if (!down_read_trylock(&mm->mmap_sem)) {
966 * Activate page so shrink_inactive_list is unlikely to unmap
967 * its ptes while lock is dropped, so swapoff can make progress.
969 activate_page(page);
970 unlock_page(page);
971 down_read(&mm->mmap_sem);
972 lock_page(page);
974 for (vma = mm->mmap; vma; vma = vma->vm_next) {
975 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
976 break;
978 up_read(&mm->mmap_sem);
979 return (ret < 0)? ret: 0;
983 * Scan swap_map from current position to next entry still in use.
984 * Recycle to start on reaching the end, returning 0 when empty.
986 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
987 unsigned int prev)
989 unsigned int max = si->max;
990 unsigned int i = prev;
991 int count;
994 * No need for swap_lock here: we're just looking
995 * for whether an entry is in use, not modifying it; false
996 * hits are okay, and sys_swapoff() has already prevented new
997 * allocations from this area (while holding swap_lock).
999 for (;;) {
1000 if (++i >= max) {
1001 if (!prev) {
1002 i = 0;
1003 break;
1006 * No entries in use at top of swap_map,
1007 * loop back to start and recheck there.
1009 max = prev + 1;
1010 prev = 0;
1011 i = 1;
1013 count = si->swap_map[i];
1014 if (count && swap_count(count) != SWAP_MAP_BAD)
1015 break;
1017 return i;
1021 * We completely avoid races by reading each swap page in advance,
1022 * and then search for the process using it. All the necessary
1023 * page table adjustments can then be made atomically.
1025 static int try_to_unuse(unsigned int type)
1027 struct swap_info_struct * si = &swap_info[type];
1028 struct mm_struct *start_mm;
1029 unsigned short *swap_map;
1030 unsigned short swcount;
1031 struct page *page;
1032 swp_entry_t entry;
1033 unsigned int i = 0;
1034 int retval = 0;
1035 int reset_overflow = 0;
1036 int shmem;
1039 * When searching mms for an entry, a good strategy is to
1040 * start at the first mm we freed the previous entry from
1041 * (though actually we don't notice whether we or coincidence
1042 * freed the entry). Initialize this start_mm with a hold.
1044 * A simpler strategy would be to start at the last mm we
1045 * freed the previous entry from; but that would take less
1046 * advantage of mmlist ordering, which clusters forked mms
1047 * together, child after parent. If we race with dup_mmap(), we
1048 * prefer to resolve parent before child, lest we miss entries
1049 * duplicated after we scanned child: using last mm would invert
1050 * that. Though it's only a serious concern when an overflowed
1051 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1053 start_mm = &init_mm;
1054 atomic_inc(&init_mm.mm_users);
1057 * Keep on scanning until all entries have gone. Usually,
1058 * one pass through swap_map is enough, but not necessarily:
1059 * there are races when an instance of an entry might be missed.
1061 while ((i = find_next_to_unuse(si, i)) != 0) {
1062 if (signal_pending(current)) {
1063 retval = -EINTR;
1064 break;
1068 * Get a page for the entry, using the existing swap
1069 * cache page if there is one. Otherwise, get a clean
1070 * page and read the swap into it.
1072 swap_map = &si->swap_map[i];
1073 entry = swp_entry(type, i);
1074 page = read_swap_cache_async(entry,
1075 GFP_HIGHUSER_MOVABLE, NULL, 0);
1076 if (!page) {
1078 * Either swap_duplicate() failed because entry
1079 * has been freed independently, and will not be
1080 * reused since sys_swapoff() already disabled
1081 * allocation from here, or alloc_page() failed.
1083 if (!*swap_map)
1084 continue;
1085 retval = -ENOMEM;
1086 break;
1090 * Don't hold on to start_mm if it looks like exiting.
1092 if (atomic_read(&start_mm->mm_users) == 1) {
1093 mmput(start_mm);
1094 start_mm = &init_mm;
1095 atomic_inc(&init_mm.mm_users);
1099 * Wait for and lock page. When do_swap_page races with
1100 * try_to_unuse, do_swap_page can handle the fault much
1101 * faster than try_to_unuse can locate the entry. This
1102 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1103 * defer to do_swap_page in such a case - in some tests,
1104 * do_swap_page and try_to_unuse repeatedly compete.
1106 wait_on_page_locked(page);
1107 wait_on_page_writeback(page);
1108 lock_page(page);
1109 wait_on_page_writeback(page);
1112 * Remove all references to entry.
1113 * Whenever we reach init_mm, there's no address space
1114 * to search, but use it as a reminder to search shmem.
1116 shmem = 0;
1117 swcount = *swap_map;
1118 if (swap_count(swcount)) {
1119 if (start_mm == &init_mm)
1120 shmem = shmem_unuse(entry, page);
1121 else
1122 retval = unuse_mm(start_mm, entry, page);
1124 if (swap_count(*swap_map)) {
1125 int set_start_mm = (*swap_map >= swcount);
1126 struct list_head *p = &start_mm->mmlist;
1127 struct mm_struct *new_start_mm = start_mm;
1128 struct mm_struct *prev_mm = start_mm;
1129 struct mm_struct *mm;
1131 atomic_inc(&new_start_mm->mm_users);
1132 atomic_inc(&prev_mm->mm_users);
1133 spin_lock(&mmlist_lock);
1134 while (swap_count(*swap_map) && !retval && !shmem &&
1135 (p = p->next) != &start_mm->mmlist) {
1136 mm = list_entry(p, struct mm_struct, mmlist);
1137 if (!atomic_inc_not_zero(&mm->mm_users))
1138 continue;
1139 spin_unlock(&mmlist_lock);
1140 mmput(prev_mm);
1141 prev_mm = mm;
1143 cond_resched();
1145 swcount = *swap_map;
1146 if (!swap_count(swcount)) /* any usage ? */
1148 else if (mm == &init_mm) {
1149 set_start_mm = 1;
1150 shmem = shmem_unuse(entry, page);
1151 } else
1152 retval = unuse_mm(mm, entry, page);
1154 if (set_start_mm &&
1155 swap_count(*swap_map) < swcount) {
1156 mmput(new_start_mm);
1157 atomic_inc(&mm->mm_users);
1158 new_start_mm = mm;
1159 set_start_mm = 0;
1161 spin_lock(&mmlist_lock);
1163 spin_unlock(&mmlist_lock);
1164 mmput(prev_mm);
1165 mmput(start_mm);
1166 start_mm = new_start_mm;
1168 if (shmem) {
1169 /* page has already been unlocked and released */
1170 if (shmem > 0)
1171 continue;
1172 retval = shmem;
1173 break;
1175 if (retval) {
1176 unlock_page(page);
1177 page_cache_release(page);
1178 break;
1182 * How could swap count reach 0x7ffe ?
1183 * There's no way to repeat a swap page within an mm
1184 * (except in shmem, where it's the shared object which takes
1185 * the reference count)?
1186 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1187 * short is too small....)
1188 * If that's wrong, then we should worry more about
1189 * exit_mmap() and do_munmap() cases described above:
1190 * we might be resetting SWAP_MAP_MAX too early here.
1191 * We know "Undead"s can happen, they're okay, so don't
1192 * report them; but do report if we reset SWAP_MAP_MAX.
1194 /* We might release the lock_page() in unuse_mm(). */
1195 if (!PageSwapCache(page) || page_private(page) != entry.val)
1196 goto retry;
1198 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1199 spin_lock(&swap_lock);
1200 *swap_map = encode_swapmap(0, true);
1201 spin_unlock(&swap_lock);
1202 reset_overflow = 1;
1206 * If a reference remains (rare), we would like to leave
1207 * the page in the swap cache; but try_to_unmap could
1208 * then re-duplicate the entry once we drop page lock,
1209 * so we might loop indefinitely; also, that page could
1210 * not be swapped out to other storage meanwhile. So:
1211 * delete from cache even if there's another reference,
1212 * after ensuring that the data has been saved to disk -
1213 * since if the reference remains (rarer), it will be
1214 * read from disk into another page. Splitting into two
1215 * pages would be incorrect if swap supported "shared
1216 * private" pages, but they are handled by tmpfs files.
1218 if (swap_count(*swap_map) &&
1219 PageDirty(page) && PageSwapCache(page)) {
1220 struct writeback_control wbc = {
1221 .sync_mode = WB_SYNC_NONE,
1224 swap_writepage(page, &wbc);
1225 lock_page(page);
1226 wait_on_page_writeback(page);
1230 * It is conceivable that a racing task removed this page from
1231 * swap cache just before we acquired the page lock at the top,
1232 * or while we dropped it in unuse_mm(). The page might even
1233 * be back in swap cache on another swap area: that we must not
1234 * delete, since it may not have been written out to swap yet.
1236 if (PageSwapCache(page) &&
1237 likely(page_private(page) == entry.val))
1238 delete_from_swap_cache(page);
1241 * So we could skip searching mms once swap count went
1242 * to 1, we did not mark any present ptes as dirty: must
1243 * mark page dirty so shrink_page_list will preserve it.
1245 SetPageDirty(page);
1246 retry:
1247 unlock_page(page);
1248 page_cache_release(page);
1251 * Make sure that we aren't completely killing
1252 * interactive performance.
1254 cond_resched();
1257 mmput(start_mm);
1258 if (reset_overflow) {
1259 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1260 swap_overflow = 0;
1262 return retval;
1266 * After a successful try_to_unuse, if no swap is now in use, we know
1267 * we can empty the mmlist. swap_lock must be held on entry and exit.
1268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1269 * added to the mmlist just after page_duplicate - before would be racy.
1271 static void drain_mmlist(void)
1273 struct list_head *p, *next;
1274 unsigned int i;
1276 for (i = 0; i < nr_swapfiles; i++)
1277 if (swap_info[i].inuse_pages)
1278 return;
1279 spin_lock(&mmlist_lock);
1280 list_for_each_safe(p, next, &init_mm.mmlist)
1281 list_del_init(p);
1282 spin_unlock(&mmlist_lock);
1286 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1287 * corresponds to page offset `offset'.
1289 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1291 struct swap_extent *se = sis->curr_swap_extent;
1292 struct swap_extent *start_se = se;
1294 for ( ; ; ) {
1295 struct list_head *lh;
1297 if (se->start_page <= offset &&
1298 offset < (se->start_page + se->nr_pages)) {
1299 return se->start_block + (offset - se->start_page);
1301 lh = se->list.next;
1302 if (lh == &sis->extent_list)
1303 lh = lh->next;
1304 se = list_entry(lh, struct swap_extent, list);
1305 sis->curr_swap_extent = se;
1306 BUG_ON(se == start_se); /* It *must* be present */
1310 #ifdef CONFIG_HIBERNATION
1312 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1313 * corresponding to given index in swap_info (swap type).
1315 sector_t swapdev_block(int swap_type, pgoff_t offset)
1317 struct swap_info_struct *sis;
1319 if (swap_type >= nr_swapfiles)
1320 return 0;
1322 sis = swap_info + swap_type;
1323 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1325 #endif /* CONFIG_HIBERNATION */
1328 * Free all of a swapdev's extent information
1330 static void destroy_swap_extents(struct swap_info_struct *sis)
1332 while (!list_empty(&sis->extent_list)) {
1333 struct swap_extent *se;
1335 se = list_entry(sis->extent_list.next,
1336 struct swap_extent, list);
1337 list_del(&se->list);
1338 kfree(se);
1343 * Add a block range (and the corresponding page range) into this swapdev's
1344 * extent list. The extent list is kept sorted in page order.
1346 * This function rather assumes that it is called in ascending page order.
1348 static int
1349 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1350 unsigned long nr_pages, sector_t start_block)
1352 struct swap_extent *se;
1353 struct swap_extent *new_se;
1354 struct list_head *lh;
1356 lh = sis->extent_list.prev; /* The highest page extent */
1357 if (lh != &sis->extent_list) {
1358 se = list_entry(lh, struct swap_extent, list);
1359 BUG_ON(se->start_page + se->nr_pages != start_page);
1360 if (se->start_block + se->nr_pages == start_block) {
1361 /* Merge it */
1362 se->nr_pages += nr_pages;
1363 return 0;
1368 * No merge. Insert a new extent, preserving ordering.
1370 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1371 if (new_se == NULL)
1372 return -ENOMEM;
1373 new_se->start_page = start_page;
1374 new_se->nr_pages = nr_pages;
1375 new_se->start_block = start_block;
1377 list_add_tail(&new_se->list, &sis->extent_list);
1378 return 1;
1382 * A `swap extent' is a simple thing which maps a contiguous range of pages
1383 * onto a contiguous range of disk blocks. An ordered list of swap extents
1384 * is built at swapon time and is then used at swap_writepage/swap_readpage
1385 * time for locating where on disk a page belongs.
1387 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1388 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1389 * swap files identically.
1391 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1392 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1393 * swapfiles are handled *identically* after swapon time.
1395 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1396 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1397 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1398 * requirements, they are simply tossed out - we will never use those blocks
1399 * for swapping.
1401 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1402 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1403 * which will scribble on the fs.
1405 * The amount of disk space which a single swap extent represents varies.
1406 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1407 * extents in the list. To avoid much list walking, we cache the previous
1408 * search location in `curr_swap_extent', and start new searches from there.
1409 * This is extremely effective. The average number of iterations in
1410 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1412 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1414 struct inode *inode;
1415 unsigned blocks_per_page;
1416 unsigned long page_no;
1417 unsigned blkbits;
1418 sector_t probe_block;
1419 sector_t last_block;
1420 sector_t lowest_block = -1;
1421 sector_t highest_block = 0;
1422 int nr_extents = 0;
1423 int ret;
1425 inode = sis->swap_file->f_mapping->host;
1426 if (S_ISBLK(inode->i_mode)) {
1427 ret = add_swap_extent(sis, 0, sis->max, 0);
1428 *span = sis->pages;
1429 goto done;
1432 blkbits = inode->i_blkbits;
1433 blocks_per_page = PAGE_SIZE >> blkbits;
1436 * Map all the blocks into the extent list. This code doesn't try
1437 * to be very smart.
1439 probe_block = 0;
1440 page_no = 0;
1441 last_block = i_size_read(inode) >> blkbits;
1442 while ((probe_block + blocks_per_page) <= last_block &&
1443 page_no < sis->max) {
1444 unsigned block_in_page;
1445 sector_t first_block;
1447 first_block = bmap(inode, probe_block);
1448 if (first_block == 0)
1449 goto bad_bmap;
1452 * It must be PAGE_SIZE aligned on-disk
1454 if (first_block & (blocks_per_page - 1)) {
1455 probe_block++;
1456 goto reprobe;
1459 for (block_in_page = 1; block_in_page < blocks_per_page;
1460 block_in_page++) {
1461 sector_t block;
1463 block = bmap(inode, probe_block + block_in_page);
1464 if (block == 0)
1465 goto bad_bmap;
1466 if (block != first_block + block_in_page) {
1467 /* Discontiguity */
1468 probe_block++;
1469 goto reprobe;
1473 first_block >>= (PAGE_SHIFT - blkbits);
1474 if (page_no) { /* exclude the header page */
1475 if (first_block < lowest_block)
1476 lowest_block = first_block;
1477 if (first_block > highest_block)
1478 highest_block = first_block;
1482 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1484 ret = add_swap_extent(sis, page_no, 1, first_block);
1485 if (ret < 0)
1486 goto out;
1487 nr_extents += ret;
1488 page_no++;
1489 probe_block += blocks_per_page;
1490 reprobe:
1491 continue;
1493 ret = nr_extents;
1494 *span = 1 + highest_block - lowest_block;
1495 if (page_no == 0)
1496 page_no = 1; /* force Empty message */
1497 sis->max = page_no;
1498 sis->pages = page_no - 1;
1499 sis->highest_bit = page_no - 1;
1500 done:
1501 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1502 struct swap_extent, list);
1503 goto out;
1504 bad_bmap:
1505 printk(KERN_ERR "swapon: swapfile has holes\n");
1506 ret = -EINVAL;
1507 out:
1508 return ret;
1511 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1513 struct swap_info_struct * p = NULL;
1514 unsigned short *swap_map;
1515 struct file *swap_file, *victim;
1516 struct address_space *mapping;
1517 struct inode *inode;
1518 char * pathname;
1519 int i, type, prev;
1520 int err;
1522 if (!capable(CAP_SYS_ADMIN))
1523 return -EPERM;
1525 pathname = getname(specialfile);
1526 err = PTR_ERR(pathname);
1527 if (IS_ERR(pathname))
1528 goto out;
1530 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1531 putname(pathname);
1532 err = PTR_ERR(victim);
1533 if (IS_ERR(victim))
1534 goto out;
1536 mapping = victim->f_mapping;
1537 prev = -1;
1538 spin_lock(&swap_lock);
1539 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1540 p = swap_info + type;
1541 if (p->flags & SWP_WRITEOK) {
1542 if (p->swap_file->f_mapping == mapping)
1543 break;
1545 prev = type;
1547 if (type < 0) {
1548 err = -EINVAL;
1549 spin_unlock(&swap_lock);
1550 goto out_dput;
1552 if (!security_vm_enough_memory(p->pages))
1553 vm_unacct_memory(p->pages);
1554 else {
1555 err = -ENOMEM;
1556 spin_unlock(&swap_lock);
1557 goto out_dput;
1559 if (prev < 0) {
1560 swap_list.head = p->next;
1561 } else {
1562 swap_info[prev].next = p->next;
1564 if (type == swap_list.next) {
1565 /* just pick something that's safe... */
1566 swap_list.next = swap_list.head;
1568 if (p->prio < 0) {
1569 for (i = p->next; i >= 0; i = swap_info[i].next)
1570 swap_info[i].prio = p->prio--;
1571 least_priority++;
1573 nr_swap_pages -= p->pages;
1574 total_swap_pages -= p->pages;
1575 p->flags &= ~SWP_WRITEOK;
1576 spin_unlock(&swap_lock);
1578 current->flags |= PF_OOM_ORIGIN;
1579 err = try_to_unuse(type);
1580 current->flags &= ~PF_OOM_ORIGIN;
1582 if (err) {
1583 /* re-insert swap space back into swap_list */
1584 spin_lock(&swap_lock);
1585 if (p->prio < 0)
1586 p->prio = --least_priority;
1587 prev = -1;
1588 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1589 if (p->prio >= swap_info[i].prio)
1590 break;
1591 prev = i;
1593 p->next = i;
1594 if (prev < 0)
1595 swap_list.head = swap_list.next = p - swap_info;
1596 else
1597 swap_info[prev].next = p - swap_info;
1598 nr_swap_pages += p->pages;
1599 total_swap_pages += p->pages;
1600 p->flags |= SWP_WRITEOK;
1601 spin_unlock(&swap_lock);
1602 goto out_dput;
1605 /* wait for any unplug function to finish */
1606 down_write(&swap_unplug_sem);
1607 up_write(&swap_unplug_sem);
1609 destroy_swap_extents(p);
1610 mutex_lock(&swapon_mutex);
1611 spin_lock(&swap_lock);
1612 drain_mmlist();
1614 /* wait for anyone still in scan_swap_map */
1615 p->highest_bit = 0; /* cuts scans short */
1616 while (p->flags >= SWP_SCANNING) {
1617 spin_unlock(&swap_lock);
1618 schedule_timeout_uninterruptible(1);
1619 spin_lock(&swap_lock);
1622 swap_file = p->swap_file;
1623 p->swap_file = NULL;
1624 p->max = 0;
1625 swap_map = p->swap_map;
1626 p->swap_map = NULL;
1627 p->flags = 0;
1628 spin_unlock(&swap_lock);
1629 mutex_unlock(&swapon_mutex);
1630 vfree(swap_map);
1631 /* Destroy swap account informatin */
1632 swap_cgroup_swapoff(type);
1634 inode = mapping->host;
1635 if (S_ISBLK(inode->i_mode)) {
1636 struct block_device *bdev = I_BDEV(inode);
1637 set_blocksize(bdev, p->old_block_size);
1638 bd_release(bdev);
1639 } else {
1640 mutex_lock(&inode->i_mutex);
1641 inode->i_flags &= ~S_SWAPFILE;
1642 mutex_unlock(&inode->i_mutex);
1644 filp_close(swap_file, NULL);
1645 err = 0;
1647 out_dput:
1648 filp_close(victim, NULL);
1649 out:
1650 return err;
1653 #ifdef CONFIG_PROC_FS
1654 /* iterator */
1655 static void *swap_start(struct seq_file *swap, loff_t *pos)
1657 struct swap_info_struct *ptr = swap_info;
1658 int i;
1659 loff_t l = *pos;
1661 mutex_lock(&swapon_mutex);
1663 if (!l)
1664 return SEQ_START_TOKEN;
1666 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1667 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1668 continue;
1669 if (!--l)
1670 return ptr;
1673 return NULL;
1676 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1678 struct swap_info_struct *ptr;
1679 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1681 if (v == SEQ_START_TOKEN)
1682 ptr = swap_info;
1683 else {
1684 ptr = v;
1685 ptr++;
1688 for (; ptr < endptr; ptr++) {
1689 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1690 continue;
1691 ++*pos;
1692 return ptr;
1695 return NULL;
1698 static void swap_stop(struct seq_file *swap, void *v)
1700 mutex_unlock(&swapon_mutex);
1703 static int swap_show(struct seq_file *swap, void *v)
1705 struct swap_info_struct *ptr = v;
1706 struct file *file;
1707 int len;
1709 if (ptr == SEQ_START_TOKEN) {
1710 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1711 return 0;
1714 file = ptr->swap_file;
1715 len = seq_path(swap, &file->f_path, " \t\n\\");
1716 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1717 len < 40 ? 40 - len : 1, " ",
1718 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1719 "partition" : "file\t",
1720 ptr->pages << (PAGE_SHIFT - 10),
1721 ptr->inuse_pages << (PAGE_SHIFT - 10),
1722 ptr->prio);
1723 return 0;
1726 static const struct seq_operations swaps_op = {
1727 .start = swap_start,
1728 .next = swap_next,
1729 .stop = swap_stop,
1730 .show = swap_show
1733 static int swaps_open(struct inode *inode, struct file *file)
1735 return seq_open(file, &swaps_op);
1738 static const struct file_operations proc_swaps_operations = {
1739 .open = swaps_open,
1740 .read = seq_read,
1741 .llseek = seq_lseek,
1742 .release = seq_release,
1745 static int __init procswaps_init(void)
1747 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1748 return 0;
1750 __initcall(procswaps_init);
1751 #endif /* CONFIG_PROC_FS */
1753 #ifdef MAX_SWAPFILES_CHECK
1754 static int __init max_swapfiles_check(void)
1756 MAX_SWAPFILES_CHECK();
1757 return 0;
1759 late_initcall(max_swapfiles_check);
1760 #endif
1763 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1765 * The swapon system call
1767 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1769 struct swap_info_struct * p;
1770 char *name = NULL;
1771 struct block_device *bdev = NULL;
1772 struct file *swap_file = NULL;
1773 struct address_space *mapping;
1774 unsigned int type;
1775 int i, prev;
1776 int error;
1777 union swap_header *swap_header = NULL;
1778 unsigned int nr_good_pages = 0;
1779 int nr_extents = 0;
1780 sector_t span;
1781 unsigned long maxpages = 1;
1782 unsigned long swapfilepages;
1783 unsigned short *swap_map = NULL;
1784 struct page *page = NULL;
1785 struct inode *inode = NULL;
1786 int did_down = 0;
1788 if (!capable(CAP_SYS_ADMIN))
1789 return -EPERM;
1790 spin_lock(&swap_lock);
1791 p = swap_info;
1792 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1793 if (!(p->flags & SWP_USED))
1794 break;
1795 error = -EPERM;
1796 if (type >= MAX_SWAPFILES) {
1797 spin_unlock(&swap_lock);
1798 goto out;
1800 if (type >= nr_swapfiles)
1801 nr_swapfiles = type+1;
1802 memset(p, 0, sizeof(*p));
1803 INIT_LIST_HEAD(&p->extent_list);
1804 p->flags = SWP_USED;
1805 p->next = -1;
1806 spin_unlock(&swap_lock);
1807 name = getname(specialfile);
1808 error = PTR_ERR(name);
1809 if (IS_ERR(name)) {
1810 name = NULL;
1811 goto bad_swap_2;
1813 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1814 error = PTR_ERR(swap_file);
1815 if (IS_ERR(swap_file)) {
1816 swap_file = NULL;
1817 goto bad_swap_2;
1820 p->swap_file = swap_file;
1821 mapping = swap_file->f_mapping;
1822 inode = mapping->host;
1824 error = -EBUSY;
1825 for (i = 0; i < nr_swapfiles; i++) {
1826 struct swap_info_struct *q = &swap_info[i];
1828 if (i == type || !q->swap_file)
1829 continue;
1830 if (mapping == q->swap_file->f_mapping)
1831 goto bad_swap;
1834 error = -EINVAL;
1835 if (S_ISBLK(inode->i_mode)) {
1836 bdev = I_BDEV(inode);
1837 error = bd_claim(bdev, sys_swapon);
1838 if (error < 0) {
1839 bdev = NULL;
1840 error = -EINVAL;
1841 goto bad_swap;
1843 p->old_block_size = block_size(bdev);
1844 error = set_blocksize(bdev, PAGE_SIZE);
1845 if (error < 0)
1846 goto bad_swap;
1847 p->bdev = bdev;
1848 } else if (S_ISREG(inode->i_mode)) {
1849 p->bdev = inode->i_sb->s_bdev;
1850 mutex_lock(&inode->i_mutex);
1851 did_down = 1;
1852 if (IS_SWAPFILE(inode)) {
1853 error = -EBUSY;
1854 goto bad_swap;
1856 } else {
1857 goto bad_swap;
1860 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1863 * Read the swap header.
1865 if (!mapping->a_ops->readpage) {
1866 error = -EINVAL;
1867 goto bad_swap;
1869 page = read_mapping_page(mapping, 0, swap_file);
1870 if (IS_ERR(page)) {
1871 error = PTR_ERR(page);
1872 goto bad_swap;
1874 swap_header = kmap(page);
1876 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1877 printk(KERN_ERR "Unable to find swap-space signature\n");
1878 error = -EINVAL;
1879 goto bad_swap;
1882 /* swap partition endianess hack... */
1883 if (swab32(swap_header->info.version) == 1) {
1884 swab32s(&swap_header->info.version);
1885 swab32s(&swap_header->info.last_page);
1886 swab32s(&swap_header->info.nr_badpages);
1887 for (i = 0; i < swap_header->info.nr_badpages; i++)
1888 swab32s(&swap_header->info.badpages[i]);
1890 /* Check the swap header's sub-version */
1891 if (swap_header->info.version != 1) {
1892 printk(KERN_WARNING
1893 "Unable to handle swap header version %d\n",
1894 swap_header->info.version);
1895 error = -EINVAL;
1896 goto bad_swap;
1899 p->lowest_bit = 1;
1900 p->cluster_next = 1;
1903 * Find out how many pages are allowed for a single swap
1904 * device. There are two limiting factors: 1) the number of
1905 * bits for the swap offset in the swp_entry_t type and
1906 * 2) the number of bits in the a swap pte as defined by
1907 * the different architectures. In order to find the
1908 * largest possible bit mask a swap entry with swap type 0
1909 * and swap offset ~0UL is created, encoded to a swap pte,
1910 * decoded to a swp_entry_t again and finally the swap
1911 * offset is extracted. This will mask all the bits from
1912 * the initial ~0UL mask that can't be encoded in either
1913 * the swp_entry_t or the architecture definition of a
1914 * swap pte.
1916 maxpages = swp_offset(pte_to_swp_entry(
1917 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1918 if (maxpages > swap_header->info.last_page)
1919 maxpages = swap_header->info.last_page;
1920 p->highest_bit = maxpages - 1;
1922 error = -EINVAL;
1923 if (!maxpages)
1924 goto bad_swap;
1925 if (swapfilepages && maxpages > swapfilepages) {
1926 printk(KERN_WARNING
1927 "Swap area shorter than signature indicates\n");
1928 goto bad_swap;
1930 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1931 goto bad_swap;
1932 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1933 goto bad_swap;
1935 /* OK, set up the swap map and apply the bad block list */
1936 swap_map = vmalloc(maxpages * sizeof(short));
1937 if (!swap_map) {
1938 error = -ENOMEM;
1939 goto bad_swap;
1942 memset(swap_map, 0, maxpages * sizeof(short));
1943 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1944 int page_nr = swap_header->info.badpages[i];
1945 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1946 error = -EINVAL;
1947 goto bad_swap;
1949 swap_map[page_nr] = SWAP_MAP_BAD;
1952 error = swap_cgroup_swapon(type, maxpages);
1953 if (error)
1954 goto bad_swap;
1956 nr_good_pages = swap_header->info.last_page -
1957 swap_header->info.nr_badpages -
1958 1 /* header page */;
1960 if (nr_good_pages) {
1961 swap_map[0] = SWAP_MAP_BAD;
1962 p->max = maxpages;
1963 p->pages = nr_good_pages;
1964 nr_extents = setup_swap_extents(p, &span);
1965 if (nr_extents < 0) {
1966 error = nr_extents;
1967 goto bad_swap;
1969 nr_good_pages = p->pages;
1971 if (!nr_good_pages) {
1972 printk(KERN_WARNING "Empty swap-file\n");
1973 error = -EINVAL;
1974 goto bad_swap;
1977 if (p->bdev) {
1978 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1979 p->flags |= SWP_SOLIDSTATE;
1980 p->cluster_next = 1 + (random32() % p->highest_bit);
1982 if (discard_swap(p) == 0)
1983 p->flags |= SWP_DISCARDABLE;
1986 mutex_lock(&swapon_mutex);
1987 spin_lock(&swap_lock);
1988 if (swap_flags & SWAP_FLAG_PREFER)
1989 p->prio =
1990 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1991 else
1992 p->prio = --least_priority;
1993 p->swap_map = swap_map;
1994 p->flags |= SWP_WRITEOK;
1995 nr_swap_pages += nr_good_pages;
1996 total_swap_pages += nr_good_pages;
1998 printk(KERN_INFO "Adding %uk swap on %s. "
1999 "Priority:%d extents:%d across:%lluk %s%s\n",
2000 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2001 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2002 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2003 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2005 /* insert swap space into swap_list: */
2006 prev = -1;
2007 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
2008 if (p->prio >= swap_info[i].prio) {
2009 break;
2011 prev = i;
2013 p->next = i;
2014 if (prev < 0) {
2015 swap_list.head = swap_list.next = p - swap_info;
2016 } else {
2017 swap_info[prev].next = p - swap_info;
2019 spin_unlock(&swap_lock);
2020 mutex_unlock(&swapon_mutex);
2021 error = 0;
2022 goto out;
2023 bad_swap:
2024 if (bdev) {
2025 set_blocksize(bdev, p->old_block_size);
2026 bd_release(bdev);
2028 destroy_swap_extents(p);
2029 swap_cgroup_swapoff(type);
2030 bad_swap_2:
2031 spin_lock(&swap_lock);
2032 p->swap_file = NULL;
2033 p->flags = 0;
2034 spin_unlock(&swap_lock);
2035 vfree(swap_map);
2036 if (swap_file)
2037 filp_close(swap_file, NULL);
2038 out:
2039 if (page && !IS_ERR(page)) {
2040 kunmap(page);
2041 page_cache_release(page);
2043 if (name)
2044 putname(name);
2045 if (did_down) {
2046 if (!error)
2047 inode->i_flags |= S_SWAPFILE;
2048 mutex_unlock(&inode->i_mutex);
2050 return error;
2053 void si_swapinfo(struct sysinfo *val)
2055 unsigned int i;
2056 unsigned long nr_to_be_unused = 0;
2058 spin_lock(&swap_lock);
2059 for (i = 0; i < nr_swapfiles; i++) {
2060 if (!(swap_info[i].flags & SWP_USED) ||
2061 (swap_info[i].flags & SWP_WRITEOK))
2062 continue;
2063 nr_to_be_unused += swap_info[i].inuse_pages;
2065 val->freeswap = nr_swap_pages + nr_to_be_unused;
2066 val->totalswap = total_swap_pages + nr_to_be_unused;
2067 spin_unlock(&swap_lock);
2071 * Verify that a swap entry is valid and increment its swap map count.
2073 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2074 * "permanent", but will be reclaimed by the next swapoff.
2075 * Returns error code in following case.
2076 * - success -> 0
2077 * - swp_entry is invalid -> EINVAL
2078 * - swp_entry is migration entry -> EINVAL
2079 * - swap-cache reference is requested but there is already one. -> EEXIST
2080 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2082 static int __swap_duplicate(swp_entry_t entry, bool cache)
2084 struct swap_info_struct * p;
2085 unsigned long offset, type;
2086 int result = -EINVAL;
2087 int count;
2088 bool has_cache;
2090 if (non_swap_entry(entry))
2091 return -EINVAL;
2093 type = swp_type(entry);
2094 if (type >= nr_swapfiles)
2095 goto bad_file;
2096 p = type + swap_info;
2097 offset = swp_offset(entry);
2099 spin_lock(&swap_lock);
2101 if (unlikely(offset >= p->max))
2102 goto unlock_out;
2104 count = swap_count(p->swap_map[offset]);
2105 has_cache = swap_has_cache(p->swap_map[offset]);
2107 if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2109 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2110 if (!has_cache && count) {
2111 p->swap_map[offset] = encode_swapmap(count, true);
2112 result = 0;
2113 } else if (has_cache) /* someone added cache */
2114 result = -EEXIST;
2115 else if (!count) /* no users */
2116 result = -ENOENT;
2118 } else if (count || has_cache) {
2119 if (count < SWAP_MAP_MAX - 1) {
2120 p->swap_map[offset] = encode_swapmap(count + 1,
2121 has_cache);
2122 result = 0;
2123 } else if (count <= SWAP_MAP_MAX) {
2124 if (swap_overflow++ < 5)
2125 printk(KERN_WARNING
2126 "swap_dup: swap entry overflow\n");
2127 p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2128 has_cache);
2129 result = 0;
2131 } else
2132 result = -ENOENT; /* unused swap entry */
2133 unlock_out:
2134 spin_unlock(&swap_lock);
2135 out:
2136 return result;
2138 bad_file:
2139 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2140 goto out;
2143 * increase reference count of swap entry by 1.
2145 void swap_duplicate(swp_entry_t entry)
2147 __swap_duplicate(entry, SWAP_MAP);
2151 * @entry: swap entry for which we allocate swap cache.
2153 * Called when allocating swap cache for exising swap entry,
2154 * This can return error codes. Returns 0 at success.
2155 * -EBUSY means there is a swap cache.
2156 * Note: return code is different from swap_duplicate().
2158 int swapcache_prepare(swp_entry_t entry)
2160 return __swap_duplicate(entry, SWAP_CACHE);
2164 struct swap_info_struct *
2165 get_swap_info_struct(unsigned type)
2167 return &swap_info[type];
2171 * swap_lock prevents swap_map being freed. Don't grab an extra
2172 * reference on the swaphandle, it doesn't matter if it becomes unused.
2174 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2176 struct swap_info_struct *si;
2177 int our_page_cluster = page_cluster;
2178 pgoff_t target, toff;
2179 pgoff_t base, end;
2180 int nr_pages = 0;
2182 if (!our_page_cluster) /* no readahead */
2183 return 0;
2185 si = &swap_info[swp_type(entry)];
2186 target = swp_offset(entry);
2187 base = (target >> our_page_cluster) << our_page_cluster;
2188 end = base + (1 << our_page_cluster);
2189 if (!base) /* first page is swap header */
2190 base++;
2192 spin_lock(&swap_lock);
2193 if (end > si->max) /* don't go beyond end of map */
2194 end = si->max;
2196 /* Count contiguous allocated slots above our target */
2197 for (toff = target; ++toff < end; nr_pages++) {
2198 /* Don't read in free or bad pages */
2199 if (!si->swap_map[toff])
2200 break;
2201 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2202 break;
2204 /* Count contiguous allocated slots below our target */
2205 for (toff = target; --toff >= base; nr_pages++) {
2206 /* Don't read in free or bad pages */
2207 if (!si->swap_map[toff])
2208 break;
2209 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2210 break;
2212 spin_unlock(&swap_lock);
2215 * Indicate starting offset, and return number of pages to get:
2216 * if only 1, say 0, since there's then no readahead to be done.
2218 *offset = ++toff;
2219 return nr_pages? ++nr_pages: 0;