OMAP3: PM: decouple PER and CORE context save and restore
[linux-ginger.git] / drivers / spi / atmel_spi.c
blobf5b3fdbb1e27c22044df0b8c8759129a98622712
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
22 #include <asm/io.h>
23 #include <mach/board.h>
24 #include <mach/gpio.h>
25 #include <mach/cpu.h>
27 #include "atmel_spi.h"
30 * The core SPI transfer engine just talks to a register bank to set up
31 * DMA transfers; transfer queue progress is driven by IRQs. The clock
32 * framework provides the base clock, subdivided for each spi_device.
34 struct atmel_spi {
35 spinlock_t lock;
37 void __iomem *regs;
38 int irq;
39 struct clk *clk;
40 struct platform_device *pdev;
41 struct spi_device *stay;
43 u8 stopping;
44 struct list_head queue;
45 struct spi_transfer *current_transfer;
46 unsigned long current_remaining_bytes;
47 struct spi_transfer *next_transfer;
48 unsigned long next_remaining_bytes;
50 void *buffer;
51 dma_addr_t buffer_dma;
54 /* Controller-specific per-slave state */
55 struct atmel_spi_device {
56 unsigned int npcs_pin;
57 u32 csr;
60 #define BUFFER_SIZE PAGE_SIZE
61 #define INVALID_DMA_ADDRESS 0xffffffff
64 * Version 2 of the SPI controller has
65 * - CR.LASTXFER
66 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
67 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
68 * - SPI_CSRx.CSAAT
69 * - SPI_CSRx.SBCR allows faster clocking
71 * We can determine the controller version by reading the VERSION
72 * register, but I haven't checked that it exists on all chips, and
73 * this is cheaper anyway.
75 static bool atmel_spi_is_v2(void)
77 return !cpu_is_at91rm9200();
81 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
82 * they assume that spi slave device state will not change on deselect, so
83 * that automagic deselection is OK. ("NPCSx rises if no data is to be
84 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
85 * controllers have CSAAT and friends.
87 * Since the CSAAT functionality is a bit weird on newer controllers as
88 * well, we use GPIO to control nCSx pins on all controllers, updating
89 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
90 * support active-high chipselects despite the controller's belief that
91 * only active-low devices/systems exists.
93 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
94 * right when driven with GPIO. ("Mode Fault does not allow more than one
95 * Master on Chip Select 0.") No workaround exists for that ... so for
96 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
97 * and (c) will trigger that first erratum in some cases.
99 * TODO: Test if the atmel_spi_is_v2() branch below works on
100 * AT91RM9200 if we use some other register than CSR0. However, don't
101 * do this unconditionally since AP7000 has an errata where the BITS
102 * field in CSR0 overrides all other CSRs.
105 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
107 struct atmel_spi_device *asd = spi->controller_state;
108 unsigned active = spi->mode & SPI_CS_HIGH;
109 u32 mr;
111 if (atmel_spi_is_v2()) {
113 * Always use CSR0. This ensures that the clock
114 * switches to the correct idle polarity before we
115 * toggle the CS.
117 spi_writel(as, CSR0, asd->csr);
118 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
119 | SPI_BIT(MSTR));
120 mr = spi_readl(as, MR);
121 gpio_set_value(asd->npcs_pin, active);
122 } else {
123 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
124 int i;
125 u32 csr;
127 /* Make sure clock polarity is correct */
128 for (i = 0; i < spi->master->num_chipselect; i++) {
129 csr = spi_readl(as, CSR0 + 4 * i);
130 if ((csr ^ cpol) & SPI_BIT(CPOL))
131 spi_writel(as, CSR0 + 4 * i,
132 csr ^ SPI_BIT(CPOL));
135 mr = spi_readl(as, MR);
136 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
137 if (spi->chip_select != 0)
138 gpio_set_value(asd->npcs_pin, active);
139 spi_writel(as, MR, mr);
142 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
143 asd->npcs_pin, active ? " (high)" : "",
144 mr);
147 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
149 struct atmel_spi_device *asd = spi->controller_state;
150 unsigned active = spi->mode & SPI_CS_HIGH;
151 u32 mr;
153 /* only deactivate *this* device; sometimes transfers to
154 * another device may be active when this routine is called.
156 mr = spi_readl(as, MR);
157 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
158 mr = SPI_BFINS(PCS, 0xf, mr);
159 spi_writel(as, MR, mr);
162 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
163 asd->npcs_pin, active ? " (low)" : "",
164 mr);
166 if (atmel_spi_is_v2() || spi->chip_select != 0)
167 gpio_set_value(asd->npcs_pin, !active);
170 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
171 struct spi_transfer *xfer)
173 return msg->transfers.prev == &xfer->transfer_list;
176 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
178 return xfer->delay_usecs == 0 && !xfer->cs_change;
181 static void atmel_spi_next_xfer_data(struct spi_master *master,
182 struct spi_transfer *xfer,
183 dma_addr_t *tx_dma,
184 dma_addr_t *rx_dma,
185 u32 *plen)
187 struct atmel_spi *as = spi_master_get_devdata(master);
188 u32 len = *plen;
190 /* use scratch buffer only when rx or tx data is unspecified */
191 if (xfer->rx_buf)
192 *rx_dma = xfer->rx_dma + xfer->len - len;
193 else {
194 *rx_dma = as->buffer_dma;
195 if (len > BUFFER_SIZE)
196 len = BUFFER_SIZE;
198 if (xfer->tx_buf)
199 *tx_dma = xfer->tx_dma + xfer->len - len;
200 else {
201 *tx_dma = as->buffer_dma;
202 if (len > BUFFER_SIZE)
203 len = BUFFER_SIZE;
204 memset(as->buffer, 0, len);
205 dma_sync_single_for_device(&as->pdev->dev,
206 as->buffer_dma, len, DMA_TO_DEVICE);
209 *plen = len;
213 * Submit next transfer for DMA.
214 * lock is held, spi irq is blocked
216 static void atmel_spi_next_xfer(struct spi_master *master,
217 struct spi_message *msg)
219 struct atmel_spi *as = spi_master_get_devdata(master);
220 struct spi_transfer *xfer;
221 u32 len, remaining;
222 u32 ieval;
223 dma_addr_t tx_dma, rx_dma;
225 if (!as->current_transfer)
226 xfer = list_entry(msg->transfers.next,
227 struct spi_transfer, transfer_list);
228 else if (!as->next_transfer)
229 xfer = list_entry(as->current_transfer->transfer_list.next,
230 struct spi_transfer, transfer_list);
231 else
232 xfer = NULL;
234 if (xfer) {
235 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
237 len = xfer->len;
238 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
239 remaining = xfer->len - len;
241 spi_writel(as, RPR, rx_dma);
242 spi_writel(as, TPR, tx_dma);
244 if (msg->spi->bits_per_word > 8)
245 len >>= 1;
246 spi_writel(as, RCR, len);
247 spi_writel(as, TCR, len);
249 dev_dbg(&msg->spi->dev,
250 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
251 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
252 xfer->rx_buf, xfer->rx_dma);
253 } else {
254 xfer = as->next_transfer;
255 remaining = as->next_remaining_bytes;
258 as->current_transfer = xfer;
259 as->current_remaining_bytes = remaining;
261 if (remaining > 0)
262 len = remaining;
263 else if (!atmel_spi_xfer_is_last(msg, xfer)
264 && atmel_spi_xfer_can_be_chained(xfer)) {
265 xfer = list_entry(xfer->transfer_list.next,
266 struct spi_transfer, transfer_list);
267 len = xfer->len;
268 } else
269 xfer = NULL;
271 as->next_transfer = xfer;
273 if (xfer) {
274 u32 total;
276 total = len;
277 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
278 as->next_remaining_bytes = total - len;
280 spi_writel(as, RNPR, rx_dma);
281 spi_writel(as, TNPR, tx_dma);
283 if (msg->spi->bits_per_word > 8)
284 len >>= 1;
285 spi_writel(as, RNCR, len);
286 spi_writel(as, TNCR, len);
288 dev_dbg(&msg->spi->dev,
289 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
290 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
291 xfer->rx_buf, xfer->rx_dma);
292 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
293 } else {
294 spi_writel(as, RNCR, 0);
295 spi_writel(as, TNCR, 0);
296 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
299 /* REVISIT: We're waiting for ENDRX before we start the next
300 * transfer because we need to handle some difficult timing
301 * issues otherwise. If we wait for ENDTX in one transfer and
302 * then starts waiting for ENDRX in the next, it's difficult
303 * to tell the difference between the ENDRX interrupt we're
304 * actually waiting for and the ENDRX interrupt of the
305 * previous transfer.
307 * It should be doable, though. Just not now...
309 spi_writel(as, IER, ieval);
310 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
313 static void atmel_spi_next_message(struct spi_master *master)
315 struct atmel_spi *as = spi_master_get_devdata(master);
316 struct spi_message *msg;
317 struct spi_device *spi;
319 BUG_ON(as->current_transfer);
321 msg = list_entry(as->queue.next, struct spi_message, queue);
322 spi = msg->spi;
324 dev_dbg(master->dev.parent, "start message %p for %s\n",
325 msg, dev_name(&spi->dev));
327 /* select chip if it's not still active */
328 if (as->stay) {
329 if (as->stay != spi) {
330 cs_deactivate(as, as->stay);
331 cs_activate(as, spi);
333 as->stay = NULL;
334 } else
335 cs_activate(as, spi);
337 atmel_spi_next_xfer(master, msg);
341 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
342 * - The buffer is either valid for CPU access, else NULL
343 * - If the buffer is valid, so is its DMA addresss
345 * This driver manages the dma addresss unless message->is_dma_mapped.
347 static int
348 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
350 struct device *dev = &as->pdev->dev;
352 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
353 if (xfer->tx_buf) {
354 xfer->tx_dma = dma_map_single(dev,
355 (void *) xfer->tx_buf, xfer->len,
356 DMA_TO_DEVICE);
357 if (dma_mapping_error(dev, xfer->tx_dma))
358 return -ENOMEM;
360 if (xfer->rx_buf) {
361 xfer->rx_dma = dma_map_single(dev,
362 xfer->rx_buf, xfer->len,
363 DMA_FROM_DEVICE);
364 if (dma_mapping_error(dev, xfer->rx_dma)) {
365 if (xfer->tx_buf)
366 dma_unmap_single(dev,
367 xfer->tx_dma, xfer->len,
368 DMA_TO_DEVICE);
369 return -ENOMEM;
372 return 0;
375 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
376 struct spi_transfer *xfer)
378 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
379 dma_unmap_single(master->dev.parent, xfer->tx_dma,
380 xfer->len, DMA_TO_DEVICE);
381 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
382 dma_unmap_single(master->dev.parent, xfer->rx_dma,
383 xfer->len, DMA_FROM_DEVICE);
386 static void
387 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
388 struct spi_message *msg, int status, int stay)
390 if (!stay || status < 0)
391 cs_deactivate(as, msg->spi);
392 else
393 as->stay = msg->spi;
395 list_del(&msg->queue);
396 msg->status = status;
398 dev_dbg(master->dev.parent,
399 "xfer complete: %u bytes transferred\n",
400 msg->actual_length);
402 spin_unlock(&as->lock);
403 msg->complete(msg->context);
404 spin_lock(&as->lock);
406 as->current_transfer = NULL;
407 as->next_transfer = NULL;
409 /* continue if needed */
410 if (list_empty(&as->queue) || as->stopping)
411 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
412 else
413 atmel_spi_next_message(master);
416 static irqreturn_t
417 atmel_spi_interrupt(int irq, void *dev_id)
419 struct spi_master *master = dev_id;
420 struct atmel_spi *as = spi_master_get_devdata(master);
421 struct spi_message *msg;
422 struct spi_transfer *xfer;
423 u32 status, pending, imr;
424 int ret = IRQ_NONE;
426 spin_lock(&as->lock);
428 xfer = as->current_transfer;
429 msg = list_entry(as->queue.next, struct spi_message, queue);
431 imr = spi_readl(as, IMR);
432 status = spi_readl(as, SR);
433 pending = status & imr;
435 if (pending & SPI_BIT(OVRES)) {
436 int timeout;
438 ret = IRQ_HANDLED;
440 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
441 | SPI_BIT(OVRES)));
444 * When we get an overrun, we disregard the current
445 * transfer. Data will not be copied back from any
446 * bounce buffer and msg->actual_len will not be
447 * updated with the last xfer.
449 * We will also not process any remaning transfers in
450 * the message.
452 * First, stop the transfer and unmap the DMA buffers.
454 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
455 if (!msg->is_dma_mapped)
456 atmel_spi_dma_unmap_xfer(master, xfer);
458 /* REVISIT: udelay in irq is unfriendly */
459 if (xfer->delay_usecs)
460 udelay(xfer->delay_usecs);
462 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
463 spi_readl(as, TCR), spi_readl(as, RCR));
466 * Clean up DMA registers and make sure the data
467 * registers are empty.
469 spi_writel(as, RNCR, 0);
470 spi_writel(as, TNCR, 0);
471 spi_writel(as, RCR, 0);
472 spi_writel(as, TCR, 0);
473 for (timeout = 1000; timeout; timeout--)
474 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
475 break;
476 if (!timeout)
477 dev_warn(master->dev.parent,
478 "timeout waiting for TXEMPTY");
479 while (spi_readl(as, SR) & SPI_BIT(RDRF))
480 spi_readl(as, RDR);
482 /* Clear any overrun happening while cleaning up */
483 spi_readl(as, SR);
485 atmel_spi_msg_done(master, as, msg, -EIO, 0);
486 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
487 ret = IRQ_HANDLED;
489 spi_writel(as, IDR, pending);
491 if (as->current_remaining_bytes == 0) {
492 msg->actual_length += xfer->len;
494 if (!msg->is_dma_mapped)
495 atmel_spi_dma_unmap_xfer(master, xfer);
497 /* REVISIT: udelay in irq is unfriendly */
498 if (xfer->delay_usecs)
499 udelay(xfer->delay_usecs);
501 if (atmel_spi_xfer_is_last(msg, xfer)) {
502 /* report completed message */
503 atmel_spi_msg_done(master, as, msg, 0,
504 xfer->cs_change);
505 } else {
506 if (xfer->cs_change) {
507 cs_deactivate(as, msg->spi);
508 udelay(1);
509 cs_activate(as, msg->spi);
513 * Not done yet. Submit the next transfer.
515 * FIXME handle protocol options for xfer
517 atmel_spi_next_xfer(master, msg);
519 } else {
521 * Keep going, we still have data to send in
522 * the current transfer.
524 atmel_spi_next_xfer(master, msg);
528 spin_unlock(&as->lock);
530 return ret;
533 static int atmel_spi_setup(struct spi_device *spi)
535 struct atmel_spi *as;
536 struct atmel_spi_device *asd;
537 u32 scbr, csr;
538 unsigned int bits = spi->bits_per_word;
539 unsigned long bus_hz;
540 unsigned int npcs_pin;
541 int ret;
543 as = spi_master_get_devdata(spi->master);
545 if (as->stopping)
546 return -ESHUTDOWN;
548 if (spi->chip_select > spi->master->num_chipselect) {
549 dev_dbg(&spi->dev,
550 "setup: invalid chipselect %u (%u defined)\n",
551 spi->chip_select, spi->master->num_chipselect);
552 return -EINVAL;
555 if (bits < 8 || bits > 16) {
556 dev_dbg(&spi->dev,
557 "setup: invalid bits_per_word %u (8 to 16)\n",
558 bits);
559 return -EINVAL;
562 /* see notes above re chipselect */
563 if (!atmel_spi_is_v2()
564 && spi->chip_select == 0
565 && (spi->mode & SPI_CS_HIGH)) {
566 dev_dbg(&spi->dev, "setup: can't be active-high\n");
567 return -EINVAL;
570 /* v1 chips start out at half the peripheral bus speed. */
571 bus_hz = clk_get_rate(as->clk);
572 if (!atmel_spi_is_v2())
573 bus_hz /= 2;
575 if (spi->max_speed_hz) {
577 * Calculate the lowest divider that satisfies the
578 * constraint, assuming div32/fdiv/mbz == 0.
580 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
583 * If the resulting divider doesn't fit into the
584 * register bitfield, we can't satisfy the constraint.
586 if (scbr >= (1 << SPI_SCBR_SIZE)) {
587 dev_dbg(&spi->dev,
588 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
589 spi->max_speed_hz, scbr, bus_hz/255);
590 return -EINVAL;
592 } else
593 /* speed zero means "as slow as possible" */
594 scbr = 0xff;
596 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
597 if (spi->mode & SPI_CPOL)
598 csr |= SPI_BIT(CPOL);
599 if (!(spi->mode & SPI_CPHA))
600 csr |= SPI_BIT(NCPHA);
602 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
604 * DLYBCT would add delays between words, slowing down transfers.
605 * It could potentially be useful to cope with DMA bottlenecks, but
606 * in those cases it's probably best to just use a lower bitrate.
608 csr |= SPI_BF(DLYBS, 0);
609 csr |= SPI_BF(DLYBCT, 0);
611 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
612 npcs_pin = (unsigned int)spi->controller_data;
613 asd = spi->controller_state;
614 if (!asd) {
615 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
616 if (!asd)
617 return -ENOMEM;
619 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
620 if (ret) {
621 kfree(asd);
622 return ret;
625 asd->npcs_pin = npcs_pin;
626 spi->controller_state = asd;
627 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
628 } else {
629 unsigned long flags;
631 spin_lock_irqsave(&as->lock, flags);
632 if (as->stay == spi)
633 as->stay = NULL;
634 cs_deactivate(as, spi);
635 spin_unlock_irqrestore(&as->lock, flags);
638 asd->csr = csr;
640 dev_dbg(&spi->dev,
641 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
642 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
644 if (!atmel_spi_is_v2())
645 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
647 return 0;
650 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
652 struct atmel_spi *as;
653 struct spi_transfer *xfer;
654 unsigned long flags;
655 struct device *controller = spi->master->dev.parent;
657 as = spi_master_get_devdata(spi->master);
659 dev_dbg(controller, "new message %p submitted for %s\n",
660 msg, dev_name(&spi->dev));
662 if (unlikely(list_empty(&msg->transfers)))
663 return -EINVAL;
665 if (as->stopping)
666 return -ESHUTDOWN;
668 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
669 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
670 dev_dbg(&spi->dev, "missing rx or tx buf\n");
671 return -EINVAL;
674 /* FIXME implement these protocol options!! */
675 if (xfer->bits_per_word || xfer->speed_hz) {
676 dev_dbg(&spi->dev, "no protocol options yet\n");
677 return -ENOPROTOOPT;
681 * DMA map early, for performance (empties dcache ASAP) and
682 * better fault reporting. This is a DMA-only driver.
684 * NOTE that if dma_unmap_single() ever starts to do work on
685 * platforms supported by this driver, we would need to clean
686 * up mappings for previously-mapped transfers.
688 if (!msg->is_dma_mapped) {
689 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
690 return -ENOMEM;
694 #ifdef VERBOSE
695 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696 dev_dbg(controller,
697 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
698 xfer, xfer->len,
699 xfer->tx_buf, xfer->tx_dma,
700 xfer->rx_buf, xfer->rx_dma);
702 #endif
704 msg->status = -EINPROGRESS;
705 msg->actual_length = 0;
707 spin_lock_irqsave(&as->lock, flags);
708 list_add_tail(&msg->queue, &as->queue);
709 if (!as->current_transfer)
710 atmel_spi_next_message(spi->master);
711 spin_unlock_irqrestore(&as->lock, flags);
713 return 0;
716 static void atmel_spi_cleanup(struct spi_device *spi)
718 struct atmel_spi *as = spi_master_get_devdata(spi->master);
719 struct atmel_spi_device *asd = spi->controller_state;
720 unsigned gpio = (unsigned) spi->controller_data;
721 unsigned long flags;
723 if (!asd)
724 return;
726 spin_lock_irqsave(&as->lock, flags);
727 if (as->stay == spi) {
728 as->stay = NULL;
729 cs_deactivate(as, spi);
731 spin_unlock_irqrestore(&as->lock, flags);
733 spi->controller_state = NULL;
734 gpio_free(gpio);
735 kfree(asd);
738 /*-------------------------------------------------------------------------*/
740 static int __init atmel_spi_probe(struct platform_device *pdev)
742 struct resource *regs;
743 int irq;
744 struct clk *clk;
745 int ret;
746 struct spi_master *master;
747 struct atmel_spi *as;
749 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
750 if (!regs)
751 return -ENXIO;
753 irq = platform_get_irq(pdev, 0);
754 if (irq < 0)
755 return irq;
757 clk = clk_get(&pdev->dev, "spi_clk");
758 if (IS_ERR(clk))
759 return PTR_ERR(clk);
761 /* setup spi core then atmel-specific driver state */
762 ret = -ENOMEM;
763 master = spi_alloc_master(&pdev->dev, sizeof *as);
764 if (!master)
765 goto out_free;
767 /* the spi->mode bits understood by this driver: */
768 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
770 master->bus_num = pdev->id;
771 master->num_chipselect = 4;
772 master->setup = atmel_spi_setup;
773 master->transfer = atmel_spi_transfer;
774 master->cleanup = atmel_spi_cleanup;
775 platform_set_drvdata(pdev, master);
777 as = spi_master_get_devdata(master);
780 * Scratch buffer is used for throwaway rx and tx data.
781 * It's coherent to minimize dcache pollution.
783 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
784 &as->buffer_dma, GFP_KERNEL);
785 if (!as->buffer)
786 goto out_free;
788 spin_lock_init(&as->lock);
789 INIT_LIST_HEAD(&as->queue);
790 as->pdev = pdev;
791 as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
792 if (!as->regs)
793 goto out_free_buffer;
794 as->irq = irq;
795 as->clk = clk;
797 ret = request_irq(irq, atmel_spi_interrupt, 0,
798 dev_name(&pdev->dev), master);
799 if (ret)
800 goto out_unmap_regs;
802 /* Initialize the hardware */
803 clk_enable(clk);
804 spi_writel(as, CR, SPI_BIT(SWRST));
805 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
806 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
807 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
808 spi_writel(as, CR, SPI_BIT(SPIEN));
810 /* go! */
811 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
812 (unsigned long)regs->start, irq);
814 ret = spi_register_master(master);
815 if (ret)
816 goto out_reset_hw;
818 return 0;
820 out_reset_hw:
821 spi_writel(as, CR, SPI_BIT(SWRST));
822 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
823 clk_disable(clk);
824 free_irq(irq, master);
825 out_unmap_regs:
826 iounmap(as->regs);
827 out_free_buffer:
828 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
829 as->buffer_dma);
830 out_free:
831 clk_put(clk);
832 spi_master_put(master);
833 return ret;
836 static int __exit atmel_spi_remove(struct platform_device *pdev)
838 struct spi_master *master = platform_get_drvdata(pdev);
839 struct atmel_spi *as = spi_master_get_devdata(master);
840 struct spi_message *msg;
842 /* reset the hardware and block queue progress */
843 spin_lock_irq(&as->lock);
844 as->stopping = 1;
845 spi_writel(as, CR, SPI_BIT(SWRST));
846 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
847 spi_readl(as, SR);
848 spin_unlock_irq(&as->lock);
850 /* Terminate remaining queued transfers */
851 list_for_each_entry(msg, &as->queue, queue) {
852 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
853 * but we shouldn't depend on that...
855 msg->status = -ESHUTDOWN;
856 msg->complete(msg->context);
859 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
860 as->buffer_dma);
862 clk_disable(as->clk);
863 clk_put(as->clk);
864 free_irq(as->irq, master);
865 iounmap(as->regs);
867 spi_unregister_master(master);
869 return 0;
872 #ifdef CONFIG_PM
874 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
876 struct spi_master *master = platform_get_drvdata(pdev);
877 struct atmel_spi *as = spi_master_get_devdata(master);
879 clk_disable(as->clk);
880 return 0;
883 static int atmel_spi_resume(struct platform_device *pdev)
885 struct spi_master *master = platform_get_drvdata(pdev);
886 struct atmel_spi *as = spi_master_get_devdata(master);
888 clk_enable(as->clk);
889 return 0;
892 #else
893 #define atmel_spi_suspend NULL
894 #define atmel_spi_resume NULL
895 #endif
898 static struct platform_driver atmel_spi_driver = {
899 .driver = {
900 .name = "atmel_spi",
901 .owner = THIS_MODULE,
903 .suspend = atmel_spi_suspend,
904 .resume = atmel_spi_resume,
905 .remove = __exit_p(atmel_spi_remove),
908 static int __init atmel_spi_init(void)
910 return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
912 module_init(atmel_spi_init);
914 static void __exit atmel_spi_exit(void)
916 platform_driver_unregister(&atmel_spi_driver);
918 module_exit(atmel_spi_exit);
920 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
921 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
922 MODULE_LICENSE("GPL");
923 MODULE_ALIAS("platform:atmel_spi");