OMAP3 SRF: Add CORE rate table param in OMAP-PM
[linux-ginger.git] / arch / um / kernel / irq.c
blob039270b9b73bf91f76b079f2bf756b97c8cd27e1
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6 */
8 #include "linux/cpumask.h"
9 #include "linux/hardirq.h"
10 #include "linux/interrupt.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/module.h"
13 #include "linux/sched.h"
14 #include "linux/seq_file.h"
15 #include "as-layout.h"
16 #include "kern_util.h"
17 #include "os.h"
20 * Generic, controller-independent functions:
23 int show_interrupts(struct seq_file *p, void *v)
25 int i = *(loff_t *) v, j;
26 struct irqaction * action;
27 unsigned long flags;
29 if (i == 0) {
30 seq_printf(p, " ");
31 for_each_online_cpu(j)
32 seq_printf(p, "CPU%d ",j);
33 seq_putc(p, '\n');
36 if (i < NR_IRQS) {
37 spin_lock_irqsave(&irq_desc[i].lock, flags);
38 action = irq_desc[i].action;
39 if (!action)
40 goto skip;
41 seq_printf(p, "%3d: ",i);
42 #ifndef CONFIG_SMP
43 seq_printf(p, "%10u ", kstat_irqs(i));
44 #else
45 for_each_online_cpu(j)
46 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
47 #endif
48 seq_printf(p, " %14s", irq_desc[i].chip->typename);
49 seq_printf(p, " %s", action->name);
51 for (action=action->next; action; action = action->next)
52 seq_printf(p, ", %s", action->name);
54 seq_putc(p, '\n');
55 skip:
56 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
57 } else if (i == NR_IRQS)
58 seq_putc(p, '\n');
60 return 0;
64 * This list is accessed under irq_lock, except in sigio_handler,
65 * where it is safe from being modified. IRQ handlers won't change it -
66 * if an IRQ source has vanished, it will be freed by free_irqs just
67 * before returning from sigio_handler. That will process a separate
68 * list of irqs to free, with its own locking, coming back here to
69 * remove list elements, taking the irq_lock to do so.
71 static struct irq_fd *active_fds = NULL;
72 static struct irq_fd **last_irq_ptr = &active_fds;
74 extern void free_irqs(void);
76 void sigio_handler(int sig, struct uml_pt_regs *regs)
78 struct irq_fd *irq_fd;
79 int n;
81 if (smp_sigio_handler())
82 return;
84 while (1) {
85 n = os_waiting_for_events(active_fds);
86 if (n <= 0) {
87 if (n == -EINTR)
88 continue;
89 else break;
92 for (irq_fd = active_fds; irq_fd != NULL;
93 irq_fd = irq_fd->next) {
94 if (irq_fd->current_events != 0) {
95 irq_fd->current_events = 0;
96 do_IRQ(irq_fd->irq, regs);
101 free_irqs();
104 static DEFINE_SPINLOCK(irq_lock);
106 static int activate_fd(int irq, int fd, int type, void *dev_id)
108 struct pollfd *tmp_pfd;
109 struct irq_fd *new_fd, *irq_fd;
110 unsigned long flags;
111 int events, err, n;
113 err = os_set_fd_async(fd);
114 if (err < 0)
115 goto out;
117 err = -ENOMEM;
118 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
119 if (new_fd == NULL)
120 goto out;
122 if (type == IRQ_READ)
123 events = UM_POLLIN | UM_POLLPRI;
124 else events = UM_POLLOUT;
125 *new_fd = ((struct irq_fd) { .next = NULL,
126 .id = dev_id,
127 .fd = fd,
128 .type = type,
129 .irq = irq,
130 .events = events,
131 .current_events = 0 } );
133 err = -EBUSY;
134 spin_lock_irqsave(&irq_lock, flags);
135 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
136 if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
137 printk(KERN_ERR "Registering fd %d twice\n", fd);
138 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
139 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
140 dev_id);
141 goto out_unlock;
145 if (type == IRQ_WRITE)
146 fd = -1;
148 tmp_pfd = NULL;
149 n = 0;
151 while (1) {
152 n = os_create_pollfd(fd, events, tmp_pfd, n);
153 if (n == 0)
154 break;
157 * n > 0
158 * It means we couldn't put new pollfd to current pollfds
159 * and tmp_fds is NULL or too small for new pollfds array.
160 * Needed size is equal to n as minimum.
162 * Here we have to drop the lock in order to call
163 * kmalloc, which might sleep.
164 * If something else came in and changed the pollfds array
165 * so we will not be able to put new pollfd struct to pollfds
166 * then we free the buffer tmp_fds and try again.
168 spin_unlock_irqrestore(&irq_lock, flags);
169 kfree(tmp_pfd);
171 tmp_pfd = kmalloc(n, GFP_KERNEL);
172 if (tmp_pfd == NULL)
173 goto out_kfree;
175 spin_lock_irqsave(&irq_lock, flags);
178 *last_irq_ptr = new_fd;
179 last_irq_ptr = &new_fd->next;
181 spin_unlock_irqrestore(&irq_lock, flags);
184 * This calls activate_fd, so it has to be outside the critical
185 * section.
187 maybe_sigio_broken(fd, (type == IRQ_READ));
189 return 0;
191 out_unlock:
192 spin_unlock_irqrestore(&irq_lock, flags);
193 out_kfree:
194 kfree(new_fd);
195 out:
196 return err;
199 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
201 unsigned long flags;
203 spin_lock_irqsave(&irq_lock, flags);
204 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
205 spin_unlock_irqrestore(&irq_lock, flags);
208 struct irq_and_dev {
209 int irq;
210 void *dev;
213 static int same_irq_and_dev(struct irq_fd *irq, void *d)
215 struct irq_and_dev *data = d;
217 return ((irq->irq == data->irq) && (irq->id == data->dev));
220 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
222 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
223 .dev = dev });
225 free_irq_by_cb(same_irq_and_dev, &data);
228 static int same_fd(struct irq_fd *irq, void *fd)
230 return (irq->fd == *((int *)fd));
233 void free_irq_by_fd(int fd)
235 free_irq_by_cb(same_fd, &fd);
238 /* Must be called with irq_lock held */
239 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
241 struct irq_fd *irq;
242 int i = 0;
243 int fdi;
245 for (irq = active_fds; irq != NULL; irq = irq->next) {
246 if ((irq->fd == fd) && (irq->irq == irqnum))
247 break;
248 i++;
250 if (irq == NULL) {
251 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
252 fd);
253 goto out;
255 fdi = os_get_pollfd(i);
256 if ((fdi != -1) && (fdi != fd)) {
257 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
258 "and pollfds, fd %d vs %d, need %d\n", irq->fd,
259 fdi, fd);
260 irq = NULL;
261 goto out;
263 *index_out = i;
264 out:
265 return irq;
268 void reactivate_fd(int fd, int irqnum)
270 struct irq_fd *irq;
271 unsigned long flags;
272 int i;
274 spin_lock_irqsave(&irq_lock, flags);
275 irq = find_irq_by_fd(fd, irqnum, &i);
276 if (irq == NULL) {
277 spin_unlock_irqrestore(&irq_lock, flags);
278 return;
280 os_set_pollfd(i, irq->fd);
281 spin_unlock_irqrestore(&irq_lock, flags);
283 add_sigio_fd(fd);
286 void deactivate_fd(int fd, int irqnum)
288 struct irq_fd *irq;
289 unsigned long flags;
290 int i;
292 spin_lock_irqsave(&irq_lock, flags);
293 irq = find_irq_by_fd(fd, irqnum, &i);
294 if (irq == NULL) {
295 spin_unlock_irqrestore(&irq_lock, flags);
296 return;
299 os_set_pollfd(i, -1);
300 spin_unlock_irqrestore(&irq_lock, flags);
302 ignore_sigio_fd(fd);
306 * Called just before shutdown in order to provide a clean exec
307 * environment in case the system is rebooting. No locking because
308 * that would cause a pointless shutdown hang if something hadn't
309 * released the lock.
311 int deactivate_all_fds(void)
313 struct irq_fd *irq;
314 int err;
316 for (irq = active_fds; irq != NULL; irq = irq->next) {
317 err = os_clear_fd_async(irq->fd);
318 if (err)
319 return err;
321 /* If there is a signal already queued, after unblocking ignore it */
322 os_set_ioignore();
324 return 0;
328 * do_IRQ handles all normal device IRQs (the special
329 * SMP cross-CPU interrupts have their own specific
330 * handlers).
332 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
334 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
335 irq_enter();
336 __do_IRQ(irq);
337 irq_exit();
338 set_irq_regs(old_regs);
339 return 1;
342 int um_request_irq(unsigned int irq, int fd, int type,
343 irq_handler_t handler,
344 unsigned long irqflags, const char * devname,
345 void *dev_id)
347 int err;
349 if (fd != -1) {
350 err = activate_fd(irq, fd, type, dev_id);
351 if (err)
352 return err;
355 return request_irq(irq, handler, irqflags, devname, dev_id);
358 EXPORT_SYMBOL(um_request_irq);
359 EXPORT_SYMBOL(reactivate_fd);
362 * irq_chip must define (startup || enable) &&
363 * (shutdown || disable) && end
365 static void dummy(unsigned int irq)
369 /* This is used for everything else than the timer. */
370 static struct irq_chip normal_irq_type = {
371 .typename = "SIGIO",
372 .release = free_irq_by_irq_and_dev,
373 .disable = dummy,
374 .enable = dummy,
375 .ack = dummy,
376 .end = dummy
379 static struct irq_chip SIGVTALRM_irq_type = {
380 .typename = "SIGVTALRM",
381 .release = free_irq_by_irq_and_dev,
382 .shutdown = dummy, /* never called */
383 .disable = dummy,
384 .enable = dummy,
385 .ack = dummy,
386 .end = dummy
389 void __init init_IRQ(void)
391 int i;
393 irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
394 irq_desc[TIMER_IRQ].action = NULL;
395 irq_desc[TIMER_IRQ].depth = 1;
396 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
397 enable_irq(TIMER_IRQ);
398 for (i = 1; i < NR_IRQS; i++) {
399 irq_desc[i].status = IRQ_DISABLED;
400 irq_desc[i].action = NULL;
401 irq_desc[i].depth = 1;
402 irq_desc[i].chip = &normal_irq_type;
403 enable_irq(i);
408 * IRQ stack entry and exit:
410 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
411 * and switch over to the IRQ stack after some preparation. We use
412 * sigaltstack to receive signals on a separate stack from the start.
413 * These two functions make sure the rest of the kernel won't be too
414 * upset by being on a different stack. The IRQ stack has a
415 * thread_info structure at the bottom so that current et al continue
416 * to work.
418 * to_irq_stack copies the current task's thread_info to the IRQ stack
419 * thread_info and sets the tasks's stack to point to the IRQ stack.
421 * from_irq_stack copies the thread_info struct back (flags may have
422 * been modified) and resets the task's stack pointer.
424 * Tricky bits -
426 * What happens when two signals race each other? UML doesn't block
427 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
428 * could arrive while a previous one is still setting up the
429 * thread_info.
431 * There are three cases -
432 * The first interrupt on the stack - sets up the thread_info and
433 * handles the interrupt
434 * A nested interrupt interrupting the copying of the thread_info -
435 * can't handle the interrupt, as the stack is in an unknown state
436 * A nested interrupt not interrupting the copying of the
437 * thread_info - doesn't do any setup, just handles the interrupt
439 * The first job is to figure out whether we interrupted stack setup.
440 * This is done by xchging the signal mask with thread_info->pending.
441 * If the value that comes back is zero, then there is no setup in
442 * progress, and the interrupt can be handled. If the value is
443 * non-zero, then there is stack setup in progress. In order to have
444 * the interrupt handled, we leave our signal in the mask, and it will
445 * be handled by the upper handler after it has set up the stack.
447 * Next is to figure out whether we are the outer handler or a nested
448 * one. As part of setting up the stack, thread_info->real_thread is
449 * set to non-NULL (and is reset to NULL on exit). This is the
450 * nesting indicator. If it is non-NULL, then the stack is already
451 * set up and the handler can run.
454 static unsigned long pending_mask;
456 unsigned long to_irq_stack(unsigned long *mask_out)
458 struct thread_info *ti;
459 unsigned long mask, old;
460 int nested;
462 mask = xchg(&pending_mask, *mask_out);
463 if (mask != 0) {
465 * If any interrupts come in at this point, we want to
466 * make sure that their bits aren't lost by our
467 * putting our bit in. So, this loop accumulates bits
468 * until xchg returns the same value that we put in.
469 * When that happens, there were no new interrupts,
470 * and pending_mask contains a bit for each interrupt
471 * that came in.
473 old = *mask_out;
474 do {
475 old |= mask;
476 mask = xchg(&pending_mask, old);
477 } while (mask != old);
478 return 1;
481 ti = current_thread_info();
482 nested = (ti->real_thread != NULL);
483 if (!nested) {
484 struct task_struct *task;
485 struct thread_info *tti;
487 task = cpu_tasks[ti->cpu].task;
488 tti = task_thread_info(task);
490 *ti = *tti;
491 ti->real_thread = tti;
492 task->stack = ti;
495 mask = xchg(&pending_mask, 0);
496 *mask_out |= mask | nested;
497 return 0;
500 unsigned long from_irq_stack(int nested)
502 struct thread_info *ti, *to;
503 unsigned long mask;
505 ti = current_thread_info();
507 pending_mask = 1;
509 to = ti->real_thread;
510 current->stack = to;
511 ti->real_thread = NULL;
512 *to = *ti;
514 mask = xchg(&pending_mask, 0);
515 return mask & ~1;