2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
32 #include <asm/irq_regs.h>
35 * Each CPU has a list of per CPU events:
37 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
39 int perf_max_events __read_mostly
= 1;
40 static int perf_reserved_percpu __read_mostly
;
41 static int perf_overcommit __read_mostly
= 1;
43 static atomic_t nr_events __read_mostly
;
44 static atomic_t nr_mmap_events __read_mostly
;
45 static atomic_t nr_comm_events __read_mostly
;
46 static atomic_t nr_task_events __read_mostly
;
49 * perf event paranoia level:
50 * -1 - not paranoid at all
51 * 0 - disallow raw tracepoint access for unpriv
52 * 1 - disallow cpu events for unpriv
53 * 2 - disallow kernel profiling for unpriv
55 int sysctl_perf_event_paranoid __read_mostly
= 1;
57 static inline bool perf_paranoid_tracepoint_raw(void)
59 return sysctl_perf_event_paranoid
> -1;
62 static inline bool perf_paranoid_cpu(void)
64 return sysctl_perf_event_paranoid
> 0;
67 static inline bool perf_paranoid_kernel(void)
69 return sysctl_perf_event_paranoid
> 1;
72 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
75 * max perf event sample rate
77 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
79 static atomic64_t perf_event_id
;
82 * Lock for (sysadmin-configurable) event reservations:
84 static DEFINE_SPINLOCK(perf_resource_lock
);
87 * Architecture provided APIs - weak aliases:
89 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
94 void __weak
hw_perf_disable(void) { barrier(); }
95 void __weak
hw_perf_enable(void) { barrier(); }
97 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
98 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
101 hw_perf_group_sched_in(struct perf_event
*group_leader
,
102 struct perf_cpu_context
*cpuctx
,
103 struct perf_event_context
*ctx
, int cpu
)
108 void __weak
perf_event_print_debug(void) { }
110 static DEFINE_PER_CPU(int, perf_disable_count
);
112 void __perf_disable(void)
114 __get_cpu_var(perf_disable_count
)++;
117 bool __perf_enable(void)
119 return !--__get_cpu_var(perf_disable_count
);
122 void perf_disable(void)
128 void perf_enable(void)
134 static void get_ctx(struct perf_event_context
*ctx
)
136 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
139 static void free_ctx(struct rcu_head
*head
)
141 struct perf_event_context
*ctx
;
143 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
147 static void put_ctx(struct perf_event_context
*ctx
)
149 if (atomic_dec_and_test(&ctx
->refcount
)) {
151 put_ctx(ctx
->parent_ctx
);
153 put_task_struct(ctx
->task
);
154 call_rcu(&ctx
->rcu_head
, free_ctx
);
158 static void unclone_ctx(struct perf_event_context
*ctx
)
160 if (ctx
->parent_ctx
) {
161 put_ctx(ctx
->parent_ctx
);
162 ctx
->parent_ctx
= NULL
;
167 * If we inherit events we want to return the parent event id
170 static u64
primary_event_id(struct perf_event
*event
)
175 id
= event
->parent
->id
;
181 * Get the perf_event_context for a task and lock it.
182 * This has to cope with with the fact that until it is locked,
183 * the context could get moved to another task.
185 static struct perf_event_context
*
186 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
188 struct perf_event_context
*ctx
;
192 ctx
= rcu_dereference(task
->perf_event_ctxp
);
195 * If this context is a clone of another, it might
196 * get swapped for another underneath us by
197 * perf_event_task_sched_out, though the
198 * rcu_read_lock() protects us from any context
199 * getting freed. Lock the context and check if it
200 * got swapped before we could get the lock, and retry
201 * if so. If we locked the right context, then it
202 * can't get swapped on us any more.
204 spin_lock_irqsave(&ctx
->lock
, *flags
);
205 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
206 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
210 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
211 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
220 * Get the context for a task and increment its pin_count so it
221 * can't get swapped to another task. This also increments its
222 * reference count so that the context can't get freed.
224 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
226 struct perf_event_context
*ctx
;
229 ctx
= perf_lock_task_context(task
, &flags
);
232 spin_unlock_irqrestore(&ctx
->lock
, flags
);
237 static void perf_unpin_context(struct perf_event_context
*ctx
)
241 spin_lock_irqsave(&ctx
->lock
, flags
);
243 spin_unlock_irqrestore(&ctx
->lock
, flags
);
248 * Add a event from the lists for its context.
249 * Must be called with ctx->mutex and ctx->lock held.
252 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
254 struct perf_event
*group_leader
= event
->group_leader
;
257 * Depending on whether it is a standalone or sibling event,
258 * add it straight to the context's event list, or to the group
259 * leader's sibling list:
261 if (group_leader
== event
)
262 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
264 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
265 group_leader
->nr_siblings
++;
268 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
270 if (event
->attr
.inherit_stat
)
275 * Remove a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
279 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
281 struct perf_event
*sibling
, *tmp
;
283 if (list_empty(&event
->group_entry
))
286 if (event
->attr
.inherit_stat
)
289 list_del_init(&event
->group_entry
);
290 list_del_rcu(&event
->event_entry
);
292 if (event
->group_leader
!= event
)
293 event
->group_leader
->nr_siblings
--;
296 * If this was a group event with sibling events then
297 * upgrade the siblings to singleton events by adding them
298 * to the context list directly:
300 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
302 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
303 sibling
->group_leader
= sibling
;
308 event_sched_out(struct perf_event
*event
,
309 struct perf_cpu_context
*cpuctx
,
310 struct perf_event_context
*ctx
)
312 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
315 event
->state
= PERF_EVENT_STATE_INACTIVE
;
316 if (event
->pending_disable
) {
317 event
->pending_disable
= 0;
318 event
->state
= PERF_EVENT_STATE_OFF
;
320 event
->tstamp_stopped
= ctx
->time
;
321 event
->pmu
->disable(event
);
324 if (!is_software_event(event
))
325 cpuctx
->active_oncpu
--;
327 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
328 cpuctx
->exclusive
= 0;
332 group_sched_out(struct perf_event
*group_event
,
333 struct perf_cpu_context
*cpuctx
,
334 struct perf_event_context
*ctx
)
336 struct perf_event
*event
;
338 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
341 event_sched_out(group_event
, cpuctx
, ctx
);
344 * Schedule out siblings (if any):
346 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
347 event_sched_out(event
, cpuctx
, ctx
);
349 if (group_event
->attr
.exclusive
)
350 cpuctx
->exclusive
= 0;
354 * Cross CPU call to remove a performance event
356 * We disable the event on the hardware level first. After that we
357 * remove it from the context list.
359 static void __perf_event_remove_from_context(void *info
)
361 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
362 struct perf_event
*event
= info
;
363 struct perf_event_context
*ctx
= event
->ctx
;
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
370 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
373 spin_lock(&ctx
->lock
);
375 * Protect the list operation against NMI by disabling the
376 * events on a global level.
380 event_sched_out(event
, cpuctx
, ctx
);
382 list_del_event(event
, ctx
);
386 * Allow more per task events with respect to the
389 cpuctx
->max_pertask
=
390 min(perf_max_events
- ctx
->nr_events
,
391 perf_max_events
- perf_reserved_percpu
);
395 spin_unlock(&ctx
->lock
);
400 * Remove the event from a task's (or a CPU's) list of events.
402 * Must be called with ctx->mutex held.
404 * CPU events are removed with a smp call. For task events we only
405 * call when the task is on a CPU.
407 * If event->ctx is a cloned context, callers must make sure that
408 * every task struct that event->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_event_exit_task, it's OK because the
412 * context has been detached from its task.
414 static void perf_event_remove_from_context(struct perf_event
*event
)
416 struct perf_event_context
*ctx
= event
->ctx
;
417 struct task_struct
*task
= ctx
->task
;
421 * Per cpu events are removed via an smp call and
422 * the removal is always sucessful.
424 smp_call_function_single(event
->cpu
,
425 __perf_event_remove_from_context
,
431 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
434 spin_lock_irq(&ctx
->lock
);
436 * If the context is active we need to retry the smp call.
438 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
439 spin_unlock_irq(&ctx
->lock
);
444 * The lock prevents that this context is scheduled in so we
445 * can remove the event safely, if the call above did not
448 if (!list_empty(&event
->group_entry
)) {
449 list_del_event(event
, ctx
);
451 spin_unlock_irq(&ctx
->lock
);
454 static inline u64
perf_clock(void)
456 return cpu_clock(smp_processor_id());
460 * Update the record of the current time in a context.
462 static void update_context_time(struct perf_event_context
*ctx
)
464 u64 now
= perf_clock();
466 ctx
->time
+= now
- ctx
->timestamp
;
467 ctx
->timestamp
= now
;
471 * Update the total_time_enabled and total_time_running fields for a event.
473 static void update_event_times(struct perf_event
*event
)
475 struct perf_event_context
*ctx
= event
->ctx
;
478 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
479 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
482 event
->total_time_enabled
= ctx
->time
- event
->tstamp_enabled
;
484 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
485 run_end
= event
->tstamp_stopped
;
489 event
->total_time_running
= run_end
- event
->tstamp_running
;
493 * Update total_time_enabled and total_time_running for all events in a group.
495 static void update_group_times(struct perf_event
*leader
)
497 struct perf_event
*event
;
499 update_event_times(leader
);
500 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
501 update_event_times(event
);
505 * Cross CPU call to disable a performance event
507 static void __perf_event_disable(void *info
)
509 struct perf_event
*event
= info
;
510 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
511 struct perf_event_context
*ctx
= event
->ctx
;
514 * If this is a per-task event, need to check whether this
515 * event's task is the current task on this cpu.
517 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
520 spin_lock(&ctx
->lock
);
523 * If the event is on, turn it off.
524 * If it is in error state, leave it in error state.
526 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
527 update_context_time(ctx
);
528 update_group_times(event
);
529 if (event
== event
->group_leader
)
530 group_sched_out(event
, cpuctx
, ctx
);
532 event_sched_out(event
, cpuctx
, ctx
);
533 event
->state
= PERF_EVENT_STATE_OFF
;
536 spin_unlock(&ctx
->lock
);
542 * If event->ctx is a cloned context, callers must make sure that
543 * every task struct that event->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_event_for_each_child or perf_event_for_each because they
546 * hold the top-level event's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_event.
548 * When called from perf_pending_event it's OK because event->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_event_task_sched_out for this context.
552 static void perf_event_disable(struct perf_event
*event
)
554 struct perf_event_context
*ctx
= event
->ctx
;
555 struct task_struct
*task
= ctx
->task
;
559 * Disable the event on the cpu that it's on
561 smp_call_function_single(event
->cpu
, __perf_event_disable
,
567 task_oncpu_function_call(task
, __perf_event_disable
, event
);
569 spin_lock_irq(&ctx
->lock
);
571 * If the event is still active, we need to retry the cross-call.
573 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
574 spin_unlock_irq(&ctx
->lock
);
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
582 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
583 update_group_times(event
);
584 event
->state
= PERF_EVENT_STATE_OFF
;
587 spin_unlock_irq(&ctx
->lock
);
591 event_sched_in(struct perf_event
*event
,
592 struct perf_cpu_context
*cpuctx
,
593 struct perf_event_context
*ctx
,
596 if (event
->state
<= PERF_EVENT_STATE_OFF
)
599 event
->state
= PERF_EVENT_STATE_ACTIVE
;
600 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
602 * The new state must be visible before we turn it on in the hardware:
606 if (event
->pmu
->enable(event
)) {
607 event
->state
= PERF_EVENT_STATE_INACTIVE
;
612 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
614 if (!is_software_event(event
))
615 cpuctx
->active_oncpu
++;
618 if (event
->attr
.exclusive
)
619 cpuctx
->exclusive
= 1;
625 group_sched_in(struct perf_event
*group_event
,
626 struct perf_cpu_context
*cpuctx
,
627 struct perf_event_context
*ctx
,
630 struct perf_event
*event
, *partial_group
;
633 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
636 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
638 return ret
< 0 ? ret
: 0;
640 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
644 * Schedule in siblings as one group (if any):
646 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
647 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
648 partial_group
= event
;
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
660 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
661 if (event
== partial_group
)
663 event_sched_out(event
, cpuctx
, ctx
);
665 event_sched_out(group_event
, cpuctx
, ctx
);
671 * Return 1 for a group consisting entirely of software events,
672 * 0 if the group contains any hardware events.
674 static int is_software_only_group(struct perf_event
*leader
)
676 struct perf_event
*event
;
678 if (!is_software_event(leader
))
681 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
682 if (!is_software_event(event
))
689 * Work out whether we can put this event group on the CPU now.
691 static int group_can_go_on(struct perf_event
*event
,
692 struct perf_cpu_context
*cpuctx
,
696 * Groups consisting entirely of software events can always go on.
698 if (is_software_only_group(event
))
701 * If an exclusive group is already on, no other hardware
704 if (cpuctx
->exclusive
)
707 * If this group is exclusive and there are already
708 * events on the CPU, it can't go on.
710 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
713 * Otherwise, try to add it if all previous groups were able
719 static void add_event_to_ctx(struct perf_event
*event
,
720 struct perf_event_context
*ctx
)
722 list_add_event(event
, ctx
);
723 event
->tstamp_enabled
= ctx
->time
;
724 event
->tstamp_running
= ctx
->time
;
725 event
->tstamp_stopped
= ctx
->time
;
729 * Cross CPU call to install and enable a performance event
731 * Must be called with ctx->mutex held
733 static void __perf_install_in_context(void *info
)
735 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
736 struct perf_event
*event
= info
;
737 struct perf_event_context
*ctx
= event
->ctx
;
738 struct perf_event
*leader
= event
->group_leader
;
739 int cpu
= smp_processor_id();
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no events.
749 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
750 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
752 cpuctx
->task_ctx
= ctx
;
755 spin_lock(&ctx
->lock
);
757 update_context_time(ctx
);
760 * Protect the list operation against NMI by disabling the
761 * events on a global level. NOP for non NMI based events.
765 add_event_to_ctx(event
, ctx
);
768 * Don't put the event on if it is disabled or if
769 * it is in a group and the group isn't on.
771 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
772 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
776 * An exclusive event can't go on if there are already active
777 * hardware events, and no hardware event can go on if there
778 * is already an exclusive event on.
780 if (!group_can_go_on(event
, cpuctx
, 1))
783 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
787 * This event couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the event group is pinned then put it in error state.
792 group_sched_out(leader
, cpuctx
, ctx
);
793 if (leader
->attr
.pinned
) {
794 update_group_times(leader
);
795 leader
->state
= PERF_EVENT_STATE_ERROR
;
799 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
800 cpuctx
->max_pertask
--;
805 spin_unlock(&ctx
->lock
);
809 * Attach a performance event to a context
811 * First we add the event to the list with the hardware enable bit
812 * in event->hw_config cleared.
814 * If the event is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
818 * Must be called with ctx->mutex held.
821 perf_install_in_context(struct perf_event_context
*ctx
,
822 struct perf_event
*event
,
825 struct task_struct
*task
= ctx
->task
;
829 * Per cpu events are installed via an smp call and
830 * the install is always sucessful.
832 smp_call_function_single(cpu
, __perf_install_in_context
,
838 task_oncpu_function_call(task
, __perf_install_in_context
,
841 spin_lock_irq(&ctx
->lock
);
843 * we need to retry the smp call.
845 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
846 spin_unlock_irq(&ctx
->lock
);
851 * The lock prevents that this context is scheduled in so we
852 * can add the event safely, if it the call above did not
855 if (list_empty(&event
->group_entry
))
856 add_event_to_ctx(event
, ctx
);
857 spin_unlock_irq(&ctx
->lock
);
861 * Put a event into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
868 static void __perf_event_mark_enabled(struct perf_event
*event
,
869 struct perf_event_context
*ctx
)
871 struct perf_event
*sub
;
873 event
->state
= PERF_EVENT_STATE_INACTIVE
;
874 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
875 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
876 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
877 sub
->tstamp_enabled
=
878 ctx
->time
- sub
->total_time_enabled
;
882 * Cross CPU call to enable a performance event
884 static void __perf_event_enable(void *info
)
886 struct perf_event
*event
= info
;
887 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
888 struct perf_event_context
*ctx
= event
->ctx
;
889 struct perf_event
*leader
= event
->group_leader
;
893 * If this is a per-task event, need to check whether this
894 * event's task is the current task on this cpu.
896 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
897 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
899 cpuctx
->task_ctx
= ctx
;
902 spin_lock(&ctx
->lock
);
904 update_context_time(ctx
);
906 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
908 __perf_event_mark_enabled(event
, ctx
);
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
914 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
917 if (!group_can_go_on(event
, cpuctx
, 1)) {
922 err
= group_sched_in(event
, cpuctx
, ctx
,
925 err
= event_sched_in(event
, cpuctx
, ctx
,
932 * If this event can't go on and it's part of a
933 * group, then the whole group has to come off.
936 group_sched_out(leader
, cpuctx
, ctx
);
937 if (leader
->attr
.pinned
) {
938 update_group_times(leader
);
939 leader
->state
= PERF_EVENT_STATE_ERROR
;
944 spin_unlock(&ctx
->lock
);
950 * If event->ctx is a cloned context, callers must make sure that
951 * every task struct that event->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_event_for_each_child or perf_event_for_each as described
954 * for perf_event_disable.
956 static void perf_event_enable(struct perf_event
*event
)
958 struct perf_event_context
*ctx
= event
->ctx
;
959 struct task_struct
*task
= ctx
->task
;
963 * Enable the event on the cpu that it's on
965 smp_call_function_single(event
->cpu
, __perf_event_enable
,
970 spin_lock_irq(&ctx
->lock
);
971 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
975 * If the event is in error state, clear that first.
976 * That way, if we see the event in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
981 if (event
->state
== PERF_EVENT_STATE_ERROR
)
982 event
->state
= PERF_EVENT_STATE_OFF
;
985 spin_unlock_irq(&ctx
->lock
);
986 task_oncpu_function_call(task
, __perf_event_enable
, event
);
988 spin_lock_irq(&ctx
->lock
);
991 * If the context is active and the event is still off,
992 * we need to retry the cross-call.
994 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1001 if (event
->state
== PERF_EVENT_STATE_OFF
)
1002 __perf_event_mark_enabled(event
, ctx
);
1005 spin_unlock_irq(&ctx
->lock
);
1008 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1011 * not supported on inherited events
1013 if (event
->attr
.inherit
)
1016 atomic_add(refresh
, &event
->event_limit
);
1017 perf_event_enable(event
);
1022 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1023 struct perf_cpu_context
*cpuctx
)
1025 struct perf_event
*event
;
1027 spin_lock(&ctx
->lock
);
1029 if (likely(!ctx
->nr_events
))
1031 update_context_time(ctx
);
1035 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1036 group_sched_out(event
, cpuctx
, ctx
);
1040 spin_unlock(&ctx
->lock
);
1044 * Test whether two contexts are equivalent, i.e. whether they
1045 * have both been cloned from the same version of the same context
1046 * and they both have the same number of enabled events.
1047 * If the number of enabled events is the same, then the set
1048 * of enabled events should be the same, because these are both
1049 * inherited contexts, therefore we can't access individual events
1050 * in them directly with an fd; we can only enable/disable all
1051 * events via prctl, or enable/disable all events in a family
1052 * via ioctl, which will have the same effect on both contexts.
1054 static int context_equiv(struct perf_event_context
*ctx1
,
1055 struct perf_event_context
*ctx2
)
1057 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1058 && ctx1
->parent_gen
== ctx2
->parent_gen
1059 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1062 static void __perf_event_read(void *event
);
1064 static void __perf_event_sync_stat(struct perf_event
*event
,
1065 struct perf_event
*next_event
)
1069 if (!event
->attr
.inherit_stat
)
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1079 switch (event
->state
) {
1080 case PERF_EVENT_STATE_ACTIVE
:
1081 __perf_event_read(event
);
1084 case PERF_EVENT_STATE_INACTIVE
:
1085 update_event_times(event
);
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1096 value
= atomic64_read(&next_event
->count
);
1097 value
= atomic64_xchg(&event
->count
, value
);
1098 atomic64_set(&next_event
->count
, value
);
1100 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1101 swap(event
->total_time_running
, next_event
->total_time_running
);
1104 * Since we swizzled the values, update the user visible data too.
1106 perf_event_update_userpage(event
);
1107 perf_event_update_userpage(next_event
);
1110 #define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1113 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1114 struct perf_event_context
*next_ctx
)
1116 struct perf_event
*event
, *next_event
;
1121 event
= list_first_entry(&ctx
->event_list
,
1122 struct perf_event
, event_entry
);
1124 next_event
= list_first_entry(&next_ctx
->event_list
,
1125 struct perf_event
, event_entry
);
1127 while (&event
->event_entry
!= &ctx
->event_list
&&
1128 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1130 __perf_event_sync_stat(event
, next_event
);
1132 event
= list_next_entry(event
, event_entry
);
1133 next_event
= list_next_entry(next_event
, event_entry
);
1138 * Called from scheduler to remove the events of the current task,
1139 * with interrupts disabled.
1141 * We stop each event and update the event value in event->count.
1143 * This does not protect us against NMI, but disable()
1144 * sets the disabled bit in the control field of event _before_
1145 * accessing the event control register. If a NMI hits, then it will
1146 * not restart the event.
1148 void perf_event_task_sched_out(struct task_struct
*task
,
1149 struct task_struct
*next
, int cpu
)
1151 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1152 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1153 struct perf_event_context
*next_ctx
;
1154 struct perf_event_context
*parent
;
1155 struct pt_regs
*regs
;
1158 regs
= task_pt_regs(task
);
1159 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1161 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1164 update_context_time(ctx
);
1167 parent
= rcu_dereference(ctx
->parent_ctx
);
1168 next_ctx
= next
->perf_event_ctxp
;
1169 if (parent
&& next_ctx
&&
1170 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1180 spin_lock(&ctx
->lock
);
1181 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1182 if (context_equiv(ctx
, next_ctx
)) {
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1187 task
->perf_event_ctxp
= next_ctx
;
1188 next
->perf_event_ctxp
= ctx
;
1190 next_ctx
->task
= task
;
1193 perf_event_sync_stat(ctx
, next_ctx
);
1195 spin_unlock(&next_ctx
->lock
);
1196 spin_unlock(&ctx
->lock
);
1201 __perf_event_sched_out(ctx
, cpuctx
);
1202 cpuctx
->task_ctx
= NULL
;
1207 * Called with IRQs disabled
1209 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1211 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1213 if (!cpuctx
->task_ctx
)
1216 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1219 __perf_event_sched_out(ctx
, cpuctx
);
1220 cpuctx
->task_ctx
= NULL
;
1224 * Called with IRQs disabled
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1228 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1232 __perf_event_sched_in(struct perf_event_context
*ctx
,
1233 struct perf_cpu_context
*cpuctx
, int cpu
)
1235 struct perf_event
*event
;
1238 spin_lock(&ctx
->lock
);
1240 if (likely(!ctx
->nr_events
))
1243 ctx
->timestamp
= perf_clock();
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1251 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1252 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1253 !event
->attr
.pinned
)
1255 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1258 if (group_can_go_on(event
, cpuctx
, 1))
1259 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1266 update_group_times(event
);
1267 event
->state
= PERF_EVENT_STATE_ERROR
;
1271 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1276 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1281 * Listen to the 'cpu' scheduling filter constraint
1284 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1287 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1288 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1293 spin_unlock(&ctx
->lock
);
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1300 * We restore the event value and then enable it.
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1307 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1309 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1310 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1314 if (cpuctx
->task_ctx
== ctx
)
1316 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1317 cpuctx
->task_ctx
= ctx
;
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1322 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1324 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1327 #define MAX_INTERRUPTS (~0ULL)
1329 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1331 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1333 struct hw_perf_event
*hwc
= &event
->hw
;
1334 u64 period
, sample_period
;
1337 events
*= hwc
->sample_period
;
1338 period
= div64_u64(events
, event
->attr
.sample_freq
);
1340 delta
= (s64
)(period
- hwc
->sample_period
);
1341 delta
= (delta
+ 7) / 8; /* low pass filter */
1343 sample_period
= hwc
->sample_period
+ delta
;
1348 hwc
->sample_period
= sample_period
;
1351 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1353 struct perf_event
*event
;
1354 struct hw_perf_event
*hwc
;
1355 u64 interrupts
, freq
;
1357 spin_lock(&ctx
->lock
);
1358 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1359 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1364 interrupts
= hwc
->interrupts
;
1365 hwc
->interrupts
= 0;
1368 * unthrottle events on the tick
1370 if (interrupts
== MAX_INTERRUPTS
) {
1371 perf_log_throttle(event
, 1);
1372 event
->pmu
->unthrottle(event
);
1373 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1376 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1380 * if the specified freq < HZ then we need to skip ticks
1382 if (event
->attr
.sample_freq
< HZ
) {
1383 freq
= event
->attr
.sample_freq
;
1385 hwc
->freq_count
+= freq
;
1386 hwc
->freq_interrupts
+= interrupts
;
1388 if (hwc
->freq_count
< HZ
)
1391 interrupts
= hwc
->freq_interrupts
;
1392 hwc
->freq_interrupts
= 0;
1393 hwc
->freq_count
-= HZ
;
1397 perf_adjust_period(event
, freq
* interrupts
);
1400 * In order to avoid being stalled by an (accidental) huge
1401 * sample period, force reset the sample period if we didn't
1402 * get any events in this freq period.
1406 event
->pmu
->disable(event
);
1407 atomic64_set(&hwc
->period_left
, 0);
1408 event
->pmu
->enable(event
);
1412 spin_unlock(&ctx
->lock
);
1416 * Round-robin a context's events:
1418 static void rotate_ctx(struct perf_event_context
*ctx
)
1420 struct perf_event
*event
;
1422 if (!ctx
->nr_events
)
1425 spin_lock(&ctx
->lock
);
1427 * Rotate the first entry last (works just fine for group events too):
1430 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1431 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1436 spin_unlock(&ctx
->lock
);
1439 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1441 struct perf_cpu_context
*cpuctx
;
1442 struct perf_event_context
*ctx
;
1444 if (!atomic_read(&nr_events
))
1447 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1448 ctx
= curr
->perf_event_ctxp
;
1450 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1452 perf_ctx_adjust_freq(ctx
);
1454 perf_event_cpu_sched_out(cpuctx
);
1456 __perf_event_task_sched_out(ctx
);
1458 rotate_ctx(&cpuctx
->ctx
);
1462 perf_event_cpu_sched_in(cpuctx
, cpu
);
1464 perf_event_task_sched_in(curr
, cpu
);
1468 * Enable all of a task's events that have been marked enable-on-exec.
1469 * This expects task == current.
1471 static void perf_event_enable_on_exec(struct task_struct
*task
)
1473 struct perf_event_context
*ctx
;
1474 struct perf_event
*event
;
1475 unsigned long flags
;
1478 local_irq_save(flags
);
1479 ctx
= task
->perf_event_ctxp
;
1480 if (!ctx
|| !ctx
->nr_events
)
1483 __perf_event_task_sched_out(ctx
);
1485 spin_lock(&ctx
->lock
);
1487 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1488 if (!event
->attr
.enable_on_exec
)
1490 event
->attr
.enable_on_exec
= 0;
1491 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1493 __perf_event_mark_enabled(event
, ctx
);
1498 * Unclone this context if we enabled any event.
1503 spin_unlock(&ctx
->lock
);
1505 perf_event_task_sched_in(task
, smp_processor_id());
1507 local_irq_restore(flags
);
1511 * Cross CPU call to read the hardware event
1513 static void __perf_event_read(void *info
)
1515 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1516 struct perf_event
*event
= info
;
1517 struct perf_event_context
*ctx
= event
->ctx
;
1518 unsigned long flags
;
1521 * If this is a task context, we need to check whether it is
1522 * the current task context of this cpu. If not it has been
1523 * scheduled out before the smp call arrived. In that case
1524 * event->count would have been updated to a recent sample
1525 * when the event was scheduled out.
1527 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1530 local_irq_save(flags
);
1532 update_context_time(ctx
);
1533 event
->pmu
->read(event
);
1534 update_event_times(event
);
1535 local_irq_restore(flags
);
1538 static u64
perf_event_read(struct perf_event
*event
)
1541 * If event is enabled and currently active on a CPU, update the
1542 * value in the event structure:
1544 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1545 smp_call_function_single(event
->oncpu
,
1546 __perf_event_read
, event
, 1);
1547 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1548 update_event_times(event
);
1551 return atomic64_read(&event
->count
);
1555 * Initialize the perf_event context in a task_struct:
1558 __perf_event_init_context(struct perf_event_context
*ctx
,
1559 struct task_struct
*task
)
1561 memset(ctx
, 0, sizeof(*ctx
));
1562 spin_lock_init(&ctx
->lock
);
1563 mutex_init(&ctx
->mutex
);
1564 INIT_LIST_HEAD(&ctx
->group_list
);
1565 INIT_LIST_HEAD(&ctx
->event_list
);
1566 atomic_set(&ctx
->refcount
, 1);
1570 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1572 struct perf_event_context
*ctx
;
1573 struct perf_cpu_context
*cpuctx
;
1574 struct task_struct
*task
;
1575 unsigned long flags
;
1579 * If cpu is not a wildcard then this is a percpu event:
1582 /* Must be root to operate on a CPU event: */
1583 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1584 return ERR_PTR(-EACCES
);
1586 if (cpu
< 0 || cpu
> num_possible_cpus())
1587 return ERR_PTR(-EINVAL
);
1590 * We could be clever and allow to attach a event to an
1591 * offline CPU and activate it when the CPU comes up, but
1594 if (!cpu_isset(cpu
, cpu_online_map
))
1595 return ERR_PTR(-ENODEV
);
1597 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1608 task
= find_task_by_vpid(pid
);
1610 get_task_struct(task
);
1614 return ERR_PTR(-ESRCH
);
1617 * Can't attach events to a dying task.
1620 if (task
->flags
& PF_EXITING
)
1623 /* Reuse ptrace permission checks for now. */
1625 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1629 ctx
= perf_lock_task_context(task
, &flags
);
1632 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1636 ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1640 __perf_event_init_context(ctx
, task
);
1642 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1644 * We raced with some other task; use
1645 * the context they set.
1650 get_task_struct(task
);
1653 put_task_struct(task
);
1657 put_task_struct(task
);
1658 return ERR_PTR(err
);
1661 static void free_event_rcu(struct rcu_head
*head
)
1663 struct perf_event
*event
;
1665 event
= container_of(head
, struct perf_event
, rcu_head
);
1667 put_pid_ns(event
->ns
);
1671 static void perf_pending_sync(struct perf_event
*event
);
1673 static void free_event(struct perf_event
*event
)
1675 perf_pending_sync(event
);
1677 if (!event
->parent
) {
1678 atomic_dec(&nr_events
);
1679 if (event
->attr
.mmap
)
1680 atomic_dec(&nr_mmap_events
);
1681 if (event
->attr
.comm
)
1682 atomic_dec(&nr_comm_events
);
1683 if (event
->attr
.task
)
1684 atomic_dec(&nr_task_events
);
1687 if (event
->output
) {
1688 fput(event
->output
->filp
);
1689 event
->output
= NULL
;
1693 event
->destroy(event
);
1695 put_ctx(event
->ctx
);
1696 call_rcu(&event
->rcu_head
, free_event_rcu
);
1700 * Called when the last reference to the file is gone.
1702 static int perf_release(struct inode
*inode
, struct file
*file
)
1704 struct perf_event
*event
= file
->private_data
;
1705 struct perf_event_context
*ctx
= event
->ctx
;
1707 file
->private_data
= NULL
;
1709 WARN_ON_ONCE(ctx
->parent_ctx
);
1710 mutex_lock(&ctx
->mutex
);
1711 perf_event_remove_from_context(event
);
1712 mutex_unlock(&ctx
->mutex
);
1714 mutex_lock(&event
->owner
->perf_event_mutex
);
1715 list_del_init(&event
->owner_entry
);
1716 mutex_unlock(&event
->owner
->perf_event_mutex
);
1717 put_task_struct(event
->owner
);
1724 static int perf_event_read_size(struct perf_event
*event
)
1726 int entry
= sizeof(u64
); /* value */
1730 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1731 size
+= sizeof(u64
);
1733 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1734 size
+= sizeof(u64
);
1736 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1737 entry
+= sizeof(u64
);
1739 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1740 nr
+= event
->group_leader
->nr_siblings
;
1741 size
+= sizeof(u64
);
1749 static u64
perf_event_read_value(struct perf_event
*event
)
1751 struct perf_event
*child
;
1754 total
+= perf_event_read(event
);
1755 list_for_each_entry(child
, &event
->child_list
, child_list
)
1756 total
+= perf_event_read(child
);
1761 static int perf_event_read_entry(struct perf_event
*event
,
1762 u64 read_format
, char __user
*buf
)
1764 int n
= 0, count
= 0;
1767 values
[n
++] = perf_event_read_value(event
);
1768 if (read_format
& PERF_FORMAT_ID
)
1769 values
[n
++] = primary_event_id(event
);
1771 count
= n
* sizeof(u64
);
1773 if (copy_to_user(buf
, values
, count
))
1779 static int perf_event_read_group(struct perf_event
*event
,
1780 u64 read_format
, char __user
*buf
)
1782 struct perf_event
*leader
= event
->group_leader
, *sub
;
1783 int n
= 0, size
= 0, err
= -EFAULT
;
1786 values
[n
++] = 1 + leader
->nr_siblings
;
1787 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1788 values
[n
++] = leader
->total_time_enabled
+
1789 atomic64_read(&leader
->child_total_time_enabled
);
1791 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1792 values
[n
++] = leader
->total_time_running
+
1793 atomic64_read(&leader
->child_total_time_running
);
1796 size
= n
* sizeof(u64
);
1798 if (copy_to_user(buf
, values
, size
))
1801 err
= perf_event_read_entry(leader
, read_format
, buf
+ size
);
1807 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1808 err
= perf_event_read_entry(sub
, read_format
,
1819 static int perf_event_read_one(struct perf_event
*event
,
1820 u64 read_format
, char __user
*buf
)
1825 values
[n
++] = perf_event_read_value(event
);
1826 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1827 values
[n
++] = event
->total_time_enabled
+
1828 atomic64_read(&event
->child_total_time_enabled
);
1830 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1831 values
[n
++] = event
->total_time_running
+
1832 atomic64_read(&event
->child_total_time_running
);
1834 if (read_format
& PERF_FORMAT_ID
)
1835 values
[n
++] = primary_event_id(event
);
1837 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1840 return n
* sizeof(u64
);
1844 * Read the performance event - simple non blocking version for now
1847 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1849 u64 read_format
= event
->attr
.read_format
;
1853 * Return end-of-file for a read on a event that is in
1854 * error state (i.e. because it was pinned but it couldn't be
1855 * scheduled on to the CPU at some point).
1857 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1860 if (count
< perf_event_read_size(event
))
1863 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1864 mutex_lock(&event
->child_mutex
);
1865 if (read_format
& PERF_FORMAT_GROUP
)
1866 ret
= perf_event_read_group(event
, read_format
, buf
);
1868 ret
= perf_event_read_one(event
, read_format
, buf
);
1869 mutex_unlock(&event
->child_mutex
);
1875 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1877 struct perf_event
*event
= file
->private_data
;
1879 return perf_read_hw(event
, buf
, count
);
1882 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1884 struct perf_event
*event
= file
->private_data
;
1885 struct perf_mmap_data
*data
;
1886 unsigned int events
= POLL_HUP
;
1889 data
= rcu_dereference(event
->data
);
1891 events
= atomic_xchg(&data
->poll
, 0);
1894 poll_wait(file
, &event
->waitq
, wait
);
1899 static void perf_event_reset(struct perf_event
*event
)
1901 (void)perf_event_read(event
);
1902 atomic64_set(&event
->count
, 0);
1903 perf_event_update_userpage(event
);
1907 * Holding the top-level event's child_mutex means that any
1908 * descendant process that has inherited this event will block
1909 * in sync_child_event if it goes to exit, thus satisfying the
1910 * task existence requirements of perf_event_enable/disable.
1912 static void perf_event_for_each_child(struct perf_event
*event
,
1913 void (*func
)(struct perf_event
*))
1915 struct perf_event
*child
;
1917 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1918 mutex_lock(&event
->child_mutex
);
1920 list_for_each_entry(child
, &event
->child_list
, child_list
)
1922 mutex_unlock(&event
->child_mutex
);
1925 static void perf_event_for_each(struct perf_event
*event
,
1926 void (*func
)(struct perf_event
*))
1928 struct perf_event_context
*ctx
= event
->ctx
;
1929 struct perf_event
*sibling
;
1931 WARN_ON_ONCE(ctx
->parent_ctx
);
1932 mutex_lock(&ctx
->mutex
);
1933 event
= event
->group_leader
;
1935 perf_event_for_each_child(event
, func
);
1937 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1938 perf_event_for_each_child(event
, func
);
1939 mutex_unlock(&ctx
->mutex
);
1942 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1944 struct perf_event_context
*ctx
= event
->ctx
;
1949 if (!event
->attr
.sample_period
)
1952 size
= copy_from_user(&value
, arg
, sizeof(value
));
1953 if (size
!= sizeof(value
))
1959 spin_lock_irq(&ctx
->lock
);
1960 if (event
->attr
.freq
) {
1961 if (value
> sysctl_perf_event_sample_rate
) {
1966 event
->attr
.sample_freq
= value
;
1968 event
->attr
.sample_period
= value
;
1969 event
->hw
.sample_period
= value
;
1972 spin_unlock_irq(&ctx
->lock
);
1977 int perf_event_set_output(struct perf_event
*event
, int output_fd
);
1979 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1981 struct perf_event
*event
= file
->private_data
;
1982 void (*func
)(struct perf_event
*);
1986 case PERF_EVENT_IOC_ENABLE
:
1987 func
= perf_event_enable
;
1989 case PERF_EVENT_IOC_DISABLE
:
1990 func
= perf_event_disable
;
1992 case PERF_EVENT_IOC_RESET
:
1993 func
= perf_event_reset
;
1996 case PERF_EVENT_IOC_REFRESH
:
1997 return perf_event_refresh(event
, arg
);
1999 case PERF_EVENT_IOC_PERIOD
:
2000 return perf_event_period(event
, (u64 __user
*)arg
);
2002 case PERF_EVENT_IOC_SET_OUTPUT
:
2003 return perf_event_set_output(event
, arg
);
2009 if (flags
& PERF_IOC_FLAG_GROUP
)
2010 perf_event_for_each(event
, func
);
2012 perf_event_for_each_child(event
, func
);
2017 int perf_event_task_enable(void)
2019 struct perf_event
*event
;
2021 mutex_lock(¤t
->perf_event_mutex
);
2022 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2023 perf_event_for_each_child(event
, perf_event_enable
);
2024 mutex_unlock(¤t
->perf_event_mutex
);
2029 int perf_event_task_disable(void)
2031 struct perf_event
*event
;
2033 mutex_lock(¤t
->perf_event_mutex
);
2034 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2035 perf_event_for_each_child(event
, perf_event_disable
);
2036 mutex_unlock(¤t
->perf_event_mutex
);
2041 #ifndef PERF_EVENT_INDEX_OFFSET
2042 # define PERF_EVENT_INDEX_OFFSET 0
2045 static int perf_event_index(struct perf_event
*event
)
2047 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2050 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2054 * Callers need to ensure there can be no nesting of this function, otherwise
2055 * the seqlock logic goes bad. We can not serialize this because the arch
2056 * code calls this from NMI context.
2058 void perf_event_update_userpage(struct perf_event
*event
)
2060 struct perf_event_mmap_page
*userpg
;
2061 struct perf_mmap_data
*data
;
2064 data
= rcu_dereference(event
->data
);
2068 userpg
= data
->user_page
;
2071 * Disable preemption so as to not let the corresponding user-space
2072 * spin too long if we get preempted.
2077 userpg
->index
= perf_event_index(event
);
2078 userpg
->offset
= atomic64_read(&event
->count
);
2079 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2080 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2082 userpg
->time_enabled
= event
->total_time_enabled
+
2083 atomic64_read(&event
->child_total_time_enabled
);
2085 userpg
->time_running
= event
->total_time_running
+
2086 atomic64_read(&event
->child_total_time_running
);
2095 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2097 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2100 #ifndef CONFIG_PERF_USE_VMALLOC
2103 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2106 static struct page
*
2107 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2109 if (pgoff
> data
->nr_pages
)
2113 return virt_to_page(data
->user_page
);
2115 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2118 static struct perf_mmap_data
*
2119 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2121 struct perf_mmap_data
*data
;
2125 WARN_ON(atomic_read(&event
->mmap_count
));
2127 size
= sizeof(struct perf_mmap_data
);
2128 size
+= nr_pages
* sizeof(void *);
2130 data
= kzalloc(size
, GFP_KERNEL
);
2134 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2135 if (!data
->user_page
)
2136 goto fail_user_page
;
2138 for (i
= 0; i
< nr_pages
; i
++) {
2139 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2140 if (!data
->data_pages
[i
])
2141 goto fail_data_pages
;
2144 data
->data_order
= 0;
2145 data
->nr_pages
= nr_pages
;
2150 for (i
--; i
>= 0; i
--)
2151 free_page((unsigned long)data
->data_pages
[i
]);
2153 free_page((unsigned long)data
->user_page
);
2162 static void perf_mmap_free_page(unsigned long addr
)
2164 struct page
*page
= virt_to_page((void *)addr
);
2166 page
->mapping
= NULL
;
2170 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2174 perf_mmap_free_page((unsigned long)data
->user_page
);
2175 for (i
= 0; i
< data
->nr_pages
; i
++)
2176 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2182 * Back perf_mmap() with vmalloc memory.
2184 * Required for architectures that have d-cache aliasing issues.
2187 static struct page
*
2188 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2190 if (pgoff
> (1UL << data
->data_order
))
2193 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2196 static void perf_mmap_unmark_page(void *addr
)
2198 struct page
*page
= vmalloc_to_page(addr
);
2200 page
->mapping
= NULL
;
2203 static void perf_mmap_data_free_work(struct work_struct
*work
)
2205 struct perf_mmap_data
*data
;
2209 data
= container_of(work
, struct perf_mmap_data
, work
);
2210 nr
= 1 << data
->data_order
;
2212 base
= data
->user_page
;
2213 for (i
= 0; i
< nr
+ 1; i
++)
2214 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2219 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2221 schedule_work(&data
->work
);
2224 static struct perf_mmap_data
*
2225 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2227 struct perf_mmap_data
*data
;
2231 WARN_ON(atomic_read(&event
->mmap_count
));
2233 size
= sizeof(struct perf_mmap_data
);
2234 size
+= sizeof(void *);
2236 data
= kzalloc(size
, GFP_KERNEL
);
2240 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2242 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2246 data
->user_page
= all_buf
;
2247 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2248 data
->data_order
= ilog2(nr_pages
);
2262 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2264 struct perf_event
*event
= vma
->vm_file
->private_data
;
2265 struct perf_mmap_data
*data
;
2266 int ret
= VM_FAULT_SIGBUS
;
2268 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2269 if (vmf
->pgoff
== 0)
2275 data
= rcu_dereference(event
->data
);
2279 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2282 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2286 get_page(vmf
->page
);
2287 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2288 vmf
->page
->index
= vmf
->pgoff
;
2298 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2300 long max_size
= perf_data_size(data
);
2302 atomic_set(&data
->lock
, -1);
2304 if (event
->attr
.watermark
) {
2305 data
->watermark
= min_t(long, max_size
,
2306 event
->attr
.wakeup_watermark
);
2309 if (!data
->watermark
)
2310 data
->watermark
= max_t(long, PAGE_SIZE
, max_size
/ 2);
2313 rcu_assign_pointer(event
->data
, data
);
2316 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2318 struct perf_mmap_data
*data
;
2320 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2321 perf_mmap_data_free(data
);
2325 static void perf_mmap_data_release(struct perf_event
*event
)
2327 struct perf_mmap_data
*data
= event
->data
;
2329 WARN_ON(atomic_read(&event
->mmap_count
));
2331 rcu_assign_pointer(event
->data
, NULL
);
2332 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2335 static void perf_mmap_open(struct vm_area_struct
*vma
)
2337 struct perf_event
*event
= vma
->vm_file
->private_data
;
2339 atomic_inc(&event
->mmap_count
);
2342 static void perf_mmap_close(struct vm_area_struct
*vma
)
2344 struct perf_event
*event
= vma
->vm_file
->private_data
;
2346 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2347 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2348 unsigned long size
= perf_data_size(event
->data
);
2349 struct user_struct
*user
= current_user();
2351 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2352 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2353 perf_mmap_data_release(event
);
2354 mutex_unlock(&event
->mmap_mutex
);
2358 static const struct vm_operations_struct perf_mmap_vmops
= {
2359 .open
= perf_mmap_open
,
2360 .close
= perf_mmap_close
,
2361 .fault
= perf_mmap_fault
,
2362 .page_mkwrite
= perf_mmap_fault
,
2365 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2367 struct perf_event
*event
= file
->private_data
;
2368 unsigned long user_locked
, user_lock_limit
;
2369 struct user_struct
*user
= current_user();
2370 unsigned long locked
, lock_limit
;
2371 struct perf_mmap_data
*data
;
2372 unsigned long vma_size
;
2373 unsigned long nr_pages
;
2374 long user_extra
, extra
;
2377 if (!(vma
->vm_flags
& VM_SHARED
))
2380 vma_size
= vma
->vm_end
- vma
->vm_start
;
2381 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2384 * If we have data pages ensure they're a power-of-two number, so we
2385 * can do bitmasks instead of modulo.
2387 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2390 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2393 if (vma
->vm_pgoff
!= 0)
2396 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2397 mutex_lock(&event
->mmap_mutex
);
2398 if (event
->output
) {
2403 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2404 if (nr_pages
!= event
->data
->nr_pages
)
2409 user_extra
= nr_pages
+ 1;
2410 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2413 * Increase the limit linearly with more CPUs:
2415 user_lock_limit
*= num_online_cpus();
2417 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2420 if (user_locked
> user_lock_limit
)
2421 extra
= user_locked
- user_lock_limit
;
2423 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2424 lock_limit
>>= PAGE_SHIFT
;
2425 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2427 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2428 !capable(CAP_IPC_LOCK
)) {
2433 WARN_ON(event
->data
);
2435 data
= perf_mmap_data_alloc(event
, nr_pages
);
2441 perf_mmap_data_init(event
, data
);
2443 atomic_set(&event
->mmap_count
, 1);
2444 atomic_long_add(user_extra
, &user
->locked_vm
);
2445 vma
->vm_mm
->locked_vm
+= extra
;
2446 event
->data
->nr_locked
= extra
;
2447 if (vma
->vm_flags
& VM_WRITE
)
2448 event
->data
->writable
= 1;
2451 mutex_unlock(&event
->mmap_mutex
);
2453 vma
->vm_flags
|= VM_RESERVED
;
2454 vma
->vm_ops
= &perf_mmap_vmops
;
2459 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2461 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2462 struct perf_event
*event
= filp
->private_data
;
2465 mutex_lock(&inode
->i_mutex
);
2466 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2467 mutex_unlock(&inode
->i_mutex
);
2475 static const struct file_operations perf_fops
= {
2476 .release
= perf_release
,
2479 .unlocked_ioctl
= perf_ioctl
,
2480 .compat_ioctl
= perf_ioctl
,
2482 .fasync
= perf_fasync
,
2488 * If there's data, ensure we set the poll() state and publish everything
2489 * to user-space before waking everybody up.
2492 void perf_event_wakeup(struct perf_event
*event
)
2494 wake_up_all(&event
->waitq
);
2496 if (event
->pending_kill
) {
2497 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2498 event
->pending_kill
= 0;
2505 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2507 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2508 * single linked list and use cmpxchg() to add entries lockless.
2511 static void perf_pending_event(struct perf_pending_entry
*entry
)
2513 struct perf_event
*event
= container_of(entry
,
2514 struct perf_event
, pending
);
2516 if (event
->pending_disable
) {
2517 event
->pending_disable
= 0;
2518 __perf_event_disable(event
);
2521 if (event
->pending_wakeup
) {
2522 event
->pending_wakeup
= 0;
2523 perf_event_wakeup(event
);
2527 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2529 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2533 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2534 void (*func
)(struct perf_pending_entry
*))
2536 struct perf_pending_entry
**head
;
2538 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2543 head
= &get_cpu_var(perf_pending_head
);
2546 entry
->next
= *head
;
2547 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2549 set_perf_event_pending();
2551 put_cpu_var(perf_pending_head
);
2554 static int __perf_pending_run(void)
2556 struct perf_pending_entry
*list
;
2559 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2560 while (list
!= PENDING_TAIL
) {
2561 void (*func
)(struct perf_pending_entry
*);
2562 struct perf_pending_entry
*entry
= list
;
2569 * Ensure we observe the unqueue before we issue the wakeup,
2570 * so that we won't be waiting forever.
2571 * -- see perf_not_pending().
2582 static inline int perf_not_pending(struct perf_event
*event
)
2585 * If we flush on whatever cpu we run, there is a chance we don't
2589 __perf_pending_run();
2593 * Ensure we see the proper queue state before going to sleep
2594 * so that we do not miss the wakeup. -- see perf_pending_handle()
2597 return event
->pending
.next
== NULL
;
2600 static void perf_pending_sync(struct perf_event
*event
)
2602 wait_event(event
->waitq
, perf_not_pending(event
));
2605 void perf_event_do_pending(void)
2607 __perf_pending_run();
2611 * Callchain support -- arch specific
2614 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2622 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2623 unsigned long offset
, unsigned long head
)
2627 if (!data
->writable
)
2630 mask
= perf_data_size(data
) - 1;
2632 offset
= (offset
- tail
) & mask
;
2633 head
= (head
- tail
) & mask
;
2635 if ((int)(head
- offset
) < 0)
2641 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2643 atomic_set(&handle
->data
->poll
, POLL_IN
);
2646 handle
->event
->pending_wakeup
= 1;
2647 perf_pending_queue(&handle
->event
->pending
,
2648 perf_pending_event
);
2650 perf_event_wakeup(handle
->event
);
2654 * Curious locking construct.
2656 * We need to ensure a later event_id doesn't publish a head when a former
2657 * event_id isn't done writing. However since we need to deal with NMIs we
2658 * cannot fully serialize things.
2660 * What we do is serialize between CPUs so we only have to deal with NMI
2661 * nesting on a single CPU.
2663 * We only publish the head (and generate a wakeup) when the outer-most
2664 * event_id completes.
2666 static void perf_output_lock(struct perf_output_handle
*handle
)
2668 struct perf_mmap_data
*data
= handle
->data
;
2673 local_irq_save(handle
->flags
);
2674 cpu
= smp_processor_id();
2676 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2679 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2685 static void perf_output_unlock(struct perf_output_handle
*handle
)
2687 struct perf_mmap_data
*data
= handle
->data
;
2691 data
->done_head
= data
->head
;
2693 if (!handle
->locked
)
2698 * The xchg implies a full barrier that ensures all writes are done
2699 * before we publish the new head, matched by a rmb() in userspace when
2700 * reading this position.
2702 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2703 data
->user_page
->data_head
= head
;
2706 * NMI can happen here, which means we can miss a done_head update.
2709 cpu
= atomic_xchg(&data
->lock
, -1);
2710 WARN_ON_ONCE(cpu
!= smp_processor_id());
2713 * Therefore we have to validate we did not indeed do so.
2715 if (unlikely(atomic_long_read(&data
->done_head
))) {
2717 * Since we had it locked, we can lock it again.
2719 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2725 if (atomic_xchg(&data
->wakeup
, 0))
2726 perf_output_wakeup(handle
);
2728 local_irq_restore(handle
->flags
);
2731 void perf_output_copy(struct perf_output_handle
*handle
,
2732 const void *buf
, unsigned int len
)
2734 unsigned int pages_mask
;
2735 unsigned long offset
;
2739 offset
= handle
->offset
;
2740 pages_mask
= handle
->data
->nr_pages
- 1;
2741 pages
= handle
->data
->data_pages
;
2744 unsigned long page_offset
;
2745 unsigned long page_size
;
2748 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2749 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2750 page_offset
= offset
& (page_size
- 1);
2751 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2753 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2760 handle
->offset
= offset
;
2763 * Check we didn't copy past our reservation window, taking the
2764 * possible unsigned int wrap into account.
2766 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2769 int perf_output_begin(struct perf_output_handle
*handle
,
2770 struct perf_event
*event
, unsigned int size
,
2771 int nmi
, int sample
)
2773 struct perf_event
*output_event
;
2774 struct perf_mmap_data
*data
;
2775 unsigned long tail
, offset
, head
;
2778 struct perf_event_header header
;
2785 * For inherited events we send all the output towards the parent.
2788 event
= event
->parent
;
2790 output_event
= rcu_dereference(event
->output
);
2792 event
= output_event
;
2794 data
= rcu_dereference(event
->data
);
2798 handle
->data
= data
;
2799 handle
->event
= event
;
2801 handle
->sample
= sample
;
2803 if (!data
->nr_pages
)
2806 have_lost
= atomic_read(&data
->lost
);
2808 size
+= sizeof(lost_event
);
2810 perf_output_lock(handle
);
2814 * Userspace could choose to issue a mb() before updating the
2815 * tail pointer. So that all reads will be completed before the
2818 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2820 offset
= head
= atomic_long_read(&data
->head
);
2822 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2824 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2826 handle
->offset
= offset
;
2827 handle
->head
= head
;
2829 if (head
- tail
> data
->watermark
)
2830 atomic_set(&data
->wakeup
, 1);
2833 lost_event
.header
.type
= PERF_RECORD_LOST
;
2834 lost_event
.header
.misc
= 0;
2835 lost_event
.header
.size
= sizeof(lost_event
);
2836 lost_event
.id
= event
->id
;
2837 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2839 perf_output_put(handle
, lost_event
);
2845 atomic_inc(&data
->lost
);
2846 perf_output_unlock(handle
);
2853 void perf_output_end(struct perf_output_handle
*handle
)
2855 struct perf_event
*event
= handle
->event
;
2856 struct perf_mmap_data
*data
= handle
->data
;
2858 int wakeup_events
= event
->attr
.wakeup_events
;
2860 if (handle
->sample
&& wakeup_events
) {
2861 int events
= atomic_inc_return(&data
->events
);
2862 if (events
>= wakeup_events
) {
2863 atomic_sub(wakeup_events
, &data
->events
);
2864 atomic_set(&data
->wakeup
, 1);
2868 perf_output_unlock(handle
);
2872 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2875 * only top level events have the pid namespace they were created in
2878 event
= event
->parent
;
2880 return task_tgid_nr_ns(p
, event
->ns
);
2883 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2886 * only top level events have the pid namespace they were created in
2889 event
= event
->parent
;
2891 return task_pid_nr_ns(p
, event
->ns
);
2894 static void perf_output_read_one(struct perf_output_handle
*handle
,
2895 struct perf_event
*event
)
2897 u64 read_format
= event
->attr
.read_format
;
2901 values
[n
++] = atomic64_read(&event
->count
);
2902 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2903 values
[n
++] = event
->total_time_enabled
+
2904 atomic64_read(&event
->child_total_time_enabled
);
2906 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2907 values
[n
++] = event
->total_time_running
+
2908 atomic64_read(&event
->child_total_time_running
);
2910 if (read_format
& PERF_FORMAT_ID
)
2911 values
[n
++] = primary_event_id(event
);
2913 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2917 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2919 static void perf_output_read_group(struct perf_output_handle
*handle
,
2920 struct perf_event
*event
)
2922 struct perf_event
*leader
= event
->group_leader
, *sub
;
2923 u64 read_format
= event
->attr
.read_format
;
2927 values
[n
++] = 1 + leader
->nr_siblings
;
2929 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2930 values
[n
++] = leader
->total_time_enabled
;
2932 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2933 values
[n
++] = leader
->total_time_running
;
2935 if (leader
!= event
)
2936 leader
->pmu
->read(leader
);
2938 values
[n
++] = atomic64_read(&leader
->count
);
2939 if (read_format
& PERF_FORMAT_ID
)
2940 values
[n
++] = primary_event_id(leader
);
2942 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2944 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2948 sub
->pmu
->read(sub
);
2950 values
[n
++] = atomic64_read(&sub
->count
);
2951 if (read_format
& PERF_FORMAT_ID
)
2952 values
[n
++] = primary_event_id(sub
);
2954 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2958 static void perf_output_read(struct perf_output_handle
*handle
,
2959 struct perf_event
*event
)
2961 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
2962 perf_output_read_group(handle
, event
);
2964 perf_output_read_one(handle
, event
);
2967 void perf_output_sample(struct perf_output_handle
*handle
,
2968 struct perf_event_header
*header
,
2969 struct perf_sample_data
*data
,
2970 struct perf_event
*event
)
2972 u64 sample_type
= data
->type
;
2974 perf_output_put(handle
, *header
);
2976 if (sample_type
& PERF_SAMPLE_IP
)
2977 perf_output_put(handle
, data
->ip
);
2979 if (sample_type
& PERF_SAMPLE_TID
)
2980 perf_output_put(handle
, data
->tid_entry
);
2982 if (sample_type
& PERF_SAMPLE_TIME
)
2983 perf_output_put(handle
, data
->time
);
2985 if (sample_type
& PERF_SAMPLE_ADDR
)
2986 perf_output_put(handle
, data
->addr
);
2988 if (sample_type
& PERF_SAMPLE_ID
)
2989 perf_output_put(handle
, data
->id
);
2991 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
2992 perf_output_put(handle
, data
->stream_id
);
2994 if (sample_type
& PERF_SAMPLE_CPU
)
2995 perf_output_put(handle
, data
->cpu_entry
);
2997 if (sample_type
& PERF_SAMPLE_PERIOD
)
2998 perf_output_put(handle
, data
->period
);
3000 if (sample_type
& PERF_SAMPLE_READ
)
3001 perf_output_read(handle
, event
);
3003 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3004 if (data
->callchain
) {
3007 if (data
->callchain
)
3008 size
+= data
->callchain
->nr
;
3010 size
*= sizeof(u64
);
3012 perf_output_copy(handle
, data
->callchain
, size
);
3015 perf_output_put(handle
, nr
);
3019 if (sample_type
& PERF_SAMPLE_RAW
) {
3021 perf_output_put(handle
, data
->raw
->size
);
3022 perf_output_copy(handle
, data
->raw
->data
,
3029 .size
= sizeof(u32
),
3032 perf_output_put(handle
, raw
);
3037 void perf_prepare_sample(struct perf_event_header
*header
,
3038 struct perf_sample_data
*data
,
3039 struct perf_event
*event
,
3040 struct pt_regs
*regs
)
3042 u64 sample_type
= event
->attr
.sample_type
;
3044 data
->type
= sample_type
;
3046 header
->type
= PERF_RECORD_SAMPLE
;
3047 header
->size
= sizeof(*header
);
3050 header
->misc
|= perf_misc_flags(regs
);
3052 if (sample_type
& PERF_SAMPLE_IP
) {
3053 data
->ip
= perf_instruction_pointer(regs
);
3055 header
->size
+= sizeof(data
->ip
);
3058 if (sample_type
& PERF_SAMPLE_TID
) {
3059 /* namespace issues */
3060 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3061 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3063 header
->size
+= sizeof(data
->tid_entry
);
3066 if (sample_type
& PERF_SAMPLE_TIME
) {
3067 data
->time
= perf_clock();
3069 header
->size
+= sizeof(data
->time
);
3072 if (sample_type
& PERF_SAMPLE_ADDR
)
3073 header
->size
+= sizeof(data
->addr
);
3075 if (sample_type
& PERF_SAMPLE_ID
) {
3076 data
->id
= primary_event_id(event
);
3078 header
->size
+= sizeof(data
->id
);
3081 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3082 data
->stream_id
= event
->id
;
3084 header
->size
+= sizeof(data
->stream_id
);
3087 if (sample_type
& PERF_SAMPLE_CPU
) {
3088 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3089 data
->cpu_entry
.reserved
= 0;
3091 header
->size
+= sizeof(data
->cpu_entry
);
3094 if (sample_type
& PERF_SAMPLE_PERIOD
)
3095 header
->size
+= sizeof(data
->period
);
3097 if (sample_type
& PERF_SAMPLE_READ
)
3098 header
->size
+= perf_event_read_size(event
);
3100 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3103 data
->callchain
= perf_callchain(regs
);
3105 if (data
->callchain
)
3106 size
+= data
->callchain
->nr
;
3108 header
->size
+= size
* sizeof(u64
);
3111 if (sample_type
& PERF_SAMPLE_RAW
) {
3112 int size
= sizeof(u32
);
3115 size
+= data
->raw
->size
;
3117 size
+= sizeof(u32
);
3119 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3120 header
->size
+= size
;
3124 static void perf_event_output(struct perf_event
*event
, int nmi
,
3125 struct perf_sample_data
*data
,
3126 struct pt_regs
*regs
)
3128 struct perf_output_handle handle
;
3129 struct perf_event_header header
;
3131 perf_prepare_sample(&header
, data
, event
, regs
);
3133 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3136 perf_output_sample(&handle
, &header
, data
, event
);
3138 perf_output_end(&handle
);
3145 struct perf_read_event
{
3146 struct perf_event_header header
;
3153 perf_event_read_event(struct perf_event
*event
,
3154 struct task_struct
*task
)
3156 struct perf_output_handle handle
;
3157 struct perf_read_event read_event
= {
3159 .type
= PERF_RECORD_READ
,
3161 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3163 .pid
= perf_event_pid(event
, task
),
3164 .tid
= perf_event_tid(event
, task
),
3168 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3172 perf_output_put(&handle
, read_event
);
3173 perf_output_read(&handle
, event
);
3175 perf_output_end(&handle
);
3179 * task tracking -- fork/exit
3181 * enabled by: attr.comm | attr.mmap | attr.task
3184 struct perf_task_event
{
3185 struct task_struct
*task
;
3186 struct perf_event_context
*task_ctx
;
3189 struct perf_event_header header
;
3199 static void perf_event_task_output(struct perf_event
*event
,
3200 struct perf_task_event
*task_event
)
3202 struct perf_output_handle handle
;
3204 struct task_struct
*task
= task_event
->task
;
3207 size
= task_event
->event_id
.header
.size
;
3208 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3213 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3214 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3216 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3217 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3219 task_event
->event_id
.time
= perf_clock();
3221 perf_output_put(&handle
, task_event
->event_id
);
3223 perf_output_end(&handle
);
3226 static int perf_event_task_match(struct perf_event
*event
)
3228 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3234 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3235 struct perf_task_event
*task_event
)
3237 struct perf_event
*event
;
3239 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3243 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3244 if (perf_event_task_match(event
))
3245 perf_event_task_output(event
, task_event
);
3250 static void perf_event_task_event(struct perf_task_event
*task_event
)
3252 struct perf_cpu_context
*cpuctx
;
3253 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3255 cpuctx
= &get_cpu_var(perf_cpu_context
);
3256 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3257 put_cpu_var(perf_cpu_context
);
3261 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3263 perf_event_task_ctx(ctx
, task_event
);
3267 static void perf_event_task(struct task_struct
*task
,
3268 struct perf_event_context
*task_ctx
,
3271 struct perf_task_event task_event
;
3273 if (!atomic_read(&nr_comm_events
) &&
3274 !atomic_read(&nr_mmap_events
) &&
3275 !atomic_read(&nr_task_events
))
3278 task_event
= (struct perf_task_event
){
3280 .task_ctx
= task_ctx
,
3283 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3285 .size
= sizeof(task_event
.event_id
),
3294 perf_event_task_event(&task_event
);
3297 void perf_event_fork(struct task_struct
*task
)
3299 perf_event_task(task
, NULL
, 1);
3306 struct perf_comm_event
{
3307 struct task_struct
*task
;
3312 struct perf_event_header header
;
3319 static void perf_event_comm_output(struct perf_event
*event
,
3320 struct perf_comm_event
*comm_event
)
3322 struct perf_output_handle handle
;
3323 int size
= comm_event
->event_id
.header
.size
;
3324 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3329 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3330 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3332 perf_output_put(&handle
, comm_event
->event_id
);
3333 perf_output_copy(&handle
, comm_event
->comm
,
3334 comm_event
->comm_size
);
3335 perf_output_end(&handle
);
3338 static int perf_event_comm_match(struct perf_event
*event
)
3340 if (event
->attr
.comm
)
3346 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3347 struct perf_comm_event
*comm_event
)
3349 struct perf_event
*event
;
3351 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3355 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3356 if (perf_event_comm_match(event
))
3357 perf_event_comm_output(event
, comm_event
);
3362 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3364 struct perf_cpu_context
*cpuctx
;
3365 struct perf_event_context
*ctx
;
3367 char comm
[TASK_COMM_LEN
];
3369 memset(comm
, 0, sizeof(comm
));
3370 strncpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3371 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3373 comm_event
->comm
= comm
;
3374 comm_event
->comm_size
= size
;
3376 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3378 cpuctx
= &get_cpu_var(perf_cpu_context
);
3379 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3380 put_cpu_var(perf_cpu_context
);
3384 * doesn't really matter which of the child contexts the
3385 * events ends up in.
3387 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3389 perf_event_comm_ctx(ctx
, comm_event
);
3393 void perf_event_comm(struct task_struct
*task
)
3395 struct perf_comm_event comm_event
;
3397 if (task
->perf_event_ctxp
)
3398 perf_event_enable_on_exec(task
);
3400 if (!atomic_read(&nr_comm_events
))
3403 comm_event
= (struct perf_comm_event
){
3409 .type
= PERF_RECORD_COMM
,
3418 perf_event_comm_event(&comm_event
);
3425 struct perf_mmap_event
{
3426 struct vm_area_struct
*vma
;
3428 const char *file_name
;
3432 struct perf_event_header header
;
3442 static void perf_event_mmap_output(struct perf_event
*event
,
3443 struct perf_mmap_event
*mmap_event
)
3445 struct perf_output_handle handle
;
3446 int size
= mmap_event
->event_id
.header
.size
;
3447 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3452 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3453 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3455 perf_output_put(&handle
, mmap_event
->event_id
);
3456 perf_output_copy(&handle
, mmap_event
->file_name
,
3457 mmap_event
->file_size
);
3458 perf_output_end(&handle
);
3461 static int perf_event_mmap_match(struct perf_event
*event
,
3462 struct perf_mmap_event
*mmap_event
)
3464 if (event
->attr
.mmap
)
3470 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3471 struct perf_mmap_event
*mmap_event
)
3473 struct perf_event
*event
;
3475 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3479 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3480 if (perf_event_mmap_match(event
, mmap_event
))
3481 perf_event_mmap_output(event
, mmap_event
);
3486 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3488 struct perf_cpu_context
*cpuctx
;
3489 struct perf_event_context
*ctx
;
3490 struct vm_area_struct
*vma
= mmap_event
->vma
;
3491 struct file
*file
= vma
->vm_file
;
3497 memset(tmp
, 0, sizeof(tmp
));
3501 * d_path works from the end of the buffer backwards, so we
3502 * need to add enough zero bytes after the string to handle
3503 * the 64bit alignment we do later.
3505 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3507 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3510 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3512 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3516 if (arch_vma_name(mmap_event
->vma
)) {
3517 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3523 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3527 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3532 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3534 mmap_event
->file_name
= name
;
3535 mmap_event
->file_size
= size
;
3537 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3539 cpuctx
= &get_cpu_var(perf_cpu_context
);
3540 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3541 put_cpu_var(perf_cpu_context
);
3545 * doesn't really matter which of the child contexts the
3546 * events ends up in.
3548 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3550 perf_event_mmap_ctx(ctx
, mmap_event
);
3556 void __perf_event_mmap(struct vm_area_struct
*vma
)
3558 struct perf_mmap_event mmap_event
;
3560 if (!atomic_read(&nr_mmap_events
))
3563 mmap_event
= (struct perf_mmap_event
){
3569 .type
= PERF_RECORD_MMAP
,
3575 .start
= vma
->vm_start
,
3576 .len
= vma
->vm_end
- vma
->vm_start
,
3577 .pgoff
= vma
->vm_pgoff
,
3581 perf_event_mmap_event(&mmap_event
);
3585 * IRQ throttle logging
3588 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3590 struct perf_output_handle handle
;
3594 struct perf_event_header header
;
3598 } throttle_event
= {
3600 .type
= PERF_RECORD_THROTTLE
,
3602 .size
= sizeof(throttle_event
),
3604 .time
= perf_clock(),
3605 .id
= primary_event_id(event
),
3606 .stream_id
= event
->id
,
3610 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3612 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3616 perf_output_put(&handle
, throttle_event
);
3617 perf_output_end(&handle
);
3621 * Generic event overflow handling, sampling.
3624 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3625 int throttle
, struct perf_sample_data
*data
,
3626 struct pt_regs
*regs
)
3628 int events
= atomic_read(&event
->event_limit
);
3629 struct hw_perf_event
*hwc
= &event
->hw
;
3632 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3637 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3639 if (HZ
* hwc
->interrupts
>
3640 (u64
)sysctl_perf_event_sample_rate
) {
3641 hwc
->interrupts
= MAX_INTERRUPTS
;
3642 perf_log_throttle(event
, 0);
3647 * Keep re-disabling events even though on the previous
3648 * pass we disabled it - just in case we raced with a
3649 * sched-in and the event got enabled again:
3655 if (event
->attr
.freq
) {
3656 u64 now
= perf_clock();
3657 s64 delta
= now
- hwc
->freq_stamp
;
3659 hwc
->freq_stamp
= now
;
3661 if (delta
> 0 && delta
< TICK_NSEC
)
3662 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3666 * XXX event_limit might not quite work as expected on inherited
3670 event
->pending_kill
= POLL_IN
;
3671 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3673 event
->pending_kill
= POLL_HUP
;
3675 event
->pending_disable
= 1;
3676 perf_pending_queue(&event
->pending
,
3677 perf_pending_event
);
3679 perf_event_disable(event
);
3682 perf_event_output(event
, nmi
, data
, regs
);
3686 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3687 struct perf_sample_data
*data
,
3688 struct pt_regs
*regs
)
3690 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3694 * Generic software event infrastructure
3698 * We directly increment event->count and keep a second value in
3699 * event->hw.period_left to count intervals. This period event
3700 * is kept in the range [-sample_period, 0] so that we can use the
3704 static u64
perf_swevent_set_period(struct perf_event
*event
)
3706 struct hw_perf_event
*hwc
= &event
->hw
;
3707 u64 period
= hwc
->last_period
;
3711 hwc
->last_period
= hwc
->sample_period
;
3714 old
= val
= atomic64_read(&hwc
->period_left
);
3718 nr
= div64_u64(period
+ val
, period
);
3719 offset
= nr
* period
;
3721 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3727 static void perf_swevent_overflow(struct perf_event
*event
,
3728 int nmi
, struct perf_sample_data
*data
,
3729 struct pt_regs
*regs
)
3731 struct hw_perf_event
*hwc
= &event
->hw
;
3735 data
->period
= event
->hw
.last_period
;
3736 overflow
= perf_swevent_set_period(event
);
3738 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3741 for (; overflow
; overflow
--) {
3742 if (__perf_event_overflow(event
, nmi
, throttle
,
3745 * We inhibit the overflow from happening when
3746 * hwc->interrupts == MAX_INTERRUPTS.
3754 static void perf_swevent_unthrottle(struct perf_event
*event
)
3757 * Nothing to do, we already reset hwc->interrupts.
3761 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3762 int nmi
, struct perf_sample_data
*data
,
3763 struct pt_regs
*regs
)
3765 struct hw_perf_event
*hwc
= &event
->hw
;
3767 atomic64_add(nr
, &event
->count
);
3769 if (!hwc
->sample_period
)
3775 if (!atomic64_add_negative(nr
, &hwc
->period_left
))
3776 perf_swevent_overflow(event
, nmi
, data
, regs
);
3779 static int perf_swevent_is_counting(struct perf_event
*event
)
3782 * The event is active, we're good!
3784 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3788 * The event is off/error, not counting.
3790 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3794 * The event is inactive, if the context is active
3795 * we're part of a group that didn't make it on the 'pmu',
3798 if (event
->ctx
->is_active
)
3802 * We're inactive and the context is too, this means the
3803 * task is scheduled out, we're counting events that happen
3804 * to us, like migration events.
3809 static int perf_swevent_match(struct perf_event
*event
,
3810 enum perf_type_id type
,
3811 u32 event_id
, struct pt_regs
*regs
)
3813 if (!perf_swevent_is_counting(event
))
3816 if (event
->attr
.type
!= type
)
3818 if (event
->attr
.config
!= event_id
)
3822 if (event
->attr
.exclude_user
&& user_mode(regs
))
3825 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3832 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3833 enum perf_type_id type
,
3834 u32 event_id
, u64 nr
, int nmi
,
3835 struct perf_sample_data
*data
,
3836 struct pt_regs
*regs
)
3838 struct perf_event
*event
;
3840 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3844 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3845 if (perf_swevent_match(event
, type
, event_id
, regs
))
3846 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3851 static int *perf_swevent_recursion_context(struct perf_cpu_context
*cpuctx
)
3854 return &cpuctx
->recursion
[3];
3857 return &cpuctx
->recursion
[2];
3860 return &cpuctx
->recursion
[1];
3862 return &cpuctx
->recursion
[0];
3865 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3867 struct perf_sample_data
*data
,
3868 struct pt_regs
*regs
)
3870 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3871 int *recursion
= perf_swevent_recursion_context(cpuctx
);
3872 struct perf_event_context
*ctx
;
3880 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3881 nr
, nmi
, data
, regs
);
3884 * doesn't really matter which of the child contexts the
3885 * events ends up in.
3887 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3889 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3896 put_cpu_var(perf_cpu_context
);
3899 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3900 struct pt_regs
*regs
, u64 addr
)
3902 struct perf_sample_data data
= {
3906 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
,
3910 static void perf_swevent_read(struct perf_event
*event
)
3914 static int perf_swevent_enable(struct perf_event
*event
)
3916 struct hw_perf_event
*hwc
= &event
->hw
;
3918 if (hwc
->sample_period
) {
3919 hwc
->last_period
= hwc
->sample_period
;
3920 perf_swevent_set_period(event
);
3925 static void perf_swevent_disable(struct perf_event
*event
)
3929 static const struct pmu perf_ops_generic
= {
3930 .enable
= perf_swevent_enable
,
3931 .disable
= perf_swevent_disable
,
3932 .read
= perf_swevent_read
,
3933 .unthrottle
= perf_swevent_unthrottle
,
3937 * hrtimer based swevent callback
3940 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
3942 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3943 struct perf_sample_data data
;
3944 struct pt_regs
*regs
;
3945 struct perf_event
*event
;
3948 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
3949 event
->pmu
->read(event
);
3952 regs
= get_irq_regs();
3954 * In case we exclude kernel IPs or are somehow not in interrupt
3955 * context, provide the next best thing, the user IP.
3957 if ((event
->attr
.exclude_kernel
|| !regs
) &&
3958 !event
->attr
.exclude_user
)
3959 regs
= task_pt_regs(current
);
3962 if (perf_event_overflow(event
, 0, &data
, regs
))
3963 ret
= HRTIMER_NORESTART
;
3966 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
3967 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
3973 * Software event: cpu wall time clock
3976 static void cpu_clock_perf_event_update(struct perf_event
*event
)
3978 int cpu
= raw_smp_processor_id();
3982 now
= cpu_clock(cpu
);
3983 prev
= atomic64_read(&event
->hw
.prev_count
);
3984 atomic64_set(&event
->hw
.prev_count
, now
);
3985 atomic64_add(now
- prev
, &event
->count
);
3988 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
3990 struct hw_perf_event
*hwc
= &event
->hw
;
3991 int cpu
= raw_smp_processor_id();
3993 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
3994 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3995 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
3996 if (hwc
->sample_period
) {
3997 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3998 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3999 ns_to_ktime(period
), 0,
4000 HRTIMER_MODE_REL
, 0);
4006 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4008 if (event
->hw
.sample_period
)
4009 hrtimer_cancel(&event
->hw
.hrtimer
);
4010 cpu_clock_perf_event_update(event
);
4013 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4015 cpu_clock_perf_event_update(event
);
4018 static const struct pmu perf_ops_cpu_clock
= {
4019 .enable
= cpu_clock_perf_event_enable
,
4020 .disable
= cpu_clock_perf_event_disable
,
4021 .read
= cpu_clock_perf_event_read
,
4025 * Software event: task time clock
4028 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4033 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4035 atomic64_add(delta
, &event
->count
);
4038 static int task_clock_perf_event_enable(struct perf_event
*event
)
4040 struct hw_perf_event
*hwc
= &event
->hw
;
4043 now
= event
->ctx
->time
;
4045 atomic64_set(&hwc
->prev_count
, now
);
4046 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4047 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4048 if (hwc
->sample_period
) {
4049 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
4050 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4051 ns_to_ktime(period
), 0,
4052 HRTIMER_MODE_REL
, 0);
4058 static void task_clock_perf_event_disable(struct perf_event
*event
)
4060 if (event
->hw
.sample_period
)
4061 hrtimer_cancel(&event
->hw
.hrtimer
);
4062 task_clock_perf_event_update(event
, event
->ctx
->time
);
4066 static void task_clock_perf_event_read(struct perf_event
*event
)
4071 update_context_time(event
->ctx
);
4072 time
= event
->ctx
->time
;
4074 u64 now
= perf_clock();
4075 u64 delta
= now
- event
->ctx
->timestamp
;
4076 time
= event
->ctx
->time
+ delta
;
4079 task_clock_perf_event_update(event
, time
);
4082 static const struct pmu perf_ops_task_clock
= {
4083 .enable
= task_clock_perf_event_enable
,
4084 .disable
= task_clock_perf_event_disable
,
4085 .read
= task_clock_perf_event_read
,
4088 #ifdef CONFIG_EVENT_PROFILE
4089 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4092 struct perf_raw_record raw
= {
4097 struct perf_sample_data data
= {
4102 struct pt_regs
*regs
= get_irq_regs();
4105 regs
= task_pt_regs(current
);
4107 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4110 EXPORT_SYMBOL_GPL(perf_tp_event
);
4112 extern int ftrace_profile_enable(int);
4113 extern void ftrace_profile_disable(int);
4115 static void tp_perf_event_destroy(struct perf_event
*event
)
4117 ftrace_profile_disable(event
->attr
.config
);
4120 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4123 * Raw tracepoint data is a severe data leak, only allow root to
4126 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4127 perf_paranoid_tracepoint_raw() &&
4128 !capable(CAP_SYS_ADMIN
))
4129 return ERR_PTR(-EPERM
);
4131 if (ftrace_profile_enable(event
->attr
.config
))
4134 event
->destroy
= tp_perf_event_destroy
;
4136 return &perf_ops_generic
;
4139 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4145 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4147 static void sw_perf_event_destroy(struct perf_event
*event
)
4149 u64 event_id
= event
->attr
.config
;
4151 WARN_ON(event
->parent
);
4153 atomic_dec(&perf_swevent_enabled
[event_id
]);
4156 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4158 const struct pmu
*pmu
= NULL
;
4159 u64 event_id
= event
->attr
.config
;
4162 * Software events (currently) can't in general distinguish
4163 * between user, kernel and hypervisor events.
4164 * However, context switches and cpu migrations are considered
4165 * to be kernel events, and page faults are never hypervisor
4169 case PERF_COUNT_SW_CPU_CLOCK
:
4170 pmu
= &perf_ops_cpu_clock
;
4173 case PERF_COUNT_SW_TASK_CLOCK
:
4175 * If the user instantiates this as a per-cpu event,
4176 * use the cpu_clock event instead.
4178 if (event
->ctx
->task
)
4179 pmu
= &perf_ops_task_clock
;
4181 pmu
= &perf_ops_cpu_clock
;
4184 case PERF_COUNT_SW_PAGE_FAULTS
:
4185 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4186 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4187 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4188 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4189 if (!event
->parent
) {
4190 atomic_inc(&perf_swevent_enabled
[event_id
]);
4191 event
->destroy
= sw_perf_event_destroy
;
4193 pmu
= &perf_ops_generic
;
4201 * Allocate and initialize a event structure
4203 static struct perf_event
*
4204 perf_event_alloc(struct perf_event_attr
*attr
,
4206 struct perf_event_context
*ctx
,
4207 struct perf_event
*group_leader
,
4208 struct perf_event
*parent_event
,
4211 const struct pmu
*pmu
;
4212 struct perf_event
*event
;
4213 struct hw_perf_event
*hwc
;
4216 event
= kzalloc(sizeof(*event
), gfpflags
);
4218 return ERR_PTR(-ENOMEM
);
4221 * Single events are their own group leaders, with an
4222 * empty sibling list:
4225 group_leader
= event
;
4227 mutex_init(&event
->child_mutex
);
4228 INIT_LIST_HEAD(&event
->child_list
);
4230 INIT_LIST_HEAD(&event
->group_entry
);
4231 INIT_LIST_HEAD(&event
->event_entry
);
4232 INIT_LIST_HEAD(&event
->sibling_list
);
4233 init_waitqueue_head(&event
->waitq
);
4235 mutex_init(&event
->mmap_mutex
);
4238 event
->attr
= *attr
;
4239 event
->group_leader
= group_leader
;
4244 event
->parent
= parent_event
;
4246 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4247 event
->id
= atomic64_inc_return(&perf_event_id
);
4249 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4252 event
->state
= PERF_EVENT_STATE_OFF
;
4257 hwc
->sample_period
= attr
->sample_period
;
4258 if (attr
->freq
&& attr
->sample_freq
)
4259 hwc
->sample_period
= 1;
4260 hwc
->last_period
= hwc
->sample_period
;
4262 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4265 * we currently do not support PERF_FORMAT_GROUP on inherited events
4267 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4270 switch (attr
->type
) {
4272 case PERF_TYPE_HARDWARE
:
4273 case PERF_TYPE_HW_CACHE
:
4274 pmu
= hw_perf_event_init(event
);
4277 case PERF_TYPE_SOFTWARE
:
4278 pmu
= sw_perf_event_init(event
);
4281 case PERF_TYPE_TRACEPOINT
:
4282 pmu
= tp_perf_event_init(event
);
4292 else if (IS_ERR(pmu
))
4297 put_pid_ns(event
->ns
);
4299 return ERR_PTR(err
);
4304 if (!event
->parent
) {
4305 atomic_inc(&nr_events
);
4306 if (event
->attr
.mmap
)
4307 atomic_inc(&nr_mmap_events
);
4308 if (event
->attr
.comm
)
4309 atomic_inc(&nr_comm_events
);
4310 if (event
->attr
.task
)
4311 atomic_inc(&nr_task_events
);
4317 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4318 struct perf_event_attr
*attr
)
4323 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4327 * zero the full structure, so that a short copy will be nice.
4329 memset(attr
, 0, sizeof(*attr
));
4331 ret
= get_user(size
, &uattr
->size
);
4335 if (size
> PAGE_SIZE
) /* silly large */
4338 if (!size
) /* abi compat */
4339 size
= PERF_ATTR_SIZE_VER0
;
4341 if (size
< PERF_ATTR_SIZE_VER0
)
4345 * If we're handed a bigger struct than we know of,
4346 * ensure all the unknown bits are 0 - i.e. new
4347 * user-space does not rely on any kernel feature
4348 * extensions we dont know about yet.
4350 if (size
> sizeof(*attr
)) {
4351 unsigned char __user
*addr
;
4352 unsigned char __user
*end
;
4355 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4356 end
= (void __user
*)uattr
+ size
;
4358 for (; addr
< end
; addr
++) {
4359 ret
= get_user(val
, addr
);
4365 size
= sizeof(*attr
);
4368 ret
= copy_from_user(attr
, uattr
, size
);
4373 * If the type exists, the corresponding creation will verify
4376 if (attr
->type
>= PERF_TYPE_MAX
)
4379 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4382 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4385 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4392 put_user(sizeof(*attr
), &uattr
->size
);
4397 int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4399 struct perf_event
*output_event
= NULL
;
4400 struct file
*output_file
= NULL
;
4401 struct perf_event
*old_output
;
4402 int fput_needed
= 0;
4408 output_file
= fget_light(output_fd
, &fput_needed
);
4412 if (output_file
->f_op
!= &perf_fops
)
4415 output_event
= output_file
->private_data
;
4417 /* Don't chain output fds */
4418 if (output_event
->output
)
4421 /* Don't set an output fd when we already have an output channel */
4425 atomic_long_inc(&output_file
->f_count
);
4428 mutex_lock(&event
->mmap_mutex
);
4429 old_output
= event
->output
;
4430 rcu_assign_pointer(event
->output
, output_event
);
4431 mutex_unlock(&event
->mmap_mutex
);
4435 * we need to make sure no existing perf_output_*()
4436 * is still referencing this event.
4439 fput(old_output
->filp
);
4444 fput_light(output_file
, fput_needed
);
4449 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4451 * @attr_uptr: event_id type attributes for monitoring/sampling
4454 * @group_fd: group leader event fd
4456 SYSCALL_DEFINE5(perf_event_open
,
4457 struct perf_event_attr __user
*, attr_uptr
,
4458 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4460 struct perf_event
*event
, *group_leader
;
4461 struct perf_event_attr attr
;
4462 struct perf_event_context
*ctx
;
4463 struct file
*event_file
= NULL
;
4464 struct file
*group_file
= NULL
;
4465 int fput_needed
= 0;
4466 int fput_needed2
= 0;
4469 /* for future expandability... */
4470 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4473 err
= perf_copy_attr(attr_uptr
, &attr
);
4477 if (!attr
.exclude_kernel
) {
4478 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4483 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4488 * Get the target context (task or percpu):
4490 ctx
= find_get_context(pid
, cpu
);
4492 return PTR_ERR(ctx
);
4495 * Look up the group leader (we will attach this event to it):
4497 group_leader
= NULL
;
4498 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4500 group_file
= fget_light(group_fd
, &fput_needed
);
4502 goto err_put_context
;
4503 if (group_file
->f_op
!= &perf_fops
)
4504 goto err_put_context
;
4506 group_leader
= group_file
->private_data
;
4508 * Do not allow a recursive hierarchy (this new sibling
4509 * becoming part of another group-sibling):
4511 if (group_leader
->group_leader
!= group_leader
)
4512 goto err_put_context
;
4514 * Do not allow to attach to a group in a different
4515 * task or CPU context:
4517 if (group_leader
->ctx
!= ctx
)
4518 goto err_put_context
;
4520 * Only a group leader can be exclusive or pinned
4522 if (attr
.exclusive
|| attr
.pinned
)
4523 goto err_put_context
;
4526 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4528 err
= PTR_ERR(event
);
4530 goto err_put_context
;
4532 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, 0);
4534 goto err_free_put_context
;
4536 event_file
= fget_light(err
, &fput_needed2
);
4538 goto err_free_put_context
;
4540 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4541 err
= perf_event_set_output(event
, group_fd
);
4543 goto err_fput_free_put_context
;
4546 event
->filp
= event_file
;
4547 WARN_ON_ONCE(ctx
->parent_ctx
);
4548 mutex_lock(&ctx
->mutex
);
4549 perf_install_in_context(ctx
, event
, cpu
);
4551 mutex_unlock(&ctx
->mutex
);
4553 event
->owner
= current
;
4554 get_task_struct(current
);
4555 mutex_lock(¤t
->perf_event_mutex
);
4556 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4557 mutex_unlock(¤t
->perf_event_mutex
);
4559 err_fput_free_put_context
:
4560 fput_light(event_file
, fput_needed2
);
4562 err_free_put_context
:
4570 fput_light(group_file
, fput_needed
);
4576 * inherit a event from parent task to child task:
4578 static struct perf_event
*
4579 inherit_event(struct perf_event
*parent_event
,
4580 struct task_struct
*parent
,
4581 struct perf_event_context
*parent_ctx
,
4582 struct task_struct
*child
,
4583 struct perf_event
*group_leader
,
4584 struct perf_event_context
*child_ctx
)
4586 struct perf_event
*child_event
;
4589 * Instead of creating recursive hierarchies of events,
4590 * we link inherited events back to the original parent,
4591 * which has a filp for sure, which we use as the reference
4594 if (parent_event
->parent
)
4595 parent_event
= parent_event
->parent
;
4597 child_event
= perf_event_alloc(&parent_event
->attr
,
4598 parent_event
->cpu
, child_ctx
,
4599 group_leader
, parent_event
,
4601 if (IS_ERR(child_event
))
4606 * Make the child state follow the state of the parent event,
4607 * not its attr.disabled bit. We hold the parent's mutex,
4608 * so we won't race with perf_event_{en, dis}able_family.
4610 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4611 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4613 child_event
->state
= PERF_EVENT_STATE_OFF
;
4615 if (parent_event
->attr
.freq
)
4616 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4619 * Link it up in the child's context:
4621 add_event_to_ctx(child_event
, child_ctx
);
4624 * Get a reference to the parent filp - we will fput it
4625 * when the child event exits. This is safe to do because
4626 * we are in the parent and we know that the filp still
4627 * exists and has a nonzero count:
4629 atomic_long_inc(&parent_event
->filp
->f_count
);
4632 * Link this into the parent event's child list
4634 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4635 mutex_lock(&parent_event
->child_mutex
);
4636 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4637 mutex_unlock(&parent_event
->child_mutex
);
4642 static int inherit_group(struct perf_event
*parent_event
,
4643 struct task_struct
*parent
,
4644 struct perf_event_context
*parent_ctx
,
4645 struct task_struct
*child
,
4646 struct perf_event_context
*child_ctx
)
4648 struct perf_event
*leader
;
4649 struct perf_event
*sub
;
4650 struct perf_event
*child_ctr
;
4652 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4653 child
, NULL
, child_ctx
);
4655 return PTR_ERR(leader
);
4656 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4657 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4658 child
, leader
, child_ctx
);
4659 if (IS_ERR(child_ctr
))
4660 return PTR_ERR(child_ctr
);
4665 static void sync_child_event(struct perf_event
*child_event
,
4666 struct task_struct
*child
)
4668 struct perf_event
*parent_event
= child_event
->parent
;
4671 if (child_event
->attr
.inherit_stat
)
4672 perf_event_read_event(child_event
, child
);
4674 child_val
= atomic64_read(&child_event
->count
);
4677 * Add back the child's count to the parent's count:
4679 atomic64_add(child_val
, &parent_event
->count
);
4680 atomic64_add(child_event
->total_time_enabled
,
4681 &parent_event
->child_total_time_enabled
);
4682 atomic64_add(child_event
->total_time_running
,
4683 &parent_event
->child_total_time_running
);
4686 * Remove this event from the parent's list
4688 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4689 mutex_lock(&parent_event
->child_mutex
);
4690 list_del_init(&child_event
->child_list
);
4691 mutex_unlock(&parent_event
->child_mutex
);
4694 * Release the parent event, if this was the last
4697 fput(parent_event
->filp
);
4701 __perf_event_exit_task(struct perf_event
*child_event
,
4702 struct perf_event_context
*child_ctx
,
4703 struct task_struct
*child
)
4705 struct perf_event
*parent_event
;
4707 update_event_times(child_event
);
4708 perf_event_remove_from_context(child_event
);
4710 parent_event
= child_event
->parent
;
4712 * It can happen that parent exits first, and has events
4713 * that are still around due to the child reference. These
4714 * events need to be zapped - but otherwise linger.
4717 sync_child_event(child_event
, child
);
4718 free_event(child_event
);
4723 * When a child task exits, feed back event values to parent events.
4725 void perf_event_exit_task(struct task_struct
*child
)
4727 struct perf_event
*child_event
, *tmp
;
4728 struct perf_event_context
*child_ctx
;
4729 unsigned long flags
;
4731 if (likely(!child
->perf_event_ctxp
)) {
4732 perf_event_task(child
, NULL
, 0);
4736 local_irq_save(flags
);
4738 * We can't reschedule here because interrupts are disabled,
4739 * and either child is current or it is a task that can't be
4740 * scheduled, so we are now safe from rescheduling changing
4743 child_ctx
= child
->perf_event_ctxp
;
4744 __perf_event_task_sched_out(child_ctx
);
4747 * Take the context lock here so that if find_get_context is
4748 * reading child->perf_event_ctxp, we wait until it has
4749 * incremented the context's refcount before we do put_ctx below.
4751 spin_lock(&child_ctx
->lock
);
4752 child
->perf_event_ctxp
= NULL
;
4754 * If this context is a clone; unclone it so it can't get
4755 * swapped to another process while we're removing all
4756 * the events from it.
4758 unclone_ctx(child_ctx
);
4759 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
4762 * Report the task dead after unscheduling the events so that we
4763 * won't get any samples after PERF_RECORD_EXIT. We can however still
4764 * get a few PERF_RECORD_READ events.
4766 perf_event_task(child
, child_ctx
, 0);
4769 * We can recurse on the same lock type through:
4771 * __perf_event_exit_task()
4772 * sync_child_event()
4773 * fput(parent_event->filp)
4775 * mutex_lock(&ctx->mutex)
4777 * But since its the parent context it won't be the same instance.
4779 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4782 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
4784 __perf_event_exit_task(child_event
, child_ctx
, child
);
4787 * If the last event was a group event, it will have appended all
4788 * its siblings to the list, but we obtained 'tmp' before that which
4789 * will still point to the list head terminating the iteration.
4791 if (!list_empty(&child_ctx
->group_list
))
4794 mutex_unlock(&child_ctx
->mutex
);
4800 * free an unexposed, unused context as created by inheritance by
4801 * init_task below, used by fork() in case of fail.
4803 void perf_event_free_task(struct task_struct
*task
)
4805 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
4806 struct perf_event
*event
, *tmp
;
4811 mutex_lock(&ctx
->mutex
);
4813 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
4814 struct perf_event
*parent
= event
->parent
;
4816 if (WARN_ON_ONCE(!parent
))
4819 mutex_lock(&parent
->child_mutex
);
4820 list_del_init(&event
->child_list
);
4821 mutex_unlock(&parent
->child_mutex
);
4825 list_del_event(event
, ctx
);
4829 if (!list_empty(&ctx
->group_list
))
4832 mutex_unlock(&ctx
->mutex
);
4838 * Initialize the perf_event context in task_struct
4840 int perf_event_init_task(struct task_struct
*child
)
4842 struct perf_event_context
*child_ctx
, *parent_ctx
;
4843 struct perf_event_context
*cloned_ctx
;
4844 struct perf_event
*event
;
4845 struct task_struct
*parent
= current
;
4846 int inherited_all
= 1;
4849 child
->perf_event_ctxp
= NULL
;
4851 mutex_init(&child
->perf_event_mutex
);
4852 INIT_LIST_HEAD(&child
->perf_event_list
);
4854 if (likely(!parent
->perf_event_ctxp
))
4858 * This is executed from the parent task context, so inherit
4859 * events that have been marked for cloning.
4860 * First allocate and initialize a context for the child.
4863 child_ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4867 __perf_event_init_context(child_ctx
, child
);
4868 child
->perf_event_ctxp
= child_ctx
;
4869 get_task_struct(child
);
4872 * If the parent's context is a clone, pin it so it won't get
4875 parent_ctx
= perf_pin_task_context(parent
);
4878 * No need to check if parent_ctx != NULL here; since we saw
4879 * it non-NULL earlier, the only reason for it to become NULL
4880 * is if we exit, and since we're currently in the middle of
4881 * a fork we can't be exiting at the same time.
4885 * Lock the parent list. No need to lock the child - not PID
4886 * hashed yet and not running, so nobody can access it.
4888 mutex_lock(&parent_ctx
->mutex
);
4891 * We dont have to disable NMIs - we are only looking at
4892 * the list, not manipulating it:
4894 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
4896 if (!event
->attr
.inherit
) {
4901 ret
= inherit_group(event
, parent
, parent_ctx
,
4909 if (inherited_all
) {
4911 * Mark the child context as a clone of the parent
4912 * context, or of whatever the parent is a clone of.
4913 * Note that if the parent is a clone, it could get
4914 * uncloned at any point, but that doesn't matter
4915 * because the list of events and the generation
4916 * count can't have changed since we took the mutex.
4918 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
4920 child_ctx
->parent_ctx
= cloned_ctx
;
4921 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
4923 child_ctx
->parent_ctx
= parent_ctx
;
4924 child_ctx
->parent_gen
= parent_ctx
->generation
;
4926 get_ctx(child_ctx
->parent_ctx
);
4929 mutex_unlock(&parent_ctx
->mutex
);
4931 perf_unpin_context(parent_ctx
);
4936 static void __cpuinit
perf_event_init_cpu(int cpu
)
4938 struct perf_cpu_context
*cpuctx
;
4940 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4941 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
4943 spin_lock(&perf_resource_lock
);
4944 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
4945 spin_unlock(&perf_resource_lock
);
4947 hw_perf_event_setup(cpu
);
4950 #ifdef CONFIG_HOTPLUG_CPU
4951 static void __perf_event_exit_cpu(void *info
)
4953 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4954 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
4955 struct perf_event
*event
, *tmp
;
4957 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
4958 __perf_event_remove_from_context(event
);
4960 static void perf_event_exit_cpu(int cpu
)
4962 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4963 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
4965 mutex_lock(&ctx
->mutex
);
4966 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
4967 mutex_unlock(&ctx
->mutex
);
4970 static inline void perf_event_exit_cpu(int cpu
) { }
4973 static int __cpuinit
4974 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
4976 unsigned int cpu
= (long)hcpu
;
4980 case CPU_UP_PREPARE
:
4981 case CPU_UP_PREPARE_FROZEN
:
4982 perf_event_init_cpu(cpu
);
4986 case CPU_ONLINE_FROZEN
:
4987 hw_perf_event_setup_online(cpu
);
4990 case CPU_DOWN_PREPARE
:
4991 case CPU_DOWN_PREPARE_FROZEN
:
4992 perf_event_exit_cpu(cpu
);
5003 * This has to have a higher priority than migration_notifier in sched.c.
5005 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5006 .notifier_call
= perf_cpu_notify
,
5010 void __init
perf_event_init(void)
5012 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5013 (void *)(long)smp_processor_id());
5014 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5015 (void *)(long)smp_processor_id());
5016 register_cpu_notifier(&perf_cpu_nb
);
5019 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5021 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5025 perf_set_reserve_percpu(struct sysdev_class
*class,
5029 struct perf_cpu_context
*cpuctx
;
5033 err
= strict_strtoul(buf
, 10, &val
);
5036 if (val
> perf_max_events
)
5039 spin_lock(&perf_resource_lock
);
5040 perf_reserved_percpu
= val
;
5041 for_each_online_cpu(cpu
) {
5042 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5043 spin_lock_irq(&cpuctx
->ctx
.lock
);
5044 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5045 perf_max_events
- perf_reserved_percpu
);
5046 cpuctx
->max_pertask
= mpt
;
5047 spin_unlock_irq(&cpuctx
->ctx
.lock
);
5049 spin_unlock(&perf_resource_lock
);
5054 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5056 return sprintf(buf
, "%d\n", perf_overcommit
);
5060 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5065 err
= strict_strtoul(buf
, 10, &val
);
5071 spin_lock(&perf_resource_lock
);
5072 perf_overcommit
= val
;
5073 spin_unlock(&perf_resource_lock
);
5078 static SYSDEV_CLASS_ATTR(
5081 perf_show_reserve_percpu
,
5082 perf_set_reserve_percpu
5085 static SYSDEV_CLASS_ATTR(
5088 perf_show_overcommit
,
5092 static struct attribute
*perfclass_attrs
[] = {
5093 &attr_reserve_percpu
.attr
,
5094 &attr_overcommit
.attr
,
5098 static struct attribute_group perfclass_attr_group
= {
5099 .attrs
= perfclass_attrs
,
5100 .name
= "perf_events",
5103 static int __init
perf_event_sysfs_init(void)
5105 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5106 &perfclass_attr_group
);
5108 device_initcall(perf_event_sysfs_init
);