OMAP3 SRF: Add CORE rate table param in OMAP-PM
[linux-ginger.git] / kernel / sched.c
blobe88689522e66efa87942141e7ef24e28a97c8d73
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group.children);
317 #endif
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group;
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
348 struct task_group *tg;
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
377 #else
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
382 return NULL;
385 #endif /* CONFIG_GROUP_SCHED */
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
392 u64 exec_clock;
393 u64 min_vruntime;
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
398 struct list_head tasks;
399 struct list_head *balance_iterator;
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
405 struct sched_entity *curr, *next, *last;
407 unsigned int nr_spread_over;
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
423 #ifdef CONFIG_SMP
425 * the part of load.weight contributed by tasks
427 unsigned long task_weight;
430 * h_load = weight * f(tg)
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
435 unsigned long h_load;
438 * this cpu's part of tg->shares
440 unsigned long shares;
443 * load.weight at the time we set shares
445 unsigned long rq_weight;
446 #endif
447 #endif
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
484 #ifdef CONFIG_SMP
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
514 static struct root_domain def_root_domain;
516 #endif
519 * This is the main, per-CPU runqueue data structure.
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
546 struct cfs_rq cfs;
547 struct rt_rq rt;
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
563 unsigned long nr_uninterruptible;
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
569 u64 clock;
571 atomic_t nr_iowait;
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
586 unsigned long avg_load_per_task;
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
638 static inline int cpu_of(struct rq *rq)
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663 inline void update_rq_clock(struct rq *rq)
665 rq->clock = sched_clock_cpu(cpu_of(rq));
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
678 * runqueue_is_locked
679 * @cpu: the processor in question.
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
685 int runqueue_is_locked(int cpu)
687 return spin_is_locked(&cpu_rq(cpu)->lock);
691 * Debugging: various feature bits
694 #define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
697 enum {
698 #include "sched_features.h"
701 #undef SCHED_FEAT
703 #define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
706 const_debug unsigned int sysctl_sched_features =
707 #include "sched_features.h"
710 #undef SCHED_FEAT
712 #ifdef CONFIG_SCHED_DEBUG
713 #define SCHED_FEAT(name, enabled) \
714 #name ,
716 static __read_mostly char *sched_feat_names[] = {
717 #include "sched_features.h"
718 NULL
721 #undef SCHED_FEAT
723 static int sched_feat_show(struct seq_file *m, void *v)
725 int i;
727 for (i = 0; sched_feat_names[i]; i++) {
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
732 seq_puts(m, "\n");
734 return 0;
737 static ssize_t
738 sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
746 if (cnt > 63)
747 cnt = 63;
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
752 buf[cnt] = 0;
754 if (strncmp(buf, "NO_", 3) == 0) {
755 neg = 1;
756 cmp += 3;
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
771 if (!sched_feat_names[i])
772 return -EINVAL;
774 filp->f_pos += cnt;
776 return cnt;
779 static int sched_feat_open(struct inode *inode, struct file *filp)
781 return single_open(filp, sched_feat_show, NULL);
784 static const struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
792 static __init int sched_init_debug(void)
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
797 return 0;
799 late_initcall(sched_init_debug);
801 #endif
803 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
809 const_debug unsigned int sysctl_sched_nr_migrate = 32;
812 * ratelimit for updating the group shares.
813 * default: 0.25ms
815 unsigned int sysctl_sched_shares_ratelimit = 250000;
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
822 unsigned int sysctl_sched_shares_thresh = 4;
825 * period over which we average the RT time consumption, measured
826 * in ms.
828 * default: 1s
830 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833 * period over which we measure -rt task cpu usage in us.
834 * default: 1s
836 unsigned int sysctl_sched_rt_period = 1000000;
838 static __read_mostly int scheduler_running;
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
844 int sysctl_sched_rt_runtime = 950000;
846 static inline u64 global_rt_period(void)
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 static inline u64 global_rt_runtime(void)
853 if (sysctl_sched_rt_runtime < 0)
854 return RUNTIME_INF;
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 #ifndef prepare_arch_switch
860 # define prepare_arch_switch(next) do { } while (0)
861 #endif
862 #ifndef finish_arch_switch
863 # define finish_arch_switch(prev) do { } while (0)
864 #endif
866 static inline int task_current(struct rq *rq, struct task_struct *p)
868 return rq->curr == p;
871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
872 static inline int task_running(struct rq *rq, struct task_struct *p)
874 return task_current(rq, p);
877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
881 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883 #ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886 #endif
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894 spin_unlock_irq(&rq->lock);
897 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
898 static inline int task_running(struct rq *rq, struct task_struct *p)
900 #ifdef CONFIG_SMP
901 return p->oncpu;
902 #else
903 return task_current(rq, p);
904 #endif
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 #ifdef CONFIG_SMP
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
915 next->oncpu = 1;
916 #endif
917 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919 #else
920 spin_unlock(&rq->lock);
921 #endif
924 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 #ifdef CONFIG_SMP
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
932 smp_wmb();
933 prev->oncpu = 0;
934 #endif
935 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
937 #endif
939 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
945 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 __acquires(rq->lock)
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
953 spin_unlock(&rq->lock);
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
962 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 __acquires(rq->lock)
965 struct rq *rq;
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
973 spin_unlock_irqrestore(&rq->lock, *flags);
977 void task_rq_unlock_wait(struct task_struct *p)
979 struct rq *rq = task_rq(p);
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
985 static void __task_rq_unlock(struct rq *rq)
986 __releases(rq->lock)
988 spin_unlock(&rq->lock);
991 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
992 __releases(rq->lock)
994 spin_unlock_irqrestore(&rq->lock, *flags);
998 * this_rq_lock - lock this runqueue and disable interrupts.
1000 static struct rq *this_rq_lock(void)
1001 __acquires(rq->lock)
1003 struct rq *rq;
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1009 return rq;
1012 #ifdef CONFIG_SCHED_HRTICK
1014 * Use HR-timers to deliver accurate preemption points.
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1029 static inline int hrtick_enabled(struct rq *rq)
1031 if (!sched_feat(HRTICK))
1032 return 0;
1033 if (!cpu_active(cpu_of(rq)))
1034 return 0;
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 static void hrtick_clear(struct rq *rq)
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1048 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054 spin_lock(&rq->lock);
1055 update_rq_clock(rq);
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1059 return HRTIMER_NORESTART;
1062 #ifdef CONFIG_SMP
1064 * called from hardirq (IPI) context
1066 static void __hrtick_start(void *arg)
1068 struct rq *rq = arg;
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
1077 * Called to set the hrtick timer state.
1079 * called with rq->lock held and irqs disabled
1081 static void hrtick_start(struct rq *rq, u64 delay)
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086 hrtimer_set_expires(timer, time);
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 rq->hrtick_csd_pending = 1;
1096 static int
1097 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099 int cpu = (int)(long)hcpu;
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
1108 hrtick_clear(cpu_rq(cpu));
1109 return NOTIFY_OK;
1112 return NOTIFY_DONE;
1115 static __init void init_hrtick(void)
1117 hotcpu_notifier(hotplug_hrtick, 0);
1119 #else
1121 * Called to set the hrtick timer state.
1123 * called with rq->lock held and irqs disabled
1125 static void hrtick_start(struct rq *rq, u64 delay)
1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128 HRTIMER_MODE_REL_PINNED, 0);
1131 static inline void init_hrtick(void)
1134 #endif /* CONFIG_SMP */
1136 static void init_rq_hrtick(struct rq *rq)
1138 #ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144 #endif
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
1149 #else /* CONFIG_SCHED_HRTICK */
1150 static inline void hrtick_clear(struct rq *rq)
1154 static inline void init_rq_hrtick(struct rq *rq)
1158 static inline void init_hrtick(void)
1161 #endif /* CONFIG_SCHED_HRTICK */
1164 * resched_task - mark a task 'to be rescheduled now'.
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1170 #ifdef CONFIG_SMP
1172 #ifndef tsk_is_polling
1173 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174 #endif
1176 static void resched_task(struct task_struct *p)
1178 int cpu;
1180 assert_spin_locked(&task_rq(p)->lock);
1182 if (test_tsk_need_resched(p))
1183 return;
1185 set_tsk_need_resched(p);
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1197 static void resched_cpu(int cpu)
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1208 #ifdef CONFIG_NO_HZ
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1219 void wake_up_idle_cpu(int cpu)
1221 struct rq *rq = cpu_rq(cpu);
1223 if (cpu == smp_processor_id())
1224 return;
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1233 if (rq->curr != rq->idle)
1234 return;
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1241 set_tsk_need_resched(rq->idle);
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1248 #endif /* CONFIG_NO_HZ */
1250 static u64 sched_avg_period(void)
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 static void sched_avg_update(struct rq *rq)
1257 s64 period = sched_avg_period();
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1265 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 #endif /* CONFIG_SMP */
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1289 #define WMULT_SHIFT 32
1292 * Shift right and round:
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297 * delta *= weight / lw
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1303 u64 tmp;
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1313 tmp = (u64)delta_exec * weight;
1315 * Check whether we'd overflow the 64-bit multiplication:
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1398 struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1404 #ifdef CONFIG_SMP
1405 static unsigned long
1406 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1411 static int
1412 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
1415 #endif
1417 /* Time spent by the tasks of the cpu accounting group executing in ... */
1418 enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422 CPUACCT_STAT_NSTATS,
1425 #ifdef CONFIG_CGROUP_CPUACCT
1426 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
1429 #else
1430 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
1433 #endif
1435 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437 update_load_add(&rq->load, load);
1440 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_sub(&rq->load, load);
1445 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1446 typedef int (*tg_visitor)(struct task_group *, void *);
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1452 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 struct task_group *parent, *child;
1455 int ret;
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459 down:
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1468 continue;
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
1478 out_unlock:
1479 rcu_read_unlock();
1481 return ret;
1484 static int tg_nop(struct task_group *tg, void *data)
1486 return 0;
1488 #endif
1490 #ifdef CONFIG_SMP
1491 /* Used instead of source_load when we know the type == 0 */
1492 static unsigned long weighted_cpuload(const int cpu)
1494 return cpu_rq(cpu)->load.weight;
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1504 static unsigned long source_load(int cpu, int type)
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1512 return min(rq->cpu_load[type-1], total);
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1519 static unsigned long target_load(int cpu, int type)
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1527 return max(rq->cpu_load[type-1], total);
1530 static struct sched_group *group_of(int cpu)
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534 if (!sd)
1535 return NULL;
1537 return sd->groups;
1540 static unsigned long power_of(int cpu)
1542 struct sched_group *group = group_of(cpu);
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1547 return group->cpu_power;
1550 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552 static unsigned long cpu_avg_load_per_task(int cpu)
1554 struct rq *rq = cpu_rq(cpu);
1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
1559 else
1560 rq->avg_load_per_task = 0;
1562 return rq->avg_load_per_task;
1565 #ifdef CONFIG_FAIR_GROUP_SCHED
1567 struct update_shares_data {
1568 unsigned long rq_weight[NR_CPUS];
1571 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1576 * Calculate and set the cpu's group shares.
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 struct update_shares_data *usd)
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1586 rq_weight = usd->rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1605 spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1618 static int tg_shares_up(struct task_group *tg, void *data)
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 struct update_shares_data *usd;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1626 if (!tg->se[0])
1627 return 0;
1629 local_irq_save(flags);
1630 usd = &__get_cpu_var(update_shares_data);
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd->rq_weight[i] = weight;
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1644 rq_weight += weight;
1645 shares += tg->cfs_rq[i]->shares;
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
1654 for_each_cpu(i, sched_domain_span(sd))
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1657 local_irq_restore(flags);
1659 return 0;
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1667 static int tg_load_down(struct task_group *tg, void *data)
1669 unsigned long load;
1670 long cpu = (long)data;
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 tg->cfs_rq[cpu]->h_load = load;
1682 return 0;
1685 static void update_shares(struct sched_domain *sd)
1687 s64 elapsed;
1688 u64 now;
1690 if (root_task_group_empty())
1691 return;
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
1702 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1704 if (root_task_group_empty())
1705 return;
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1712 static void update_h_load(long cpu)
1714 if (root_task_group_empty())
1715 return;
1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 #else
1722 static inline void update_shares(struct sched_domain *sd)
1726 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1730 #endif
1732 #ifdef CONFIG_PREEMPT
1734 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1744 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1752 return 1;
1755 #else
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1763 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1768 int ret = 0;
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1779 return ret;
1782 #endif /* CONFIG_PREEMPT */
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1787 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1795 return _double_lock_balance(this_rq, busiest);
1798 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1804 #endif
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809 #ifdef CONFIG_SMP
1810 cfs_rq->shares = shares;
1811 #endif
1813 #endif
1815 static void calc_load_account_active(struct rq *this_rq);
1817 #include "sched_stats.h"
1818 #include "sched_idletask.c"
1819 #include "sched_fair.c"
1820 #include "sched_rt.c"
1821 #ifdef CONFIG_SCHED_DEBUG
1822 # include "sched_debug.c"
1823 #endif
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1829 static void inc_nr_running(struct rq *rq)
1831 rq->nr_running++;
1834 static void dec_nr_running(struct rq *rq)
1836 rq->nr_running--;
1839 static void set_load_weight(struct task_struct *p)
1841 if (task_has_rt_policy(p)) {
1842 p->se.load.weight = prio_to_weight[0] * 2;
1843 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1844 return;
1848 * SCHED_IDLE tasks get minimal weight:
1850 if (p->policy == SCHED_IDLE) {
1851 p->se.load.weight = WEIGHT_IDLEPRIO;
1852 p->se.load.inv_weight = WMULT_IDLEPRIO;
1853 return;
1856 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1857 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 static void update_avg(u64 *avg, u64 sample)
1862 s64 diff = sample - *avg;
1863 *avg += diff >> 3;
1866 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1868 if (wakeup)
1869 p->se.start_runtime = p->se.sum_exec_runtime;
1871 sched_info_queued(p);
1872 p->sched_class->enqueue_task(rq, p, wakeup);
1873 p->se.on_rq = 1;
1876 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1878 if (sleep) {
1879 if (p->se.last_wakeup) {
1880 update_avg(&p->se.avg_overlap,
1881 p->se.sum_exec_runtime - p->se.last_wakeup);
1882 p->se.last_wakeup = 0;
1883 } else {
1884 update_avg(&p->se.avg_wakeup,
1885 sysctl_sched_wakeup_granularity);
1889 sched_info_dequeued(p);
1890 p->sched_class->dequeue_task(rq, p, sleep);
1891 p->se.on_rq = 0;
1895 * __normal_prio - return the priority that is based on the static prio
1897 static inline int __normal_prio(struct task_struct *p)
1899 return p->static_prio;
1903 * Calculate the expected normal priority: i.e. priority
1904 * without taking RT-inheritance into account. Might be
1905 * boosted by interactivity modifiers. Changes upon fork,
1906 * setprio syscalls, and whenever the interactivity
1907 * estimator recalculates.
1909 static inline int normal_prio(struct task_struct *p)
1911 int prio;
1913 if (task_has_rt_policy(p))
1914 prio = MAX_RT_PRIO-1 - p->rt_priority;
1915 else
1916 prio = __normal_prio(p);
1917 return prio;
1921 * Calculate the current priority, i.e. the priority
1922 * taken into account by the scheduler. This value might
1923 * be boosted by RT tasks, or might be boosted by
1924 * interactivity modifiers. Will be RT if the task got
1925 * RT-boosted. If not then it returns p->normal_prio.
1927 static int effective_prio(struct task_struct *p)
1929 p->normal_prio = normal_prio(p);
1931 * If we are RT tasks or we were boosted to RT priority,
1932 * keep the priority unchanged. Otherwise, update priority
1933 * to the normal priority:
1935 if (!rt_prio(p->prio))
1936 return p->normal_prio;
1937 return p->prio;
1941 * activate_task - move a task to the runqueue.
1943 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1945 if (task_contributes_to_load(p))
1946 rq->nr_uninterruptible--;
1948 enqueue_task(rq, p, wakeup);
1949 inc_nr_running(rq);
1953 * deactivate_task - remove a task from the runqueue.
1955 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1957 if (task_contributes_to_load(p))
1958 rq->nr_uninterruptible++;
1960 dequeue_task(rq, p, sleep);
1961 dec_nr_running(rq);
1965 * task_curr - is this task currently executing on a CPU?
1966 * @p: the task in question.
1968 inline int task_curr(const struct task_struct *p)
1970 return cpu_curr(task_cpu(p)) == p;
1973 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1975 set_task_rq(p, cpu);
1976 #ifdef CONFIG_SMP
1978 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1979 * successfuly executed on another CPU. We must ensure that updates of
1980 * per-task data have been completed by this moment.
1982 smp_wmb();
1983 task_thread_info(p)->cpu = cpu;
1984 #endif
1987 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1988 const struct sched_class *prev_class,
1989 int oldprio, int running)
1991 if (prev_class != p->sched_class) {
1992 if (prev_class->switched_from)
1993 prev_class->switched_from(rq, p, running);
1994 p->sched_class->switched_to(rq, p, running);
1995 } else
1996 p->sched_class->prio_changed(rq, p, oldprio, running);
1999 #ifdef CONFIG_SMP
2001 * Is this task likely cache-hot:
2003 static int
2004 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2006 s64 delta;
2009 * Buddy candidates are cache hot:
2011 if (sched_feat(CACHE_HOT_BUDDY) &&
2012 (&p->se == cfs_rq_of(&p->se)->next ||
2013 &p->se == cfs_rq_of(&p->se)->last))
2014 return 1;
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2019 if (sysctl_sched_migration_cost == -1)
2020 return 1;
2021 if (sysctl_sched_migration_cost == 0)
2022 return 0;
2024 delta = now - p->se.exec_start;
2026 return delta < (s64)sysctl_sched_migration_cost;
2030 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2032 int old_cpu = task_cpu(p);
2033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2036 u64 clock_offset;
2038 clock_offset = old_rq->clock - new_rq->clock;
2040 trace_sched_migrate_task(p, new_cpu);
2042 #ifdef CONFIG_SCHEDSTATS
2043 if (p->se.wait_start)
2044 p->se.wait_start -= clock_offset;
2045 if (p->se.sleep_start)
2046 p->se.sleep_start -= clock_offset;
2047 if (p->se.block_start)
2048 p->se.block_start -= clock_offset;
2049 #endif
2050 if (old_cpu != new_cpu) {
2051 p->se.nr_migrations++;
2052 new_rq->nr_migrations_in++;
2053 #ifdef CONFIG_SCHEDSTATS
2054 if (task_hot(p, old_rq->clock, NULL))
2055 schedstat_inc(p, se.nr_forced2_migrations);
2056 #endif
2057 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2058 1, 1, NULL, 0);
2060 p->se.vruntime -= old_cfsrq->min_vruntime -
2061 new_cfsrq->min_vruntime;
2063 __set_task_cpu(p, new_cpu);
2066 struct migration_req {
2067 struct list_head list;
2069 struct task_struct *task;
2070 int dest_cpu;
2072 struct completion done;
2076 * The task's runqueue lock must be held.
2077 * Returns true if you have to wait for migration thread.
2079 static int
2080 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2082 struct rq *rq = task_rq(p);
2085 * If the task is not on a runqueue (and not running), then
2086 * it is sufficient to simply update the task's cpu field.
2088 if (!p->se.on_rq && !task_running(rq, p)) {
2089 set_task_cpu(p, dest_cpu);
2090 return 0;
2093 init_completion(&req->done);
2094 req->task = p;
2095 req->dest_cpu = dest_cpu;
2096 list_add(&req->list, &rq->migration_queue);
2098 return 1;
2102 * wait_task_context_switch - wait for a thread to complete at least one
2103 * context switch.
2105 * @p must not be current.
2107 void wait_task_context_switch(struct task_struct *p)
2109 unsigned long nvcsw, nivcsw, flags;
2110 int running;
2111 struct rq *rq;
2113 nvcsw = p->nvcsw;
2114 nivcsw = p->nivcsw;
2115 for (;;) {
2117 * The runqueue is assigned before the actual context
2118 * switch. We need to take the runqueue lock.
2120 * We could check initially without the lock but it is
2121 * very likely that we need to take the lock in every
2122 * iteration.
2124 rq = task_rq_lock(p, &flags);
2125 running = task_running(rq, p);
2126 task_rq_unlock(rq, &flags);
2128 if (likely(!running))
2129 break;
2131 * The switch count is incremented before the actual
2132 * context switch. We thus wait for two switches to be
2133 * sure at least one completed.
2135 if ((p->nvcsw - nvcsw) > 1)
2136 break;
2137 if ((p->nivcsw - nivcsw) > 1)
2138 break;
2140 cpu_relax();
2145 * wait_task_inactive - wait for a thread to unschedule.
2147 * If @match_state is nonzero, it's the @p->state value just checked and
2148 * not expected to change. If it changes, i.e. @p might have woken up,
2149 * then return zero. When we succeed in waiting for @p to be off its CPU,
2150 * we return a positive number (its total switch count). If a second call
2151 * a short while later returns the same number, the caller can be sure that
2152 * @p has remained unscheduled the whole time.
2154 * The caller must ensure that the task *will* unschedule sometime soon,
2155 * else this function might spin for a *long* time. This function can't
2156 * be called with interrupts off, or it may introduce deadlock with
2157 * smp_call_function() if an IPI is sent by the same process we are
2158 * waiting to become inactive.
2160 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2162 unsigned long flags;
2163 int running, on_rq;
2164 unsigned long ncsw;
2165 struct rq *rq;
2167 for (;;) {
2169 * We do the initial early heuristics without holding
2170 * any task-queue locks at all. We'll only try to get
2171 * the runqueue lock when things look like they will
2172 * work out!
2174 rq = task_rq(p);
2177 * If the task is actively running on another CPU
2178 * still, just relax and busy-wait without holding
2179 * any locks.
2181 * NOTE! Since we don't hold any locks, it's not
2182 * even sure that "rq" stays as the right runqueue!
2183 * But we don't care, since "task_running()" will
2184 * return false if the runqueue has changed and p
2185 * is actually now running somewhere else!
2187 while (task_running(rq, p)) {
2188 if (match_state && unlikely(p->state != match_state))
2189 return 0;
2190 cpu_relax();
2194 * Ok, time to look more closely! We need the rq
2195 * lock now, to be *sure*. If we're wrong, we'll
2196 * just go back and repeat.
2198 rq = task_rq_lock(p, &flags);
2199 trace_sched_wait_task(rq, p);
2200 running = task_running(rq, p);
2201 on_rq = p->se.on_rq;
2202 ncsw = 0;
2203 if (!match_state || p->state == match_state)
2204 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2205 task_rq_unlock(rq, &flags);
2208 * If it changed from the expected state, bail out now.
2210 if (unlikely(!ncsw))
2211 break;
2214 * Was it really running after all now that we
2215 * checked with the proper locks actually held?
2217 * Oops. Go back and try again..
2219 if (unlikely(running)) {
2220 cpu_relax();
2221 continue;
2225 * It's not enough that it's not actively running,
2226 * it must be off the runqueue _entirely_, and not
2227 * preempted!
2229 * So if it was still runnable (but just not actively
2230 * running right now), it's preempted, and we should
2231 * yield - it could be a while.
2233 if (unlikely(on_rq)) {
2234 schedule_timeout_uninterruptible(1);
2235 continue;
2239 * Ahh, all good. It wasn't running, and it wasn't
2240 * runnable, which means that it will never become
2241 * running in the future either. We're all done!
2243 break;
2246 return ncsw;
2249 /***
2250 * kick_process - kick a running thread to enter/exit the kernel
2251 * @p: the to-be-kicked thread
2253 * Cause a process which is running on another CPU to enter
2254 * kernel-mode, without any delay. (to get signals handled.)
2256 * NOTE: this function doesnt have to take the runqueue lock,
2257 * because all it wants to ensure is that the remote task enters
2258 * the kernel. If the IPI races and the task has been migrated
2259 * to another CPU then no harm is done and the purpose has been
2260 * achieved as well.
2262 void kick_process(struct task_struct *p)
2264 int cpu;
2266 preempt_disable();
2267 cpu = task_cpu(p);
2268 if ((cpu != smp_processor_id()) && task_curr(p))
2269 smp_send_reschedule(cpu);
2270 preempt_enable();
2272 EXPORT_SYMBOL_GPL(kick_process);
2273 #endif /* CONFIG_SMP */
2276 * task_oncpu_function_call - call a function on the cpu on which a task runs
2277 * @p: the task to evaluate
2278 * @func: the function to be called
2279 * @info: the function call argument
2281 * Calls the function @func when the task is currently running. This might
2282 * be on the current CPU, which just calls the function directly
2284 void task_oncpu_function_call(struct task_struct *p,
2285 void (*func) (void *info), void *info)
2287 int cpu;
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if (task_curr(p))
2292 smp_call_function_single(cpu, func, info, 1);
2293 preempt_enable();
2296 /***
2297 * try_to_wake_up - wake up a thread
2298 * @p: the to-be-woken-up thread
2299 * @state: the mask of task states that can be woken
2300 * @sync: do a synchronous wakeup?
2302 * Put it on the run-queue if it's not already there. The "current"
2303 * thread is always on the run-queue (except when the actual
2304 * re-schedule is in progress), and as such you're allowed to do
2305 * the simpler "current->state = TASK_RUNNING" to mark yourself
2306 * runnable without the overhead of this.
2308 * returns failure only if the task is already active.
2310 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2311 int wake_flags)
2313 int cpu, orig_cpu, this_cpu, success = 0;
2314 unsigned long flags;
2315 struct rq *rq, *orig_rq;
2317 if (!sched_feat(SYNC_WAKEUPS))
2318 wake_flags &= ~WF_SYNC;
2320 this_cpu = get_cpu();
2322 smp_wmb();
2323 rq = orig_rq = task_rq_lock(p, &flags);
2324 update_rq_clock(rq);
2325 if (!(p->state & state))
2326 goto out;
2328 if (p->se.on_rq)
2329 goto out_running;
2331 cpu = task_cpu(p);
2332 orig_cpu = cpu;
2334 #ifdef CONFIG_SMP
2335 if (unlikely(task_running(rq, p)))
2336 goto out_activate;
2339 * In order to handle concurrent wakeups and release the rq->lock
2340 * we put the task in TASK_WAKING state.
2342 * First fix up the nr_uninterruptible count:
2344 if (task_contributes_to_load(p))
2345 rq->nr_uninterruptible--;
2346 p->state = TASK_WAKING;
2347 task_rq_unlock(rq, &flags);
2349 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2350 if (cpu != orig_cpu)
2351 set_task_cpu(p, cpu);
2353 rq = task_rq_lock(p, &flags);
2355 if (rq != orig_rq)
2356 update_rq_clock(rq);
2358 WARN_ON(p->state != TASK_WAKING);
2359 cpu = task_cpu(p);
2361 #ifdef CONFIG_SCHEDSTATS
2362 schedstat_inc(rq, ttwu_count);
2363 if (cpu == this_cpu)
2364 schedstat_inc(rq, ttwu_local);
2365 else {
2366 struct sched_domain *sd;
2367 for_each_domain(this_cpu, sd) {
2368 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2369 schedstat_inc(sd, ttwu_wake_remote);
2370 break;
2374 #endif /* CONFIG_SCHEDSTATS */
2376 out_activate:
2377 #endif /* CONFIG_SMP */
2378 schedstat_inc(p, se.nr_wakeups);
2379 if (wake_flags & WF_SYNC)
2380 schedstat_inc(p, se.nr_wakeups_sync);
2381 if (orig_cpu != cpu)
2382 schedstat_inc(p, se.nr_wakeups_migrate);
2383 if (cpu == this_cpu)
2384 schedstat_inc(p, se.nr_wakeups_local);
2385 else
2386 schedstat_inc(p, se.nr_wakeups_remote);
2387 activate_task(rq, p, 1);
2388 success = 1;
2391 * Only attribute actual wakeups done by this task.
2393 if (!in_interrupt()) {
2394 struct sched_entity *se = &current->se;
2395 u64 sample = se->sum_exec_runtime;
2397 if (se->last_wakeup)
2398 sample -= se->last_wakeup;
2399 else
2400 sample -= se->start_runtime;
2401 update_avg(&se->avg_wakeup, sample);
2403 se->last_wakeup = se->sum_exec_runtime;
2406 out_running:
2407 trace_sched_wakeup(rq, p, success);
2408 check_preempt_curr(rq, p, wake_flags);
2410 p->state = TASK_RUNNING;
2411 #ifdef CONFIG_SMP
2412 if (p->sched_class->task_wake_up)
2413 p->sched_class->task_wake_up(rq, p);
2414 #endif
2415 out:
2416 task_rq_unlock(rq, &flags);
2417 put_cpu();
2419 return success;
2423 * wake_up_process - Wake up a specific process
2424 * @p: The process to be woken up.
2426 * Attempt to wake up the nominated process and move it to the set of runnable
2427 * processes. Returns 1 if the process was woken up, 0 if it was already
2428 * running.
2430 * It may be assumed that this function implies a write memory barrier before
2431 * changing the task state if and only if any tasks are woken up.
2433 int wake_up_process(struct task_struct *p)
2435 return try_to_wake_up(p, TASK_ALL, 0);
2437 EXPORT_SYMBOL(wake_up_process);
2439 int wake_up_state(struct task_struct *p, unsigned int state)
2441 return try_to_wake_up(p, state, 0);
2445 * Perform scheduler related setup for a newly forked process p.
2446 * p is forked by current.
2448 * __sched_fork() is basic setup used by init_idle() too:
2450 static void __sched_fork(struct task_struct *p)
2452 p->se.exec_start = 0;
2453 p->se.sum_exec_runtime = 0;
2454 p->se.prev_sum_exec_runtime = 0;
2455 p->se.nr_migrations = 0;
2456 p->se.last_wakeup = 0;
2457 p->se.avg_overlap = 0;
2458 p->se.start_runtime = 0;
2459 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2460 p->se.avg_running = 0;
2462 #ifdef CONFIG_SCHEDSTATS
2463 p->se.wait_start = 0;
2464 p->se.wait_max = 0;
2465 p->se.wait_count = 0;
2466 p->se.wait_sum = 0;
2468 p->se.sleep_start = 0;
2469 p->se.sleep_max = 0;
2470 p->se.sum_sleep_runtime = 0;
2472 p->se.block_start = 0;
2473 p->se.block_max = 0;
2474 p->se.exec_max = 0;
2475 p->se.slice_max = 0;
2477 p->se.nr_migrations_cold = 0;
2478 p->se.nr_failed_migrations_affine = 0;
2479 p->se.nr_failed_migrations_running = 0;
2480 p->se.nr_failed_migrations_hot = 0;
2481 p->se.nr_forced_migrations = 0;
2482 p->se.nr_forced2_migrations = 0;
2484 p->se.nr_wakeups = 0;
2485 p->se.nr_wakeups_sync = 0;
2486 p->se.nr_wakeups_migrate = 0;
2487 p->se.nr_wakeups_local = 0;
2488 p->se.nr_wakeups_remote = 0;
2489 p->se.nr_wakeups_affine = 0;
2490 p->se.nr_wakeups_affine_attempts = 0;
2491 p->se.nr_wakeups_passive = 0;
2492 p->se.nr_wakeups_idle = 0;
2494 #endif
2496 INIT_LIST_HEAD(&p->rt.run_list);
2497 p->se.on_rq = 0;
2498 INIT_LIST_HEAD(&p->se.group_node);
2500 #ifdef CONFIG_PREEMPT_NOTIFIERS
2501 INIT_HLIST_HEAD(&p->preempt_notifiers);
2502 #endif
2505 * We mark the process as running here, but have not actually
2506 * inserted it onto the runqueue yet. This guarantees that
2507 * nobody will actually run it, and a signal or other external
2508 * event cannot wake it up and insert it on the runqueue either.
2510 p->state = TASK_RUNNING;
2514 * fork()/clone()-time setup:
2516 void sched_fork(struct task_struct *p, int clone_flags)
2518 int cpu = get_cpu();
2520 __sched_fork(p);
2523 * Revert to default priority/policy on fork if requested.
2525 if (unlikely(p->sched_reset_on_fork)) {
2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2527 p->policy = SCHED_NORMAL;
2528 p->normal_prio = p->static_prio;
2531 if (PRIO_TO_NICE(p->static_prio) < 0) {
2532 p->static_prio = NICE_TO_PRIO(0);
2533 p->normal_prio = p->static_prio;
2534 set_load_weight(p);
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2541 p->sched_reset_on_fork = 0;
2545 * Make sure we do not leak PI boosting priority to the child.
2547 p->prio = current->normal_prio;
2549 if (!rt_prio(p->prio))
2550 p->sched_class = &fair_sched_class;
2552 #ifdef CONFIG_SMP
2553 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2554 #endif
2555 set_task_cpu(p, cpu);
2557 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2558 if (likely(sched_info_on()))
2559 memset(&p->sched_info, 0, sizeof(p->sched_info));
2560 #endif
2561 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2562 p->oncpu = 0;
2563 #endif
2564 #ifdef CONFIG_PREEMPT
2565 /* Want to start with kernel preemption disabled. */
2566 task_thread_info(p)->preempt_count = 1;
2567 #endif
2568 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2570 put_cpu();
2574 * wake_up_new_task - wake up a newly created task for the first time.
2576 * This function will do some initial scheduler statistics housekeeping
2577 * that must be done for every newly created context, then puts the task
2578 * on the runqueue and wakes it.
2580 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2582 unsigned long flags;
2583 struct rq *rq;
2585 rq = task_rq_lock(p, &flags);
2586 BUG_ON(p->state != TASK_RUNNING);
2587 update_rq_clock(rq);
2589 if (!p->sched_class->task_new || !current->se.on_rq) {
2590 activate_task(rq, p, 0);
2591 } else {
2593 * Let the scheduling class do new task startup
2594 * management (if any):
2596 p->sched_class->task_new(rq, p);
2597 inc_nr_running(rq);
2599 trace_sched_wakeup_new(rq, p, 1);
2600 check_preempt_curr(rq, p, WF_FORK);
2601 #ifdef CONFIG_SMP
2602 if (p->sched_class->task_wake_up)
2603 p->sched_class->task_wake_up(rq, p);
2604 #endif
2605 task_rq_unlock(rq, &flags);
2608 #ifdef CONFIG_PREEMPT_NOTIFIERS
2611 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2612 * @notifier: notifier struct to register
2614 void preempt_notifier_register(struct preempt_notifier *notifier)
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2618 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
2622 * @notifier: notifier struct to unregister
2624 * This is safe to call from within a preemption notifier.
2626 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2628 hlist_del(&notifier->link);
2630 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2632 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2641 static void
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_out(notifier, next);
2652 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2654 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2658 static void
2659 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2664 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2667 * prepare_task_switch - prepare to switch tasks
2668 * @rq: the runqueue preparing to switch
2669 * @prev: the current task that is being switched out
2670 * @next: the task we are going to switch to.
2672 * This is called with the rq lock held and interrupts off. It must
2673 * be paired with a subsequent finish_task_switch after the context
2674 * switch.
2676 * prepare_task_switch sets up locking and calls architecture specific
2677 * hooks.
2679 static inline void
2680 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2681 struct task_struct *next)
2683 fire_sched_out_preempt_notifiers(prev, next);
2684 prepare_lock_switch(rq, next);
2685 prepare_arch_switch(next);
2689 * finish_task_switch - clean up after a task-switch
2690 * @rq: runqueue associated with task-switch
2691 * @prev: the thread we just switched away from.
2693 * finish_task_switch must be called after the context switch, paired
2694 * with a prepare_task_switch call before the context switch.
2695 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2696 * and do any other architecture-specific cleanup actions.
2698 * Note that we may have delayed dropping an mm in context_switch(). If
2699 * so, we finish that here outside of the runqueue lock. (Doing it
2700 * with the lock held can cause deadlocks; see schedule() for
2701 * details.)
2703 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2704 __releases(rq->lock)
2706 struct mm_struct *mm = rq->prev_mm;
2707 long prev_state;
2709 rq->prev_mm = NULL;
2712 * A task struct has one reference for the use as "current".
2713 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2714 * schedule one last time. The schedule call will never return, and
2715 * the scheduled task must drop that reference.
2716 * The test for TASK_DEAD must occur while the runqueue locks are
2717 * still held, otherwise prev could be scheduled on another cpu, die
2718 * there before we look at prev->state, and then the reference would
2719 * be dropped twice.
2720 * Manfred Spraul <manfred@colorfullife.com>
2722 prev_state = prev->state;
2723 finish_arch_switch(prev);
2724 perf_event_task_sched_in(current, cpu_of(rq));
2725 finish_lock_switch(rq, prev);
2727 fire_sched_in_preempt_notifiers(current);
2728 if (mm)
2729 mmdrop(mm);
2730 if (unlikely(prev_state == TASK_DEAD)) {
2732 * Remove function-return probe instances associated with this
2733 * task and put them back on the free list.
2735 kprobe_flush_task(prev);
2736 put_task_struct(prev);
2740 #ifdef CONFIG_SMP
2742 /* assumes rq->lock is held */
2743 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2745 if (prev->sched_class->pre_schedule)
2746 prev->sched_class->pre_schedule(rq, prev);
2749 /* rq->lock is NOT held, but preemption is disabled */
2750 static inline void post_schedule(struct rq *rq)
2752 if (rq->post_schedule) {
2753 unsigned long flags;
2755 spin_lock_irqsave(&rq->lock, flags);
2756 if (rq->curr->sched_class->post_schedule)
2757 rq->curr->sched_class->post_schedule(rq);
2758 spin_unlock_irqrestore(&rq->lock, flags);
2760 rq->post_schedule = 0;
2764 #else
2766 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2770 static inline void post_schedule(struct rq *rq)
2774 #endif
2777 * schedule_tail - first thing a freshly forked thread must call.
2778 * @prev: the thread we just switched away from.
2780 asmlinkage void schedule_tail(struct task_struct *prev)
2781 __releases(rq->lock)
2783 struct rq *rq = this_rq();
2785 finish_task_switch(rq, prev);
2788 * FIXME: do we need to worry about rq being invalidated by the
2789 * task_switch?
2791 post_schedule(rq);
2793 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2794 /* In this case, finish_task_switch does not reenable preemption */
2795 preempt_enable();
2796 #endif
2797 if (current->set_child_tid)
2798 put_user(task_pid_vnr(current), current->set_child_tid);
2802 * context_switch - switch to the new MM and the new
2803 * thread's register state.
2805 static inline void
2806 context_switch(struct rq *rq, struct task_struct *prev,
2807 struct task_struct *next)
2809 struct mm_struct *mm, *oldmm;
2811 prepare_task_switch(rq, prev, next);
2812 trace_sched_switch(rq, prev, next);
2813 mm = next->mm;
2814 oldmm = prev->active_mm;
2816 * For paravirt, this is coupled with an exit in switch_to to
2817 * combine the page table reload and the switch backend into
2818 * one hypercall.
2820 arch_start_context_switch(prev);
2822 if (unlikely(!mm)) {
2823 next->active_mm = oldmm;
2824 atomic_inc(&oldmm->mm_count);
2825 enter_lazy_tlb(oldmm, next);
2826 } else
2827 switch_mm(oldmm, mm, next);
2829 if (unlikely(!prev->mm)) {
2830 prev->active_mm = NULL;
2831 rq->prev_mm = oldmm;
2834 * Since the runqueue lock will be released by the next
2835 * task (which is an invalid locking op but in the case
2836 * of the scheduler it's an obvious special-case), so we
2837 * do an early lockdep release here:
2839 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2840 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2841 #endif
2843 /* Here we just switch the register state and the stack. */
2844 switch_to(prev, next, prev);
2846 barrier();
2848 * this_rq must be evaluated again because prev may have moved
2849 * CPUs since it called schedule(), thus the 'rq' on its stack
2850 * frame will be invalid.
2852 finish_task_switch(this_rq(), prev);
2856 * nr_running, nr_uninterruptible and nr_context_switches:
2858 * externally visible scheduler statistics: current number of runnable
2859 * threads, current number of uninterruptible-sleeping threads, total
2860 * number of context switches performed since bootup.
2862 unsigned long nr_running(void)
2864 unsigned long i, sum = 0;
2866 for_each_online_cpu(i)
2867 sum += cpu_rq(i)->nr_running;
2869 return sum;
2872 unsigned long nr_uninterruptible(void)
2874 unsigned long i, sum = 0;
2876 for_each_possible_cpu(i)
2877 sum += cpu_rq(i)->nr_uninterruptible;
2880 * Since we read the counters lockless, it might be slightly
2881 * inaccurate. Do not allow it to go below zero though:
2883 if (unlikely((long)sum < 0))
2884 sum = 0;
2886 return sum;
2889 unsigned long long nr_context_switches(void)
2891 int i;
2892 unsigned long long sum = 0;
2894 for_each_possible_cpu(i)
2895 sum += cpu_rq(i)->nr_switches;
2897 return sum;
2900 unsigned long nr_iowait(void)
2902 unsigned long i, sum = 0;
2904 for_each_possible_cpu(i)
2905 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2907 return sum;
2910 unsigned long nr_iowait_cpu(void)
2912 struct rq *this = this_rq();
2913 return atomic_read(&this->nr_iowait);
2916 unsigned long this_cpu_load(void)
2918 struct rq *this = this_rq();
2919 return this->cpu_load[0];
2923 /* Variables and functions for calc_load */
2924 static atomic_long_t calc_load_tasks;
2925 static unsigned long calc_load_update;
2926 unsigned long avenrun[3];
2927 EXPORT_SYMBOL(avenrun);
2930 * get_avenrun - get the load average array
2931 * @loads: pointer to dest load array
2932 * @offset: offset to add
2933 * @shift: shift count to shift the result left
2935 * These values are estimates at best, so no need for locking.
2937 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2939 loads[0] = (avenrun[0] + offset) << shift;
2940 loads[1] = (avenrun[1] + offset) << shift;
2941 loads[2] = (avenrun[2] + offset) << shift;
2944 static unsigned long
2945 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2947 load *= exp;
2948 load += active * (FIXED_1 - exp);
2949 return load >> FSHIFT;
2953 * calc_load - update the avenrun load estimates 10 ticks after the
2954 * CPUs have updated calc_load_tasks.
2956 void calc_global_load(void)
2958 unsigned long upd = calc_load_update + 10;
2959 long active;
2961 if (time_before(jiffies, upd))
2962 return;
2964 active = atomic_long_read(&calc_load_tasks);
2965 active = active > 0 ? active * FIXED_1 : 0;
2967 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2968 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2969 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2971 calc_load_update += LOAD_FREQ;
2975 * Either called from update_cpu_load() or from a cpu going idle
2977 static void calc_load_account_active(struct rq *this_rq)
2979 long nr_active, delta;
2981 nr_active = this_rq->nr_running;
2982 nr_active += (long) this_rq->nr_uninterruptible;
2984 if (nr_active != this_rq->calc_load_active) {
2985 delta = nr_active - this_rq->calc_load_active;
2986 this_rq->calc_load_active = nr_active;
2987 atomic_long_add(delta, &calc_load_tasks);
2992 * Externally visible per-cpu scheduler statistics:
2993 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2995 u64 cpu_nr_migrations(int cpu)
2997 return cpu_rq(cpu)->nr_migrations_in;
3001 * Update rq->cpu_load[] statistics. This function is usually called every
3002 * scheduler tick (TICK_NSEC).
3004 static void update_cpu_load(struct rq *this_rq)
3006 unsigned long this_load = this_rq->load.weight;
3007 int i, scale;
3009 this_rq->nr_load_updates++;
3011 /* Update our load: */
3012 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3013 unsigned long old_load, new_load;
3015 /* scale is effectively 1 << i now, and >> i divides by scale */
3017 old_load = this_rq->cpu_load[i];
3018 new_load = this_load;
3020 * Round up the averaging division if load is increasing. This
3021 * prevents us from getting stuck on 9 if the load is 10, for
3022 * example.
3024 if (new_load > old_load)
3025 new_load += scale-1;
3026 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3029 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3030 this_rq->calc_load_update += LOAD_FREQ;
3031 calc_load_account_active(this_rq);
3035 #ifdef CONFIG_SMP
3038 * double_rq_lock - safely lock two runqueues
3040 * Note this does not disable interrupts like task_rq_lock,
3041 * you need to do so manually before calling.
3043 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3044 __acquires(rq1->lock)
3045 __acquires(rq2->lock)
3047 BUG_ON(!irqs_disabled());
3048 if (rq1 == rq2) {
3049 spin_lock(&rq1->lock);
3050 __acquire(rq2->lock); /* Fake it out ;) */
3051 } else {
3052 if (rq1 < rq2) {
3053 spin_lock(&rq1->lock);
3054 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3055 } else {
3056 spin_lock(&rq2->lock);
3057 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3060 update_rq_clock(rq1);
3061 update_rq_clock(rq2);
3065 * double_rq_unlock - safely unlock two runqueues
3067 * Note this does not restore interrupts like task_rq_unlock,
3068 * you need to do so manually after calling.
3070 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3071 __releases(rq1->lock)
3072 __releases(rq2->lock)
3074 spin_unlock(&rq1->lock);
3075 if (rq1 != rq2)
3076 spin_unlock(&rq2->lock);
3077 else
3078 __release(rq2->lock);
3082 * If dest_cpu is allowed for this process, migrate the task to it.
3083 * This is accomplished by forcing the cpu_allowed mask to only
3084 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3085 * the cpu_allowed mask is restored.
3087 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3089 struct migration_req req;
3090 unsigned long flags;
3091 struct rq *rq;
3093 rq = task_rq_lock(p, &flags);
3094 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3095 || unlikely(!cpu_active(dest_cpu)))
3096 goto out;
3098 /* force the process onto the specified CPU */
3099 if (migrate_task(p, dest_cpu, &req)) {
3100 /* Need to wait for migration thread (might exit: take ref). */
3101 struct task_struct *mt = rq->migration_thread;
3103 get_task_struct(mt);
3104 task_rq_unlock(rq, &flags);
3105 wake_up_process(mt);
3106 put_task_struct(mt);
3107 wait_for_completion(&req.done);
3109 return;
3111 out:
3112 task_rq_unlock(rq, &flags);
3116 * sched_exec - execve() is a valuable balancing opportunity, because at
3117 * this point the task has the smallest effective memory and cache footprint.
3119 void sched_exec(void)
3121 int new_cpu, this_cpu = get_cpu();
3122 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3123 put_cpu();
3124 if (new_cpu != this_cpu)
3125 sched_migrate_task(current, new_cpu);
3129 * pull_task - move a task from a remote runqueue to the local runqueue.
3130 * Both runqueues must be locked.
3132 static void pull_task(struct rq *src_rq, struct task_struct *p,
3133 struct rq *this_rq, int this_cpu)
3135 deactivate_task(src_rq, p, 0);
3136 set_task_cpu(p, this_cpu);
3137 activate_task(this_rq, p, 0);
3139 * Note that idle threads have a prio of MAX_PRIO, for this test
3140 * to be always true for them.
3142 check_preempt_curr(this_rq, p, 0);
3146 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3148 static
3149 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 int *all_pinned)
3153 int tsk_cache_hot = 0;
3155 * We do not migrate tasks that are:
3156 * 1) running (obviously), or
3157 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3158 * 3) are cache-hot on their current CPU.
3160 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3161 schedstat_inc(p, se.nr_failed_migrations_affine);
3162 return 0;
3164 *all_pinned = 0;
3166 if (task_running(rq, p)) {
3167 schedstat_inc(p, se.nr_failed_migrations_running);
3168 return 0;
3172 * Aggressive migration if:
3173 * 1) task is cache cold, or
3174 * 2) too many balance attempts have failed.
3177 tsk_cache_hot = task_hot(p, rq->clock, sd);
3178 if (!tsk_cache_hot ||
3179 sd->nr_balance_failed > sd->cache_nice_tries) {
3180 #ifdef CONFIG_SCHEDSTATS
3181 if (tsk_cache_hot) {
3182 schedstat_inc(sd, lb_hot_gained[idle]);
3183 schedstat_inc(p, se.nr_forced_migrations);
3185 #endif
3186 return 1;
3189 if (tsk_cache_hot) {
3190 schedstat_inc(p, se.nr_failed_migrations_hot);
3191 return 0;
3193 return 1;
3196 static unsigned long
3197 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3198 unsigned long max_load_move, struct sched_domain *sd,
3199 enum cpu_idle_type idle, int *all_pinned,
3200 int *this_best_prio, struct rq_iterator *iterator)
3202 int loops = 0, pulled = 0, pinned = 0;
3203 struct task_struct *p;
3204 long rem_load_move = max_load_move;
3206 if (max_load_move == 0)
3207 goto out;
3209 pinned = 1;
3212 * Start the load-balancing iterator:
3214 p = iterator->start(iterator->arg);
3215 next:
3216 if (!p || loops++ > sysctl_sched_nr_migrate)
3217 goto out;
3219 if ((p->se.load.weight >> 1) > rem_load_move ||
3220 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3221 p = iterator->next(iterator->arg);
3222 goto next;
3225 pull_task(busiest, p, this_rq, this_cpu);
3226 pulled++;
3227 rem_load_move -= p->se.load.weight;
3229 #ifdef CONFIG_PREEMPT
3231 * NEWIDLE balancing is a source of latency, so preemptible kernels
3232 * will stop after the first task is pulled to minimize the critical
3233 * section.
3235 if (idle == CPU_NEWLY_IDLE)
3236 goto out;
3237 #endif
3240 * We only want to steal up to the prescribed amount of weighted load.
3242 if (rem_load_move > 0) {
3243 if (p->prio < *this_best_prio)
3244 *this_best_prio = p->prio;
3245 p = iterator->next(iterator->arg);
3246 goto next;
3248 out:
3250 * Right now, this is one of only two places pull_task() is called,
3251 * so we can safely collect pull_task() stats here rather than
3252 * inside pull_task().
3254 schedstat_add(sd, lb_gained[idle], pulled);
3256 if (all_pinned)
3257 *all_pinned = pinned;
3259 return max_load_move - rem_load_move;
3263 * move_tasks tries to move up to max_load_move weighted load from busiest to
3264 * this_rq, as part of a balancing operation within domain "sd".
3265 * Returns 1 if successful and 0 otherwise.
3267 * Called with both runqueues locked.
3269 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3270 unsigned long max_load_move,
3271 struct sched_domain *sd, enum cpu_idle_type idle,
3272 int *all_pinned)
3274 const struct sched_class *class = sched_class_highest;
3275 unsigned long total_load_moved = 0;
3276 int this_best_prio = this_rq->curr->prio;
3278 do {
3279 total_load_moved +=
3280 class->load_balance(this_rq, this_cpu, busiest,
3281 max_load_move - total_load_moved,
3282 sd, idle, all_pinned, &this_best_prio);
3283 class = class->next;
3285 #ifdef CONFIG_PREEMPT
3287 * NEWIDLE balancing is a source of latency, so preemptible
3288 * kernels will stop after the first task is pulled to minimize
3289 * the critical section.
3291 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3292 break;
3293 #endif
3294 } while (class && max_load_move > total_load_moved);
3296 return total_load_moved > 0;
3299 static int
3300 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3301 struct sched_domain *sd, enum cpu_idle_type idle,
3302 struct rq_iterator *iterator)
3304 struct task_struct *p = iterator->start(iterator->arg);
3305 int pinned = 0;
3307 while (p) {
3308 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3309 pull_task(busiest, p, this_rq, this_cpu);
3311 * Right now, this is only the second place pull_task()
3312 * is called, so we can safely collect pull_task()
3313 * stats here rather than inside pull_task().
3315 schedstat_inc(sd, lb_gained[idle]);
3317 return 1;
3319 p = iterator->next(iterator->arg);
3322 return 0;
3326 * move_one_task tries to move exactly one task from busiest to this_rq, as
3327 * part of active balancing operations within "domain".
3328 * Returns 1 if successful and 0 otherwise.
3330 * Called with both runqueues locked.
3332 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3333 struct sched_domain *sd, enum cpu_idle_type idle)
3335 const struct sched_class *class;
3337 for_each_class(class) {
3338 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3339 return 1;
3342 return 0;
3344 /********** Helpers for find_busiest_group ************************/
3346 * sd_lb_stats - Structure to store the statistics of a sched_domain
3347 * during load balancing.
3349 struct sd_lb_stats {
3350 struct sched_group *busiest; /* Busiest group in this sd */
3351 struct sched_group *this; /* Local group in this sd */
3352 unsigned long total_load; /* Total load of all groups in sd */
3353 unsigned long total_pwr; /* Total power of all groups in sd */
3354 unsigned long avg_load; /* Average load across all groups in sd */
3356 /** Statistics of this group */
3357 unsigned long this_load;
3358 unsigned long this_load_per_task;
3359 unsigned long this_nr_running;
3361 /* Statistics of the busiest group */
3362 unsigned long max_load;
3363 unsigned long busiest_load_per_task;
3364 unsigned long busiest_nr_running;
3366 int group_imb; /* Is there imbalance in this sd */
3367 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3368 int power_savings_balance; /* Is powersave balance needed for this sd */
3369 struct sched_group *group_min; /* Least loaded group in sd */
3370 struct sched_group *group_leader; /* Group which relieves group_min */
3371 unsigned long min_load_per_task; /* load_per_task in group_min */
3372 unsigned long leader_nr_running; /* Nr running of group_leader */
3373 unsigned long min_nr_running; /* Nr running of group_min */
3374 #endif
3378 * sg_lb_stats - stats of a sched_group required for load_balancing
3380 struct sg_lb_stats {
3381 unsigned long avg_load; /*Avg load across the CPUs of the group */
3382 unsigned long group_load; /* Total load over the CPUs of the group */
3383 unsigned long sum_nr_running; /* Nr tasks running in the group */
3384 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3385 unsigned long group_capacity;
3386 int group_imb; /* Is there an imbalance in the group ? */
3390 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3391 * @group: The group whose first cpu is to be returned.
3393 static inline unsigned int group_first_cpu(struct sched_group *group)
3395 return cpumask_first(sched_group_cpus(group));
3399 * get_sd_load_idx - Obtain the load index for a given sched domain.
3400 * @sd: The sched_domain whose load_idx is to be obtained.
3401 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3403 static inline int get_sd_load_idx(struct sched_domain *sd,
3404 enum cpu_idle_type idle)
3406 int load_idx;
3408 switch (idle) {
3409 case CPU_NOT_IDLE:
3410 load_idx = sd->busy_idx;
3411 break;
3413 case CPU_NEWLY_IDLE:
3414 load_idx = sd->newidle_idx;
3415 break;
3416 default:
3417 load_idx = sd->idle_idx;
3418 break;
3421 return load_idx;
3425 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3427 * init_sd_power_savings_stats - Initialize power savings statistics for
3428 * the given sched_domain, during load balancing.
3430 * @sd: Sched domain whose power-savings statistics are to be initialized.
3431 * @sds: Variable containing the statistics for sd.
3432 * @idle: Idle status of the CPU at which we're performing load-balancing.
3434 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3435 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3438 * Busy processors will not participate in power savings
3439 * balance.
3441 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3442 sds->power_savings_balance = 0;
3443 else {
3444 sds->power_savings_balance = 1;
3445 sds->min_nr_running = ULONG_MAX;
3446 sds->leader_nr_running = 0;
3451 * update_sd_power_savings_stats - Update the power saving stats for a
3452 * sched_domain while performing load balancing.
3454 * @group: sched_group belonging to the sched_domain under consideration.
3455 * @sds: Variable containing the statistics of the sched_domain
3456 * @local_group: Does group contain the CPU for which we're performing
3457 * load balancing ?
3458 * @sgs: Variable containing the statistics of the group.
3460 static inline void update_sd_power_savings_stats(struct sched_group *group,
3461 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3464 if (!sds->power_savings_balance)
3465 return;
3468 * If the local group is idle or completely loaded
3469 * no need to do power savings balance at this domain
3471 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3472 !sds->this_nr_running))
3473 sds->power_savings_balance = 0;
3476 * If a group is already running at full capacity or idle,
3477 * don't include that group in power savings calculations
3479 if (!sds->power_savings_balance ||
3480 sgs->sum_nr_running >= sgs->group_capacity ||
3481 !sgs->sum_nr_running)
3482 return;
3485 * Calculate the group which has the least non-idle load.
3486 * This is the group from where we need to pick up the load
3487 * for saving power
3489 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3490 (sgs->sum_nr_running == sds->min_nr_running &&
3491 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3492 sds->group_min = group;
3493 sds->min_nr_running = sgs->sum_nr_running;
3494 sds->min_load_per_task = sgs->sum_weighted_load /
3495 sgs->sum_nr_running;
3499 * Calculate the group which is almost near its
3500 * capacity but still has some space to pick up some load
3501 * from other group and save more power
3503 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3504 return;
3506 if (sgs->sum_nr_running > sds->leader_nr_running ||
3507 (sgs->sum_nr_running == sds->leader_nr_running &&
3508 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3509 sds->group_leader = group;
3510 sds->leader_nr_running = sgs->sum_nr_running;
3515 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3516 * @sds: Variable containing the statistics of the sched_domain
3517 * under consideration.
3518 * @this_cpu: Cpu at which we're currently performing load-balancing.
3519 * @imbalance: Variable to store the imbalance.
3521 * Description:
3522 * Check if we have potential to perform some power-savings balance.
3523 * If yes, set the busiest group to be the least loaded group in the
3524 * sched_domain, so that it's CPUs can be put to idle.
3526 * Returns 1 if there is potential to perform power-savings balance.
3527 * Else returns 0.
3529 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3530 int this_cpu, unsigned long *imbalance)
3532 if (!sds->power_savings_balance)
3533 return 0;
3535 if (sds->this != sds->group_leader ||
3536 sds->group_leader == sds->group_min)
3537 return 0;
3539 *imbalance = sds->min_load_per_task;
3540 sds->busiest = sds->group_min;
3542 return 1;
3545 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3546 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3547 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3549 return;
3552 static inline void update_sd_power_savings_stats(struct sched_group *group,
3553 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3555 return;
3558 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3559 int this_cpu, unsigned long *imbalance)
3561 return 0;
3563 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3566 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3568 return SCHED_LOAD_SCALE;
3571 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3573 return default_scale_freq_power(sd, cpu);
3576 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3578 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3579 unsigned long smt_gain = sd->smt_gain;
3581 smt_gain /= weight;
3583 return smt_gain;
3586 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3588 return default_scale_smt_power(sd, cpu);
3591 unsigned long scale_rt_power(int cpu)
3593 struct rq *rq = cpu_rq(cpu);
3594 u64 total, available;
3596 sched_avg_update(rq);
3598 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3599 available = total - rq->rt_avg;
3601 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3602 total = SCHED_LOAD_SCALE;
3604 total >>= SCHED_LOAD_SHIFT;
3606 return div_u64(available, total);
3609 static void update_cpu_power(struct sched_domain *sd, int cpu)
3611 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3612 unsigned long power = SCHED_LOAD_SCALE;
3613 struct sched_group *sdg = sd->groups;
3615 if (sched_feat(ARCH_POWER))
3616 power *= arch_scale_freq_power(sd, cpu);
3617 else
3618 power *= default_scale_freq_power(sd, cpu);
3620 power >>= SCHED_LOAD_SHIFT;
3622 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3623 if (sched_feat(ARCH_POWER))
3624 power *= arch_scale_smt_power(sd, cpu);
3625 else
3626 power *= default_scale_smt_power(sd, cpu);
3628 power >>= SCHED_LOAD_SHIFT;
3631 power *= scale_rt_power(cpu);
3632 power >>= SCHED_LOAD_SHIFT;
3634 if (!power)
3635 power = 1;
3637 sdg->cpu_power = power;
3640 static void update_group_power(struct sched_domain *sd, int cpu)
3642 struct sched_domain *child = sd->child;
3643 struct sched_group *group, *sdg = sd->groups;
3644 unsigned long power;
3646 if (!child) {
3647 update_cpu_power(sd, cpu);
3648 return;
3651 power = 0;
3653 group = child->groups;
3654 do {
3655 power += group->cpu_power;
3656 group = group->next;
3657 } while (group != child->groups);
3659 sdg->cpu_power = power;
3663 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3664 * @sd: The sched_domain whose statistics are to be updated.
3665 * @group: sched_group whose statistics are to be updated.
3666 * @this_cpu: Cpu for which load balance is currently performed.
3667 * @idle: Idle status of this_cpu
3668 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3669 * @sd_idle: Idle status of the sched_domain containing group.
3670 * @local_group: Does group contain this_cpu.
3671 * @cpus: Set of cpus considered for load balancing.
3672 * @balance: Should we balance.
3673 * @sgs: variable to hold the statistics for this group.
3675 static inline void update_sg_lb_stats(struct sched_domain *sd,
3676 struct sched_group *group, int this_cpu,
3677 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3678 int local_group, const struct cpumask *cpus,
3679 int *balance, struct sg_lb_stats *sgs)
3681 unsigned long load, max_cpu_load, min_cpu_load;
3682 int i;
3683 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3684 unsigned long sum_avg_load_per_task;
3685 unsigned long avg_load_per_task;
3687 if (local_group) {
3688 balance_cpu = group_first_cpu(group);
3689 if (balance_cpu == this_cpu)
3690 update_group_power(sd, this_cpu);
3693 /* Tally up the load of all CPUs in the group */
3694 sum_avg_load_per_task = avg_load_per_task = 0;
3695 max_cpu_load = 0;
3696 min_cpu_load = ~0UL;
3698 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3699 struct rq *rq = cpu_rq(i);
3701 if (*sd_idle && rq->nr_running)
3702 *sd_idle = 0;
3704 /* Bias balancing toward cpus of our domain */
3705 if (local_group) {
3706 if (idle_cpu(i) && !first_idle_cpu) {
3707 first_idle_cpu = 1;
3708 balance_cpu = i;
3711 load = target_load(i, load_idx);
3712 } else {
3713 load = source_load(i, load_idx);
3714 if (load > max_cpu_load)
3715 max_cpu_load = load;
3716 if (min_cpu_load > load)
3717 min_cpu_load = load;
3720 sgs->group_load += load;
3721 sgs->sum_nr_running += rq->nr_running;
3722 sgs->sum_weighted_load += weighted_cpuload(i);
3724 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3728 * First idle cpu or the first cpu(busiest) in this sched group
3729 * is eligible for doing load balancing at this and above
3730 * domains. In the newly idle case, we will allow all the cpu's
3731 * to do the newly idle load balance.
3733 if (idle != CPU_NEWLY_IDLE && local_group &&
3734 balance_cpu != this_cpu && balance) {
3735 *balance = 0;
3736 return;
3739 /* Adjust by relative CPU power of the group */
3740 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3744 * Consider the group unbalanced when the imbalance is larger
3745 * than the average weight of two tasks.
3747 * APZ: with cgroup the avg task weight can vary wildly and
3748 * might not be a suitable number - should we keep a
3749 * normalized nr_running number somewhere that negates
3750 * the hierarchy?
3752 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3753 group->cpu_power;
3755 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3756 sgs->group_imb = 1;
3758 sgs->group_capacity =
3759 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3763 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3764 * @sd: sched_domain whose statistics are to be updated.
3765 * @this_cpu: Cpu for which load balance is currently performed.
3766 * @idle: Idle status of this_cpu
3767 * @sd_idle: Idle status of the sched_domain containing group.
3768 * @cpus: Set of cpus considered for load balancing.
3769 * @balance: Should we balance.
3770 * @sds: variable to hold the statistics for this sched_domain.
3772 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3773 enum cpu_idle_type idle, int *sd_idle,
3774 const struct cpumask *cpus, int *balance,
3775 struct sd_lb_stats *sds)
3777 struct sched_domain *child = sd->child;
3778 struct sched_group *group = sd->groups;
3779 struct sg_lb_stats sgs;
3780 int load_idx, prefer_sibling = 0;
3782 if (child && child->flags & SD_PREFER_SIBLING)
3783 prefer_sibling = 1;
3785 init_sd_power_savings_stats(sd, sds, idle);
3786 load_idx = get_sd_load_idx(sd, idle);
3788 do {
3789 int local_group;
3791 local_group = cpumask_test_cpu(this_cpu,
3792 sched_group_cpus(group));
3793 memset(&sgs, 0, sizeof(sgs));
3794 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3795 local_group, cpus, balance, &sgs);
3797 if (local_group && balance && !(*balance))
3798 return;
3800 sds->total_load += sgs.group_load;
3801 sds->total_pwr += group->cpu_power;
3804 * In case the child domain prefers tasks go to siblings
3805 * first, lower the group capacity to one so that we'll try
3806 * and move all the excess tasks away.
3808 if (prefer_sibling)
3809 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3811 if (local_group) {
3812 sds->this_load = sgs.avg_load;
3813 sds->this = group;
3814 sds->this_nr_running = sgs.sum_nr_running;
3815 sds->this_load_per_task = sgs.sum_weighted_load;
3816 } else if (sgs.avg_load > sds->max_load &&
3817 (sgs.sum_nr_running > sgs.group_capacity ||
3818 sgs.group_imb)) {
3819 sds->max_load = sgs.avg_load;
3820 sds->busiest = group;
3821 sds->busiest_nr_running = sgs.sum_nr_running;
3822 sds->busiest_load_per_task = sgs.sum_weighted_load;
3823 sds->group_imb = sgs.group_imb;
3826 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3827 group = group->next;
3828 } while (group != sd->groups);
3832 * fix_small_imbalance - Calculate the minor imbalance that exists
3833 * amongst the groups of a sched_domain, during
3834 * load balancing.
3835 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3836 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3837 * @imbalance: Variable to store the imbalance.
3839 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3840 int this_cpu, unsigned long *imbalance)
3842 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3843 unsigned int imbn = 2;
3845 if (sds->this_nr_running) {
3846 sds->this_load_per_task /= sds->this_nr_running;
3847 if (sds->busiest_load_per_task >
3848 sds->this_load_per_task)
3849 imbn = 1;
3850 } else
3851 sds->this_load_per_task =
3852 cpu_avg_load_per_task(this_cpu);
3854 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3855 sds->busiest_load_per_task * imbn) {
3856 *imbalance = sds->busiest_load_per_task;
3857 return;
3861 * OK, we don't have enough imbalance to justify moving tasks,
3862 * however we may be able to increase total CPU power used by
3863 * moving them.
3866 pwr_now += sds->busiest->cpu_power *
3867 min(sds->busiest_load_per_task, sds->max_load);
3868 pwr_now += sds->this->cpu_power *
3869 min(sds->this_load_per_task, sds->this_load);
3870 pwr_now /= SCHED_LOAD_SCALE;
3872 /* Amount of load we'd subtract */
3873 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3874 sds->busiest->cpu_power;
3875 if (sds->max_load > tmp)
3876 pwr_move += sds->busiest->cpu_power *
3877 min(sds->busiest_load_per_task, sds->max_load - tmp);
3879 /* Amount of load we'd add */
3880 if (sds->max_load * sds->busiest->cpu_power <
3881 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3882 tmp = (sds->max_load * sds->busiest->cpu_power) /
3883 sds->this->cpu_power;
3884 else
3885 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3886 sds->this->cpu_power;
3887 pwr_move += sds->this->cpu_power *
3888 min(sds->this_load_per_task, sds->this_load + tmp);
3889 pwr_move /= SCHED_LOAD_SCALE;
3891 /* Move if we gain throughput */
3892 if (pwr_move > pwr_now)
3893 *imbalance = sds->busiest_load_per_task;
3897 * calculate_imbalance - Calculate the amount of imbalance present within the
3898 * groups of a given sched_domain during load balance.
3899 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3900 * @this_cpu: Cpu for which currently load balance is being performed.
3901 * @imbalance: The variable to store the imbalance.
3903 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3904 unsigned long *imbalance)
3906 unsigned long max_pull;
3908 * In the presence of smp nice balancing, certain scenarios can have
3909 * max load less than avg load(as we skip the groups at or below
3910 * its cpu_power, while calculating max_load..)
3912 if (sds->max_load < sds->avg_load) {
3913 *imbalance = 0;
3914 return fix_small_imbalance(sds, this_cpu, imbalance);
3917 /* Don't want to pull so many tasks that a group would go idle */
3918 max_pull = min(sds->max_load - sds->avg_load,
3919 sds->max_load - sds->busiest_load_per_task);
3921 /* How much load to actually move to equalise the imbalance */
3922 *imbalance = min(max_pull * sds->busiest->cpu_power,
3923 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3924 / SCHED_LOAD_SCALE;
3927 * if *imbalance is less than the average load per runnable task
3928 * there is no gaurantee that any tasks will be moved so we'll have
3929 * a think about bumping its value to force at least one task to be
3930 * moved
3932 if (*imbalance < sds->busiest_load_per_task)
3933 return fix_small_imbalance(sds, this_cpu, imbalance);
3936 /******* find_busiest_group() helpers end here *********************/
3939 * find_busiest_group - Returns the busiest group within the sched_domain
3940 * if there is an imbalance. If there isn't an imbalance, and
3941 * the user has opted for power-savings, it returns a group whose
3942 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3943 * such a group exists.
3945 * Also calculates the amount of weighted load which should be moved
3946 * to restore balance.
3948 * @sd: The sched_domain whose busiest group is to be returned.
3949 * @this_cpu: The cpu for which load balancing is currently being performed.
3950 * @imbalance: Variable which stores amount of weighted load which should
3951 * be moved to restore balance/put a group to idle.
3952 * @idle: The idle status of this_cpu.
3953 * @sd_idle: The idleness of sd
3954 * @cpus: The set of CPUs under consideration for load-balancing.
3955 * @balance: Pointer to a variable indicating if this_cpu
3956 * is the appropriate cpu to perform load balancing at this_level.
3958 * Returns: - the busiest group if imbalance exists.
3959 * - If no imbalance and user has opted for power-savings balance,
3960 * return the least loaded group whose CPUs can be
3961 * put to idle by rebalancing its tasks onto our group.
3963 static struct sched_group *
3964 find_busiest_group(struct sched_domain *sd, int this_cpu,
3965 unsigned long *imbalance, enum cpu_idle_type idle,
3966 int *sd_idle, const struct cpumask *cpus, int *balance)
3968 struct sd_lb_stats sds;
3970 memset(&sds, 0, sizeof(sds));
3973 * Compute the various statistics relavent for load balancing at
3974 * this level.
3976 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3977 balance, &sds);
3979 /* Cases where imbalance does not exist from POV of this_cpu */
3980 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3981 * at this level.
3982 * 2) There is no busy sibling group to pull from.
3983 * 3) This group is the busiest group.
3984 * 4) This group is more busy than the avg busieness at this
3985 * sched_domain.
3986 * 5) The imbalance is within the specified limit.
3987 * 6) Any rebalance would lead to ping-pong
3989 if (balance && !(*balance))
3990 goto ret;
3992 if (!sds.busiest || sds.busiest_nr_running == 0)
3993 goto out_balanced;
3995 if (sds.this_load >= sds.max_load)
3996 goto out_balanced;
3998 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4000 if (sds.this_load >= sds.avg_load)
4001 goto out_balanced;
4003 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4004 goto out_balanced;
4006 sds.busiest_load_per_task /= sds.busiest_nr_running;
4007 if (sds.group_imb)
4008 sds.busiest_load_per_task =
4009 min(sds.busiest_load_per_task, sds.avg_load);
4012 * We're trying to get all the cpus to the average_load, so we don't
4013 * want to push ourselves above the average load, nor do we wish to
4014 * reduce the max loaded cpu below the average load, as either of these
4015 * actions would just result in more rebalancing later, and ping-pong
4016 * tasks around. Thus we look for the minimum possible imbalance.
4017 * Negative imbalances (*we* are more loaded than anyone else) will
4018 * be counted as no imbalance for these purposes -- we can't fix that
4019 * by pulling tasks to us. Be careful of negative numbers as they'll
4020 * appear as very large values with unsigned longs.
4022 if (sds.max_load <= sds.busiest_load_per_task)
4023 goto out_balanced;
4025 /* Looks like there is an imbalance. Compute it */
4026 calculate_imbalance(&sds, this_cpu, imbalance);
4027 return sds.busiest;
4029 out_balanced:
4031 * There is no obvious imbalance. But check if we can do some balancing
4032 * to save power.
4034 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4035 return sds.busiest;
4036 ret:
4037 *imbalance = 0;
4038 return NULL;
4042 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4044 static struct rq *
4045 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4046 unsigned long imbalance, const struct cpumask *cpus)
4048 struct rq *busiest = NULL, *rq;
4049 unsigned long max_load = 0;
4050 int i;
4052 for_each_cpu(i, sched_group_cpus(group)) {
4053 unsigned long power = power_of(i);
4054 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4055 unsigned long wl;
4057 if (!cpumask_test_cpu(i, cpus))
4058 continue;
4060 rq = cpu_rq(i);
4061 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4062 wl /= power;
4064 if (capacity && rq->nr_running == 1 && wl > imbalance)
4065 continue;
4067 if (wl > max_load) {
4068 max_load = wl;
4069 busiest = rq;
4073 return busiest;
4077 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4078 * so long as it is large enough.
4080 #define MAX_PINNED_INTERVAL 512
4082 /* Working cpumask for load_balance and load_balance_newidle. */
4083 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4086 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4087 * tasks if there is an imbalance.
4089 static int load_balance(int this_cpu, struct rq *this_rq,
4090 struct sched_domain *sd, enum cpu_idle_type idle,
4091 int *balance)
4093 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4094 struct sched_group *group;
4095 unsigned long imbalance;
4096 struct rq *busiest;
4097 unsigned long flags;
4098 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4100 cpumask_setall(cpus);
4103 * When power savings policy is enabled for the parent domain, idle
4104 * sibling can pick up load irrespective of busy siblings. In this case,
4105 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4106 * portraying it as CPU_NOT_IDLE.
4108 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4109 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4110 sd_idle = 1;
4112 schedstat_inc(sd, lb_count[idle]);
4114 redo:
4115 update_shares(sd);
4116 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4117 cpus, balance);
4119 if (*balance == 0)
4120 goto out_balanced;
4122 if (!group) {
4123 schedstat_inc(sd, lb_nobusyg[idle]);
4124 goto out_balanced;
4127 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4128 if (!busiest) {
4129 schedstat_inc(sd, lb_nobusyq[idle]);
4130 goto out_balanced;
4133 BUG_ON(busiest == this_rq);
4135 schedstat_add(sd, lb_imbalance[idle], imbalance);
4137 ld_moved = 0;
4138 if (busiest->nr_running > 1) {
4140 * Attempt to move tasks. If find_busiest_group has found
4141 * an imbalance but busiest->nr_running <= 1, the group is
4142 * still unbalanced. ld_moved simply stays zero, so it is
4143 * correctly treated as an imbalance.
4145 local_irq_save(flags);
4146 double_rq_lock(this_rq, busiest);
4147 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4148 imbalance, sd, idle, &all_pinned);
4149 double_rq_unlock(this_rq, busiest);
4150 local_irq_restore(flags);
4153 * some other cpu did the load balance for us.
4155 if (ld_moved && this_cpu != smp_processor_id())
4156 resched_cpu(this_cpu);
4158 /* All tasks on this runqueue were pinned by CPU affinity */
4159 if (unlikely(all_pinned)) {
4160 cpumask_clear_cpu(cpu_of(busiest), cpus);
4161 if (!cpumask_empty(cpus))
4162 goto redo;
4163 goto out_balanced;
4167 if (!ld_moved) {
4168 schedstat_inc(sd, lb_failed[idle]);
4169 sd->nr_balance_failed++;
4171 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4173 spin_lock_irqsave(&busiest->lock, flags);
4175 /* don't kick the migration_thread, if the curr
4176 * task on busiest cpu can't be moved to this_cpu
4178 if (!cpumask_test_cpu(this_cpu,
4179 &busiest->curr->cpus_allowed)) {
4180 spin_unlock_irqrestore(&busiest->lock, flags);
4181 all_pinned = 1;
4182 goto out_one_pinned;
4185 if (!busiest->active_balance) {
4186 busiest->active_balance = 1;
4187 busiest->push_cpu = this_cpu;
4188 active_balance = 1;
4190 spin_unlock_irqrestore(&busiest->lock, flags);
4191 if (active_balance)
4192 wake_up_process(busiest->migration_thread);
4195 * We've kicked active balancing, reset the failure
4196 * counter.
4198 sd->nr_balance_failed = sd->cache_nice_tries+1;
4200 } else
4201 sd->nr_balance_failed = 0;
4203 if (likely(!active_balance)) {
4204 /* We were unbalanced, so reset the balancing interval */
4205 sd->balance_interval = sd->min_interval;
4206 } else {
4208 * If we've begun active balancing, start to back off. This
4209 * case may not be covered by the all_pinned logic if there
4210 * is only 1 task on the busy runqueue (because we don't call
4211 * move_tasks).
4213 if (sd->balance_interval < sd->max_interval)
4214 sd->balance_interval *= 2;
4217 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4219 ld_moved = -1;
4221 goto out;
4223 out_balanced:
4224 schedstat_inc(sd, lb_balanced[idle]);
4226 sd->nr_balance_failed = 0;
4228 out_one_pinned:
4229 /* tune up the balancing interval */
4230 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4231 (sd->balance_interval < sd->max_interval))
4232 sd->balance_interval *= 2;
4234 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4235 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4236 ld_moved = -1;
4237 else
4238 ld_moved = 0;
4239 out:
4240 if (ld_moved)
4241 update_shares(sd);
4242 return ld_moved;
4246 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4247 * tasks if there is an imbalance.
4249 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4250 * this_rq is locked.
4252 static int
4253 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4255 struct sched_group *group;
4256 struct rq *busiest = NULL;
4257 unsigned long imbalance;
4258 int ld_moved = 0;
4259 int sd_idle = 0;
4260 int all_pinned = 0;
4261 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4263 cpumask_setall(cpus);
4266 * When power savings policy is enabled for the parent domain, idle
4267 * sibling can pick up load irrespective of busy siblings. In this case,
4268 * let the state of idle sibling percolate up as IDLE, instead of
4269 * portraying it as CPU_NOT_IDLE.
4271 if (sd->flags & SD_SHARE_CPUPOWER &&
4272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4273 sd_idle = 1;
4275 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4276 redo:
4277 update_shares_locked(this_rq, sd);
4278 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4279 &sd_idle, cpus, NULL);
4280 if (!group) {
4281 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4282 goto out_balanced;
4285 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4286 if (!busiest) {
4287 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4288 goto out_balanced;
4291 BUG_ON(busiest == this_rq);
4293 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4295 ld_moved = 0;
4296 if (busiest->nr_running > 1) {
4297 /* Attempt to move tasks */
4298 double_lock_balance(this_rq, busiest);
4299 /* this_rq->clock is already updated */
4300 update_rq_clock(busiest);
4301 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4302 imbalance, sd, CPU_NEWLY_IDLE,
4303 &all_pinned);
4304 double_unlock_balance(this_rq, busiest);
4306 if (unlikely(all_pinned)) {
4307 cpumask_clear_cpu(cpu_of(busiest), cpus);
4308 if (!cpumask_empty(cpus))
4309 goto redo;
4313 if (!ld_moved) {
4314 int active_balance = 0;
4316 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4317 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4318 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4319 return -1;
4321 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4322 return -1;
4324 if (sd->nr_balance_failed++ < 2)
4325 return -1;
4328 * The only task running in a non-idle cpu can be moved to this
4329 * cpu in an attempt to completely freeup the other CPU
4330 * package. The same method used to move task in load_balance()
4331 * have been extended for load_balance_newidle() to speedup
4332 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4334 * The package power saving logic comes from
4335 * find_busiest_group(). If there are no imbalance, then
4336 * f_b_g() will return NULL. However when sched_mc={1,2} then
4337 * f_b_g() will select a group from which a running task may be
4338 * pulled to this cpu in order to make the other package idle.
4339 * If there is no opportunity to make a package idle and if
4340 * there are no imbalance, then f_b_g() will return NULL and no
4341 * action will be taken in load_balance_newidle().
4343 * Under normal task pull operation due to imbalance, there
4344 * will be more than one task in the source run queue and
4345 * move_tasks() will succeed. ld_moved will be true and this
4346 * active balance code will not be triggered.
4349 /* Lock busiest in correct order while this_rq is held */
4350 double_lock_balance(this_rq, busiest);
4353 * don't kick the migration_thread, if the curr
4354 * task on busiest cpu can't be moved to this_cpu
4356 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4357 double_unlock_balance(this_rq, busiest);
4358 all_pinned = 1;
4359 return ld_moved;
4362 if (!busiest->active_balance) {
4363 busiest->active_balance = 1;
4364 busiest->push_cpu = this_cpu;
4365 active_balance = 1;
4368 double_unlock_balance(this_rq, busiest);
4370 * Should not call ttwu while holding a rq->lock
4372 spin_unlock(&this_rq->lock);
4373 if (active_balance)
4374 wake_up_process(busiest->migration_thread);
4375 spin_lock(&this_rq->lock);
4377 } else
4378 sd->nr_balance_failed = 0;
4380 update_shares_locked(this_rq, sd);
4381 return ld_moved;
4383 out_balanced:
4384 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4385 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4387 return -1;
4388 sd->nr_balance_failed = 0;
4390 return 0;
4394 * idle_balance is called by schedule() if this_cpu is about to become
4395 * idle. Attempts to pull tasks from other CPUs.
4397 static void idle_balance(int this_cpu, struct rq *this_rq)
4399 struct sched_domain *sd;
4400 int pulled_task = 0;
4401 unsigned long next_balance = jiffies + HZ;
4403 for_each_domain(this_cpu, sd) {
4404 unsigned long interval;
4406 if (!(sd->flags & SD_LOAD_BALANCE))
4407 continue;
4409 if (sd->flags & SD_BALANCE_NEWIDLE)
4410 /* If we've pulled tasks over stop searching: */
4411 pulled_task = load_balance_newidle(this_cpu, this_rq,
4412 sd);
4414 interval = msecs_to_jiffies(sd->balance_interval);
4415 if (time_after(next_balance, sd->last_balance + interval))
4416 next_balance = sd->last_balance + interval;
4417 if (pulled_task)
4418 break;
4420 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4422 * We are going idle. next_balance may be set based on
4423 * a busy processor. So reset next_balance.
4425 this_rq->next_balance = next_balance;
4430 * active_load_balance is run by migration threads. It pushes running tasks
4431 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4432 * running on each physical CPU where possible, and avoids physical /
4433 * logical imbalances.
4435 * Called with busiest_rq locked.
4437 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4439 int target_cpu = busiest_rq->push_cpu;
4440 struct sched_domain *sd;
4441 struct rq *target_rq;
4443 /* Is there any task to move? */
4444 if (busiest_rq->nr_running <= 1)
4445 return;
4447 target_rq = cpu_rq(target_cpu);
4450 * This condition is "impossible", if it occurs
4451 * we need to fix it. Originally reported by
4452 * Bjorn Helgaas on a 128-cpu setup.
4454 BUG_ON(busiest_rq == target_rq);
4456 /* move a task from busiest_rq to target_rq */
4457 double_lock_balance(busiest_rq, target_rq);
4458 update_rq_clock(busiest_rq);
4459 update_rq_clock(target_rq);
4461 /* Search for an sd spanning us and the target CPU. */
4462 for_each_domain(target_cpu, sd) {
4463 if ((sd->flags & SD_LOAD_BALANCE) &&
4464 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4465 break;
4468 if (likely(sd)) {
4469 schedstat_inc(sd, alb_count);
4471 if (move_one_task(target_rq, target_cpu, busiest_rq,
4472 sd, CPU_IDLE))
4473 schedstat_inc(sd, alb_pushed);
4474 else
4475 schedstat_inc(sd, alb_failed);
4477 double_unlock_balance(busiest_rq, target_rq);
4480 #ifdef CONFIG_NO_HZ
4481 static struct {
4482 atomic_t load_balancer;
4483 cpumask_var_t cpu_mask;
4484 cpumask_var_t ilb_grp_nohz_mask;
4485 } nohz ____cacheline_aligned = {
4486 .load_balancer = ATOMIC_INIT(-1),
4489 int get_nohz_load_balancer(void)
4491 return atomic_read(&nohz.load_balancer);
4494 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4496 * lowest_flag_domain - Return lowest sched_domain containing flag.
4497 * @cpu: The cpu whose lowest level of sched domain is to
4498 * be returned.
4499 * @flag: The flag to check for the lowest sched_domain
4500 * for the given cpu.
4502 * Returns the lowest sched_domain of a cpu which contains the given flag.
4504 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4506 struct sched_domain *sd;
4508 for_each_domain(cpu, sd)
4509 if (sd && (sd->flags & flag))
4510 break;
4512 return sd;
4516 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4517 * @cpu: The cpu whose domains we're iterating over.
4518 * @sd: variable holding the value of the power_savings_sd
4519 * for cpu.
4520 * @flag: The flag to filter the sched_domains to be iterated.
4522 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4523 * set, starting from the lowest sched_domain to the highest.
4525 #define for_each_flag_domain(cpu, sd, flag) \
4526 for (sd = lowest_flag_domain(cpu, flag); \
4527 (sd && (sd->flags & flag)); sd = sd->parent)
4530 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4531 * @ilb_group: group to be checked for semi-idleness
4533 * Returns: 1 if the group is semi-idle. 0 otherwise.
4535 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4536 * and atleast one non-idle CPU. This helper function checks if the given
4537 * sched_group is semi-idle or not.
4539 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4541 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4542 sched_group_cpus(ilb_group));
4545 * A sched_group is semi-idle when it has atleast one busy cpu
4546 * and atleast one idle cpu.
4548 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4549 return 0;
4551 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4552 return 0;
4554 return 1;
4557 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4558 * @cpu: The cpu which is nominating a new idle_load_balancer.
4560 * Returns: Returns the id of the idle load balancer if it exists,
4561 * Else, returns >= nr_cpu_ids.
4563 * This algorithm picks the idle load balancer such that it belongs to a
4564 * semi-idle powersavings sched_domain. The idea is to try and avoid
4565 * completely idle packages/cores just for the purpose of idle load balancing
4566 * when there are other idle cpu's which are better suited for that job.
4568 static int find_new_ilb(int cpu)
4570 struct sched_domain *sd;
4571 struct sched_group *ilb_group;
4574 * Have idle load balancer selection from semi-idle packages only
4575 * when power-aware load balancing is enabled
4577 if (!(sched_smt_power_savings || sched_mc_power_savings))
4578 goto out_done;
4581 * Optimize for the case when we have no idle CPUs or only one
4582 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4584 if (cpumask_weight(nohz.cpu_mask) < 2)
4585 goto out_done;
4587 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4588 ilb_group = sd->groups;
4590 do {
4591 if (is_semi_idle_group(ilb_group))
4592 return cpumask_first(nohz.ilb_grp_nohz_mask);
4594 ilb_group = ilb_group->next;
4596 } while (ilb_group != sd->groups);
4599 out_done:
4600 return cpumask_first(nohz.cpu_mask);
4602 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4603 static inline int find_new_ilb(int call_cpu)
4605 return cpumask_first(nohz.cpu_mask);
4607 #endif
4610 * This routine will try to nominate the ilb (idle load balancing)
4611 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4612 * load balancing on behalf of all those cpus. If all the cpus in the system
4613 * go into this tickless mode, then there will be no ilb owner (as there is
4614 * no need for one) and all the cpus will sleep till the next wakeup event
4615 * arrives...
4617 * For the ilb owner, tick is not stopped. And this tick will be used
4618 * for idle load balancing. ilb owner will still be part of
4619 * nohz.cpu_mask..
4621 * While stopping the tick, this cpu will become the ilb owner if there
4622 * is no other owner. And will be the owner till that cpu becomes busy
4623 * or if all cpus in the system stop their ticks at which point
4624 * there is no need for ilb owner.
4626 * When the ilb owner becomes busy, it nominates another owner, during the
4627 * next busy scheduler_tick()
4629 int select_nohz_load_balancer(int stop_tick)
4631 int cpu = smp_processor_id();
4633 if (stop_tick) {
4634 cpu_rq(cpu)->in_nohz_recently = 1;
4636 if (!cpu_active(cpu)) {
4637 if (atomic_read(&nohz.load_balancer) != cpu)
4638 return 0;
4641 * If we are going offline and still the leader,
4642 * give up!
4644 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4645 BUG();
4647 return 0;
4650 cpumask_set_cpu(cpu, nohz.cpu_mask);
4652 /* time for ilb owner also to sleep */
4653 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4654 if (atomic_read(&nohz.load_balancer) == cpu)
4655 atomic_set(&nohz.load_balancer, -1);
4656 return 0;
4659 if (atomic_read(&nohz.load_balancer) == -1) {
4660 /* make me the ilb owner */
4661 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4662 return 1;
4663 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4664 int new_ilb;
4666 if (!(sched_smt_power_savings ||
4667 sched_mc_power_savings))
4668 return 1;
4670 * Check to see if there is a more power-efficient
4671 * ilb.
4673 new_ilb = find_new_ilb(cpu);
4674 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4675 atomic_set(&nohz.load_balancer, -1);
4676 resched_cpu(new_ilb);
4677 return 0;
4679 return 1;
4681 } else {
4682 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4683 return 0;
4685 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4687 if (atomic_read(&nohz.load_balancer) == cpu)
4688 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4689 BUG();
4691 return 0;
4693 #endif
4695 static DEFINE_SPINLOCK(balancing);
4698 * It checks each scheduling domain to see if it is due to be balanced,
4699 * and initiates a balancing operation if so.
4701 * Balancing parameters are set up in arch_init_sched_domains.
4703 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4705 int balance = 1;
4706 struct rq *rq = cpu_rq(cpu);
4707 unsigned long interval;
4708 struct sched_domain *sd;
4709 /* Earliest time when we have to do rebalance again */
4710 unsigned long next_balance = jiffies + 60*HZ;
4711 int update_next_balance = 0;
4712 int need_serialize;
4714 for_each_domain(cpu, sd) {
4715 if (!(sd->flags & SD_LOAD_BALANCE))
4716 continue;
4718 interval = sd->balance_interval;
4719 if (idle != CPU_IDLE)
4720 interval *= sd->busy_factor;
4722 /* scale ms to jiffies */
4723 interval = msecs_to_jiffies(interval);
4724 if (unlikely(!interval))
4725 interval = 1;
4726 if (interval > HZ*NR_CPUS/10)
4727 interval = HZ*NR_CPUS/10;
4729 need_serialize = sd->flags & SD_SERIALIZE;
4731 if (need_serialize) {
4732 if (!spin_trylock(&balancing))
4733 goto out;
4736 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4737 if (load_balance(cpu, rq, sd, idle, &balance)) {
4739 * We've pulled tasks over so either we're no
4740 * longer idle, or one of our SMT siblings is
4741 * not idle.
4743 idle = CPU_NOT_IDLE;
4745 sd->last_balance = jiffies;
4747 if (need_serialize)
4748 spin_unlock(&balancing);
4749 out:
4750 if (time_after(next_balance, sd->last_balance + interval)) {
4751 next_balance = sd->last_balance + interval;
4752 update_next_balance = 1;
4756 * Stop the load balance at this level. There is another
4757 * CPU in our sched group which is doing load balancing more
4758 * actively.
4760 if (!balance)
4761 break;
4765 * next_balance will be updated only when there is a need.
4766 * When the cpu is attached to null domain for ex, it will not be
4767 * updated.
4769 if (likely(update_next_balance))
4770 rq->next_balance = next_balance;
4774 * run_rebalance_domains is triggered when needed from the scheduler tick.
4775 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4776 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4778 static void run_rebalance_domains(struct softirq_action *h)
4780 int this_cpu = smp_processor_id();
4781 struct rq *this_rq = cpu_rq(this_cpu);
4782 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4783 CPU_IDLE : CPU_NOT_IDLE;
4785 rebalance_domains(this_cpu, idle);
4787 #ifdef CONFIG_NO_HZ
4789 * If this cpu is the owner for idle load balancing, then do the
4790 * balancing on behalf of the other idle cpus whose ticks are
4791 * stopped.
4793 if (this_rq->idle_at_tick &&
4794 atomic_read(&nohz.load_balancer) == this_cpu) {
4795 struct rq *rq;
4796 int balance_cpu;
4798 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4799 if (balance_cpu == this_cpu)
4800 continue;
4803 * If this cpu gets work to do, stop the load balancing
4804 * work being done for other cpus. Next load
4805 * balancing owner will pick it up.
4807 if (need_resched())
4808 break;
4810 rebalance_domains(balance_cpu, CPU_IDLE);
4812 rq = cpu_rq(balance_cpu);
4813 if (time_after(this_rq->next_balance, rq->next_balance))
4814 this_rq->next_balance = rq->next_balance;
4817 #endif
4820 static inline int on_null_domain(int cpu)
4822 return !rcu_dereference(cpu_rq(cpu)->sd);
4826 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4828 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4829 * idle load balancing owner or decide to stop the periodic load balancing,
4830 * if the whole system is idle.
4832 static inline void trigger_load_balance(struct rq *rq, int cpu)
4834 #ifdef CONFIG_NO_HZ
4836 * If we were in the nohz mode recently and busy at the current
4837 * scheduler tick, then check if we need to nominate new idle
4838 * load balancer.
4840 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4841 rq->in_nohz_recently = 0;
4843 if (atomic_read(&nohz.load_balancer) == cpu) {
4844 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4845 atomic_set(&nohz.load_balancer, -1);
4848 if (atomic_read(&nohz.load_balancer) == -1) {
4849 int ilb = find_new_ilb(cpu);
4851 if (ilb < nr_cpu_ids)
4852 resched_cpu(ilb);
4857 * If this cpu is idle and doing idle load balancing for all the
4858 * cpus with ticks stopped, is it time for that to stop?
4860 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4861 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4862 resched_cpu(cpu);
4863 return;
4867 * If this cpu is idle and the idle load balancing is done by
4868 * someone else, then no need raise the SCHED_SOFTIRQ
4870 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4871 cpumask_test_cpu(cpu, nohz.cpu_mask))
4872 return;
4873 #endif
4874 /* Don't need to rebalance while attached to NULL domain */
4875 if (time_after_eq(jiffies, rq->next_balance) &&
4876 likely(!on_null_domain(cpu)))
4877 raise_softirq(SCHED_SOFTIRQ);
4880 #else /* CONFIG_SMP */
4883 * on UP we do not need to balance between CPUs:
4885 static inline void idle_balance(int cpu, struct rq *rq)
4889 #endif
4891 DEFINE_PER_CPU(struct kernel_stat, kstat);
4893 EXPORT_PER_CPU_SYMBOL(kstat);
4896 * Return any ns on the sched_clock that have not yet been accounted in
4897 * @p in case that task is currently running.
4899 * Called with task_rq_lock() held on @rq.
4901 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4903 u64 ns = 0;
4905 if (task_current(rq, p)) {
4906 update_rq_clock(rq);
4907 ns = rq->clock - p->se.exec_start;
4908 if ((s64)ns < 0)
4909 ns = 0;
4912 return ns;
4915 unsigned long long task_delta_exec(struct task_struct *p)
4917 unsigned long flags;
4918 struct rq *rq;
4919 u64 ns = 0;
4921 rq = task_rq_lock(p, &flags);
4922 ns = do_task_delta_exec(p, rq);
4923 task_rq_unlock(rq, &flags);
4925 return ns;
4929 * Return accounted runtime for the task.
4930 * In case the task is currently running, return the runtime plus current's
4931 * pending runtime that have not been accounted yet.
4933 unsigned long long task_sched_runtime(struct task_struct *p)
4935 unsigned long flags;
4936 struct rq *rq;
4937 u64 ns = 0;
4939 rq = task_rq_lock(p, &flags);
4940 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4941 task_rq_unlock(rq, &flags);
4943 return ns;
4947 * Return sum_exec_runtime for the thread group.
4948 * In case the task is currently running, return the sum plus current's
4949 * pending runtime that have not been accounted yet.
4951 * Note that the thread group might have other running tasks as well,
4952 * so the return value not includes other pending runtime that other
4953 * running tasks might have.
4955 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4957 struct task_cputime totals;
4958 unsigned long flags;
4959 struct rq *rq;
4960 u64 ns;
4962 rq = task_rq_lock(p, &flags);
4963 thread_group_cputime(p, &totals);
4964 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4965 task_rq_unlock(rq, &flags);
4967 return ns;
4971 * Account user cpu time to a process.
4972 * @p: the process that the cpu time gets accounted to
4973 * @cputime: the cpu time spent in user space since the last update
4974 * @cputime_scaled: cputime scaled by cpu frequency
4976 void account_user_time(struct task_struct *p, cputime_t cputime,
4977 cputime_t cputime_scaled)
4979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4980 cputime64_t tmp;
4982 /* Add user time to process. */
4983 p->utime = cputime_add(p->utime, cputime);
4984 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4985 account_group_user_time(p, cputime);
4987 /* Add user time to cpustat. */
4988 tmp = cputime_to_cputime64(cputime);
4989 if (TASK_NICE(p) > 0)
4990 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4991 else
4992 cpustat->user = cputime64_add(cpustat->user, tmp);
4994 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4995 /* Account for user time used */
4996 acct_update_integrals(p);
5000 * Account guest cpu time to a process.
5001 * @p: the process that the cpu time gets accounted to
5002 * @cputime: the cpu time spent in virtual machine since the last update
5003 * @cputime_scaled: cputime scaled by cpu frequency
5005 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5006 cputime_t cputime_scaled)
5008 cputime64_t tmp;
5009 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5011 tmp = cputime_to_cputime64(cputime);
5013 /* Add guest time to process. */
5014 p->utime = cputime_add(p->utime, cputime);
5015 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5016 account_group_user_time(p, cputime);
5017 p->gtime = cputime_add(p->gtime, cputime);
5019 /* Add guest time to cpustat. */
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
5021 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5025 * Account system cpu time to a process.
5026 * @p: the process that the cpu time gets accounted to
5027 * @hardirq_offset: the offset to subtract from hardirq_count()
5028 * @cputime: the cpu time spent in kernel space since the last update
5029 * @cputime_scaled: cputime scaled by cpu frequency
5031 void account_system_time(struct task_struct *p, int hardirq_offset,
5032 cputime_t cputime, cputime_t cputime_scaled)
5034 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5035 cputime64_t tmp;
5037 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5038 account_guest_time(p, cputime, cputime_scaled);
5039 return;
5042 /* Add system time to process. */
5043 p->stime = cputime_add(p->stime, cputime);
5044 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5045 account_group_system_time(p, cputime);
5047 /* Add system time to cpustat. */
5048 tmp = cputime_to_cputime64(cputime);
5049 if (hardirq_count() - hardirq_offset)
5050 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5051 else if (softirq_count())
5052 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5053 else
5054 cpustat->system = cputime64_add(cpustat->system, tmp);
5056 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5058 /* Account for system time used */
5059 acct_update_integrals(p);
5063 * Account for involuntary wait time.
5064 * @steal: the cpu time spent in involuntary wait
5066 void account_steal_time(cputime_t cputime)
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5069 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5071 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5075 * Account for idle time.
5076 * @cputime: the cpu time spent in idle wait
5078 void account_idle_time(cputime_t cputime)
5080 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5081 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5082 struct rq *rq = this_rq();
5084 if (atomic_read(&rq->nr_iowait) > 0)
5085 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5086 else
5087 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5090 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5093 * Account a single tick of cpu time.
5094 * @p: the process that the cpu time gets accounted to
5095 * @user_tick: indicates if the tick is a user or a system tick
5097 void account_process_tick(struct task_struct *p, int user_tick)
5099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5100 struct rq *rq = this_rq();
5102 if (user_tick)
5103 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5104 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5105 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5106 one_jiffy_scaled);
5107 else
5108 account_idle_time(cputime_one_jiffy);
5112 * Account multiple ticks of steal time.
5113 * @p: the process from which the cpu time has been stolen
5114 * @ticks: number of stolen ticks
5116 void account_steal_ticks(unsigned long ticks)
5118 account_steal_time(jiffies_to_cputime(ticks));
5122 * Account multiple ticks of idle time.
5123 * @ticks: number of stolen ticks
5125 void account_idle_ticks(unsigned long ticks)
5127 account_idle_time(jiffies_to_cputime(ticks));
5130 #endif
5133 * Use precise platform statistics if available:
5135 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5136 cputime_t task_utime(struct task_struct *p)
5138 return p->utime;
5141 cputime_t task_stime(struct task_struct *p)
5143 return p->stime;
5145 #else
5146 cputime_t task_utime(struct task_struct *p)
5148 clock_t utime = cputime_to_clock_t(p->utime),
5149 total = utime + cputime_to_clock_t(p->stime);
5150 u64 temp;
5153 * Use CFS's precise accounting:
5155 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5157 if (total) {
5158 temp *= utime;
5159 do_div(temp, total);
5161 utime = (clock_t)temp;
5163 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5164 return p->prev_utime;
5167 cputime_t task_stime(struct task_struct *p)
5169 clock_t stime;
5172 * Use CFS's precise accounting. (we subtract utime from
5173 * the total, to make sure the total observed by userspace
5174 * grows monotonically - apps rely on that):
5176 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5177 cputime_to_clock_t(task_utime(p));
5179 if (stime >= 0)
5180 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5182 return p->prev_stime;
5184 #endif
5186 inline cputime_t task_gtime(struct task_struct *p)
5188 return p->gtime;
5192 * This function gets called by the timer code, with HZ frequency.
5193 * We call it with interrupts disabled.
5195 * It also gets called by the fork code, when changing the parent's
5196 * timeslices.
5198 void scheduler_tick(void)
5200 int cpu = smp_processor_id();
5201 struct rq *rq = cpu_rq(cpu);
5202 struct task_struct *curr = rq->curr;
5204 sched_clock_tick();
5206 spin_lock(&rq->lock);
5207 update_rq_clock(rq);
5208 update_cpu_load(rq);
5209 curr->sched_class->task_tick(rq, curr, 0);
5210 spin_unlock(&rq->lock);
5212 perf_event_task_tick(curr, cpu);
5214 #ifdef CONFIG_SMP
5215 rq->idle_at_tick = idle_cpu(cpu);
5216 trigger_load_balance(rq, cpu);
5217 #endif
5220 notrace unsigned long get_parent_ip(unsigned long addr)
5222 if (in_lock_functions(addr)) {
5223 addr = CALLER_ADDR2;
5224 if (in_lock_functions(addr))
5225 addr = CALLER_ADDR3;
5227 return addr;
5230 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5231 defined(CONFIG_PREEMPT_TRACER))
5233 void __kprobes add_preempt_count(int val)
5235 #ifdef CONFIG_DEBUG_PREEMPT
5237 * Underflow?
5239 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5240 return;
5241 #endif
5242 preempt_count() += val;
5243 #ifdef CONFIG_DEBUG_PREEMPT
5245 * Spinlock count overflowing soon?
5247 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5248 PREEMPT_MASK - 10);
5249 #endif
5250 if (preempt_count() == val)
5251 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5253 EXPORT_SYMBOL(add_preempt_count);
5255 void __kprobes sub_preempt_count(int val)
5257 #ifdef CONFIG_DEBUG_PREEMPT
5259 * Underflow?
5261 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5262 return;
5264 * Is the spinlock portion underflowing?
5266 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5267 !(preempt_count() & PREEMPT_MASK)))
5268 return;
5269 #endif
5271 if (preempt_count() == val)
5272 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5273 preempt_count() -= val;
5275 EXPORT_SYMBOL(sub_preempt_count);
5277 #endif
5280 * Print scheduling while atomic bug:
5282 static noinline void __schedule_bug(struct task_struct *prev)
5284 struct pt_regs *regs = get_irq_regs();
5286 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5287 prev->comm, prev->pid, preempt_count());
5289 debug_show_held_locks(prev);
5290 print_modules();
5291 if (irqs_disabled())
5292 print_irqtrace_events(prev);
5294 if (regs)
5295 show_regs(regs);
5296 else
5297 dump_stack();
5301 * Various schedule()-time debugging checks and statistics:
5303 static inline void schedule_debug(struct task_struct *prev)
5306 * Test if we are atomic. Since do_exit() needs to call into
5307 * schedule() atomically, we ignore that path for now.
5308 * Otherwise, whine if we are scheduling when we should not be.
5310 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5311 __schedule_bug(prev);
5313 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5315 schedstat_inc(this_rq(), sched_count);
5316 #ifdef CONFIG_SCHEDSTATS
5317 if (unlikely(prev->lock_depth >= 0)) {
5318 schedstat_inc(this_rq(), bkl_count);
5319 schedstat_inc(prev, sched_info.bkl_count);
5321 #endif
5324 static void put_prev_task(struct rq *rq, struct task_struct *p)
5326 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5328 update_avg(&p->se.avg_running, runtime);
5330 if (p->state == TASK_RUNNING) {
5332 * In order to avoid avg_overlap growing stale when we are
5333 * indeed overlapping and hence not getting put to sleep, grow
5334 * the avg_overlap on preemption.
5336 * We use the average preemption runtime because that
5337 * correlates to the amount of cache footprint a task can
5338 * build up.
5340 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5341 update_avg(&p->se.avg_overlap, runtime);
5342 } else {
5343 update_avg(&p->se.avg_running, 0);
5345 p->sched_class->put_prev_task(rq, p);
5349 * Pick up the highest-prio task:
5351 static inline struct task_struct *
5352 pick_next_task(struct rq *rq)
5354 const struct sched_class *class;
5355 struct task_struct *p;
5358 * Optimization: we know that if all tasks are in
5359 * the fair class we can call that function directly:
5361 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5362 p = fair_sched_class.pick_next_task(rq);
5363 if (likely(p))
5364 return p;
5367 class = sched_class_highest;
5368 for ( ; ; ) {
5369 p = class->pick_next_task(rq);
5370 if (p)
5371 return p;
5373 * Will never be NULL as the idle class always
5374 * returns a non-NULL p:
5376 class = class->next;
5381 * schedule() is the main scheduler function.
5383 asmlinkage void __sched schedule(void)
5385 struct task_struct *prev, *next;
5386 unsigned long *switch_count;
5387 struct rq *rq;
5388 int cpu;
5390 need_resched:
5391 preempt_disable();
5392 cpu = smp_processor_id();
5393 rq = cpu_rq(cpu);
5394 rcu_sched_qs(cpu);
5395 prev = rq->curr;
5396 switch_count = &prev->nivcsw;
5398 release_kernel_lock(prev);
5399 need_resched_nonpreemptible:
5401 schedule_debug(prev);
5403 if (sched_feat(HRTICK))
5404 hrtick_clear(rq);
5406 spin_lock_irq(&rq->lock);
5407 update_rq_clock(rq);
5408 clear_tsk_need_resched(prev);
5410 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5411 if (unlikely(signal_pending_state(prev->state, prev)))
5412 prev->state = TASK_RUNNING;
5413 else
5414 deactivate_task(rq, prev, 1);
5415 switch_count = &prev->nvcsw;
5418 pre_schedule(rq, prev);
5420 if (unlikely(!rq->nr_running))
5421 idle_balance(cpu, rq);
5423 put_prev_task(rq, prev);
5424 next = pick_next_task(rq);
5426 if (likely(prev != next)) {
5427 sched_info_switch(prev, next);
5428 perf_event_task_sched_out(prev, next, cpu);
5430 rq->nr_switches++;
5431 rq->curr = next;
5432 ++*switch_count;
5434 context_switch(rq, prev, next); /* unlocks the rq */
5436 * the context switch might have flipped the stack from under
5437 * us, hence refresh the local variables.
5439 cpu = smp_processor_id();
5440 rq = cpu_rq(cpu);
5441 } else
5442 spin_unlock_irq(&rq->lock);
5444 post_schedule(rq);
5446 if (unlikely(reacquire_kernel_lock(current) < 0))
5447 goto need_resched_nonpreemptible;
5449 preempt_enable_no_resched();
5450 if (need_resched())
5451 goto need_resched;
5453 EXPORT_SYMBOL(schedule);
5455 #ifdef CONFIG_SMP
5457 * Look out! "owner" is an entirely speculative pointer
5458 * access and not reliable.
5460 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5462 unsigned int cpu;
5463 struct rq *rq;
5465 if (!sched_feat(OWNER_SPIN))
5466 return 0;
5468 #ifdef CONFIG_DEBUG_PAGEALLOC
5470 * Need to access the cpu field knowing that
5471 * DEBUG_PAGEALLOC could have unmapped it if
5472 * the mutex owner just released it and exited.
5474 if (probe_kernel_address(&owner->cpu, cpu))
5475 goto out;
5476 #else
5477 cpu = owner->cpu;
5478 #endif
5481 * Even if the access succeeded (likely case),
5482 * the cpu field may no longer be valid.
5484 if (cpu >= nr_cpumask_bits)
5485 goto out;
5488 * We need to validate that we can do a
5489 * get_cpu() and that we have the percpu area.
5491 if (!cpu_online(cpu))
5492 goto out;
5494 rq = cpu_rq(cpu);
5496 for (;;) {
5498 * Owner changed, break to re-assess state.
5500 if (lock->owner != owner)
5501 break;
5504 * Is that owner really running on that cpu?
5506 if (task_thread_info(rq->curr) != owner || need_resched())
5507 return 0;
5509 cpu_relax();
5511 out:
5512 return 1;
5514 #endif
5516 #ifdef CONFIG_PREEMPT
5518 * this is the entry point to schedule() from in-kernel preemption
5519 * off of preempt_enable. Kernel preemptions off return from interrupt
5520 * occur there and call schedule directly.
5522 asmlinkage void __sched preempt_schedule(void)
5524 struct thread_info *ti = current_thread_info();
5527 * If there is a non-zero preempt_count or interrupts are disabled,
5528 * we do not want to preempt the current task. Just return..
5530 if (likely(ti->preempt_count || irqs_disabled()))
5531 return;
5533 do {
5534 add_preempt_count(PREEMPT_ACTIVE);
5535 schedule();
5536 sub_preempt_count(PREEMPT_ACTIVE);
5539 * Check again in case we missed a preemption opportunity
5540 * between schedule and now.
5542 barrier();
5543 } while (need_resched());
5545 EXPORT_SYMBOL(preempt_schedule);
5548 * this is the entry point to schedule() from kernel preemption
5549 * off of irq context.
5550 * Note, that this is called and return with irqs disabled. This will
5551 * protect us against recursive calling from irq.
5553 asmlinkage void __sched preempt_schedule_irq(void)
5555 struct thread_info *ti = current_thread_info();
5557 /* Catch callers which need to be fixed */
5558 BUG_ON(ti->preempt_count || !irqs_disabled());
5560 do {
5561 add_preempt_count(PREEMPT_ACTIVE);
5562 local_irq_enable();
5563 schedule();
5564 local_irq_disable();
5565 sub_preempt_count(PREEMPT_ACTIVE);
5568 * Check again in case we missed a preemption opportunity
5569 * between schedule and now.
5571 barrier();
5572 } while (need_resched());
5575 #endif /* CONFIG_PREEMPT */
5577 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5578 void *key)
5580 return try_to_wake_up(curr->private, mode, wake_flags);
5582 EXPORT_SYMBOL(default_wake_function);
5585 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5586 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5587 * number) then we wake all the non-exclusive tasks and one exclusive task.
5589 * There are circumstances in which we can try to wake a task which has already
5590 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5591 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5593 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5594 int nr_exclusive, int wake_flags, void *key)
5596 wait_queue_t *curr, *next;
5598 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5599 unsigned flags = curr->flags;
5601 if (curr->func(curr, mode, wake_flags, key) &&
5602 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5603 break;
5608 * __wake_up - wake up threads blocked on a waitqueue.
5609 * @q: the waitqueue
5610 * @mode: which threads
5611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5612 * @key: is directly passed to the wakeup function
5614 * It may be assumed that this function implies a write memory barrier before
5615 * changing the task state if and only if any tasks are woken up.
5617 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5618 int nr_exclusive, void *key)
5620 unsigned long flags;
5622 spin_lock_irqsave(&q->lock, flags);
5623 __wake_up_common(q, mode, nr_exclusive, 0, key);
5624 spin_unlock_irqrestore(&q->lock, flags);
5626 EXPORT_SYMBOL(__wake_up);
5629 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5631 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5633 __wake_up_common(q, mode, 1, 0, NULL);
5636 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5638 __wake_up_common(q, mode, 1, 0, key);
5642 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5643 * @q: the waitqueue
5644 * @mode: which threads
5645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5646 * @key: opaque value to be passed to wakeup targets
5648 * The sync wakeup differs that the waker knows that it will schedule
5649 * away soon, so while the target thread will be woken up, it will not
5650 * be migrated to another CPU - ie. the two threads are 'synchronized'
5651 * with each other. This can prevent needless bouncing between CPUs.
5653 * On UP it can prevent extra preemption.
5655 * It may be assumed that this function implies a write memory barrier before
5656 * changing the task state if and only if any tasks are woken up.
5658 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5659 int nr_exclusive, void *key)
5661 unsigned long flags;
5662 int wake_flags = WF_SYNC;
5664 if (unlikely(!q))
5665 return;
5667 if (unlikely(!nr_exclusive))
5668 wake_flags = 0;
5670 spin_lock_irqsave(&q->lock, flags);
5671 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5672 spin_unlock_irqrestore(&q->lock, flags);
5674 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5677 * __wake_up_sync - see __wake_up_sync_key()
5679 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5681 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5683 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5686 * complete: - signals a single thread waiting on this completion
5687 * @x: holds the state of this particular completion
5689 * This will wake up a single thread waiting on this completion. Threads will be
5690 * awakened in the same order in which they were queued.
5692 * See also complete_all(), wait_for_completion() and related routines.
5694 * It may be assumed that this function implies a write memory barrier before
5695 * changing the task state if and only if any tasks are woken up.
5697 void complete(struct completion *x)
5699 unsigned long flags;
5701 spin_lock_irqsave(&x->wait.lock, flags);
5702 x->done++;
5703 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5704 spin_unlock_irqrestore(&x->wait.lock, flags);
5706 EXPORT_SYMBOL(complete);
5709 * complete_all: - signals all threads waiting on this completion
5710 * @x: holds the state of this particular completion
5712 * This will wake up all threads waiting on this particular completion event.
5714 * It may be assumed that this function implies a write memory barrier before
5715 * changing the task state if and only if any tasks are woken up.
5717 void complete_all(struct completion *x)
5719 unsigned long flags;
5721 spin_lock_irqsave(&x->wait.lock, flags);
5722 x->done += UINT_MAX/2;
5723 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5724 spin_unlock_irqrestore(&x->wait.lock, flags);
5726 EXPORT_SYMBOL(complete_all);
5728 static inline long __sched
5729 do_wait_for_common(struct completion *x, long timeout, int state)
5731 if (!x->done) {
5732 DECLARE_WAITQUEUE(wait, current);
5734 wait.flags |= WQ_FLAG_EXCLUSIVE;
5735 __add_wait_queue_tail(&x->wait, &wait);
5736 do {
5737 if (signal_pending_state(state, current)) {
5738 timeout = -ERESTARTSYS;
5739 break;
5741 __set_current_state(state);
5742 spin_unlock_irq(&x->wait.lock);
5743 timeout = schedule_timeout(timeout);
5744 spin_lock_irq(&x->wait.lock);
5745 } while (!x->done && timeout);
5746 __remove_wait_queue(&x->wait, &wait);
5747 if (!x->done)
5748 return timeout;
5750 x->done--;
5751 return timeout ?: 1;
5754 static long __sched
5755 wait_for_common(struct completion *x, long timeout, int state)
5757 might_sleep();
5759 spin_lock_irq(&x->wait.lock);
5760 timeout = do_wait_for_common(x, timeout, state);
5761 spin_unlock_irq(&x->wait.lock);
5762 return timeout;
5766 * wait_for_completion: - waits for completion of a task
5767 * @x: holds the state of this particular completion
5769 * This waits to be signaled for completion of a specific task. It is NOT
5770 * interruptible and there is no timeout.
5772 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5773 * and interrupt capability. Also see complete().
5775 void __sched wait_for_completion(struct completion *x)
5777 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5779 EXPORT_SYMBOL(wait_for_completion);
5782 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5783 * @x: holds the state of this particular completion
5784 * @timeout: timeout value in jiffies
5786 * This waits for either a completion of a specific task to be signaled or for a
5787 * specified timeout to expire. The timeout is in jiffies. It is not
5788 * interruptible.
5790 unsigned long __sched
5791 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5793 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5795 EXPORT_SYMBOL(wait_for_completion_timeout);
5798 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5799 * @x: holds the state of this particular completion
5801 * This waits for completion of a specific task to be signaled. It is
5802 * interruptible.
5804 int __sched wait_for_completion_interruptible(struct completion *x)
5806 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5807 if (t == -ERESTARTSYS)
5808 return t;
5809 return 0;
5811 EXPORT_SYMBOL(wait_for_completion_interruptible);
5814 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5815 * @x: holds the state of this particular completion
5816 * @timeout: timeout value in jiffies
5818 * This waits for either a completion of a specific task to be signaled or for a
5819 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5821 unsigned long __sched
5822 wait_for_completion_interruptible_timeout(struct completion *x,
5823 unsigned long timeout)
5825 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5827 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5830 * wait_for_completion_killable: - waits for completion of a task (killable)
5831 * @x: holds the state of this particular completion
5833 * This waits to be signaled for completion of a specific task. It can be
5834 * interrupted by a kill signal.
5836 int __sched wait_for_completion_killable(struct completion *x)
5838 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5839 if (t == -ERESTARTSYS)
5840 return t;
5841 return 0;
5843 EXPORT_SYMBOL(wait_for_completion_killable);
5846 * try_wait_for_completion - try to decrement a completion without blocking
5847 * @x: completion structure
5849 * Returns: 0 if a decrement cannot be done without blocking
5850 * 1 if a decrement succeeded.
5852 * If a completion is being used as a counting completion,
5853 * attempt to decrement the counter without blocking. This
5854 * enables us to avoid waiting if the resource the completion
5855 * is protecting is not available.
5857 bool try_wait_for_completion(struct completion *x)
5859 int ret = 1;
5861 spin_lock_irq(&x->wait.lock);
5862 if (!x->done)
5863 ret = 0;
5864 else
5865 x->done--;
5866 spin_unlock_irq(&x->wait.lock);
5867 return ret;
5869 EXPORT_SYMBOL(try_wait_for_completion);
5872 * completion_done - Test to see if a completion has any waiters
5873 * @x: completion structure
5875 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5876 * 1 if there are no waiters.
5879 bool completion_done(struct completion *x)
5881 int ret = 1;
5883 spin_lock_irq(&x->wait.lock);
5884 if (!x->done)
5885 ret = 0;
5886 spin_unlock_irq(&x->wait.lock);
5887 return ret;
5889 EXPORT_SYMBOL(completion_done);
5891 static long __sched
5892 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5894 unsigned long flags;
5895 wait_queue_t wait;
5897 init_waitqueue_entry(&wait, current);
5899 __set_current_state(state);
5901 spin_lock_irqsave(&q->lock, flags);
5902 __add_wait_queue(q, &wait);
5903 spin_unlock(&q->lock);
5904 timeout = schedule_timeout(timeout);
5905 spin_lock_irq(&q->lock);
5906 __remove_wait_queue(q, &wait);
5907 spin_unlock_irqrestore(&q->lock, flags);
5909 return timeout;
5912 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5914 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5916 EXPORT_SYMBOL(interruptible_sleep_on);
5918 long __sched
5919 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5921 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5923 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5925 void __sched sleep_on(wait_queue_head_t *q)
5927 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5929 EXPORT_SYMBOL(sleep_on);
5931 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5933 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5935 EXPORT_SYMBOL(sleep_on_timeout);
5937 #ifdef CONFIG_RT_MUTEXES
5940 * rt_mutex_setprio - set the current priority of a task
5941 * @p: task
5942 * @prio: prio value (kernel-internal form)
5944 * This function changes the 'effective' priority of a task. It does
5945 * not touch ->normal_prio like __setscheduler().
5947 * Used by the rt_mutex code to implement priority inheritance logic.
5949 void rt_mutex_setprio(struct task_struct *p, int prio)
5951 unsigned long flags;
5952 int oldprio, on_rq, running;
5953 struct rq *rq;
5954 const struct sched_class *prev_class = p->sched_class;
5956 BUG_ON(prio < 0 || prio > MAX_PRIO);
5958 rq = task_rq_lock(p, &flags);
5959 update_rq_clock(rq);
5961 oldprio = p->prio;
5962 on_rq = p->se.on_rq;
5963 running = task_current(rq, p);
5964 if (on_rq)
5965 dequeue_task(rq, p, 0);
5966 if (running)
5967 p->sched_class->put_prev_task(rq, p);
5969 if (rt_prio(prio))
5970 p->sched_class = &rt_sched_class;
5971 else
5972 p->sched_class = &fair_sched_class;
5974 p->prio = prio;
5976 if (running)
5977 p->sched_class->set_curr_task(rq);
5978 if (on_rq) {
5979 enqueue_task(rq, p, 0);
5981 check_class_changed(rq, p, prev_class, oldprio, running);
5983 task_rq_unlock(rq, &flags);
5986 #endif
5988 void set_user_nice(struct task_struct *p, long nice)
5990 int old_prio, delta, on_rq;
5991 unsigned long flags;
5992 struct rq *rq;
5994 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5995 return;
5997 * We have to be careful, if called from sys_setpriority(),
5998 * the task might be in the middle of scheduling on another CPU.
6000 rq = task_rq_lock(p, &flags);
6001 update_rq_clock(rq);
6003 * The RT priorities are set via sched_setscheduler(), but we still
6004 * allow the 'normal' nice value to be set - but as expected
6005 * it wont have any effect on scheduling until the task is
6006 * SCHED_FIFO/SCHED_RR:
6008 if (task_has_rt_policy(p)) {
6009 p->static_prio = NICE_TO_PRIO(nice);
6010 goto out_unlock;
6012 on_rq = p->se.on_rq;
6013 if (on_rq)
6014 dequeue_task(rq, p, 0);
6016 p->static_prio = NICE_TO_PRIO(nice);
6017 set_load_weight(p);
6018 old_prio = p->prio;
6019 p->prio = effective_prio(p);
6020 delta = p->prio - old_prio;
6022 if (on_rq) {
6023 enqueue_task(rq, p, 0);
6025 * If the task increased its priority or is running and
6026 * lowered its priority, then reschedule its CPU:
6028 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6029 resched_task(rq->curr);
6031 out_unlock:
6032 task_rq_unlock(rq, &flags);
6034 EXPORT_SYMBOL(set_user_nice);
6037 * can_nice - check if a task can reduce its nice value
6038 * @p: task
6039 * @nice: nice value
6041 int can_nice(const struct task_struct *p, const int nice)
6043 /* convert nice value [19,-20] to rlimit style value [1,40] */
6044 int nice_rlim = 20 - nice;
6046 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6047 capable(CAP_SYS_NICE));
6050 #ifdef __ARCH_WANT_SYS_NICE
6053 * sys_nice - change the priority of the current process.
6054 * @increment: priority increment
6056 * sys_setpriority is a more generic, but much slower function that
6057 * does similar things.
6059 SYSCALL_DEFINE1(nice, int, increment)
6061 long nice, retval;
6064 * Setpriority might change our priority at the same moment.
6065 * We don't have to worry. Conceptually one call occurs first
6066 * and we have a single winner.
6068 if (increment < -40)
6069 increment = -40;
6070 if (increment > 40)
6071 increment = 40;
6073 nice = TASK_NICE(current) + increment;
6074 if (nice < -20)
6075 nice = -20;
6076 if (nice > 19)
6077 nice = 19;
6079 if (increment < 0 && !can_nice(current, nice))
6080 return -EPERM;
6082 retval = security_task_setnice(current, nice);
6083 if (retval)
6084 return retval;
6086 set_user_nice(current, nice);
6087 return 0;
6090 #endif
6093 * task_prio - return the priority value of a given task.
6094 * @p: the task in question.
6096 * This is the priority value as seen by users in /proc.
6097 * RT tasks are offset by -200. Normal tasks are centered
6098 * around 0, value goes from -16 to +15.
6100 int task_prio(const struct task_struct *p)
6102 return p->prio - MAX_RT_PRIO;
6106 * task_nice - return the nice value of a given task.
6107 * @p: the task in question.
6109 int task_nice(const struct task_struct *p)
6111 return TASK_NICE(p);
6113 EXPORT_SYMBOL(task_nice);
6116 * idle_cpu - is a given cpu idle currently?
6117 * @cpu: the processor in question.
6119 int idle_cpu(int cpu)
6121 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6125 * idle_task - return the idle task for a given cpu.
6126 * @cpu: the processor in question.
6128 struct task_struct *idle_task(int cpu)
6130 return cpu_rq(cpu)->idle;
6134 * find_process_by_pid - find a process with a matching PID value.
6135 * @pid: the pid in question.
6137 static struct task_struct *find_process_by_pid(pid_t pid)
6139 return pid ? find_task_by_vpid(pid) : current;
6142 /* Actually do priority change: must hold rq lock. */
6143 static void
6144 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6146 BUG_ON(p->se.on_rq);
6148 p->policy = policy;
6149 switch (p->policy) {
6150 case SCHED_NORMAL:
6151 case SCHED_BATCH:
6152 case SCHED_IDLE:
6153 p->sched_class = &fair_sched_class;
6154 break;
6155 case SCHED_FIFO:
6156 case SCHED_RR:
6157 p->sched_class = &rt_sched_class;
6158 break;
6161 p->rt_priority = prio;
6162 p->normal_prio = normal_prio(p);
6163 /* we are holding p->pi_lock already */
6164 p->prio = rt_mutex_getprio(p);
6165 set_load_weight(p);
6169 * check the target process has a UID that matches the current process's
6171 static bool check_same_owner(struct task_struct *p)
6173 const struct cred *cred = current_cred(), *pcred;
6174 bool match;
6176 rcu_read_lock();
6177 pcred = __task_cred(p);
6178 match = (cred->euid == pcred->euid ||
6179 cred->euid == pcred->uid);
6180 rcu_read_unlock();
6181 return match;
6184 static int __sched_setscheduler(struct task_struct *p, int policy,
6185 struct sched_param *param, bool user)
6187 int retval, oldprio, oldpolicy = -1, on_rq, running;
6188 unsigned long flags;
6189 const struct sched_class *prev_class = p->sched_class;
6190 struct rq *rq;
6191 int reset_on_fork;
6193 /* may grab non-irq protected spin_locks */
6194 BUG_ON(in_interrupt());
6195 recheck:
6196 /* double check policy once rq lock held */
6197 if (policy < 0) {
6198 reset_on_fork = p->sched_reset_on_fork;
6199 policy = oldpolicy = p->policy;
6200 } else {
6201 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6202 policy &= ~SCHED_RESET_ON_FORK;
6204 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6205 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6206 policy != SCHED_IDLE)
6207 return -EINVAL;
6211 * Valid priorities for SCHED_FIFO and SCHED_RR are
6212 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6213 * SCHED_BATCH and SCHED_IDLE is 0.
6215 if (param->sched_priority < 0 ||
6216 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6217 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6218 return -EINVAL;
6219 if (rt_policy(policy) != (param->sched_priority != 0))
6220 return -EINVAL;
6223 * Allow unprivileged RT tasks to decrease priority:
6225 if (user && !capable(CAP_SYS_NICE)) {
6226 if (rt_policy(policy)) {
6227 unsigned long rlim_rtprio;
6229 if (!lock_task_sighand(p, &flags))
6230 return -ESRCH;
6231 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6232 unlock_task_sighand(p, &flags);
6234 /* can't set/change the rt policy */
6235 if (policy != p->policy && !rlim_rtprio)
6236 return -EPERM;
6238 /* can't increase priority */
6239 if (param->sched_priority > p->rt_priority &&
6240 param->sched_priority > rlim_rtprio)
6241 return -EPERM;
6244 * Like positive nice levels, dont allow tasks to
6245 * move out of SCHED_IDLE either:
6247 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6248 return -EPERM;
6250 /* can't change other user's priorities */
6251 if (!check_same_owner(p))
6252 return -EPERM;
6254 /* Normal users shall not reset the sched_reset_on_fork flag */
6255 if (p->sched_reset_on_fork && !reset_on_fork)
6256 return -EPERM;
6259 if (user) {
6260 #ifdef CONFIG_RT_GROUP_SCHED
6262 * Do not allow realtime tasks into groups that have no runtime
6263 * assigned.
6265 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6266 task_group(p)->rt_bandwidth.rt_runtime == 0)
6267 return -EPERM;
6268 #endif
6270 retval = security_task_setscheduler(p, policy, param);
6271 if (retval)
6272 return retval;
6276 * make sure no PI-waiters arrive (or leave) while we are
6277 * changing the priority of the task:
6279 spin_lock_irqsave(&p->pi_lock, flags);
6281 * To be able to change p->policy safely, the apropriate
6282 * runqueue lock must be held.
6284 rq = __task_rq_lock(p);
6285 /* recheck policy now with rq lock held */
6286 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6287 policy = oldpolicy = -1;
6288 __task_rq_unlock(rq);
6289 spin_unlock_irqrestore(&p->pi_lock, flags);
6290 goto recheck;
6292 update_rq_clock(rq);
6293 on_rq = p->se.on_rq;
6294 running = task_current(rq, p);
6295 if (on_rq)
6296 deactivate_task(rq, p, 0);
6297 if (running)
6298 p->sched_class->put_prev_task(rq, p);
6300 p->sched_reset_on_fork = reset_on_fork;
6302 oldprio = p->prio;
6303 __setscheduler(rq, p, policy, param->sched_priority);
6305 if (running)
6306 p->sched_class->set_curr_task(rq);
6307 if (on_rq) {
6308 activate_task(rq, p, 0);
6310 check_class_changed(rq, p, prev_class, oldprio, running);
6312 __task_rq_unlock(rq);
6313 spin_unlock_irqrestore(&p->pi_lock, flags);
6315 rt_mutex_adjust_pi(p);
6317 return 0;
6321 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6322 * @p: the task in question.
6323 * @policy: new policy.
6324 * @param: structure containing the new RT priority.
6326 * NOTE that the task may be already dead.
6328 int sched_setscheduler(struct task_struct *p, int policy,
6329 struct sched_param *param)
6331 return __sched_setscheduler(p, policy, param, true);
6333 EXPORT_SYMBOL_GPL(sched_setscheduler);
6336 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6337 * @p: the task in question.
6338 * @policy: new policy.
6339 * @param: structure containing the new RT priority.
6341 * Just like sched_setscheduler, only don't bother checking if the
6342 * current context has permission. For example, this is needed in
6343 * stop_machine(): we create temporary high priority worker threads,
6344 * but our caller might not have that capability.
6346 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6347 struct sched_param *param)
6349 return __sched_setscheduler(p, policy, param, false);
6352 static int
6353 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6355 struct sched_param lparam;
6356 struct task_struct *p;
6357 int retval;
6359 if (!param || pid < 0)
6360 return -EINVAL;
6361 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6362 return -EFAULT;
6364 rcu_read_lock();
6365 retval = -ESRCH;
6366 p = find_process_by_pid(pid);
6367 if (p != NULL)
6368 retval = sched_setscheduler(p, policy, &lparam);
6369 rcu_read_unlock();
6371 return retval;
6375 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6376 * @pid: the pid in question.
6377 * @policy: new policy.
6378 * @param: structure containing the new RT priority.
6380 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6381 struct sched_param __user *, param)
6383 /* negative values for policy are not valid */
6384 if (policy < 0)
6385 return -EINVAL;
6387 return do_sched_setscheduler(pid, policy, param);
6391 * sys_sched_setparam - set/change the RT priority of a thread
6392 * @pid: the pid in question.
6393 * @param: structure containing the new RT priority.
6395 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6397 return do_sched_setscheduler(pid, -1, param);
6401 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6402 * @pid: the pid in question.
6404 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6406 struct task_struct *p;
6407 int retval;
6409 if (pid < 0)
6410 return -EINVAL;
6412 retval = -ESRCH;
6413 read_lock(&tasklist_lock);
6414 p = find_process_by_pid(pid);
6415 if (p) {
6416 retval = security_task_getscheduler(p);
6417 if (!retval)
6418 retval = p->policy
6419 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6421 read_unlock(&tasklist_lock);
6422 return retval;
6426 * sys_sched_getparam - get the RT priority of a thread
6427 * @pid: the pid in question.
6428 * @param: structure containing the RT priority.
6430 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6432 struct sched_param lp;
6433 struct task_struct *p;
6434 int retval;
6436 if (!param || pid < 0)
6437 return -EINVAL;
6439 read_lock(&tasklist_lock);
6440 p = find_process_by_pid(pid);
6441 retval = -ESRCH;
6442 if (!p)
6443 goto out_unlock;
6445 retval = security_task_getscheduler(p);
6446 if (retval)
6447 goto out_unlock;
6449 lp.sched_priority = p->rt_priority;
6450 read_unlock(&tasklist_lock);
6453 * This one might sleep, we cannot do it with a spinlock held ...
6455 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6457 return retval;
6459 out_unlock:
6460 read_unlock(&tasklist_lock);
6461 return retval;
6464 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6466 cpumask_var_t cpus_allowed, new_mask;
6467 struct task_struct *p;
6468 int retval;
6470 get_online_cpus();
6471 read_lock(&tasklist_lock);
6473 p = find_process_by_pid(pid);
6474 if (!p) {
6475 read_unlock(&tasklist_lock);
6476 put_online_cpus();
6477 return -ESRCH;
6481 * It is not safe to call set_cpus_allowed with the
6482 * tasklist_lock held. We will bump the task_struct's
6483 * usage count and then drop tasklist_lock.
6485 get_task_struct(p);
6486 read_unlock(&tasklist_lock);
6488 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6489 retval = -ENOMEM;
6490 goto out_put_task;
6492 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6493 retval = -ENOMEM;
6494 goto out_free_cpus_allowed;
6496 retval = -EPERM;
6497 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6498 goto out_unlock;
6500 retval = security_task_setscheduler(p, 0, NULL);
6501 if (retval)
6502 goto out_unlock;
6504 cpuset_cpus_allowed(p, cpus_allowed);
6505 cpumask_and(new_mask, in_mask, cpus_allowed);
6506 again:
6507 retval = set_cpus_allowed_ptr(p, new_mask);
6509 if (!retval) {
6510 cpuset_cpus_allowed(p, cpus_allowed);
6511 if (!cpumask_subset(new_mask, cpus_allowed)) {
6513 * We must have raced with a concurrent cpuset
6514 * update. Just reset the cpus_allowed to the
6515 * cpuset's cpus_allowed
6517 cpumask_copy(new_mask, cpus_allowed);
6518 goto again;
6521 out_unlock:
6522 free_cpumask_var(new_mask);
6523 out_free_cpus_allowed:
6524 free_cpumask_var(cpus_allowed);
6525 out_put_task:
6526 put_task_struct(p);
6527 put_online_cpus();
6528 return retval;
6531 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6532 struct cpumask *new_mask)
6534 if (len < cpumask_size())
6535 cpumask_clear(new_mask);
6536 else if (len > cpumask_size())
6537 len = cpumask_size();
6539 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6543 * sys_sched_setaffinity - set the cpu affinity of a process
6544 * @pid: pid of the process
6545 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6546 * @user_mask_ptr: user-space pointer to the new cpu mask
6548 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6549 unsigned long __user *, user_mask_ptr)
6551 cpumask_var_t new_mask;
6552 int retval;
6554 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6555 return -ENOMEM;
6557 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6558 if (retval == 0)
6559 retval = sched_setaffinity(pid, new_mask);
6560 free_cpumask_var(new_mask);
6561 return retval;
6564 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6566 struct task_struct *p;
6567 int retval;
6569 get_online_cpus();
6570 read_lock(&tasklist_lock);
6572 retval = -ESRCH;
6573 p = find_process_by_pid(pid);
6574 if (!p)
6575 goto out_unlock;
6577 retval = security_task_getscheduler(p);
6578 if (retval)
6579 goto out_unlock;
6581 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6583 out_unlock:
6584 read_unlock(&tasklist_lock);
6585 put_online_cpus();
6587 return retval;
6591 * sys_sched_getaffinity - get the cpu affinity of a process
6592 * @pid: pid of the process
6593 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6594 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6596 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6597 unsigned long __user *, user_mask_ptr)
6599 int ret;
6600 cpumask_var_t mask;
6602 if (len < cpumask_size())
6603 return -EINVAL;
6605 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6606 return -ENOMEM;
6608 ret = sched_getaffinity(pid, mask);
6609 if (ret == 0) {
6610 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6611 ret = -EFAULT;
6612 else
6613 ret = cpumask_size();
6615 free_cpumask_var(mask);
6617 return ret;
6621 * sys_sched_yield - yield the current processor to other threads.
6623 * This function yields the current CPU to other tasks. If there are no
6624 * other threads running on this CPU then this function will return.
6626 SYSCALL_DEFINE0(sched_yield)
6628 struct rq *rq = this_rq_lock();
6630 schedstat_inc(rq, yld_count);
6631 current->sched_class->yield_task(rq);
6634 * Since we are going to call schedule() anyway, there's
6635 * no need to preempt or enable interrupts:
6637 __release(rq->lock);
6638 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6639 _raw_spin_unlock(&rq->lock);
6640 preempt_enable_no_resched();
6642 schedule();
6644 return 0;
6647 static inline int should_resched(void)
6649 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6652 static void __cond_resched(void)
6654 add_preempt_count(PREEMPT_ACTIVE);
6655 schedule();
6656 sub_preempt_count(PREEMPT_ACTIVE);
6659 int __sched _cond_resched(void)
6661 if (should_resched()) {
6662 __cond_resched();
6663 return 1;
6665 return 0;
6667 EXPORT_SYMBOL(_cond_resched);
6670 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6671 * call schedule, and on return reacquire the lock.
6673 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6674 * operations here to prevent schedule() from being called twice (once via
6675 * spin_unlock(), once by hand).
6677 int __cond_resched_lock(spinlock_t *lock)
6679 int resched = should_resched();
6680 int ret = 0;
6682 lockdep_assert_held(lock);
6684 if (spin_needbreak(lock) || resched) {
6685 spin_unlock(lock);
6686 if (resched)
6687 __cond_resched();
6688 else
6689 cpu_relax();
6690 ret = 1;
6691 spin_lock(lock);
6693 return ret;
6695 EXPORT_SYMBOL(__cond_resched_lock);
6697 int __sched __cond_resched_softirq(void)
6699 BUG_ON(!in_softirq());
6701 if (should_resched()) {
6702 local_bh_enable();
6703 __cond_resched();
6704 local_bh_disable();
6705 return 1;
6707 return 0;
6709 EXPORT_SYMBOL(__cond_resched_softirq);
6712 * yield - yield the current processor to other threads.
6714 * This is a shortcut for kernel-space yielding - it marks the
6715 * thread runnable and calls sys_sched_yield().
6717 void __sched yield(void)
6719 set_current_state(TASK_RUNNING);
6720 sys_sched_yield();
6722 EXPORT_SYMBOL(yield);
6725 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6726 * that process accounting knows that this is a task in IO wait state.
6728 void __sched io_schedule(void)
6730 struct rq *rq = raw_rq();
6732 delayacct_blkio_start();
6733 atomic_inc(&rq->nr_iowait);
6734 current->in_iowait = 1;
6735 schedule();
6736 current->in_iowait = 0;
6737 atomic_dec(&rq->nr_iowait);
6738 delayacct_blkio_end();
6740 EXPORT_SYMBOL(io_schedule);
6742 long __sched io_schedule_timeout(long timeout)
6744 struct rq *rq = raw_rq();
6745 long ret;
6747 delayacct_blkio_start();
6748 atomic_inc(&rq->nr_iowait);
6749 current->in_iowait = 1;
6750 ret = schedule_timeout(timeout);
6751 current->in_iowait = 0;
6752 atomic_dec(&rq->nr_iowait);
6753 delayacct_blkio_end();
6754 return ret;
6758 * sys_sched_get_priority_max - return maximum RT priority.
6759 * @policy: scheduling class.
6761 * this syscall returns the maximum rt_priority that can be used
6762 * by a given scheduling class.
6764 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6766 int ret = -EINVAL;
6768 switch (policy) {
6769 case SCHED_FIFO:
6770 case SCHED_RR:
6771 ret = MAX_USER_RT_PRIO-1;
6772 break;
6773 case SCHED_NORMAL:
6774 case SCHED_BATCH:
6775 case SCHED_IDLE:
6776 ret = 0;
6777 break;
6779 return ret;
6783 * sys_sched_get_priority_min - return minimum RT priority.
6784 * @policy: scheduling class.
6786 * this syscall returns the minimum rt_priority that can be used
6787 * by a given scheduling class.
6789 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6791 int ret = -EINVAL;
6793 switch (policy) {
6794 case SCHED_FIFO:
6795 case SCHED_RR:
6796 ret = 1;
6797 break;
6798 case SCHED_NORMAL:
6799 case SCHED_BATCH:
6800 case SCHED_IDLE:
6801 ret = 0;
6803 return ret;
6807 * sys_sched_rr_get_interval - return the default timeslice of a process.
6808 * @pid: pid of the process.
6809 * @interval: userspace pointer to the timeslice value.
6811 * this syscall writes the default timeslice value of a given process
6812 * into the user-space timespec buffer. A value of '0' means infinity.
6814 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6815 struct timespec __user *, interval)
6817 struct task_struct *p;
6818 unsigned int time_slice;
6819 int retval;
6820 struct timespec t;
6822 if (pid < 0)
6823 return -EINVAL;
6825 retval = -ESRCH;
6826 read_lock(&tasklist_lock);
6827 p = find_process_by_pid(pid);
6828 if (!p)
6829 goto out_unlock;
6831 retval = security_task_getscheduler(p);
6832 if (retval)
6833 goto out_unlock;
6835 time_slice = p->sched_class->get_rr_interval(p);
6837 read_unlock(&tasklist_lock);
6838 jiffies_to_timespec(time_slice, &t);
6839 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6840 return retval;
6842 out_unlock:
6843 read_unlock(&tasklist_lock);
6844 return retval;
6847 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6849 void sched_show_task(struct task_struct *p)
6851 unsigned long free = 0;
6852 unsigned state;
6854 state = p->state ? __ffs(p->state) + 1 : 0;
6855 printk(KERN_INFO "%-13.13s %c", p->comm,
6856 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6857 #if BITS_PER_LONG == 32
6858 if (state == TASK_RUNNING)
6859 printk(KERN_CONT " running ");
6860 else
6861 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6862 #else
6863 if (state == TASK_RUNNING)
6864 printk(KERN_CONT " running task ");
6865 else
6866 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6867 #endif
6868 #ifdef CONFIG_DEBUG_STACK_USAGE
6869 free = stack_not_used(p);
6870 #endif
6871 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6872 task_pid_nr(p), task_pid_nr(p->real_parent),
6873 (unsigned long)task_thread_info(p)->flags);
6875 show_stack(p, NULL);
6878 void show_state_filter(unsigned long state_filter)
6880 struct task_struct *g, *p;
6882 #if BITS_PER_LONG == 32
6883 printk(KERN_INFO
6884 " task PC stack pid father\n");
6885 #else
6886 printk(KERN_INFO
6887 " task PC stack pid father\n");
6888 #endif
6889 read_lock(&tasklist_lock);
6890 do_each_thread(g, p) {
6892 * reset the NMI-timeout, listing all files on a slow
6893 * console might take alot of time:
6895 touch_nmi_watchdog();
6896 if (!state_filter || (p->state & state_filter))
6897 sched_show_task(p);
6898 } while_each_thread(g, p);
6900 touch_all_softlockup_watchdogs();
6902 #ifdef CONFIG_SCHED_DEBUG
6903 sysrq_sched_debug_show();
6904 #endif
6905 read_unlock(&tasklist_lock);
6907 * Only show locks if all tasks are dumped:
6909 if (state_filter == -1)
6910 debug_show_all_locks();
6913 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6915 idle->sched_class = &idle_sched_class;
6919 * init_idle - set up an idle thread for a given CPU
6920 * @idle: task in question
6921 * @cpu: cpu the idle task belongs to
6923 * NOTE: this function does not set the idle thread's NEED_RESCHED
6924 * flag, to make booting more robust.
6926 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6928 struct rq *rq = cpu_rq(cpu);
6929 unsigned long flags;
6931 spin_lock_irqsave(&rq->lock, flags);
6933 __sched_fork(idle);
6934 idle->se.exec_start = sched_clock();
6936 idle->prio = idle->normal_prio = MAX_PRIO;
6937 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6938 __set_task_cpu(idle, cpu);
6940 rq->curr = rq->idle = idle;
6941 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6942 idle->oncpu = 1;
6943 #endif
6944 spin_unlock_irqrestore(&rq->lock, flags);
6946 /* Set the preempt count _outside_ the spinlocks! */
6947 #if defined(CONFIG_PREEMPT)
6948 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6949 #else
6950 task_thread_info(idle)->preempt_count = 0;
6951 #endif
6953 * The idle tasks have their own, simple scheduling class:
6955 idle->sched_class = &idle_sched_class;
6956 ftrace_graph_init_task(idle);
6960 * In a system that switches off the HZ timer nohz_cpu_mask
6961 * indicates which cpus entered this state. This is used
6962 * in the rcu update to wait only for active cpus. For system
6963 * which do not switch off the HZ timer nohz_cpu_mask should
6964 * always be CPU_BITS_NONE.
6966 cpumask_var_t nohz_cpu_mask;
6969 * Increase the granularity value when there are more CPUs,
6970 * because with more CPUs the 'effective latency' as visible
6971 * to users decreases. But the relationship is not linear,
6972 * so pick a second-best guess by going with the log2 of the
6973 * number of CPUs.
6975 * This idea comes from the SD scheduler of Con Kolivas:
6977 static inline void sched_init_granularity(void)
6979 unsigned int factor = 1 + ilog2(num_online_cpus());
6980 const unsigned long limit = 200000000;
6982 sysctl_sched_min_granularity *= factor;
6983 if (sysctl_sched_min_granularity > limit)
6984 sysctl_sched_min_granularity = limit;
6986 sysctl_sched_latency *= factor;
6987 if (sysctl_sched_latency > limit)
6988 sysctl_sched_latency = limit;
6990 sysctl_sched_wakeup_granularity *= factor;
6992 sysctl_sched_shares_ratelimit *= factor;
6995 #ifdef CONFIG_SMP
6997 * This is how migration works:
6999 * 1) we queue a struct migration_req structure in the source CPU's
7000 * runqueue and wake up that CPU's migration thread.
7001 * 2) we down() the locked semaphore => thread blocks.
7002 * 3) migration thread wakes up (implicitly it forces the migrated
7003 * thread off the CPU)
7004 * 4) it gets the migration request and checks whether the migrated
7005 * task is still in the wrong runqueue.
7006 * 5) if it's in the wrong runqueue then the migration thread removes
7007 * it and puts it into the right queue.
7008 * 6) migration thread up()s the semaphore.
7009 * 7) we wake up and the migration is done.
7013 * Change a given task's CPU affinity. Migrate the thread to a
7014 * proper CPU and schedule it away if the CPU it's executing on
7015 * is removed from the allowed bitmask.
7017 * NOTE: the caller must have a valid reference to the task, the
7018 * task must not exit() & deallocate itself prematurely. The
7019 * call is not atomic; no spinlocks may be held.
7021 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7023 struct migration_req req;
7024 unsigned long flags;
7025 struct rq *rq;
7026 int ret = 0;
7028 rq = task_rq_lock(p, &flags);
7029 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7030 ret = -EINVAL;
7031 goto out;
7034 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7035 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7036 ret = -EINVAL;
7037 goto out;
7040 if (p->sched_class->set_cpus_allowed)
7041 p->sched_class->set_cpus_allowed(p, new_mask);
7042 else {
7043 cpumask_copy(&p->cpus_allowed, new_mask);
7044 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7047 /* Can the task run on the task's current CPU? If so, we're done */
7048 if (cpumask_test_cpu(task_cpu(p), new_mask))
7049 goto out;
7051 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7052 /* Need help from migration thread: drop lock and wait. */
7053 struct task_struct *mt = rq->migration_thread;
7055 get_task_struct(mt);
7056 task_rq_unlock(rq, &flags);
7057 wake_up_process(rq->migration_thread);
7058 put_task_struct(mt);
7059 wait_for_completion(&req.done);
7060 tlb_migrate_finish(p->mm);
7061 return 0;
7063 out:
7064 task_rq_unlock(rq, &flags);
7066 return ret;
7068 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7071 * Move (not current) task off this cpu, onto dest cpu. We're doing
7072 * this because either it can't run here any more (set_cpus_allowed()
7073 * away from this CPU, or CPU going down), or because we're
7074 * attempting to rebalance this task on exec (sched_exec).
7076 * So we race with normal scheduler movements, but that's OK, as long
7077 * as the task is no longer on this CPU.
7079 * Returns non-zero if task was successfully migrated.
7081 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7083 struct rq *rq_dest, *rq_src;
7084 int ret = 0, on_rq;
7086 if (unlikely(!cpu_active(dest_cpu)))
7087 return ret;
7089 rq_src = cpu_rq(src_cpu);
7090 rq_dest = cpu_rq(dest_cpu);
7092 double_rq_lock(rq_src, rq_dest);
7093 /* Already moved. */
7094 if (task_cpu(p) != src_cpu)
7095 goto done;
7096 /* Affinity changed (again). */
7097 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7098 goto fail;
7100 on_rq = p->se.on_rq;
7101 if (on_rq)
7102 deactivate_task(rq_src, p, 0);
7104 set_task_cpu(p, dest_cpu);
7105 if (on_rq) {
7106 activate_task(rq_dest, p, 0);
7107 check_preempt_curr(rq_dest, p, 0);
7109 done:
7110 ret = 1;
7111 fail:
7112 double_rq_unlock(rq_src, rq_dest);
7113 return ret;
7116 #define RCU_MIGRATION_IDLE 0
7117 #define RCU_MIGRATION_NEED_QS 1
7118 #define RCU_MIGRATION_GOT_QS 2
7119 #define RCU_MIGRATION_MUST_SYNC 3
7122 * migration_thread - this is a highprio system thread that performs
7123 * thread migration by bumping thread off CPU then 'pushing' onto
7124 * another runqueue.
7126 static int migration_thread(void *data)
7128 int badcpu;
7129 int cpu = (long)data;
7130 struct rq *rq;
7132 rq = cpu_rq(cpu);
7133 BUG_ON(rq->migration_thread != current);
7135 set_current_state(TASK_INTERRUPTIBLE);
7136 while (!kthread_should_stop()) {
7137 struct migration_req *req;
7138 struct list_head *head;
7140 spin_lock_irq(&rq->lock);
7142 if (cpu_is_offline(cpu)) {
7143 spin_unlock_irq(&rq->lock);
7144 break;
7147 if (rq->active_balance) {
7148 active_load_balance(rq, cpu);
7149 rq->active_balance = 0;
7152 head = &rq->migration_queue;
7154 if (list_empty(head)) {
7155 spin_unlock_irq(&rq->lock);
7156 schedule();
7157 set_current_state(TASK_INTERRUPTIBLE);
7158 continue;
7160 req = list_entry(head->next, struct migration_req, list);
7161 list_del_init(head->next);
7163 if (req->task != NULL) {
7164 spin_unlock(&rq->lock);
7165 __migrate_task(req->task, cpu, req->dest_cpu);
7166 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7167 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7168 spin_unlock(&rq->lock);
7169 } else {
7170 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7171 spin_unlock(&rq->lock);
7172 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7174 local_irq_enable();
7176 complete(&req->done);
7178 __set_current_state(TASK_RUNNING);
7180 return 0;
7183 #ifdef CONFIG_HOTPLUG_CPU
7185 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7187 int ret;
7189 local_irq_disable();
7190 ret = __migrate_task(p, src_cpu, dest_cpu);
7191 local_irq_enable();
7192 return ret;
7196 * Figure out where task on dead CPU should go, use force if necessary.
7198 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7200 int dest_cpu;
7201 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7203 again:
7204 /* Look for allowed, online CPU in same node. */
7205 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7206 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7207 goto move;
7209 /* Any allowed, online CPU? */
7210 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7211 if (dest_cpu < nr_cpu_ids)
7212 goto move;
7214 /* No more Mr. Nice Guy. */
7215 if (dest_cpu >= nr_cpu_ids) {
7216 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7217 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7220 * Don't tell them about moving exiting tasks or
7221 * kernel threads (both mm NULL), since they never
7222 * leave kernel.
7224 if (p->mm && printk_ratelimit()) {
7225 printk(KERN_INFO "process %d (%s) no "
7226 "longer affine to cpu%d\n",
7227 task_pid_nr(p), p->comm, dead_cpu);
7231 move:
7232 /* It can have affinity changed while we were choosing. */
7233 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7234 goto again;
7238 * While a dead CPU has no uninterruptible tasks queued at this point,
7239 * it might still have a nonzero ->nr_uninterruptible counter, because
7240 * for performance reasons the counter is not stricly tracking tasks to
7241 * their home CPUs. So we just add the counter to another CPU's counter,
7242 * to keep the global sum constant after CPU-down:
7244 static void migrate_nr_uninterruptible(struct rq *rq_src)
7246 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7247 unsigned long flags;
7249 local_irq_save(flags);
7250 double_rq_lock(rq_src, rq_dest);
7251 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7252 rq_src->nr_uninterruptible = 0;
7253 double_rq_unlock(rq_src, rq_dest);
7254 local_irq_restore(flags);
7257 /* Run through task list and migrate tasks from the dead cpu. */
7258 static void migrate_live_tasks(int src_cpu)
7260 struct task_struct *p, *t;
7262 read_lock(&tasklist_lock);
7264 do_each_thread(t, p) {
7265 if (p == current)
7266 continue;
7268 if (task_cpu(p) == src_cpu)
7269 move_task_off_dead_cpu(src_cpu, p);
7270 } while_each_thread(t, p);
7272 read_unlock(&tasklist_lock);
7276 * Schedules idle task to be the next runnable task on current CPU.
7277 * It does so by boosting its priority to highest possible.
7278 * Used by CPU offline code.
7280 void sched_idle_next(void)
7282 int this_cpu = smp_processor_id();
7283 struct rq *rq = cpu_rq(this_cpu);
7284 struct task_struct *p = rq->idle;
7285 unsigned long flags;
7287 /* cpu has to be offline */
7288 BUG_ON(cpu_online(this_cpu));
7291 * Strictly not necessary since rest of the CPUs are stopped by now
7292 * and interrupts disabled on the current cpu.
7294 spin_lock_irqsave(&rq->lock, flags);
7296 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7298 update_rq_clock(rq);
7299 activate_task(rq, p, 0);
7301 spin_unlock_irqrestore(&rq->lock, flags);
7305 * Ensures that the idle task is using init_mm right before its cpu goes
7306 * offline.
7308 void idle_task_exit(void)
7310 struct mm_struct *mm = current->active_mm;
7312 BUG_ON(cpu_online(smp_processor_id()));
7314 if (mm != &init_mm)
7315 switch_mm(mm, &init_mm, current);
7316 mmdrop(mm);
7319 /* called under rq->lock with disabled interrupts */
7320 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7322 struct rq *rq = cpu_rq(dead_cpu);
7324 /* Must be exiting, otherwise would be on tasklist. */
7325 BUG_ON(!p->exit_state);
7327 /* Cannot have done final schedule yet: would have vanished. */
7328 BUG_ON(p->state == TASK_DEAD);
7330 get_task_struct(p);
7333 * Drop lock around migration; if someone else moves it,
7334 * that's OK. No task can be added to this CPU, so iteration is
7335 * fine.
7337 spin_unlock_irq(&rq->lock);
7338 move_task_off_dead_cpu(dead_cpu, p);
7339 spin_lock_irq(&rq->lock);
7341 put_task_struct(p);
7344 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7345 static void migrate_dead_tasks(unsigned int dead_cpu)
7347 struct rq *rq = cpu_rq(dead_cpu);
7348 struct task_struct *next;
7350 for ( ; ; ) {
7351 if (!rq->nr_running)
7352 break;
7353 update_rq_clock(rq);
7354 next = pick_next_task(rq);
7355 if (!next)
7356 break;
7357 next->sched_class->put_prev_task(rq, next);
7358 migrate_dead(dead_cpu, next);
7364 * remove the tasks which were accounted by rq from calc_load_tasks.
7366 static void calc_global_load_remove(struct rq *rq)
7368 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7369 rq->calc_load_active = 0;
7371 #endif /* CONFIG_HOTPLUG_CPU */
7373 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7375 static struct ctl_table sd_ctl_dir[] = {
7377 .procname = "sched_domain",
7378 .mode = 0555,
7380 {0, },
7383 static struct ctl_table sd_ctl_root[] = {
7385 .ctl_name = CTL_KERN,
7386 .procname = "kernel",
7387 .mode = 0555,
7388 .child = sd_ctl_dir,
7390 {0, },
7393 static struct ctl_table *sd_alloc_ctl_entry(int n)
7395 struct ctl_table *entry =
7396 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7398 return entry;
7401 static void sd_free_ctl_entry(struct ctl_table **tablep)
7403 struct ctl_table *entry;
7406 * In the intermediate directories, both the child directory and
7407 * procname are dynamically allocated and could fail but the mode
7408 * will always be set. In the lowest directory the names are
7409 * static strings and all have proc handlers.
7411 for (entry = *tablep; entry->mode; entry++) {
7412 if (entry->child)
7413 sd_free_ctl_entry(&entry->child);
7414 if (entry->proc_handler == NULL)
7415 kfree(entry->procname);
7418 kfree(*tablep);
7419 *tablep = NULL;
7422 static void
7423 set_table_entry(struct ctl_table *entry,
7424 const char *procname, void *data, int maxlen,
7425 mode_t mode, proc_handler *proc_handler)
7427 entry->procname = procname;
7428 entry->data = data;
7429 entry->maxlen = maxlen;
7430 entry->mode = mode;
7431 entry->proc_handler = proc_handler;
7434 static struct ctl_table *
7435 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7437 struct ctl_table *table = sd_alloc_ctl_entry(13);
7439 if (table == NULL)
7440 return NULL;
7442 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7443 sizeof(long), 0644, proc_doulongvec_minmax);
7444 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7445 sizeof(long), 0644, proc_doulongvec_minmax);
7446 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7447 sizeof(int), 0644, proc_dointvec_minmax);
7448 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7449 sizeof(int), 0644, proc_dointvec_minmax);
7450 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7451 sizeof(int), 0644, proc_dointvec_minmax);
7452 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7453 sizeof(int), 0644, proc_dointvec_minmax);
7454 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7455 sizeof(int), 0644, proc_dointvec_minmax);
7456 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7457 sizeof(int), 0644, proc_dointvec_minmax);
7458 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7459 sizeof(int), 0644, proc_dointvec_minmax);
7460 set_table_entry(&table[9], "cache_nice_tries",
7461 &sd->cache_nice_tries,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[10], "flags", &sd->flags,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[11], "name", sd->name,
7466 CORENAME_MAX_SIZE, 0444, proc_dostring);
7467 /* &table[12] is terminator */
7469 return table;
7472 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7474 struct ctl_table *entry, *table;
7475 struct sched_domain *sd;
7476 int domain_num = 0, i;
7477 char buf[32];
7479 for_each_domain(cpu, sd)
7480 domain_num++;
7481 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7482 if (table == NULL)
7483 return NULL;
7485 i = 0;
7486 for_each_domain(cpu, sd) {
7487 snprintf(buf, 32, "domain%d", i);
7488 entry->procname = kstrdup(buf, GFP_KERNEL);
7489 entry->mode = 0555;
7490 entry->child = sd_alloc_ctl_domain_table(sd);
7491 entry++;
7492 i++;
7494 return table;
7497 static struct ctl_table_header *sd_sysctl_header;
7498 static void register_sched_domain_sysctl(void)
7500 int i, cpu_num = num_online_cpus();
7501 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7502 char buf[32];
7504 WARN_ON(sd_ctl_dir[0].child);
7505 sd_ctl_dir[0].child = entry;
7507 if (entry == NULL)
7508 return;
7510 for_each_online_cpu(i) {
7511 snprintf(buf, 32, "cpu%d", i);
7512 entry->procname = kstrdup(buf, GFP_KERNEL);
7513 entry->mode = 0555;
7514 entry->child = sd_alloc_ctl_cpu_table(i);
7515 entry++;
7518 WARN_ON(sd_sysctl_header);
7519 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7522 /* may be called multiple times per register */
7523 static void unregister_sched_domain_sysctl(void)
7525 if (sd_sysctl_header)
7526 unregister_sysctl_table(sd_sysctl_header);
7527 sd_sysctl_header = NULL;
7528 if (sd_ctl_dir[0].child)
7529 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7531 #else
7532 static void register_sched_domain_sysctl(void)
7535 static void unregister_sched_domain_sysctl(void)
7538 #endif
7540 static void set_rq_online(struct rq *rq)
7542 if (!rq->online) {
7543 const struct sched_class *class;
7545 cpumask_set_cpu(rq->cpu, rq->rd->online);
7546 rq->online = 1;
7548 for_each_class(class) {
7549 if (class->rq_online)
7550 class->rq_online(rq);
7555 static void set_rq_offline(struct rq *rq)
7557 if (rq->online) {
7558 const struct sched_class *class;
7560 for_each_class(class) {
7561 if (class->rq_offline)
7562 class->rq_offline(rq);
7565 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7566 rq->online = 0;
7571 * migration_call - callback that gets triggered when a CPU is added.
7572 * Here we can start up the necessary migration thread for the new CPU.
7574 static int __cpuinit
7575 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7577 struct task_struct *p;
7578 int cpu = (long)hcpu;
7579 unsigned long flags;
7580 struct rq *rq;
7582 switch (action) {
7584 case CPU_UP_PREPARE:
7585 case CPU_UP_PREPARE_FROZEN:
7586 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7587 if (IS_ERR(p))
7588 return NOTIFY_BAD;
7589 kthread_bind(p, cpu);
7590 /* Must be high prio: stop_machine expects to yield to it. */
7591 rq = task_rq_lock(p, &flags);
7592 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7593 task_rq_unlock(rq, &flags);
7594 get_task_struct(p);
7595 cpu_rq(cpu)->migration_thread = p;
7596 rq->calc_load_update = calc_load_update;
7597 break;
7599 case CPU_ONLINE:
7600 case CPU_ONLINE_FROZEN:
7601 /* Strictly unnecessary, as first user will wake it. */
7602 wake_up_process(cpu_rq(cpu)->migration_thread);
7604 /* Update our root-domain */
7605 rq = cpu_rq(cpu);
7606 spin_lock_irqsave(&rq->lock, flags);
7607 if (rq->rd) {
7608 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7610 set_rq_online(rq);
7612 spin_unlock_irqrestore(&rq->lock, flags);
7613 break;
7615 #ifdef CONFIG_HOTPLUG_CPU
7616 case CPU_UP_CANCELED:
7617 case CPU_UP_CANCELED_FROZEN:
7618 if (!cpu_rq(cpu)->migration_thread)
7619 break;
7620 /* Unbind it from offline cpu so it can run. Fall thru. */
7621 kthread_bind(cpu_rq(cpu)->migration_thread,
7622 cpumask_any(cpu_online_mask));
7623 kthread_stop(cpu_rq(cpu)->migration_thread);
7624 put_task_struct(cpu_rq(cpu)->migration_thread);
7625 cpu_rq(cpu)->migration_thread = NULL;
7626 break;
7628 case CPU_DEAD:
7629 case CPU_DEAD_FROZEN:
7630 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7631 migrate_live_tasks(cpu);
7632 rq = cpu_rq(cpu);
7633 kthread_stop(rq->migration_thread);
7634 put_task_struct(rq->migration_thread);
7635 rq->migration_thread = NULL;
7636 /* Idle task back to normal (off runqueue, low prio) */
7637 spin_lock_irq(&rq->lock);
7638 update_rq_clock(rq);
7639 deactivate_task(rq, rq->idle, 0);
7640 rq->idle->static_prio = MAX_PRIO;
7641 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7642 rq->idle->sched_class = &idle_sched_class;
7643 migrate_dead_tasks(cpu);
7644 spin_unlock_irq(&rq->lock);
7645 cpuset_unlock();
7646 migrate_nr_uninterruptible(rq);
7647 BUG_ON(rq->nr_running != 0);
7648 calc_global_load_remove(rq);
7650 * No need to migrate the tasks: it was best-effort if
7651 * they didn't take sched_hotcpu_mutex. Just wake up
7652 * the requestors.
7654 spin_lock_irq(&rq->lock);
7655 while (!list_empty(&rq->migration_queue)) {
7656 struct migration_req *req;
7658 req = list_entry(rq->migration_queue.next,
7659 struct migration_req, list);
7660 list_del_init(&req->list);
7661 spin_unlock_irq(&rq->lock);
7662 complete(&req->done);
7663 spin_lock_irq(&rq->lock);
7665 spin_unlock_irq(&rq->lock);
7666 break;
7668 case CPU_DYING:
7669 case CPU_DYING_FROZEN:
7670 /* Update our root-domain */
7671 rq = cpu_rq(cpu);
7672 spin_lock_irqsave(&rq->lock, flags);
7673 if (rq->rd) {
7674 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7675 set_rq_offline(rq);
7677 spin_unlock_irqrestore(&rq->lock, flags);
7678 break;
7679 #endif
7681 return NOTIFY_OK;
7685 * Register at high priority so that task migration (migrate_all_tasks)
7686 * happens before everything else. This has to be lower priority than
7687 * the notifier in the perf_event subsystem, though.
7689 static struct notifier_block __cpuinitdata migration_notifier = {
7690 .notifier_call = migration_call,
7691 .priority = 10
7694 static int __init migration_init(void)
7696 void *cpu = (void *)(long)smp_processor_id();
7697 int err;
7699 /* Start one for the boot CPU: */
7700 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7701 BUG_ON(err == NOTIFY_BAD);
7702 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7703 register_cpu_notifier(&migration_notifier);
7705 return 0;
7707 early_initcall(migration_init);
7708 #endif
7710 #ifdef CONFIG_SMP
7712 #ifdef CONFIG_SCHED_DEBUG
7714 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7715 struct cpumask *groupmask)
7717 struct sched_group *group = sd->groups;
7718 char str[256];
7720 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7721 cpumask_clear(groupmask);
7723 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7725 if (!(sd->flags & SD_LOAD_BALANCE)) {
7726 printk("does not load-balance\n");
7727 if (sd->parent)
7728 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7729 " has parent");
7730 return -1;
7733 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7735 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7736 printk(KERN_ERR "ERROR: domain->span does not contain "
7737 "CPU%d\n", cpu);
7739 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7740 printk(KERN_ERR "ERROR: domain->groups does not contain"
7741 " CPU%d\n", cpu);
7744 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7745 do {
7746 if (!group) {
7747 printk("\n");
7748 printk(KERN_ERR "ERROR: group is NULL\n");
7749 break;
7752 if (!group->cpu_power) {
7753 printk(KERN_CONT "\n");
7754 printk(KERN_ERR "ERROR: domain->cpu_power not "
7755 "set\n");
7756 break;
7759 if (!cpumask_weight(sched_group_cpus(group))) {
7760 printk(KERN_CONT "\n");
7761 printk(KERN_ERR "ERROR: empty group\n");
7762 break;
7765 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7766 printk(KERN_CONT "\n");
7767 printk(KERN_ERR "ERROR: repeated CPUs\n");
7768 break;
7771 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7773 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7775 printk(KERN_CONT " %s", str);
7776 if (group->cpu_power != SCHED_LOAD_SCALE) {
7777 printk(KERN_CONT " (cpu_power = %d)",
7778 group->cpu_power);
7781 group = group->next;
7782 } while (group != sd->groups);
7783 printk(KERN_CONT "\n");
7785 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7786 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7788 if (sd->parent &&
7789 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7790 printk(KERN_ERR "ERROR: parent span is not a superset "
7791 "of domain->span\n");
7792 return 0;
7795 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7797 cpumask_var_t groupmask;
7798 int level = 0;
7800 if (!sd) {
7801 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7802 return;
7805 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7807 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7808 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7809 return;
7812 for (;;) {
7813 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7814 break;
7815 level++;
7816 sd = sd->parent;
7817 if (!sd)
7818 break;
7820 free_cpumask_var(groupmask);
7822 #else /* !CONFIG_SCHED_DEBUG */
7823 # define sched_domain_debug(sd, cpu) do { } while (0)
7824 #endif /* CONFIG_SCHED_DEBUG */
7826 static int sd_degenerate(struct sched_domain *sd)
7828 if (cpumask_weight(sched_domain_span(sd)) == 1)
7829 return 1;
7831 /* Following flags need at least 2 groups */
7832 if (sd->flags & (SD_LOAD_BALANCE |
7833 SD_BALANCE_NEWIDLE |
7834 SD_BALANCE_FORK |
7835 SD_BALANCE_EXEC |
7836 SD_SHARE_CPUPOWER |
7837 SD_SHARE_PKG_RESOURCES)) {
7838 if (sd->groups != sd->groups->next)
7839 return 0;
7842 /* Following flags don't use groups */
7843 if (sd->flags & (SD_WAKE_AFFINE))
7844 return 0;
7846 return 1;
7849 static int
7850 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7852 unsigned long cflags = sd->flags, pflags = parent->flags;
7854 if (sd_degenerate(parent))
7855 return 1;
7857 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7858 return 0;
7860 /* Flags needing groups don't count if only 1 group in parent */
7861 if (parent->groups == parent->groups->next) {
7862 pflags &= ~(SD_LOAD_BALANCE |
7863 SD_BALANCE_NEWIDLE |
7864 SD_BALANCE_FORK |
7865 SD_BALANCE_EXEC |
7866 SD_SHARE_CPUPOWER |
7867 SD_SHARE_PKG_RESOURCES);
7868 if (nr_node_ids == 1)
7869 pflags &= ~SD_SERIALIZE;
7871 if (~cflags & pflags)
7872 return 0;
7874 return 1;
7877 static void free_rootdomain(struct root_domain *rd)
7879 cpupri_cleanup(&rd->cpupri);
7881 free_cpumask_var(rd->rto_mask);
7882 free_cpumask_var(rd->online);
7883 free_cpumask_var(rd->span);
7884 kfree(rd);
7887 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7889 struct root_domain *old_rd = NULL;
7890 unsigned long flags;
7892 spin_lock_irqsave(&rq->lock, flags);
7894 if (rq->rd) {
7895 old_rd = rq->rd;
7897 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7898 set_rq_offline(rq);
7900 cpumask_clear_cpu(rq->cpu, old_rd->span);
7903 * If we dont want to free the old_rt yet then
7904 * set old_rd to NULL to skip the freeing later
7905 * in this function:
7907 if (!atomic_dec_and_test(&old_rd->refcount))
7908 old_rd = NULL;
7911 atomic_inc(&rd->refcount);
7912 rq->rd = rd;
7914 cpumask_set_cpu(rq->cpu, rd->span);
7915 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7916 set_rq_online(rq);
7918 spin_unlock_irqrestore(&rq->lock, flags);
7920 if (old_rd)
7921 free_rootdomain(old_rd);
7924 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7926 gfp_t gfp = GFP_KERNEL;
7928 memset(rd, 0, sizeof(*rd));
7930 if (bootmem)
7931 gfp = GFP_NOWAIT;
7933 if (!alloc_cpumask_var(&rd->span, gfp))
7934 goto out;
7935 if (!alloc_cpumask_var(&rd->online, gfp))
7936 goto free_span;
7937 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7938 goto free_online;
7940 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7941 goto free_rto_mask;
7942 return 0;
7944 free_rto_mask:
7945 free_cpumask_var(rd->rto_mask);
7946 free_online:
7947 free_cpumask_var(rd->online);
7948 free_span:
7949 free_cpumask_var(rd->span);
7950 out:
7951 return -ENOMEM;
7954 static void init_defrootdomain(void)
7956 init_rootdomain(&def_root_domain, true);
7958 atomic_set(&def_root_domain.refcount, 1);
7961 static struct root_domain *alloc_rootdomain(void)
7963 struct root_domain *rd;
7965 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7966 if (!rd)
7967 return NULL;
7969 if (init_rootdomain(rd, false) != 0) {
7970 kfree(rd);
7971 return NULL;
7974 return rd;
7978 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7979 * hold the hotplug lock.
7981 static void
7982 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7984 struct rq *rq = cpu_rq(cpu);
7985 struct sched_domain *tmp;
7987 /* Remove the sched domains which do not contribute to scheduling. */
7988 for (tmp = sd; tmp; ) {
7989 struct sched_domain *parent = tmp->parent;
7990 if (!parent)
7991 break;
7993 if (sd_parent_degenerate(tmp, parent)) {
7994 tmp->parent = parent->parent;
7995 if (parent->parent)
7996 parent->parent->child = tmp;
7997 } else
7998 tmp = tmp->parent;
8001 if (sd && sd_degenerate(sd)) {
8002 sd = sd->parent;
8003 if (sd)
8004 sd->child = NULL;
8007 sched_domain_debug(sd, cpu);
8009 rq_attach_root(rq, rd);
8010 rcu_assign_pointer(rq->sd, sd);
8013 /* cpus with isolated domains */
8014 static cpumask_var_t cpu_isolated_map;
8016 /* Setup the mask of cpus configured for isolated domains */
8017 static int __init isolated_cpu_setup(char *str)
8019 cpulist_parse(str, cpu_isolated_map);
8020 return 1;
8023 __setup("isolcpus=", isolated_cpu_setup);
8026 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8027 * to a function which identifies what group(along with sched group) a CPU
8028 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8029 * (due to the fact that we keep track of groups covered with a struct cpumask).
8031 * init_sched_build_groups will build a circular linked list of the groups
8032 * covered by the given span, and will set each group's ->cpumask correctly,
8033 * and ->cpu_power to 0.
8035 static void
8036 init_sched_build_groups(const struct cpumask *span,
8037 const struct cpumask *cpu_map,
8038 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8039 struct sched_group **sg,
8040 struct cpumask *tmpmask),
8041 struct cpumask *covered, struct cpumask *tmpmask)
8043 struct sched_group *first = NULL, *last = NULL;
8044 int i;
8046 cpumask_clear(covered);
8048 for_each_cpu(i, span) {
8049 struct sched_group *sg;
8050 int group = group_fn(i, cpu_map, &sg, tmpmask);
8051 int j;
8053 if (cpumask_test_cpu(i, covered))
8054 continue;
8056 cpumask_clear(sched_group_cpus(sg));
8057 sg->cpu_power = 0;
8059 for_each_cpu(j, span) {
8060 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8061 continue;
8063 cpumask_set_cpu(j, covered);
8064 cpumask_set_cpu(j, sched_group_cpus(sg));
8066 if (!first)
8067 first = sg;
8068 if (last)
8069 last->next = sg;
8070 last = sg;
8072 last->next = first;
8075 #define SD_NODES_PER_DOMAIN 16
8077 #ifdef CONFIG_NUMA
8080 * find_next_best_node - find the next node to include in a sched_domain
8081 * @node: node whose sched_domain we're building
8082 * @used_nodes: nodes already in the sched_domain
8084 * Find the next node to include in a given scheduling domain. Simply
8085 * finds the closest node not already in the @used_nodes map.
8087 * Should use nodemask_t.
8089 static int find_next_best_node(int node, nodemask_t *used_nodes)
8091 int i, n, val, min_val, best_node = 0;
8093 min_val = INT_MAX;
8095 for (i = 0; i < nr_node_ids; i++) {
8096 /* Start at @node */
8097 n = (node + i) % nr_node_ids;
8099 if (!nr_cpus_node(n))
8100 continue;
8102 /* Skip already used nodes */
8103 if (node_isset(n, *used_nodes))
8104 continue;
8106 /* Simple min distance search */
8107 val = node_distance(node, n);
8109 if (val < min_val) {
8110 min_val = val;
8111 best_node = n;
8115 node_set(best_node, *used_nodes);
8116 return best_node;
8120 * sched_domain_node_span - get a cpumask for a node's sched_domain
8121 * @node: node whose cpumask we're constructing
8122 * @span: resulting cpumask
8124 * Given a node, construct a good cpumask for its sched_domain to span. It
8125 * should be one that prevents unnecessary balancing, but also spreads tasks
8126 * out optimally.
8128 static void sched_domain_node_span(int node, struct cpumask *span)
8130 nodemask_t used_nodes;
8131 int i;
8133 cpumask_clear(span);
8134 nodes_clear(used_nodes);
8136 cpumask_or(span, span, cpumask_of_node(node));
8137 node_set(node, used_nodes);
8139 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8140 int next_node = find_next_best_node(node, &used_nodes);
8142 cpumask_or(span, span, cpumask_of_node(next_node));
8145 #endif /* CONFIG_NUMA */
8147 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8150 * The cpus mask in sched_group and sched_domain hangs off the end.
8152 * ( See the the comments in include/linux/sched.h:struct sched_group
8153 * and struct sched_domain. )
8155 struct static_sched_group {
8156 struct sched_group sg;
8157 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8160 struct static_sched_domain {
8161 struct sched_domain sd;
8162 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8165 struct s_data {
8166 #ifdef CONFIG_NUMA
8167 int sd_allnodes;
8168 cpumask_var_t domainspan;
8169 cpumask_var_t covered;
8170 cpumask_var_t notcovered;
8171 #endif
8172 cpumask_var_t nodemask;
8173 cpumask_var_t this_sibling_map;
8174 cpumask_var_t this_core_map;
8175 cpumask_var_t send_covered;
8176 cpumask_var_t tmpmask;
8177 struct sched_group **sched_group_nodes;
8178 struct root_domain *rd;
8181 enum s_alloc {
8182 sa_sched_groups = 0,
8183 sa_rootdomain,
8184 sa_tmpmask,
8185 sa_send_covered,
8186 sa_this_core_map,
8187 sa_this_sibling_map,
8188 sa_nodemask,
8189 sa_sched_group_nodes,
8190 #ifdef CONFIG_NUMA
8191 sa_notcovered,
8192 sa_covered,
8193 sa_domainspan,
8194 #endif
8195 sa_none,
8199 * SMT sched-domains:
8201 #ifdef CONFIG_SCHED_SMT
8202 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8203 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8205 static int
8206 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8207 struct sched_group **sg, struct cpumask *unused)
8209 if (sg)
8210 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8211 return cpu;
8213 #endif /* CONFIG_SCHED_SMT */
8216 * multi-core sched-domains:
8218 #ifdef CONFIG_SCHED_MC
8219 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8220 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8221 #endif /* CONFIG_SCHED_MC */
8223 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8224 static int
8225 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8226 struct sched_group **sg, struct cpumask *mask)
8228 int group;
8230 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8231 group = cpumask_first(mask);
8232 if (sg)
8233 *sg = &per_cpu(sched_group_core, group).sg;
8234 return group;
8236 #elif defined(CONFIG_SCHED_MC)
8237 static int
8238 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8239 struct sched_group **sg, struct cpumask *unused)
8241 if (sg)
8242 *sg = &per_cpu(sched_group_core, cpu).sg;
8243 return cpu;
8245 #endif
8247 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8248 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8250 static int
8251 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8252 struct sched_group **sg, struct cpumask *mask)
8254 int group;
8255 #ifdef CONFIG_SCHED_MC
8256 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8257 group = cpumask_first(mask);
8258 #elif defined(CONFIG_SCHED_SMT)
8259 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8260 group = cpumask_first(mask);
8261 #else
8262 group = cpu;
8263 #endif
8264 if (sg)
8265 *sg = &per_cpu(sched_group_phys, group).sg;
8266 return group;
8269 #ifdef CONFIG_NUMA
8271 * The init_sched_build_groups can't handle what we want to do with node
8272 * groups, so roll our own. Now each node has its own list of groups which
8273 * gets dynamically allocated.
8275 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8276 static struct sched_group ***sched_group_nodes_bycpu;
8278 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8279 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8281 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8282 struct sched_group **sg,
8283 struct cpumask *nodemask)
8285 int group;
8287 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8288 group = cpumask_first(nodemask);
8290 if (sg)
8291 *sg = &per_cpu(sched_group_allnodes, group).sg;
8292 return group;
8295 static void init_numa_sched_groups_power(struct sched_group *group_head)
8297 struct sched_group *sg = group_head;
8298 int j;
8300 if (!sg)
8301 return;
8302 do {
8303 for_each_cpu(j, sched_group_cpus(sg)) {
8304 struct sched_domain *sd;
8306 sd = &per_cpu(phys_domains, j).sd;
8307 if (j != group_first_cpu(sd->groups)) {
8309 * Only add "power" once for each
8310 * physical package.
8312 continue;
8315 sg->cpu_power += sd->groups->cpu_power;
8317 sg = sg->next;
8318 } while (sg != group_head);
8321 static int build_numa_sched_groups(struct s_data *d,
8322 const struct cpumask *cpu_map, int num)
8324 struct sched_domain *sd;
8325 struct sched_group *sg, *prev;
8326 int n, j;
8328 cpumask_clear(d->covered);
8329 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8330 if (cpumask_empty(d->nodemask)) {
8331 d->sched_group_nodes[num] = NULL;
8332 goto out;
8335 sched_domain_node_span(num, d->domainspan);
8336 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8338 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8339 GFP_KERNEL, num);
8340 if (!sg) {
8341 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8342 num);
8343 return -ENOMEM;
8345 d->sched_group_nodes[num] = sg;
8347 for_each_cpu(j, d->nodemask) {
8348 sd = &per_cpu(node_domains, j).sd;
8349 sd->groups = sg;
8352 sg->cpu_power = 0;
8353 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8354 sg->next = sg;
8355 cpumask_or(d->covered, d->covered, d->nodemask);
8357 prev = sg;
8358 for (j = 0; j < nr_node_ids; j++) {
8359 n = (num + j) % nr_node_ids;
8360 cpumask_complement(d->notcovered, d->covered);
8361 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8362 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8363 if (cpumask_empty(d->tmpmask))
8364 break;
8365 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8366 if (cpumask_empty(d->tmpmask))
8367 continue;
8368 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8369 GFP_KERNEL, num);
8370 if (!sg) {
8371 printk(KERN_WARNING
8372 "Can not alloc domain group for node %d\n", j);
8373 return -ENOMEM;
8375 sg->cpu_power = 0;
8376 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8377 sg->next = prev->next;
8378 cpumask_or(d->covered, d->covered, d->tmpmask);
8379 prev->next = sg;
8380 prev = sg;
8382 out:
8383 return 0;
8385 #endif /* CONFIG_NUMA */
8387 #ifdef CONFIG_NUMA
8388 /* Free memory allocated for various sched_group structures */
8389 static void free_sched_groups(const struct cpumask *cpu_map,
8390 struct cpumask *nodemask)
8392 int cpu, i;
8394 for_each_cpu(cpu, cpu_map) {
8395 struct sched_group **sched_group_nodes
8396 = sched_group_nodes_bycpu[cpu];
8398 if (!sched_group_nodes)
8399 continue;
8401 for (i = 0; i < nr_node_ids; i++) {
8402 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8404 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8405 if (cpumask_empty(nodemask))
8406 continue;
8408 if (sg == NULL)
8409 continue;
8410 sg = sg->next;
8411 next_sg:
8412 oldsg = sg;
8413 sg = sg->next;
8414 kfree(oldsg);
8415 if (oldsg != sched_group_nodes[i])
8416 goto next_sg;
8418 kfree(sched_group_nodes);
8419 sched_group_nodes_bycpu[cpu] = NULL;
8422 #else /* !CONFIG_NUMA */
8423 static void free_sched_groups(const struct cpumask *cpu_map,
8424 struct cpumask *nodemask)
8427 #endif /* CONFIG_NUMA */
8430 * Initialize sched groups cpu_power.
8432 * cpu_power indicates the capacity of sched group, which is used while
8433 * distributing the load between different sched groups in a sched domain.
8434 * Typically cpu_power for all the groups in a sched domain will be same unless
8435 * there are asymmetries in the topology. If there are asymmetries, group
8436 * having more cpu_power will pickup more load compared to the group having
8437 * less cpu_power.
8439 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8441 struct sched_domain *child;
8442 struct sched_group *group;
8443 long power;
8444 int weight;
8446 WARN_ON(!sd || !sd->groups);
8448 if (cpu != group_first_cpu(sd->groups))
8449 return;
8451 child = sd->child;
8453 sd->groups->cpu_power = 0;
8455 if (!child) {
8456 power = SCHED_LOAD_SCALE;
8457 weight = cpumask_weight(sched_domain_span(sd));
8459 * SMT siblings share the power of a single core.
8460 * Usually multiple threads get a better yield out of
8461 * that one core than a single thread would have,
8462 * reflect that in sd->smt_gain.
8464 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8465 power *= sd->smt_gain;
8466 power /= weight;
8467 power >>= SCHED_LOAD_SHIFT;
8469 sd->groups->cpu_power += power;
8470 return;
8474 * Add cpu_power of each child group to this groups cpu_power.
8476 group = child->groups;
8477 do {
8478 sd->groups->cpu_power += group->cpu_power;
8479 group = group->next;
8480 } while (group != child->groups);
8484 * Initializers for schedule domains
8485 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8488 #ifdef CONFIG_SCHED_DEBUG
8489 # define SD_INIT_NAME(sd, type) sd->name = #type
8490 #else
8491 # define SD_INIT_NAME(sd, type) do { } while (0)
8492 #endif
8494 #define SD_INIT(sd, type) sd_init_##type(sd)
8496 #define SD_INIT_FUNC(type) \
8497 static noinline void sd_init_##type(struct sched_domain *sd) \
8499 memset(sd, 0, sizeof(*sd)); \
8500 *sd = SD_##type##_INIT; \
8501 sd->level = SD_LV_##type; \
8502 SD_INIT_NAME(sd, type); \
8505 SD_INIT_FUNC(CPU)
8506 #ifdef CONFIG_NUMA
8507 SD_INIT_FUNC(ALLNODES)
8508 SD_INIT_FUNC(NODE)
8509 #endif
8510 #ifdef CONFIG_SCHED_SMT
8511 SD_INIT_FUNC(SIBLING)
8512 #endif
8513 #ifdef CONFIG_SCHED_MC
8514 SD_INIT_FUNC(MC)
8515 #endif
8517 static int default_relax_domain_level = -1;
8519 static int __init setup_relax_domain_level(char *str)
8521 unsigned long val;
8523 val = simple_strtoul(str, NULL, 0);
8524 if (val < SD_LV_MAX)
8525 default_relax_domain_level = val;
8527 return 1;
8529 __setup("relax_domain_level=", setup_relax_domain_level);
8531 static void set_domain_attribute(struct sched_domain *sd,
8532 struct sched_domain_attr *attr)
8534 int request;
8536 if (!attr || attr->relax_domain_level < 0) {
8537 if (default_relax_domain_level < 0)
8538 return;
8539 else
8540 request = default_relax_domain_level;
8541 } else
8542 request = attr->relax_domain_level;
8543 if (request < sd->level) {
8544 /* turn off idle balance on this domain */
8545 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8546 } else {
8547 /* turn on idle balance on this domain */
8548 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8552 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8553 const struct cpumask *cpu_map)
8555 switch (what) {
8556 case sa_sched_groups:
8557 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8558 d->sched_group_nodes = NULL;
8559 case sa_rootdomain:
8560 free_rootdomain(d->rd); /* fall through */
8561 case sa_tmpmask:
8562 free_cpumask_var(d->tmpmask); /* fall through */
8563 case sa_send_covered:
8564 free_cpumask_var(d->send_covered); /* fall through */
8565 case sa_this_core_map:
8566 free_cpumask_var(d->this_core_map); /* fall through */
8567 case sa_this_sibling_map:
8568 free_cpumask_var(d->this_sibling_map); /* fall through */
8569 case sa_nodemask:
8570 free_cpumask_var(d->nodemask); /* fall through */
8571 case sa_sched_group_nodes:
8572 #ifdef CONFIG_NUMA
8573 kfree(d->sched_group_nodes); /* fall through */
8574 case sa_notcovered:
8575 free_cpumask_var(d->notcovered); /* fall through */
8576 case sa_covered:
8577 free_cpumask_var(d->covered); /* fall through */
8578 case sa_domainspan:
8579 free_cpumask_var(d->domainspan); /* fall through */
8580 #endif
8581 case sa_none:
8582 break;
8586 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8587 const struct cpumask *cpu_map)
8589 #ifdef CONFIG_NUMA
8590 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8591 return sa_none;
8592 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8593 return sa_domainspan;
8594 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8595 return sa_covered;
8596 /* Allocate the per-node list of sched groups */
8597 d->sched_group_nodes = kcalloc(nr_node_ids,
8598 sizeof(struct sched_group *), GFP_KERNEL);
8599 if (!d->sched_group_nodes) {
8600 printk(KERN_WARNING "Can not alloc sched group node list\n");
8601 return sa_notcovered;
8603 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8604 #endif
8605 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8606 return sa_sched_group_nodes;
8607 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8608 return sa_nodemask;
8609 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8610 return sa_this_sibling_map;
8611 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8612 return sa_this_core_map;
8613 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8614 return sa_send_covered;
8615 d->rd = alloc_rootdomain();
8616 if (!d->rd) {
8617 printk(KERN_WARNING "Cannot alloc root domain\n");
8618 return sa_tmpmask;
8620 return sa_rootdomain;
8623 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8624 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8626 struct sched_domain *sd = NULL;
8627 #ifdef CONFIG_NUMA
8628 struct sched_domain *parent;
8630 d->sd_allnodes = 0;
8631 if (cpumask_weight(cpu_map) >
8632 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8633 sd = &per_cpu(allnodes_domains, i).sd;
8634 SD_INIT(sd, ALLNODES);
8635 set_domain_attribute(sd, attr);
8636 cpumask_copy(sched_domain_span(sd), cpu_map);
8637 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8638 d->sd_allnodes = 1;
8640 parent = sd;
8642 sd = &per_cpu(node_domains, i).sd;
8643 SD_INIT(sd, NODE);
8644 set_domain_attribute(sd, attr);
8645 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8646 sd->parent = parent;
8647 if (parent)
8648 parent->child = sd;
8649 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8650 #endif
8651 return sd;
8654 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8655 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8656 struct sched_domain *parent, int i)
8658 struct sched_domain *sd;
8659 sd = &per_cpu(phys_domains, i).sd;
8660 SD_INIT(sd, CPU);
8661 set_domain_attribute(sd, attr);
8662 cpumask_copy(sched_domain_span(sd), d->nodemask);
8663 sd->parent = parent;
8664 if (parent)
8665 parent->child = sd;
8666 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8667 return sd;
8670 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8671 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8672 struct sched_domain *parent, int i)
8674 struct sched_domain *sd = parent;
8675 #ifdef CONFIG_SCHED_MC
8676 sd = &per_cpu(core_domains, i).sd;
8677 SD_INIT(sd, MC);
8678 set_domain_attribute(sd, attr);
8679 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8680 sd->parent = parent;
8681 parent->child = sd;
8682 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8683 #endif
8684 return sd;
8687 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8688 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8689 struct sched_domain *parent, int i)
8691 struct sched_domain *sd = parent;
8692 #ifdef CONFIG_SCHED_SMT
8693 sd = &per_cpu(cpu_domains, i).sd;
8694 SD_INIT(sd, SIBLING);
8695 set_domain_attribute(sd, attr);
8696 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8697 sd->parent = parent;
8698 parent->child = sd;
8699 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8700 #endif
8701 return sd;
8704 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8705 const struct cpumask *cpu_map, int cpu)
8707 switch (l) {
8708 #ifdef CONFIG_SCHED_SMT
8709 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8710 cpumask_and(d->this_sibling_map, cpu_map,
8711 topology_thread_cpumask(cpu));
8712 if (cpu == cpumask_first(d->this_sibling_map))
8713 init_sched_build_groups(d->this_sibling_map, cpu_map,
8714 &cpu_to_cpu_group,
8715 d->send_covered, d->tmpmask);
8716 break;
8717 #endif
8718 #ifdef CONFIG_SCHED_MC
8719 case SD_LV_MC: /* set up multi-core groups */
8720 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8721 if (cpu == cpumask_first(d->this_core_map))
8722 init_sched_build_groups(d->this_core_map, cpu_map,
8723 &cpu_to_core_group,
8724 d->send_covered, d->tmpmask);
8725 break;
8726 #endif
8727 case SD_LV_CPU: /* set up physical groups */
8728 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8729 if (!cpumask_empty(d->nodemask))
8730 init_sched_build_groups(d->nodemask, cpu_map,
8731 &cpu_to_phys_group,
8732 d->send_covered, d->tmpmask);
8733 break;
8734 #ifdef CONFIG_NUMA
8735 case SD_LV_ALLNODES:
8736 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8737 d->send_covered, d->tmpmask);
8738 break;
8739 #endif
8740 default:
8741 break;
8746 * Build sched domains for a given set of cpus and attach the sched domains
8747 * to the individual cpus
8749 static int __build_sched_domains(const struct cpumask *cpu_map,
8750 struct sched_domain_attr *attr)
8752 enum s_alloc alloc_state = sa_none;
8753 struct s_data d;
8754 struct sched_domain *sd;
8755 int i;
8756 #ifdef CONFIG_NUMA
8757 d.sd_allnodes = 0;
8758 #endif
8760 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8761 if (alloc_state != sa_rootdomain)
8762 goto error;
8763 alloc_state = sa_sched_groups;
8766 * Set up domains for cpus specified by the cpu_map.
8768 for_each_cpu(i, cpu_map) {
8769 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8770 cpu_map);
8772 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8773 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8774 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8775 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8778 for_each_cpu(i, cpu_map) {
8779 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8780 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8783 /* Set up physical groups */
8784 for (i = 0; i < nr_node_ids; i++)
8785 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8787 #ifdef CONFIG_NUMA
8788 /* Set up node groups */
8789 if (d.sd_allnodes)
8790 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8792 for (i = 0; i < nr_node_ids; i++)
8793 if (build_numa_sched_groups(&d, cpu_map, i))
8794 goto error;
8795 #endif
8797 /* Calculate CPU power for physical packages and nodes */
8798 #ifdef CONFIG_SCHED_SMT
8799 for_each_cpu(i, cpu_map) {
8800 sd = &per_cpu(cpu_domains, i).sd;
8801 init_sched_groups_power(i, sd);
8803 #endif
8804 #ifdef CONFIG_SCHED_MC
8805 for_each_cpu(i, cpu_map) {
8806 sd = &per_cpu(core_domains, i).sd;
8807 init_sched_groups_power(i, sd);
8809 #endif
8811 for_each_cpu(i, cpu_map) {
8812 sd = &per_cpu(phys_domains, i).sd;
8813 init_sched_groups_power(i, sd);
8816 #ifdef CONFIG_NUMA
8817 for (i = 0; i < nr_node_ids; i++)
8818 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8820 if (d.sd_allnodes) {
8821 struct sched_group *sg;
8823 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8824 d.tmpmask);
8825 init_numa_sched_groups_power(sg);
8827 #endif
8829 /* Attach the domains */
8830 for_each_cpu(i, cpu_map) {
8831 #ifdef CONFIG_SCHED_SMT
8832 sd = &per_cpu(cpu_domains, i).sd;
8833 #elif defined(CONFIG_SCHED_MC)
8834 sd = &per_cpu(core_domains, i).sd;
8835 #else
8836 sd = &per_cpu(phys_domains, i).sd;
8837 #endif
8838 cpu_attach_domain(sd, d.rd, i);
8841 d.sched_group_nodes = NULL; /* don't free this we still need it */
8842 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8843 return 0;
8845 error:
8846 __free_domain_allocs(&d, alloc_state, cpu_map);
8847 return -ENOMEM;
8850 static int build_sched_domains(const struct cpumask *cpu_map)
8852 return __build_sched_domains(cpu_map, NULL);
8855 static struct cpumask *doms_cur; /* current sched domains */
8856 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8857 static struct sched_domain_attr *dattr_cur;
8858 /* attribues of custom domains in 'doms_cur' */
8861 * Special case: If a kmalloc of a doms_cur partition (array of
8862 * cpumask) fails, then fallback to a single sched domain,
8863 * as determined by the single cpumask fallback_doms.
8865 static cpumask_var_t fallback_doms;
8868 * arch_update_cpu_topology lets virtualized architectures update the
8869 * cpu core maps. It is supposed to return 1 if the topology changed
8870 * or 0 if it stayed the same.
8872 int __attribute__((weak)) arch_update_cpu_topology(void)
8874 return 0;
8878 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8879 * For now this just excludes isolated cpus, but could be used to
8880 * exclude other special cases in the future.
8882 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8884 int err;
8886 arch_update_cpu_topology();
8887 ndoms_cur = 1;
8888 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8889 if (!doms_cur)
8890 doms_cur = fallback_doms;
8891 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8892 dattr_cur = NULL;
8893 err = build_sched_domains(doms_cur);
8894 register_sched_domain_sysctl();
8896 return err;
8899 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8900 struct cpumask *tmpmask)
8902 free_sched_groups(cpu_map, tmpmask);
8906 * Detach sched domains from a group of cpus specified in cpu_map
8907 * These cpus will now be attached to the NULL domain
8909 static void detach_destroy_domains(const struct cpumask *cpu_map)
8911 /* Save because hotplug lock held. */
8912 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8913 int i;
8915 for_each_cpu(i, cpu_map)
8916 cpu_attach_domain(NULL, &def_root_domain, i);
8917 synchronize_sched();
8918 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8921 /* handle null as "default" */
8922 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8923 struct sched_domain_attr *new, int idx_new)
8925 struct sched_domain_attr tmp;
8927 /* fast path */
8928 if (!new && !cur)
8929 return 1;
8931 tmp = SD_ATTR_INIT;
8932 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8933 new ? (new + idx_new) : &tmp,
8934 sizeof(struct sched_domain_attr));
8938 * Partition sched domains as specified by the 'ndoms_new'
8939 * cpumasks in the array doms_new[] of cpumasks. This compares
8940 * doms_new[] to the current sched domain partitioning, doms_cur[].
8941 * It destroys each deleted domain and builds each new domain.
8943 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8944 * The masks don't intersect (don't overlap.) We should setup one
8945 * sched domain for each mask. CPUs not in any of the cpumasks will
8946 * not be load balanced. If the same cpumask appears both in the
8947 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8948 * it as it is.
8950 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8951 * ownership of it and will kfree it when done with it. If the caller
8952 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8953 * ndoms_new == 1, and partition_sched_domains() will fallback to
8954 * the single partition 'fallback_doms', it also forces the domains
8955 * to be rebuilt.
8957 * If doms_new == NULL it will be replaced with cpu_online_mask.
8958 * ndoms_new == 0 is a special case for destroying existing domains,
8959 * and it will not create the default domain.
8961 * Call with hotplug lock held
8963 /* FIXME: Change to struct cpumask *doms_new[] */
8964 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8965 struct sched_domain_attr *dattr_new)
8967 int i, j, n;
8968 int new_topology;
8970 mutex_lock(&sched_domains_mutex);
8972 /* always unregister in case we don't destroy any domains */
8973 unregister_sched_domain_sysctl();
8975 /* Let architecture update cpu core mappings. */
8976 new_topology = arch_update_cpu_topology();
8978 n = doms_new ? ndoms_new : 0;
8980 /* Destroy deleted domains */
8981 for (i = 0; i < ndoms_cur; i++) {
8982 for (j = 0; j < n && !new_topology; j++) {
8983 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8984 && dattrs_equal(dattr_cur, i, dattr_new, j))
8985 goto match1;
8987 /* no match - a current sched domain not in new doms_new[] */
8988 detach_destroy_domains(doms_cur + i);
8989 match1:
8993 if (doms_new == NULL) {
8994 ndoms_cur = 0;
8995 doms_new = fallback_doms;
8996 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8997 WARN_ON_ONCE(dattr_new);
9000 /* Build new domains */
9001 for (i = 0; i < ndoms_new; i++) {
9002 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9003 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9004 && dattrs_equal(dattr_new, i, dattr_cur, j))
9005 goto match2;
9007 /* no match - add a new doms_new */
9008 __build_sched_domains(doms_new + i,
9009 dattr_new ? dattr_new + i : NULL);
9010 match2:
9014 /* Remember the new sched domains */
9015 if (doms_cur != fallback_doms)
9016 kfree(doms_cur);
9017 kfree(dattr_cur); /* kfree(NULL) is safe */
9018 doms_cur = doms_new;
9019 dattr_cur = dattr_new;
9020 ndoms_cur = ndoms_new;
9022 register_sched_domain_sysctl();
9024 mutex_unlock(&sched_domains_mutex);
9027 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9028 static void arch_reinit_sched_domains(void)
9030 get_online_cpus();
9032 /* Destroy domains first to force the rebuild */
9033 partition_sched_domains(0, NULL, NULL);
9035 rebuild_sched_domains();
9036 put_online_cpus();
9039 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9041 unsigned int level = 0;
9043 if (sscanf(buf, "%u", &level) != 1)
9044 return -EINVAL;
9047 * level is always be positive so don't check for
9048 * level < POWERSAVINGS_BALANCE_NONE which is 0
9049 * What happens on 0 or 1 byte write,
9050 * need to check for count as well?
9053 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9054 return -EINVAL;
9056 if (smt)
9057 sched_smt_power_savings = level;
9058 else
9059 sched_mc_power_savings = level;
9061 arch_reinit_sched_domains();
9063 return count;
9066 #ifdef CONFIG_SCHED_MC
9067 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9068 char *page)
9070 return sprintf(page, "%u\n", sched_mc_power_savings);
9072 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9073 const char *buf, size_t count)
9075 return sched_power_savings_store(buf, count, 0);
9077 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9078 sched_mc_power_savings_show,
9079 sched_mc_power_savings_store);
9080 #endif
9082 #ifdef CONFIG_SCHED_SMT
9083 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9084 char *page)
9086 return sprintf(page, "%u\n", sched_smt_power_savings);
9088 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9089 const char *buf, size_t count)
9091 return sched_power_savings_store(buf, count, 1);
9093 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9094 sched_smt_power_savings_show,
9095 sched_smt_power_savings_store);
9096 #endif
9098 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9100 int err = 0;
9102 #ifdef CONFIG_SCHED_SMT
9103 if (smt_capable())
9104 err = sysfs_create_file(&cls->kset.kobj,
9105 &attr_sched_smt_power_savings.attr);
9106 #endif
9107 #ifdef CONFIG_SCHED_MC
9108 if (!err && mc_capable())
9109 err = sysfs_create_file(&cls->kset.kobj,
9110 &attr_sched_mc_power_savings.attr);
9111 #endif
9112 return err;
9114 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9116 #ifndef CONFIG_CPUSETS
9118 * Add online and remove offline CPUs from the scheduler domains.
9119 * When cpusets are enabled they take over this function.
9121 static int update_sched_domains(struct notifier_block *nfb,
9122 unsigned long action, void *hcpu)
9124 switch (action) {
9125 case CPU_ONLINE:
9126 case CPU_ONLINE_FROZEN:
9127 case CPU_DEAD:
9128 case CPU_DEAD_FROZEN:
9129 partition_sched_domains(1, NULL, NULL);
9130 return NOTIFY_OK;
9132 default:
9133 return NOTIFY_DONE;
9136 #endif
9138 static int update_runtime(struct notifier_block *nfb,
9139 unsigned long action, void *hcpu)
9141 int cpu = (int)(long)hcpu;
9143 switch (action) {
9144 case CPU_DOWN_PREPARE:
9145 case CPU_DOWN_PREPARE_FROZEN:
9146 disable_runtime(cpu_rq(cpu));
9147 return NOTIFY_OK;
9149 case CPU_DOWN_FAILED:
9150 case CPU_DOWN_FAILED_FROZEN:
9151 case CPU_ONLINE:
9152 case CPU_ONLINE_FROZEN:
9153 enable_runtime(cpu_rq(cpu));
9154 return NOTIFY_OK;
9156 default:
9157 return NOTIFY_DONE;
9161 void __init sched_init_smp(void)
9163 cpumask_var_t non_isolated_cpus;
9165 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9166 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9168 #if defined(CONFIG_NUMA)
9169 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9170 GFP_KERNEL);
9171 BUG_ON(sched_group_nodes_bycpu == NULL);
9172 #endif
9173 get_online_cpus();
9174 mutex_lock(&sched_domains_mutex);
9175 arch_init_sched_domains(cpu_online_mask);
9176 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9177 if (cpumask_empty(non_isolated_cpus))
9178 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9179 mutex_unlock(&sched_domains_mutex);
9180 put_online_cpus();
9182 #ifndef CONFIG_CPUSETS
9183 /* XXX: Theoretical race here - CPU may be hotplugged now */
9184 hotcpu_notifier(update_sched_domains, 0);
9185 #endif
9187 /* RT runtime code needs to handle some hotplug events */
9188 hotcpu_notifier(update_runtime, 0);
9190 init_hrtick();
9192 /* Move init over to a non-isolated CPU */
9193 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9194 BUG();
9195 sched_init_granularity();
9196 free_cpumask_var(non_isolated_cpus);
9198 init_sched_rt_class();
9200 #else
9201 void __init sched_init_smp(void)
9203 sched_init_granularity();
9205 #endif /* CONFIG_SMP */
9207 const_debug unsigned int sysctl_timer_migration = 1;
9209 int in_sched_functions(unsigned long addr)
9211 return in_lock_functions(addr) ||
9212 (addr >= (unsigned long)__sched_text_start
9213 && addr < (unsigned long)__sched_text_end);
9216 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9218 cfs_rq->tasks_timeline = RB_ROOT;
9219 INIT_LIST_HEAD(&cfs_rq->tasks);
9220 #ifdef CONFIG_FAIR_GROUP_SCHED
9221 cfs_rq->rq = rq;
9222 #endif
9223 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9226 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9228 struct rt_prio_array *array;
9229 int i;
9231 array = &rt_rq->active;
9232 for (i = 0; i < MAX_RT_PRIO; i++) {
9233 INIT_LIST_HEAD(array->queue + i);
9234 __clear_bit(i, array->bitmap);
9236 /* delimiter for bitsearch: */
9237 __set_bit(MAX_RT_PRIO, array->bitmap);
9239 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9240 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9241 #ifdef CONFIG_SMP
9242 rt_rq->highest_prio.next = MAX_RT_PRIO;
9243 #endif
9244 #endif
9245 #ifdef CONFIG_SMP
9246 rt_rq->rt_nr_migratory = 0;
9247 rt_rq->overloaded = 0;
9248 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9249 #endif
9251 rt_rq->rt_time = 0;
9252 rt_rq->rt_throttled = 0;
9253 rt_rq->rt_runtime = 0;
9254 spin_lock_init(&rt_rq->rt_runtime_lock);
9256 #ifdef CONFIG_RT_GROUP_SCHED
9257 rt_rq->rt_nr_boosted = 0;
9258 rt_rq->rq = rq;
9259 #endif
9262 #ifdef CONFIG_FAIR_GROUP_SCHED
9263 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9264 struct sched_entity *se, int cpu, int add,
9265 struct sched_entity *parent)
9267 struct rq *rq = cpu_rq(cpu);
9268 tg->cfs_rq[cpu] = cfs_rq;
9269 init_cfs_rq(cfs_rq, rq);
9270 cfs_rq->tg = tg;
9271 if (add)
9272 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9274 tg->se[cpu] = se;
9275 /* se could be NULL for init_task_group */
9276 if (!se)
9277 return;
9279 if (!parent)
9280 se->cfs_rq = &rq->cfs;
9281 else
9282 se->cfs_rq = parent->my_q;
9284 se->my_q = cfs_rq;
9285 se->load.weight = tg->shares;
9286 se->load.inv_weight = 0;
9287 se->parent = parent;
9289 #endif
9291 #ifdef CONFIG_RT_GROUP_SCHED
9292 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9293 struct sched_rt_entity *rt_se, int cpu, int add,
9294 struct sched_rt_entity *parent)
9296 struct rq *rq = cpu_rq(cpu);
9298 tg->rt_rq[cpu] = rt_rq;
9299 init_rt_rq(rt_rq, rq);
9300 rt_rq->tg = tg;
9301 rt_rq->rt_se = rt_se;
9302 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9303 if (add)
9304 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9306 tg->rt_se[cpu] = rt_se;
9307 if (!rt_se)
9308 return;
9310 if (!parent)
9311 rt_se->rt_rq = &rq->rt;
9312 else
9313 rt_se->rt_rq = parent->my_q;
9315 rt_se->my_q = rt_rq;
9316 rt_se->parent = parent;
9317 INIT_LIST_HEAD(&rt_se->run_list);
9319 #endif
9321 void __init sched_init(void)
9323 int i, j;
9324 unsigned long alloc_size = 0, ptr;
9326 #ifdef CONFIG_FAIR_GROUP_SCHED
9327 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9328 #endif
9329 #ifdef CONFIG_RT_GROUP_SCHED
9330 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9331 #endif
9332 #ifdef CONFIG_USER_SCHED
9333 alloc_size *= 2;
9334 #endif
9335 #ifdef CONFIG_CPUMASK_OFFSTACK
9336 alloc_size += num_possible_cpus() * cpumask_size();
9337 #endif
9339 * As sched_init() is called before page_alloc is setup,
9340 * we use alloc_bootmem().
9342 if (alloc_size) {
9343 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9345 #ifdef CONFIG_FAIR_GROUP_SCHED
9346 init_task_group.se = (struct sched_entity **)ptr;
9347 ptr += nr_cpu_ids * sizeof(void **);
9349 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9350 ptr += nr_cpu_ids * sizeof(void **);
9352 #ifdef CONFIG_USER_SCHED
9353 root_task_group.se = (struct sched_entity **)ptr;
9354 ptr += nr_cpu_ids * sizeof(void **);
9356 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9357 ptr += nr_cpu_ids * sizeof(void **);
9358 #endif /* CONFIG_USER_SCHED */
9359 #endif /* CONFIG_FAIR_GROUP_SCHED */
9360 #ifdef CONFIG_RT_GROUP_SCHED
9361 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9362 ptr += nr_cpu_ids * sizeof(void **);
9364 init_task_group.rt_rq = (struct rt_rq **)ptr;
9365 ptr += nr_cpu_ids * sizeof(void **);
9367 #ifdef CONFIG_USER_SCHED
9368 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9369 ptr += nr_cpu_ids * sizeof(void **);
9371 root_task_group.rt_rq = (struct rt_rq **)ptr;
9372 ptr += nr_cpu_ids * sizeof(void **);
9373 #endif /* CONFIG_USER_SCHED */
9374 #endif /* CONFIG_RT_GROUP_SCHED */
9375 #ifdef CONFIG_CPUMASK_OFFSTACK
9376 for_each_possible_cpu(i) {
9377 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9378 ptr += cpumask_size();
9380 #endif /* CONFIG_CPUMASK_OFFSTACK */
9383 #ifdef CONFIG_SMP
9384 init_defrootdomain();
9385 #endif
9387 init_rt_bandwidth(&def_rt_bandwidth,
9388 global_rt_period(), global_rt_runtime());
9390 #ifdef CONFIG_RT_GROUP_SCHED
9391 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9392 global_rt_period(), global_rt_runtime());
9393 #ifdef CONFIG_USER_SCHED
9394 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9395 global_rt_period(), RUNTIME_INF);
9396 #endif /* CONFIG_USER_SCHED */
9397 #endif /* CONFIG_RT_GROUP_SCHED */
9399 #ifdef CONFIG_GROUP_SCHED
9400 list_add(&init_task_group.list, &task_groups);
9401 INIT_LIST_HEAD(&init_task_group.children);
9403 #ifdef CONFIG_USER_SCHED
9404 INIT_LIST_HEAD(&root_task_group.children);
9405 init_task_group.parent = &root_task_group;
9406 list_add(&init_task_group.siblings, &root_task_group.children);
9407 #endif /* CONFIG_USER_SCHED */
9408 #endif /* CONFIG_GROUP_SCHED */
9410 for_each_possible_cpu(i) {
9411 struct rq *rq;
9413 rq = cpu_rq(i);
9414 spin_lock_init(&rq->lock);
9415 rq->nr_running = 0;
9416 rq->calc_load_active = 0;
9417 rq->calc_load_update = jiffies + LOAD_FREQ;
9418 init_cfs_rq(&rq->cfs, rq);
9419 init_rt_rq(&rq->rt, rq);
9420 #ifdef CONFIG_FAIR_GROUP_SCHED
9421 init_task_group.shares = init_task_group_load;
9422 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9423 #ifdef CONFIG_CGROUP_SCHED
9425 * How much cpu bandwidth does init_task_group get?
9427 * In case of task-groups formed thr' the cgroup filesystem, it
9428 * gets 100% of the cpu resources in the system. This overall
9429 * system cpu resource is divided among the tasks of
9430 * init_task_group and its child task-groups in a fair manner,
9431 * based on each entity's (task or task-group's) weight
9432 * (se->load.weight).
9434 * In other words, if init_task_group has 10 tasks of weight
9435 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9436 * then A0's share of the cpu resource is:
9438 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9440 * We achieve this by letting init_task_group's tasks sit
9441 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9443 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9444 #elif defined CONFIG_USER_SCHED
9445 root_task_group.shares = NICE_0_LOAD;
9446 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9448 * In case of task-groups formed thr' the user id of tasks,
9449 * init_task_group represents tasks belonging to root user.
9450 * Hence it forms a sibling of all subsequent groups formed.
9451 * In this case, init_task_group gets only a fraction of overall
9452 * system cpu resource, based on the weight assigned to root
9453 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9454 * by letting tasks of init_task_group sit in a separate cfs_rq
9455 * (init_tg_cfs_rq) and having one entity represent this group of
9456 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9458 init_tg_cfs_entry(&init_task_group,
9459 &per_cpu(init_tg_cfs_rq, i),
9460 &per_cpu(init_sched_entity, i), i, 1,
9461 root_task_group.se[i]);
9463 #endif
9464 #endif /* CONFIG_FAIR_GROUP_SCHED */
9466 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9467 #ifdef CONFIG_RT_GROUP_SCHED
9468 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9469 #ifdef CONFIG_CGROUP_SCHED
9470 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9471 #elif defined CONFIG_USER_SCHED
9472 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9473 init_tg_rt_entry(&init_task_group,
9474 &per_cpu(init_rt_rq, i),
9475 &per_cpu(init_sched_rt_entity, i), i, 1,
9476 root_task_group.rt_se[i]);
9477 #endif
9478 #endif
9480 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9481 rq->cpu_load[j] = 0;
9482 #ifdef CONFIG_SMP
9483 rq->sd = NULL;
9484 rq->rd = NULL;
9485 rq->post_schedule = 0;
9486 rq->active_balance = 0;
9487 rq->next_balance = jiffies;
9488 rq->push_cpu = 0;
9489 rq->cpu = i;
9490 rq->online = 0;
9491 rq->migration_thread = NULL;
9492 INIT_LIST_HEAD(&rq->migration_queue);
9493 rq_attach_root(rq, &def_root_domain);
9494 #endif
9495 init_rq_hrtick(rq);
9496 atomic_set(&rq->nr_iowait, 0);
9499 set_load_weight(&init_task);
9501 #ifdef CONFIG_PREEMPT_NOTIFIERS
9502 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9503 #endif
9505 #ifdef CONFIG_SMP
9506 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9507 #endif
9509 #ifdef CONFIG_RT_MUTEXES
9510 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9511 #endif
9514 * The boot idle thread does lazy MMU switching as well:
9516 atomic_inc(&init_mm.mm_count);
9517 enter_lazy_tlb(&init_mm, current);
9520 * Make us the idle thread. Technically, schedule() should not be
9521 * called from this thread, however somewhere below it might be,
9522 * but because we are the idle thread, we just pick up running again
9523 * when this runqueue becomes "idle".
9525 init_idle(current, smp_processor_id());
9527 calc_load_update = jiffies + LOAD_FREQ;
9530 * During early bootup we pretend to be a normal task:
9532 current->sched_class = &fair_sched_class;
9534 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9535 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9536 #ifdef CONFIG_SMP
9537 #ifdef CONFIG_NO_HZ
9538 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9539 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9540 #endif
9541 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9542 #endif /* SMP */
9544 perf_event_init();
9546 scheduler_running = 1;
9549 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9550 static inline int preempt_count_equals(int preempt_offset)
9552 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9554 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9557 void __might_sleep(char *file, int line, int preempt_offset)
9559 #ifdef in_atomic
9560 static unsigned long prev_jiffy; /* ratelimiting */
9562 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9563 system_state != SYSTEM_RUNNING || oops_in_progress)
9564 return;
9565 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9566 return;
9567 prev_jiffy = jiffies;
9569 printk(KERN_ERR
9570 "BUG: sleeping function called from invalid context at %s:%d\n",
9571 file, line);
9572 printk(KERN_ERR
9573 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9574 in_atomic(), irqs_disabled(),
9575 current->pid, current->comm);
9577 debug_show_held_locks(current);
9578 if (irqs_disabled())
9579 print_irqtrace_events(current);
9580 dump_stack();
9581 #endif
9583 EXPORT_SYMBOL(__might_sleep);
9584 #endif
9586 #ifdef CONFIG_MAGIC_SYSRQ
9587 static void normalize_task(struct rq *rq, struct task_struct *p)
9589 int on_rq;
9591 update_rq_clock(rq);
9592 on_rq = p->se.on_rq;
9593 if (on_rq)
9594 deactivate_task(rq, p, 0);
9595 __setscheduler(rq, p, SCHED_NORMAL, 0);
9596 if (on_rq) {
9597 activate_task(rq, p, 0);
9598 resched_task(rq->curr);
9602 void normalize_rt_tasks(void)
9604 struct task_struct *g, *p;
9605 unsigned long flags;
9606 struct rq *rq;
9608 read_lock_irqsave(&tasklist_lock, flags);
9609 do_each_thread(g, p) {
9611 * Only normalize user tasks:
9613 if (!p->mm)
9614 continue;
9616 p->se.exec_start = 0;
9617 #ifdef CONFIG_SCHEDSTATS
9618 p->se.wait_start = 0;
9619 p->se.sleep_start = 0;
9620 p->se.block_start = 0;
9621 #endif
9623 if (!rt_task(p)) {
9625 * Renice negative nice level userspace
9626 * tasks back to 0:
9628 if (TASK_NICE(p) < 0 && p->mm)
9629 set_user_nice(p, 0);
9630 continue;
9633 spin_lock(&p->pi_lock);
9634 rq = __task_rq_lock(p);
9636 normalize_task(rq, p);
9638 __task_rq_unlock(rq);
9639 spin_unlock(&p->pi_lock);
9640 } while_each_thread(g, p);
9642 read_unlock_irqrestore(&tasklist_lock, flags);
9645 #endif /* CONFIG_MAGIC_SYSRQ */
9647 #ifdef CONFIG_IA64
9649 * These functions are only useful for the IA64 MCA handling.
9651 * They can only be called when the whole system has been
9652 * stopped - every CPU needs to be quiescent, and no scheduling
9653 * activity can take place. Using them for anything else would
9654 * be a serious bug, and as a result, they aren't even visible
9655 * under any other configuration.
9659 * curr_task - return the current task for a given cpu.
9660 * @cpu: the processor in question.
9662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9664 struct task_struct *curr_task(int cpu)
9666 return cpu_curr(cpu);
9670 * set_curr_task - set the current task for a given cpu.
9671 * @cpu: the processor in question.
9672 * @p: the task pointer to set.
9674 * Description: This function must only be used when non-maskable interrupts
9675 * are serviced on a separate stack. It allows the architecture to switch the
9676 * notion of the current task on a cpu in a non-blocking manner. This function
9677 * must be called with all CPU's synchronized, and interrupts disabled, the
9678 * and caller must save the original value of the current task (see
9679 * curr_task() above) and restore that value before reenabling interrupts and
9680 * re-starting the system.
9682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9684 void set_curr_task(int cpu, struct task_struct *p)
9686 cpu_curr(cpu) = p;
9689 #endif
9691 #ifdef CONFIG_FAIR_GROUP_SCHED
9692 static void free_fair_sched_group(struct task_group *tg)
9694 int i;
9696 for_each_possible_cpu(i) {
9697 if (tg->cfs_rq)
9698 kfree(tg->cfs_rq[i]);
9699 if (tg->se)
9700 kfree(tg->se[i]);
9703 kfree(tg->cfs_rq);
9704 kfree(tg->se);
9707 static
9708 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9710 struct cfs_rq *cfs_rq;
9711 struct sched_entity *se;
9712 struct rq *rq;
9713 int i;
9715 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9716 if (!tg->cfs_rq)
9717 goto err;
9718 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9719 if (!tg->se)
9720 goto err;
9722 tg->shares = NICE_0_LOAD;
9724 for_each_possible_cpu(i) {
9725 rq = cpu_rq(i);
9727 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9728 GFP_KERNEL, cpu_to_node(i));
9729 if (!cfs_rq)
9730 goto err;
9732 se = kzalloc_node(sizeof(struct sched_entity),
9733 GFP_KERNEL, cpu_to_node(i));
9734 if (!se)
9735 goto err;
9737 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9740 return 1;
9742 err:
9743 return 0;
9746 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9748 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9749 &cpu_rq(cpu)->leaf_cfs_rq_list);
9752 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9754 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9756 #else /* !CONFG_FAIR_GROUP_SCHED */
9757 static inline void free_fair_sched_group(struct task_group *tg)
9761 static inline
9762 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9764 return 1;
9767 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9771 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9774 #endif /* CONFIG_FAIR_GROUP_SCHED */
9776 #ifdef CONFIG_RT_GROUP_SCHED
9777 static void free_rt_sched_group(struct task_group *tg)
9779 int i;
9781 destroy_rt_bandwidth(&tg->rt_bandwidth);
9783 for_each_possible_cpu(i) {
9784 if (tg->rt_rq)
9785 kfree(tg->rt_rq[i]);
9786 if (tg->rt_se)
9787 kfree(tg->rt_se[i]);
9790 kfree(tg->rt_rq);
9791 kfree(tg->rt_se);
9794 static
9795 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9797 struct rt_rq *rt_rq;
9798 struct sched_rt_entity *rt_se;
9799 struct rq *rq;
9800 int i;
9802 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9803 if (!tg->rt_rq)
9804 goto err;
9805 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9806 if (!tg->rt_se)
9807 goto err;
9809 init_rt_bandwidth(&tg->rt_bandwidth,
9810 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9812 for_each_possible_cpu(i) {
9813 rq = cpu_rq(i);
9815 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9816 GFP_KERNEL, cpu_to_node(i));
9817 if (!rt_rq)
9818 goto err;
9820 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9821 GFP_KERNEL, cpu_to_node(i));
9822 if (!rt_se)
9823 goto err;
9825 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9828 return 1;
9830 err:
9831 return 0;
9834 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9836 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9837 &cpu_rq(cpu)->leaf_rt_rq_list);
9840 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9842 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9844 #else /* !CONFIG_RT_GROUP_SCHED */
9845 static inline void free_rt_sched_group(struct task_group *tg)
9849 static inline
9850 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9852 return 1;
9855 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9859 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9862 #endif /* CONFIG_RT_GROUP_SCHED */
9864 #ifdef CONFIG_GROUP_SCHED
9865 static void free_sched_group(struct task_group *tg)
9867 free_fair_sched_group(tg);
9868 free_rt_sched_group(tg);
9869 kfree(tg);
9872 /* allocate runqueue etc for a new task group */
9873 struct task_group *sched_create_group(struct task_group *parent)
9875 struct task_group *tg;
9876 unsigned long flags;
9877 int i;
9879 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9880 if (!tg)
9881 return ERR_PTR(-ENOMEM);
9883 if (!alloc_fair_sched_group(tg, parent))
9884 goto err;
9886 if (!alloc_rt_sched_group(tg, parent))
9887 goto err;
9889 spin_lock_irqsave(&task_group_lock, flags);
9890 for_each_possible_cpu(i) {
9891 register_fair_sched_group(tg, i);
9892 register_rt_sched_group(tg, i);
9894 list_add_rcu(&tg->list, &task_groups);
9896 WARN_ON(!parent); /* root should already exist */
9898 tg->parent = parent;
9899 INIT_LIST_HEAD(&tg->children);
9900 list_add_rcu(&tg->siblings, &parent->children);
9901 spin_unlock_irqrestore(&task_group_lock, flags);
9903 return tg;
9905 err:
9906 free_sched_group(tg);
9907 return ERR_PTR(-ENOMEM);
9910 /* rcu callback to free various structures associated with a task group */
9911 static void free_sched_group_rcu(struct rcu_head *rhp)
9913 /* now it should be safe to free those cfs_rqs */
9914 free_sched_group(container_of(rhp, struct task_group, rcu));
9917 /* Destroy runqueue etc associated with a task group */
9918 void sched_destroy_group(struct task_group *tg)
9920 unsigned long flags;
9921 int i;
9923 spin_lock_irqsave(&task_group_lock, flags);
9924 for_each_possible_cpu(i) {
9925 unregister_fair_sched_group(tg, i);
9926 unregister_rt_sched_group(tg, i);
9928 list_del_rcu(&tg->list);
9929 list_del_rcu(&tg->siblings);
9930 spin_unlock_irqrestore(&task_group_lock, flags);
9932 /* wait for possible concurrent references to cfs_rqs complete */
9933 call_rcu(&tg->rcu, free_sched_group_rcu);
9936 /* change task's runqueue when it moves between groups.
9937 * The caller of this function should have put the task in its new group
9938 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9939 * reflect its new group.
9941 void sched_move_task(struct task_struct *tsk)
9943 int on_rq, running;
9944 unsigned long flags;
9945 struct rq *rq;
9947 rq = task_rq_lock(tsk, &flags);
9949 update_rq_clock(rq);
9951 running = task_current(rq, tsk);
9952 on_rq = tsk->se.on_rq;
9954 if (on_rq)
9955 dequeue_task(rq, tsk, 0);
9956 if (unlikely(running))
9957 tsk->sched_class->put_prev_task(rq, tsk);
9959 set_task_rq(tsk, task_cpu(tsk));
9961 #ifdef CONFIG_FAIR_GROUP_SCHED
9962 if (tsk->sched_class->moved_group)
9963 tsk->sched_class->moved_group(tsk);
9964 #endif
9966 if (unlikely(running))
9967 tsk->sched_class->set_curr_task(rq);
9968 if (on_rq)
9969 enqueue_task(rq, tsk, 0);
9971 task_rq_unlock(rq, &flags);
9973 #endif /* CONFIG_GROUP_SCHED */
9975 #ifdef CONFIG_FAIR_GROUP_SCHED
9976 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9978 struct cfs_rq *cfs_rq = se->cfs_rq;
9979 int on_rq;
9981 on_rq = se->on_rq;
9982 if (on_rq)
9983 dequeue_entity(cfs_rq, se, 0);
9985 se->load.weight = shares;
9986 se->load.inv_weight = 0;
9988 if (on_rq)
9989 enqueue_entity(cfs_rq, se, 0);
9992 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9994 struct cfs_rq *cfs_rq = se->cfs_rq;
9995 struct rq *rq = cfs_rq->rq;
9996 unsigned long flags;
9998 spin_lock_irqsave(&rq->lock, flags);
9999 __set_se_shares(se, shares);
10000 spin_unlock_irqrestore(&rq->lock, flags);
10003 static DEFINE_MUTEX(shares_mutex);
10005 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10007 int i;
10008 unsigned long flags;
10011 * We can't change the weight of the root cgroup.
10013 if (!tg->se[0])
10014 return -EINVAL;
10016 if (shares < MIN_SHARES)
10017 shares = MIN_SHARES;
10018 else if (shares > MAX_SHARES)
10019 shares = MAX_SHARES;
10021 mutex_lock(&shares_mutex);
10022 if (tg->shares == shares)
10023 goto done;
10025 spin_lock_irqsave(&task_group_lock, flags);
10026 for_each_possible_cpu(i)
10027 unregister_fair_sched_group(tg, i);
10028 list_del_rcu(&tg->siblings);
10029 spin_unlock_irqrestore(&task_group_lock, flags);
10031 /* wait for any ongoing reference to this group to finish */
10032 synchronize_sched();
10035 * Now we are free to modify the group's share on each cpu
10036 * w/o tripping rebalance_share or load_balance_fair.
10038 tg->shares = shares;
10039 for_each_possible_cpu(i) {
10041 * force a rebalance
10043 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10044 set_se_shares(tg->se[i], shares);
10048 * Enable load balance activity on this group, by inserting it back on
10049 * each cpu's rq->leaf_cfs_rq_list.
10051 spin_lock_irqsave(&task_group_lock, flags);
10052 for_each_possible_cpu(i)
10053 register_fair_sched_group(tg, i);
10054 list_add_rcu(&tg->siblings, &tg->parent->children);
10055 spin_unlock_irqrestore(&task_group_lock, flags);
10056 done:
10057 mutex_unlock(&shares_mutex);
10058 return 0;
10061 unsigned long sched_group_shares(struct task_group *tg)
10063 return tg->shares;
10065 #endif
10067 #ifdef CONFIG_RT_GROUP_SCHED
10069 * Ensure that the real time constraints are schedulable.
10071 static DEFINE_MUTEX(rt_constraints_mutex);
10073 static unsigned long to_ratio(u64 period, u64 runtime)
10075 if (runtime == RUNTIME_INF)
10076 return 1ULL << 20;
10078 return div64_u64(runtime << 20, period);
10081 /* Must be called with tasklist_lock held */
10082 static inline int tg_has_rt_tasks(struct task_group *tg)
10084 struct task_struct *g, *p;
10086 do_each_thread(g, p) {
10087 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10088 return 1;
10089 } while_each_thread(g, p);
10091 return 0;
10094 struct rt_schedulable_data {
10095 struct task_group *tg;
10096 u64 rt_period;
10097 u64 rt_runtime;
10100 static int tg_schedulable(struct task_group *tg, void *data)
10102 struct rt_schedulable_data *d = data;
10103 struct task_group *child;
10104 unsigned long total, sum = 0;
10105 u64 period, runtime;
10107 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10108 runtime = tg->rt_bandwidth.rt_runtime;
10110 if (tg == d->tg) {
10111 period = d->rt_period;
10112 runtime = d->rt_runtime;
10115 #ifdef CONFIG_USER_SCHED
10116 if (tg == &root_task_group) {
10117 period = global_rt_period();
10118 runtime = global_rt_runtime();
10120 #endif
10123 * Cannot have more runtime than the period.
10125 if (runtime > period && runtime != RUNTIME_INF)
10126 return -EINVAL;
10129 * Ensure we don't starve existing RT tasks.
10131 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10132 return -EBUSY;
10134 total = to_ratio(period, runtime);
10137 * Nobody can have more than the global setting allows.
10139 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10140 return -EINVAL;
10143 * The sum of our children's runtime should not exceed our own.
10145 list_for_each_entry_rcu(child, &tg->children, siblings) {
10146 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10147 runtime = child->rt_bandwidth.rt_runtime;
10149 if (child == d->tg) {
10150 period = d->rt_period;
10151 runtime = d->rt_runtime;
10154 sum += to_ratio(period, runtime);
10157 if (sum > total)
10158 return -EINVAL;
10160 return 0;
10163 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10165 struct rt_schedulable_data data = {
10166 .tg = tg,
10167 .rt_period = period,
10168 .rt_runtime = runtime,
10171 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10174 static int tg_set_bandwidth(struct task_group *tg,
10175 u64 rt_period, u64 rt_runtime)
10177 int i, err = 0;
10179 mutex_lock(&rt_constraints_mutex);
10180 read_lock(&tasklist_lock);
10181 err = __rt_schedulable(tg, rt_period, rt_runtime);
10182 if (err)
10183 goto unlock;
10185 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10186 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10187 tg->rt_bandwidth.rt_runtime = rt_runtime;
10189 for_each_possible_cpu(i) {
10190 struct rt_rq *rt_rq = tg->rt_rq[i];
10192 spin_lock(&rt_rq->rt_runtime_lock);
10193 rt_rq->rt_runtime = rt_runtime;
10194 spin_unlock(&rt_rq->rt_runtime_lock);
10196 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10197 unlock:
10198 read_unlock(&tasklist_lock);
10199 mutex_unlock(&rt_constraints_mutex);
10201 return err;
10204 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10206 u64 rt_runtime, rt_period;
10208 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10209 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10210 if (rt_runtime_us < 0)
10211 rt_runtime = RUNTIME_INF;
10213 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10216 long sched_group_rt_runtime(struct task_group *tg)
10218 u64 rt_runtime_us;
10220 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10221 return -1;
10223 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10224 do_div(rt_runtime_us, NSEC_PER_USEC);
10225 return rt_runtime_us;
10228 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10230 u64 rt_runtime, rt_period;
10232 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10233 rt_runtime = tg->rt_bandwidth.rt_runtime;
10235 if (rt_period == 0)
10236 return -EINVAL;
10238 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10241 long sched_group_rt_period(struct task_group *tg)
10243 u64 rt_period_us;
10245 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10246 do_div(rt_period_us, NSEC_PER_USEC);
10247 return rt_period_us;
10250 static int sched_rt_global_constraints(void)
10252 u64 runtime, period;
10253 int ret = 0;
10255 if (sysctl_sched_rt_period <= 0)
10256 return -EINVAL;
10258 runtime = global_rt_runtime();
10259 period = global_rt_period();
10262 * Sanity check on the sysctl variables.
10264 if (runtime > period && runtime != RUNTIME_INF)
10265 return -EINVAL;
10267 mutex_lock(&rt_constraints_mutex);
10268 read_lock(&tasklist_lock);
10269 ret = __rt_schedulable(NULL, 0, 0);
10270 read_unlock(&tasklist_lock);
10271 mutex_unlock(&rt_constraints_mutex);
10273 return ret;
10276 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10278 /* Don't accept realtime tasks when there is no way for them to run */
10279 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10280 return 0;
10282 return 1;
10285 #else /* !CONFIG_RT_GROUP_SCHED */
10286 static int sched_rt_global_constraints(void)
10288 unsigned long flags;
10289 int i;
10291 if (sysctl_sched_rt_period <= 0)
10292 return -EINVAL;
10295 * There's always some RT tasks in the root group
10296 * -- migration, kstopmachine etc..
10298 if (sysctl_sched_rt_runtime == 0)
10299 return -EBUSY;
10301 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10302 for_each_possible_cpu(i) {
10303 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10305 spin_lock(&rt_rq->rt_runtime_lock);
10306 rt_rq->rt_runtime = global_rt_runtime();
10307 spin_unlock(&rt_rq->rt_runtime_lock);
10309 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10311 return 0;
10313 #endif /* CONFIG_RT_GROUP_SCHED */
10315 int sched_rt_handler(struct ctl_table *table, int write,
10316 void __user *buffer, size_t *lenp,
10317 loff_t *ppos)
10319 int ret;
10320 int old_period, old_runtime;
10321 static DEFINE_MUTEX(mutex);
10323 mutex_lock(&mutex);
10324 old_period = sysctl_sched_rt_period;
10325 old_runtime = sysctl_sched_rt_runtime;
10327 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10329 if (!ret && write) {
10330 ret = sched_rt_global_constraints();
10331 if (ret) {
10332 sysctl_sched_rt_period = old_period;
10333 sysctl_sched_rt_runtime = old_runtime;
10334 } else {
10335 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10336 def_rt_bandwidth.rt_period =
10337 ns_to_ktime(global_rt_period());
10340 mutex_unlock(&mutex);
10342 return ret;
10345 #ifdef CONFIG_CGROUP_SCHED
10347 /* return corresponding task_group object of a cgroup */
10348 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10350 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10351 struct task_group, css);
10354 static struct cgroup_subsys_state *
10355 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10357 struct task_group *tg, *parent;
10359 if (!cgrp->parent) {
10360 /* This is early initialization for the top cgroup */
10361 return &init_task_group.css;
10364 parent = cgroup_tg(cgrp->parent);
10365 tg = sched_create_group(parent);
10366 if (IS_ERR(tg))
10367 return ERR_PTR(-ENOMEM);
10369 return &tg->css;
10372 static void
10373 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10375 struct task_group *tg = cgroup_tg(cgrp);
10377 sched_destroy_group(tg);
10380 static int
10381 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10383 #ifdef CONFIG_RT_GROUP_SCHED
10384 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10385 return -EINVAL;
10386 #else
10387 /* We don't support RT-tasks being in separate groups */
10388 if (tsk->sched_class != &fair_sched_class)
10389 return -EINVAL;
10390 #endif
10391 return 0;
10394 static int
10395 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10396 struct task_struct *tsk, bool threadgroup)
10398 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10399 if (retval)
10400 return retval;
10401 if (threadgroup) {
10402 struct task_struct *c;
10403 rcu_read_lock();
10404 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10405 retval = cpu_cgroup_can_attach_task(cgrp, c);
10406 if (retval) {
10407 rcu_read_unlock();
10408 return retval;
10411 rcu_read_unlock();
10413 return 0;
10416 static void
10417 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10418 struct cgroup *old_cont, struct task_struct *tsk,
10419 bool threadgroup)
10421 sched_move_task(tsk);
10422 if (threadgroup) {
10423 struct task_struct *c;
10424 rcu_read_lock();
10425 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10426 sched_move_task(c);
10428 rcu_read_unlock();
10432 #ifdef CONFIG_FAIR_GROUP_SCHED
10433 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10434 u64 shareval)
10436 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10439 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10441 struct task_group *tg = cgroup_tg(cgrp);
10443 return (u64) tg->shares;
10445 #endif /* CONFIG_FAIR_GROUP_SCHED */
10447 #ifdef CONFIG_RT_GROUP_SCHED
10448 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10449 s64 val)
10451 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10454 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10456 return sched_group_rt_runtime(cgroup_tg(cgrp));
10459 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10460 u64 rt_period_us)
10462 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10465 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10467 return sched_group_rt_period(cgroup_tg(cgrp));
10469 #endif /* CONFIG_RT_GROUP_SCHED */
10471 static struct cftype cpu_files[] = {
10472 #ifdef CONFIG_FAIR_GROUP_SCHED
10474 .name = "shares",
10475 .read_u64 = cpu_shares_read_u64,
10476 .write_u64 = cpu_shares_write_u64,
10478 #endif
10479 #ifdef CONFIG_RT_GROUP_SCHED
10481 .name = "rt_runtime_us",
10482 .read_s64 = cpu_rt_runtime_read,
10483 .write_s64 = cpu_rt_runtime_write,
10486 .name = "rt_period_us",
10487 .read_u64 = cpu_rt_period_read_uint,
10488 .write_u64 = cpu_rt_period_write_uint,
10490 #endif
10493 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10495 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10498 struct cgroup_subsys cpu_cgroup_subsys = {
10499 .name = "cpu",
10500 .create = cpu_cgroup_create,
10501 .destroy = cpu_cgroup_destroy,
10502 .can_attach = cpu_cgroup_can_attach,
10503 .attach = cpu_cgroup_attach,
10504 .populate = cpu_cgroup_populate,
10505 .subsys_id = cpu_cgroup_subsys_id,
10506 .early_init = 1,
10509 #endif /* CONFIG_CGROUP_SCHED */
10511 #ifdef CONFIG_CGROUP_CPUACCT
10514 * CPU accounting code for task groups.
10516 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10517 * (balbir@in.ibm.com).
10520 /* track cpu usage of a group of tasks and its child groups */
10521 struct cpuacct {
10522 struct cgroup_subsys_state css;
10523 /* cpuusage holds pointer to a u64-type object on every cpu */
10524 u64 *cpuusage;
10525 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10526 struct cpuacct *parent;
10529 struct cgroup_subsys cpuacct_subsys;
10531 /* return cpu accounting group corresponding to this container */
10532 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10534 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10535 struct cpuacct, css);
10538 /* return cpu accounting group to which this task belongs */
10539 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10541 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10542 struct cpuacct, css);
10545 /* create a new cpu accounting group */
10546 static struct cgroup_subsys_state *cpuacct_create(
10547 struct cgroup_subsys *ss, struct cgroup *cgrp)
10549 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10550 int i;
10552 if (!ca)
10553 goto out;
10555 ca->cpuusage = alloc_percpu(u64);
10556 if (!ca->cpuusage)
10557 goto out_free_ca;
10559 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10560 if (percpu_counter_init(&ca->cpustat[i], 0))
10561 goto out_free_counters;
10563 if (cgrp->parent)
10564 ca->parent = cgroup_ca(cgrp->parent);
10566 return &ca->css;
10568 out_free_counters:
10569 while (--i >= 0)
10570 percpu_counter_destroy(&ca->cpustat[i]);
10571 free_percpu(ca->cpuusage);
10572 out_free_ca:
10573 kfree(ca);
10574 out:
10575 return ERR_PTR(-ENOMEM);
10578 /* destroy an existing cpu accounting group */
10579 static void
10580 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10582 struct cpuacct *ca = cgroup_ca(cgrp);
10583 int i;
10585 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10586 percpu_counter_destroy(&ca->cpustat[i]);
10587 free_percpu(ca->cpuusage);
10588 kfree(ca);
10591 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10593 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10594 u64 data;
10596 #ifndef CONFIG_64BIT
10598 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10600 spin_lock_irq(&cpu_rq(cpu)->lock);
10601 data = *cpuusage;
10602 spin_unlock_irq(&cpu_rq(cpu)->lock);
10603 #else
10604 data = *cpuusage;
10605 #endif
10607 return data;
10610 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10612 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10614 #ifndef CONFIG_64BIT
10616 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10618 spin_lock_irq(&cpu_rq(cpu)->lock);
10619 *cpuusage = val;
10620 spin_unlock_irq(&cpu_rq(cpu)->lock);
10621 #else
10622 *cpuusage = val;
10623 #endif
10626 /* return total cpu usage (in nanoseconds) of a group */
10627 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10629 struct cpuacct *ca = cgroup_ca(cgrp);
10630 u64 totalcpuusage = 0;
10631 int i;
10633 for_each_present_cpu(i)
10634 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10636 return totalcpuusage;
10639 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10640 u64 reset)
10642 struct cpuacct *ca = cgroup_ca(cgrp);
10643 int err = 0;
10644 int i;
10646 if (reset) {
10647 err = -EINVAL;
10648 goto out;
10651 for_each_present_cpu(i)
10652 cpuacct_cpuusage_write(ca, i, 0);
10654 out:
10655 return err;
10658 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10659 struct seq_file *m)
10661 struct cpuacct *ca = cgroup_ca(cgroup);
10662 u64 percpu;
10663 int i;
10665 for_each_present_cpu(i) {
10666 percpu = cpuacct_cpuusage_read(ca, i);
10667 seq_printf(m, "%llu ", (unsigned long long) percpu);
10669 seq_printf(m, "\n");
10670 return 0;
10673 static const char *cpuacct_stat_desc[] = {
10674 [CPUACCT_STAT_USER] = "user",
10675 [CPUACCT_STAT_SYSTEM] = "system",
10678 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10679 struct cgroup_map_cb *cb)
10681 struct cpuacct *ca = cgroup_ca(cgrp);
10682 int i;
10684 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10685 s64 val = percpu_counter_read(&ca->cpustat[i]);
10686 val = cputime64_to_clock_t(val);
10687 cb->fill(cb, cpuacct_stat_desc[i], val);
10689 return 0;
10692 static struct cftype files[] = {
10694 .name = "usage",
10695 .read_u64 = cpuusage_read,
10696 .write_u64 = cpuusage_write,
10699 .name = "usage_percpu",
10700 .read_seq_string = cpuacct_percpu_seq_read,
10703 .name = "stat",
10704 .read_map = cpuacct_stats_show,
10708 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10710 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10714 * charge this task's execution time to its accounting group.
10716 * called with rq->lock held.
10718 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10720 struct cpuacct *ca;
10721 int cpu;
10723 if (unlikely(!cpuacct_subsys.active))
10724 return;
10726 cpu = task_cpu(tsk);
10728 rcu_read_lock();
10730 ca = task_ca(tsk);
10732 for (; ca; ca = ca->parent) {
10733 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10734 *cpuusage += cputime;
10737 rcu_read_unlock();
10741 * Charge the system/user time to the task's accounting group.
10743 static void cpuacct_update_stats(struct task_struct *tsk,
10744 enum cpuacct_stat_index idx, cputime_t val)
10746 struct cpuacct *ca;
10748 if (unlikely(!cpuacct_subsys.active))
10749 return;
10751 rcu_read_lock();
10752 ca = task_ca(tsk);
10754 do {
10755 percpu_counter_add(&ca->cpustat[idx], val);
10756 ca = ca->parent;
10757 } while (ca);
10758 rcu_read_unlock();
10761 struct cgroup_subsys cpuacct_subsys = {
10762 .name = "cpuacct",
10763 .create = cpuacct_create,
10764 .destroy = cpuacct_destroy,
10765 .populate = cpuacct_populate,
10766 .subsys_id = cpuacct_subsys_id,
10768 #endif /* CONFIG_CGROUP_CPUACCT */
10770 #ifndef CONFIG_SMP
10772 int rcu_expedited_torture_stats(char *page)
10774 return 0;
10776 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10778 void synchronize_sched_expedited(void)
10781 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10783 #else /* #ifndef CONFIG_SMP */
10785 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10786 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10788 #define RCU_EXPEDITED_STATE_POST -2
10789 #define RCU_EXPEDITED_STATE_IDLE -1
10791 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10793 int rcu_expedited_torture_stats(char *page)
10795 int cnt = 0;
10796 int cpu;
10798 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10799 for_each_online_cpu(cpu) {
10800 cnt += sprintf(&page[cnt], " %d:%d",
10801 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10803 cnt += sprintf(&page[cnt], "\n");
10804 return cnt;
10806 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10808 static long synchronize_sched_expedited_count;
10811 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10812 * approach to force grace period to end quickly. This consumes
10813 * significant time on all CPUs, and is thus not recommended for
10814 * any sort of common-case code.
10816 * Note that it is illegal to call this function while holding any
10817 * lock that is acquired by a CPU-hotplug notifier. Failing to
10818 * observe this restriction will result in deadlock.
10820 void synchronize_sched_expedited(void)
10822 int cpu;
10823 unsigned long flags;
10824 bool need_full_sync = 0;
10825 struct rq *rq;
10826 struct migration_req *req;
10827 long snap;
10828 int trycount = 0;
10830 smp_mb(); /* ensure prior mod happens before capturing snap. */
10831 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10832 get_online_cpus();
10833 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10834 put_online_cpus();
10835 if (trycount++ < 10)
10836 udelay(trycount * num_online_cpus());
10837 else {
10838 synchronize_sched();
10839 return;
10841 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10842 smp_mb(); /* ensure test happens before caller kfree */
10843 return;
10845 get_online_cpus();
10847 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10848 for_each_online_cpu(cpu) {
10849 rq = cpu_rq(cpu);
10850 req = &per_cpu(rcu_migration_req, cpu);
10851 init_completion(&req->done);
10852 req->task = NULL;
10853 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10854 spin_lock_irqsave(&rq->lock, flags);
10855 list_add(&req->list, &rq->migration_queue);
10856 spin_unlock_irqrestore(&rq->lock, flags);
10857 wake_up_process(rq->migration_thread);
10859 for_each_online_cpu(cpu) {
10860 rcu_expedited_state = cpu;
10861 req = &per_cpu(rcu_migration_req, cpu);
10862 rq = cpu_rq(cpu);
10863 wait_for_completion(&req->done);
10864 spin_lock_irqsave(&rq->lock, flags);
10865 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10866 need_full_sync = 1;
10867 req->dest_cpu = RCU_MIGRATION_IDLE;
10868 spin_unlock_irqrestore(&rq->lock, flags);
10870 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10871 mutex_unlock(&rcu_sched_expedited_mutex);
10872 put_online_cpus();
10873 if (need_full_sync)
10874 synchronize_sched();
10876 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10878 #endif /* #else #ifndef CONFIG_SMP */