OMAP3 SRF: Add CORE rate table param in OMAP-PM
[linux-ginger.git] / kernel / trace / ring_buffer.c
blobd4ff01970547ac7da986d1f90ddefc8c870b30ae
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
23 #include "trace.h"
26 * The ring buffer header is special. We must manually up keep it.
28 int ring_buffer_print_entry_header(struct trace_seq *s)
30 int ret;
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44 return ret;
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
61 * Here's some silly ASCII art.
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
111 * We will be using cmpxchg soon to make all this lockless.
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
144 enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
149 enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 * tracing_on - enable all tracing buffers
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
164 void tracing_on(void)
166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 EXPORT_SYMBOL_GPL(tracing_on);
171 * tracing_off - turn off all tracing buffers
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
178 void tracing_off(void)
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 EXPORT_SYMBOL_GPL(tracing_off);
185 * tracing_off_permanent - permanently disable ring buffers
187 * This function, once called, will disable all ring buffers
188 * permanently.
190 void tracing_off_permanent(void)
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
196 * tracing_is_on - show state of ring buffers enabled
198 int tracing_is_on(void)
200 return ring_buffer_flags == RB_BUFFERS_ON;
202 EXPORT_SYMBOL_GPL(tracing_is_on);
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT 4U
206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
212 enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
217 static inline int rb_null_event(struct ring_buffer_event *event)
219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
222 static void rb_event_set_padding(struct ring_buffer_event *event)
224 /* padding has a NULL time_delta */
225 event->type_len = RINGBUF_TYPE_PADDING;
226 event->time_delta = 0;
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
232 unsigned length;
234 if (event->type_len)
235 length = event->type_len * RB_ALIGNMENT;
236 else
237 length = event->array[0];
238 return length + RB_EVNT_HDR_SIZE;
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
245 switch (event->type_len) {
246 case RINGBUF_TYPE_PADDING:
247 if (rb_null_event(event))
248 /* undefined */
249 return -1;
250 return event->array[0] + RB_EVNT_HDR_SIZE;
252 case RINGBUF_TYPE_TIME_EXTEND:
253 return RB_LEN_TIME_EXTEND;
255 case RINGBUF_TYPE_TIME_STAMP:
256 return RB_LEN_TIME_STAMP;
258 case RINGBUF_TYPE_DATA:
259 return rb_event_data_length(event);
260 default:
261 BUG();
263 /* not hit */
264 return 0;
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 unsigned length = rb_event_length(event);
274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 return length;
276 length -= RB_EVNT_HDR_SIZE;
277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278 length -= sizeof(event->array[0]);
279 return length;
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 /* If length is in len field, then array[0] has the data */
289 if (event->type_len)
290 return (void *)&event->array[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event->array[1];
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
301 return rb_event_data(event);
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
305 #define for_each_buffer_cpu(buffer, cpu) \
306 for_each_cpu(cpu, buffer->cpumask)
308 #define TS_SHIFT 27
309 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST (~TS_MASK)
312 struct buffer_data_page {
313 u64 time_stamp; /* page time stamp */
314 local_t commit; /* write committed index */
315 unsigned char data[]; /* data of buffer page */
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
324 * lockless.
326 struct buffer_page {
327 struct list_head list; /* list of buffer pages */
328 local_t write; /* index for next write */
329 unsigned read; /* index for next read */
330 local_t entries; /* entries on this page */
331 struct buffer_data_page *page; /* Actual data page */
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
344 * The counter is 20 bits, and the state data is 12.
346 #define RB_WRITE_MASK 0xfffff
347 #define RB_WRITE_INTCNT (1 << 20)
349 static void rb_init_page(struct buffer_data_page *bpage)
351 local_set(&bpage->commit, 0);
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
358 * Returns the amount of data on the page, including buffer page header.
360 size_t ring_buffer_page_len(void *page)
362 return local_read(&((struct buffer_data_page *)page)->commit)
363 + BUF_PAGE_HDR_SIZE;
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368 * this issue out.
370 static void free_buffer_page(struct buffer_page *bpage)
372 free_page((unsigned long)bpage->page);
373 kfree(bpage);
377 * We need to fit the time_stamp delta into 27 bits.
379 static inline int test_time_stamp(u64 delta)
381 if (delta & TS_DELTA_TEST)
382 return 1;
383 return 0;
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
394 int ring_buffer_print_page_header(struct trace_seq *s)
396 struct buffer_data_page field;
397 int ret;
399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\n",
401 (unsigned int)sizeof(field.time_stamp));
403 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
404 "offset:%u;\tsize:%u;\n",
405 (unsigned int)offsetof(typeof(field), commit),
406 (unsigned int)sizeof(field.commit));
408 ret = trace_seq_printf(s, "\tfield: char data;\t"
409 "offset:%u;\tsize:%u;\n",
410 (unsigned int)offsetof(typeof(field), data),
411 (unsigned int)BUF_PAGE_SIZE);
413 return ret;
417 * head_page == tail_page && head == tail then buffer is empty.
419 struct ring_buffer_per_cpu {
420 int cpu;
421 struct ring_buffer *buffer;
422 spinlock_t reader_lock; /* serialize readers */
423 raw_spinlock_t lock;
424 struct lock_class_key lock_key;
425 struct list_head *pages;
426 struct buffer_page *head_page; /* read from head */
427 struct buffer_page *tail_page; /* write to tail */
428 struct buffer_page *commit_page; /* committed pages */
429 struct buffer_page *reader_page;
430 local_t commit_overrun;
431 local_t overrun;
432 local_t entries;
433 local_t committing;
434 local_t commits;
435 unsigned long read;
436 u64 write_stamp;
437 u64 read_stamp;
438 atomic_t record_disabled;
441 struct ring_buffer {
442 unsigned pages;
443 unsigned flags;
444 int cpus;
445 atomic_t record_disabled;
446 cpumask_var_t cpumask;
448 struct lock_class_key *reader_lock_key;
450 struct mutex mutex;
452 struct ring_buffer_per_cpu **buffers;
454 #ifdef CONFIG_HOTPLUG_CPU
455 struct notifier_block cpu_notify;
456 #endif
457 u64 (*clock)(void);
460 struct ring_buffer_iter {
461 struct ring_buffer_per_cpu *cpu_buffer;
462 unsigned long head;
463 struct buffer_page *head_page;
464 u64 read_stamp;
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond) \
469 ({ \
470 int _____ret = unlikely(cond); \
471 if (_____ret) { \
472 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473 struct ring_buffer_per_cpu *__b = \
474 (void *)b; \
475 atomic_inc(&__b->buffer->record_disabled); \
476 } else \
477 atomic_inc(&b->record_disabled); \
478 WARN_ON(1); \
480 _____ret; \
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
486 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
488 /* shift to debug/test normalization and TIME_EXTENTS */
489 return buffer->clock() << DEBUG_SHIFT;
492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
494 u64 time;
496 preempt_disable_notrace();
497 time = rb_time_stamp(buffer, cpu);
498 preempt_enable_no_resched_notrace();
500 return time;
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
505 int cpu, u64 *ts)
507 /* Just stupid testing the normalize function and deltas */
508 *ts >>= DEBUG_SHIFT;
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
513 * Making the ring buffer lockless makes things tricky.
514 * Although writes only happen on the CPU that they are on,
515 * and they only need to worry about interrupts. Reads can
516 * happen on any CPU.
518 * The reader page is always off the ring buffer, but when the
519 * reader finishes with a page, it needs to swap its page with
520 * a new one from the buffer. The reader needs to take from
521 * the head (writes go to the tail). But if a writer is in overwrite
522 * mode and wraps, it must push the head page forward.
524 * Here lies the problem.
526 * The reader must be careful to replace only the head page, and
527 * not another one. As described at the top of the file in the
528 * ASCII art, the reader sets its old page to point to the next
529 * page after head. It then sets the page after head to point to
530 * the old reader page. But if the writer moves the head page
531 * during this operation, the reader could end up with the tail.
533 * We use cmpxchg to help prevent this race. We also do something
534 * special with the page before head. We set the LSB to 1.
536 * When the writer must push the page forward, it will clear the
537 * bit that points to the head page, move the head, and then set
538 * the bit that points to the new head page.
540 * We also don't want an interrupt coming in and moving the head
541 * page on another writer. Thus we use the second LSB to catch
542 * that too. Thus:
544 * head->list->prev->next bit 1 bit 0
545 * ------- -------
546 * Normal page 0 0
547 * Points to head page 0 1
548 * New head page 1 0
550 * Note we can not trust the prev pointer of the head page, because:
552 * +----+ +-----+ +-----+
553 * | |------>| T |---X--->| N |
554 * | |<------| | | |
555 * +----+ +-----+ +-----+
556 * ^ ^ |
557 * | +-----+ | |
558 * +----------| R |----------+ |
559 * | |<-----------+
560 * +-----+
562 * Key: ---X--> HEAD flag set in pointer
563 * T Tail page
564 * R Reader page
565 * N Next page
567 * (see __rb_reserve_next() to see where this happens)
569 * What the above shows is that the reader just swapped out
570 * the reader page with a page in the buffer, but before it
571 * could make the new header point back to the new page added
572 * it was preempted by a writer. The writer moved forward onto
573 * the new page added by the reader and is about to move forward
574 * again.
576 * You can see, it is legitimate for the previous pointer of
577 * the head (or any page) not to point back to itself. But only
578 * temporarially.
581 #define RB_PAGE_NORMAL 0UL
582 #define RB_PAGE_HEAD 1UL
583 #define RB_PAGE_UPDATE 2UL
586 #define RB_FLAG_MASK 3UL
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED 4UL
592 * rb_list_head - remove any bit
594 static struct list_head *rb_list_head(struct list_head *list)
596 unsigned long val = (unsigned long)list;
598 return (struct list_head *)(val & ~RB_FLAG_MASK);
602 * rb_is_head_page - test if the give page is the head page
604 * Because the reader may move the head_page pointer, we can
605 * not trust what the head page is (it may be pointing to
606 * the reader page). But if the next page is a header page,
607 * its flags will be non zero.
609 static int inline
610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
611 struct buffer_page *page, struct list_head *list)
613 unsigned long val;
615 val = (unsigned long)list->next;
617 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
618 return RB_PAGE_MOVED;
620 return val & RB_FLAG_MASK;
624 * rb_is_reader_page
626 * The unique thing about the reader page, is that, if the
627 * writer is ever on it, the previous pointer never points
628 * back to the reader page.
630 static int rb_is_reader_page(struct buffer_page *page)
632 struct list_head *list = page->list.prev;
634 return rb_list_head(list->next) != &page->list;
638 * rb_set_list_to_head - set a list_head to be pointing to head.
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
641 struct list_head *list)
643 unsigned long *ptr;
645 ptr = (unsigned long *)&list->next;
646 *ptr |= RB_PAGE_HEAD;
647 *ptr &= ~RB_PAGE_UPDATE;
651 * rb_head_page_activate - sets up head page
653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
655 struct buffer_page *head;
657 head = cpu_buffer->head_page;
658 if (!head)
659 return;
662 * Set the previous list pointer to have the HEAD flag.
664 rb_set_list_to_head(cpu_buffer, head->list.prev);
667 static void rb_list_head_clear(struct list_head *list)
669 unsigned long *ptr = (unsigned long *)&list->next;
671 *ptr &= ~RB_FLAG_MASK;
675 * rb_head_page_dactivate - clears head page ptr (for free list)
677 static void
678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
680 struct list_head *hd;
682 /* Go through the whole list and clear any pointers found. */
683 rb_list_head_clear(cpu_buffer->pages);
685 list_for_each(hd, cpu_buffer->pages)
686 rb_list_head_clear(hd);
689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
690 struct buffer_page *head,
691 struct buffer_page *prev,
692 int old_flag, int new_flag)
694 struct list_head *list;
695 unsigned long val = (unsigned long)&head->list;
696 unsigned long ret;
698 list = &prev->list;
700 val &= ~RB_FLAG_MASK;
702 ret = cmpxchg((unsigned long *)&list->next,
703 val | old_flag, val | new_flag);
705 /* check if the reader took the page */
706 if ((ret & ~RB_FLAG_MASK) != val)
707 return RB_PAGE_MOVED;
709 return ret & RB_FLAG_MASK;
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
713 struct buffer_page *head,
714 struct buffer_page *prev,
715 int old_flag)
717 return rb_head_page_set(cpu_buffer, head, prev,
718 old_flag, RB_PAGE_UPDATE);
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
722 struct buffer_page *head,
723 struct buffer_page *prev,
724 int old_flag)
726 return rb_head_page_set(cpu_buffer, head, prev,
727 old_flag, RB_PAGE_HEAD);
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
731 struct buffer_page *head,
732 struct buffer_page *prev,
733 int old_flag)
735 return rb_head_page_set(cpu_buffer, head, prev,
736 old_flag, RB_PAGE_NORMAL);
739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
740 struct buffer_page **bpage)
742 struct list_head *p = rb_list_head((*bpage)->list.next);
744 *bpage = list_entry(p, struct buffer_page, list);
747 static struct buffer_page *
748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
750 struct buffer_page *head;
751 struct buffer_page *page;
752 struct list_head *list;
753 int i;
755 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
756 return NULL;
758 /* sanity check */
759 list = cpu_buffer->pages;
760 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
761 return NULL;
763 page = head = cpu_buffer->head_page;
765 * It is possible that the writer moves the header behind
766 * where we started, and we miss in one loop.
767 * A second loop should grab the header, but we'll do
768 * three loops just because I'm paranoid.
770 for (i = 0; i < 3; i++) {
771 do {
772 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
773 cpu_buffer->head_page = page;
774 return page;
776 rb_inc_page(cpu_buffer, &page);
777 } while (page != head);
780 RB_WARN_ON(cpu_buffer, 1);
782 return NULL;
785 static int rb_head_page_replace(struct buffer_page *old,
786 struct buffer_page *new)
788 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
789 unsigned long val;
790 unsigned long ret;
792 val = *ptr & ~RB_FLAG_MASK;
793 val |= RB_PAGE_HEAD;
795 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
797 return ret == val;
801 * rb_tail_page_update - move the tail page forward
803 * Returns 1 if moved tail page, 0 if someone else did.
805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
806 struct buffer_page *tail_page,
807 struct buffer_page *next_page)
809 struct buffer_page *old_tail;
810 unsigned long old_entries;
811 unsigned long old_write;
812 int ret = 0;
815 * The tail page now needs to be moved forward.
817 * We need to reset the tail page, but without messing
818 * with possible erasing of data brought in by interrupts
819 * that have moved the tail page and are currently on it.
821 * We add a counter to the write field to denote this.
823 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
824 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
827 * Just make sure we have seen our old_write and synchronize
828 * with any interrupts that come in.
830 barrier();
833 * If the tail page is still the same as what we think
834 * it is, then it is up to us to update the tail
835 * pointer.
837 if (tail_page == cpu_buffer->tail_page) {
838 /* Zero the write counter */
839 unsigned long val = old_write & ~RB_WRITE_MASK;
840 unsigned long eval = old_entries & ~RB_WRITE_MASK;
843 * This will only succeed if an interrupt did
844 * not come in and change it. In which case, we
845 * do not want to modify it.
847 * We add (void) to let the compiler know that we do not care
848 * about the return value of these functions. We use the
849 * cmpxchg to only update if an interrupt did not already
850 * do it for us. If the cmpxchg fails, we don't care.
852 (void)local_cmpxchg(&next_page->write, old_write, val);
853 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
856 * No need to worry about races with clearing out the commit.
857 * it only can increment when a commit takes place. But that
858 * only happens in the outer most nested commit.
860 local_set(&next_page->page->commit, 0);
862 old_tail = cmpxchg(&cpu_buffer->tail_page,
863 tail_page, next_page);
865 if (old_tail == tail_page)
866 ret = 1;
869 return ret;
872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
873 struct buffer_page *bpage)
875 unsigned long val = (unsigned long)bpage;
877 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
878 return 1;
880 return 0;
884 * rb_check_list - make sure a pointer to a list has the last bits zero
886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
887 struct list_head *list)
889 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
890 return 1;
891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
892 return 1;
893 return 0;
897 * check_pages - integrity check of buffer pages
898 * @cpu_buffer: CPU buffer with pages to test
900 * As a safety measure we check to make sure the data pages have not
901 * been corrupted.
903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
905 struct list_head *head = cpu_buffer->pages;
906 struct buffer_page *bpage, *tmp;
908 rb_head_page_deactivate(cpu_buffer);
910 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
911 return -1;
912 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
913 return -1;
915 if (rb_check_list(cpu_buffer, head))
916 return -1;
918 list_for_each_entry_safe(bpage, tmp, head, list) {
919 if (RB_WARN_ON(cpu_buffer,
920 bpage->list.next->prev != &bpage->list))
921 return -1;
922 if (RB_WARN_ON(cpu_buffer,
923 bpage->list.prev->next != &bpage->list))
924 return -1;
925 if (rb_check_list(cpu_buffer, &bpage->list))
926 return -1;
929 rb_head_page_activate(cpu_buffer);
931 return 0;
934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
935 unsigned nr_pages)
937 struct buffer_page *bpage, *tmp;
938 unsigned long addr;
939 LIST_HEAD(pages);
940 unsigned i;
942 WARN_ON(!nr_pages);
944 for (i = 0; i < nr_pages; i++) {
945 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
946 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
947 if (!bpage)
948 goto free_pages;
950 rb_check_bpage(cpu_buffer, bpage);
952 list_add(&bpage->list, &pages);
954 addr = __get_free_page(GFP_KERNEL);
955 if (!addr)
956 goto free_pages;
957 bpage->page = (void *)addr;
958 rb_init_page(bpage->page);
962 * The ring buffer page list is a circular list that does not
963 * start and end with a list head. All page list items point to
964 * other pages.
966 cpu_buffer->pages = pages.next;
967 list_del(&pages);
969 rb_check_pages(cpu_buffer);
971 return 0;
973 free_pages:
974 list_for_each_entry_safe(bpage, tmp, &pages, list) {
975 list_del_init(&bpage->list);
976 free_buffer_page(bpage);
978 return -ENOMEM;
981 static struct ring_buffer_per_cpu *
982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
984 struct ring_buffer_per_cpu *cpu_buffer;
985 struct buffer_page *bpage;
986 unsigned long addr;
987 int ret;
989 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
990 GFP_KERNEL, cpu_to_node(cpu));
991 if (!cpu_buffer)
992 return NULL;
994 cpu_buffer->cpu = cpu;
995 cpu_buffer->buffer = buffer;
996 spin_lock_init(&cpu_buffer->reader_lock);
997 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
998 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
1000 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1001 GFP_KERNEL, cpu_to_node(cpu));
1002 if (!bpage)
1003 goto fail_free_buffer;
1005 rb_check_bpage(cpu_buffer, bpage);
1007 cpu_buffer->reader_page = bpage;
1008 addr = __get_free_page(GFP_KERNEL);
1009 if (!addr)
1010 goto fail_free_reader;
1011 bpage->page = (void *)addr;
1012 rb_init_page(bpage->page);
1014 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1016 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1017 if (ret < 0)
1018 goto fail_free_reader;
1020 cpu_buffer->head_page
1021 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1022 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1024 rb_head_page_activate(cpu_buffer);
1026 return cpu_buffer;
1028 fail_free_reader:
1029 free_buffer_page(cpu_buffer->reader_page);
1031 fail_free_buffer:
1032 kfree(cpu_buffer);
1033 return NULL;
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1038 struct list_head *head = cpu_buffer->pages;
1039 struct buffer_page *bpage, *tmp;
1041 free_buffer_page(cpu_buffer->reader_page);
1043 rb_head_page_deactivate(cpu_buffer);
1045 if (head) {
1046 list_for_each_entry_safe(bpage, tmp, head, list) {
1047 list_del_init(&bpage->list);
1048 free_buffer_page(bpage);
1050 bpage = list_entry(head, struct buffer_page, list);
1051 free_buffer_page(bpage);
1054 kfree(cpu_buffer);
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block *self,
1059 unsigned long action, void *hcpu);
1060 #endif
1063 * ring_buffer_alloc - allocate a new ring_buffer
1064 * @size: the size in bytes per cpu that is needed.
1065 * @flags: attributes to set for the ring buffer.
1067 * Currently the only flag that is available is the RB_FL_OVERWRITE
1068 * flag. This flag means that the buffer will overwrite old data
1069 * when the buffer wraps. If this flag is not set, the buffer will
1070 * drop data when the tail hits the head.
1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1073 struct lock_class_key *key)
1075 struct ring_buffer *buffer;
1076 int bsize;
1077 int cpu;
1079 /* keep it in its own cache line */
1080 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1081 GFP_KERNEL);
1082 if (!buffer)
1083 return NULL;
1085 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1086 goto fail_free_buffer;
1088 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1089 buffer->flags = flags;
1090 buffer->clock = trace_clock_local;
1091 buffer->reader_lock_key = key;
1093 /* need at least two pages */
1094 if (buffer->pages < 2)
1095 buffer->pages = 2;
1098 * In case of non-hotplug cpu, if the ring-buffer is allocated
1099 * in early initcall, it will not be notified of secondary cpus.
1100 * In that off case, we need to allocate for all possible cpus.
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 get_online_cpus();
1104 cpumask_copy(buffer->cpumask, cpu_online_mask);
1105 #else
1106 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1107 #endif
1108 buffer->cpus = nr_cpu_ids;
1110 bsize = sizeof(void *) * nr_cpu_ids;
1111 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1112 GFP_KERNEL);
1113 if (!buffer->buffers)
1114 goto fail_free_cpumask;
1116 for_each_buffer_cpu(buffer, cpu) {
1117 buffer->buffers[cpu] =
1118 rb_allocate_cpu_buffer(buffer, cpu);
1119 if (!buffer->buffers[cpu])
1120 goto fail_free_buffers;
1123 #ifdef CONFIG_HOTPLUG_CPU
1124 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1125 buffer->cpu_notify.priority = 0;
1126 register_cpu_notifier(&buffer->cpu_notify);
1127 #endif
1129 put_online_cpus();
1130 mutex_init(&buffer->mutex);
1132 return buffer;
1134 fail_free_buffers:
1135 for_each_buffer_cpu(buffer, cpu) {
1136 if (buffer->buffers[cpu])
1137 rb_free_cpu_buffer(buffer->buffers[cpu]);
1139 kfree(buffer->buffers);
1141 fail_free_cpumask:
1142 free_cpumask_var(buffer->cpumask);
1143 put_online_cpus();
1145 fail_free_buffer:
1146 kfree(buffer);
1147 return NULL;
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1152 * ring_buffer_free - free a ring buffer.
1153 * @buffer: the buffer to free.
1155 void
1156 ring_buffer_free(struct ring_buffer *buffer)
1158 int cpu;
1160 get_online_cpus();
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 unregister_cpu_notifier(&buffer->cpu_notify);
1164 #endif
1166 for_each_buffer_cpu(buffer, cpu)
1167 rb_free_cpu_buffer(buffer->buffers[cpu]);
1169 put_online_cpus();
1171 kfree(buffer->buffers);
1172 free_cpumask_var(buffer->cpumask);
1174 kfree(buffer);
1176 EXPORT_SYMBOL_GPL(ring_buffer_free);
1178 void ring_buffer_set_clock(struct ring_buffer *buffer,
1179 u64 (*clock)(void))
1181 buffer->clock = clock;
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1186 static void
1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1189 struct buffer_page *bpage;
1190 struct list_head *p;
1191 unsigned i;
1193 atomic_inc(&cpu_buffer->record_disabled);
1194 synchronize_sched();
1196 rb_head_page_deactivate(cpu_buffer);
1198 for (i = 0; i < nr_pages; i++) {
1199 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1200 return;
1201 p = cpu_buffer->pages->next;
1202 bpage = list_entry(p, struct buffer_page, list);
1203 list_del_init(&bpage->list);
1204 free_buffer_page(bpage);
1206 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1207 return;
1209 rb_reset_cpu(cpu_buffer);
1211 rb_check_pages(cpu_buffer);
1213 atomic_dec(&cpu_buffer->record_disabled);
1217 static void
1218 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1219 struct list_head *pages, unsigned nr_pages)
1221 struct buffer_page *bpage;
1222 struct list_head *p;
1223 unsigned i;
1225 atomic_inc(&cpu_buffer->record_disabled);
1226 synchronize_sched();
1228 spin_lock_irq(&cpu_buffer->reader_lock);
1229 rb_head_page_deactivate(cpu_buffer);
1231 for (i = 0; i < nr_pages; i++) {
1232 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1233 return;
1234 p = pages->next;
1235 bpage = list_entry(p, struct buffer_page, list);
1236 list_del_init(&bpage->list);
1237 list_add_tail(&bpage->list, cpu_buffer->pages);
1239 rb_reset_cpu(cpu_buffer);
1240 spin_unlock_irq(&cpu_buffer->reader_lock);
1242 rb_check_pages(cpu_buffer);
1244 atomic_dec(&cpu_buffer->record_disabled);
1248 * ring_buffer_resize - resize the ring buffer
1249 * @buffer: the buffer to resize.
1250 * @size: the new size.
1252 * The tracer is responsible for making sure that the buffer is
1253 * not being used while changing the size.
1254 * Note: We may be able to change the above requirement by using
1255 * RCU synchronizations.
1257 * Minimum size is 2 * BUF_PAGE_SIZE.
1259 * Returns -1 on failure.
1261 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1263 struct ring_buffer_per_cpu *cpu_buffer;
1264 unsigned nr_pages, rm_pages, new_pages;
1265 struct buffer_page *bpage, *tmp;
1266 unsigned long buffer_size;
1267 unsigned long addr;
1268 LIST_HEAD(pages);
1269 int i, cpu;
1272 * Always succeed at resizing a non-existent buffer:
1274 if (!buffer)
1275 return size;
1277 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1278 size *= BUF_PAGE_SIZE;
1279 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1281 /* we need a minimum of two pages */
1282 if (size < BUF_PAGE_SIZE * 2)
1283 size = BUF_PAGE_SIZE * 2;
1285 if (size == buffer_size)
1286 return size;
1288 mutex_lock(&buffer->mutex);
1289 get_online_cpus();
1291 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1293 if (size < buffer_size) {
1295 /* easy case, just free pages */
1296 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1297 goto out_fail;
1299 rm_pages = buffer->pages - nr_pages;
1301 for_each_buffer_cpu(buffer, cpu) {
1302 cpu_buffer = buffer->buffers[cpu];
1303 rb_remove_pages(cpu_buffer, rm_pages);
1305 goto out;
1309 * This is a bit more difficult. We only want to add pages
1310 * when we can allocate enough for all CPUs. We do this
1311 * by allocating all the pages and storing them on a local
1312 * link list. If we succeed in our allocation, then we
1313 * add these pages to the cpu_buffers. Otherwise we just free
1314 * them all and return -ENOMEM;
1316 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1317 goto out_fail;
1319 new_pages = nr_pages - buffer->pages;
1321 for_each_buffer_cpu(buffer, cpu) {
1322 for (i = 0; i < new_pages; i++) {
1323 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1324 cache_line_size()),
1325 GFP_KERNEL, cpu_to_node(cpu));
1326 if (!bpage)
1327 goto free_pages;
1328 list_add(&bpage->list, &pages);
1329 addr = __get_free_page(GFP_KERNEL);
1330 if (!addr)
1331 goto free_pages;
1332 bpage->page = (void *)addr;
1333 rb_init_page(bpage->page);
1337 for_each_buffer_cpu(buffer, cpu) {
1338 cpu_buffer = buffer->buffers[cpu];
1339 rb_insert_pages(cpu_buffer, &pages, new_pages);
1342 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1343 goto out_fail;
1345 out:
1346 buffer->pages = nr_pages;
1347 put_online_cpus();
1348 mutex_unlock(&buffer->mutex);
1350 return size;
1352 free_pages:
1353 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1354 list_del_init(&bpage->list);
1355 free_buffer_page(bpage);
1357 put_online_cpus();
1358 mutex_unlock(&buffer->mutex);
1359 return -ENOMEM;
1362 * Something went totally wrong, and we are too paranoid
1363 * to even clean up the mess.
1365 out_fail:
1366 put_online_cpus();
1367 mutex_unlock(&buffer->mutex);
1368 return -1;
1370 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1372 static inline void *
1373 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1375 return bpage->data + index;
1378 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1380 return bpage->page->data + index;
1383 static inline struct ring_buffer_event *
1384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1386 return __rb_page_index(cpu_buffer->reader_page,
1387 cpu_buffer->reader_page->read);
1390 static inline struct ring_buffer_event *
1391 rb_iter_head_event(struct ring_buffer_iter *iter)
1393 return __rb_page_index(iter->head_page, iter->head);
1396 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 return local_read(&bpage->write) & RB_WRITE_MASK;
1401 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1403 return local_read(&bpage->page->commit);
1406 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1408 return local_read(&bpage->entries) & RB_WRITE_MASK;
1411 /* Size is determined by what has been commited */
1412 static inline unsigned rb_page_size(struct buffer_page *bpage)
1414 return rb_page_commit(bpage);
1417 static inline unsigned
1418 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1420 return rb_page_commit(cpu_buffer->commit_page);
1423 static inline unsigned
1424 rb_event_index(struct ring_buffer_event *event)
1426 unsigned long addr = (unsigned long)event;
1428 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1431 static inline int
1432 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1433 struct ring_buffer_event *event)
1435 unsigned long addr = (unsigned long)event;
1436 unsigned long index;
1438 index = rb_event_index(event);
1439 addr &= PAGE_MASK;
1441 return cpu_buffer->commit_page->page == (void *)addr &&
1442 rb_commit_index(cpu_buffer) == index;
1445 static void
1446 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1448 unsigned long max_count;
1451 * We only race with interrupts and NMIs on this CPU.
1452 * If we own the commit event, then we can commit
1453 * all others that interrupted us, since the interruptions
1454 * are in stack format (they finish before they come
1455 * back to us). This allows us to do a simple loop to
1456 * assign the commit to the tail.
1458 again:
1459 max_count = cpu_buffer->buffer->pages * 100;
1461 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1462 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1463 return;
1464 if (RB_WARN_ON(cpu_buffer,
1465 rb_is_reader_page(cpu_buffer->tail_page)))
1466 return;
1467 local_set(&cpu_buffer->commit_page->page->commit,
1468 rb_page_write(cpu_buffer->commit_page));
1469 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1470 cpu_buffer->write_stamp =
1471 cpu_buffer->commit_page->page->time_stamp;
1472 /* add barrier to keep gcc from optimizing too much */
1473 barrier();
1475 while (rb_commit_index(cpu_buffer) !=
1476 rb_page_write(cpu_buffer->commit_page)) {
1478 local_set(&cpu_buffer->commit_page->page->commit,
1479 rb_page_write(cpu_buffer->commit_page));
1480 RB_WARN_ON(cpu_buffer,
1481 local_read(&cpu_buffer->commit_page->page->commit) &
1482 ~RB_WRITE_MASK);
1483 barrier();
1486 /* again, keep gcc from optimizing */
1487 barrier();
1490 * If an interrupt came in just after the first while loop
1491 * and pushed the tail page forward, we will be left with
1492 * a dangling commit that will never go forward.
1494 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1495 goto again;
1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1500 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1501 cpu_buffer->reader_page->read = 0;
1504 static void rb_inc_iter(struct ring_buffer_iter *iter)
1506 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509 * The iterator could be on the reader page (it starts there).
1510 * But the head could have moved, since the reader was
1511 * found. Check for this case and assign the iterator
1512 * to the head page instead of next.
1514 if (iter->head_page == cpu_buffer->reader_page)
1515 iter->head_page = rb_set_head_page(cpu_buffer);
1516 else
1517 rb_inc_page(cpu_buffer, &iter->head_page);
1519 iter->read_stamp = iter->head_page->page->time_stamp;
1520 iter->head = 0;
1524 * ring_buffer_update_event - update event type and data
1525 * @event: the even to update
1526 * @type: the type of event
1527 * @length: the size of the event field in the ring buffer
1529 * Update the type and data fields of the event. The length
1530 * is the actual size that is written to the ring buffer,
1531 * and with this, we can determine what to place into the
1532 * data field.
1534 static void
1535 rb_update_event(struct ring_buffer_event *event,
1536 unsigned type, unsigned length)
1538 event->type_len = type;
1540 switch (type) {
1542 case RINGBUF_TYPE_PADDING:
1543 case RINGBUF_TYPE_TIME_EXTEND:
1544 case RINGBUF_TYPE_TIME_STAMP:
1545 break;
1547 case 0:
1548 length -= RB_EVNT_HDR_SIZE;
1549 if (length > RB_MAX_SMALL_DATA)
1550 event->array[0] = length;
1551 else
1552 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1553 break;
1554 default:
1555 BUG();
1560 * rb_handle_head_page - writer hit the head page
1562 * Returns: +1 to retry page
1563 * 0 to continue
1564 * -1 on error
1566 static int
1567 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1568 struct buffer_page *tail_page,
1569 struct buffer_page *next_page)
1571 struct buffer_page *new_head;
1572 int entries;
1573 int type;
1574 int ret;
1576 entries = rb_page_entries(next_page);
1579 * The hard part is here. We need to move the head
1580 * forward, and protect against both readers on
1581 * other CPUs and writers coming in via interrupts.
1583 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1584 RB_PAGE_HEAD);
1587 * type can be one of four:
1588 * NORMAL - an interrupt already moved it for us
1589 * HEAD - we are the first to get here.
1590 * UPDATE - we are the interrupt interrupting
1591 * a current move.
1592 * MOVED - a reader on another CPU moved the next
1593 * pointer to its reader page. Give up
1594 * and try again.
1597 switch (type) {
1598 case RB_PAGE_HEAD:
1600 * We changed the head to UPDATE, thus
1601 * it is our responsibility to update
1602 * the counters.
1604 local_add(entries, &cpu_buffer->overrun);
1607 * The entries will be zeroed out when we move the
1608 * tail page.
1611 /* still more to do */
1612 break;
1614 case RB_PAGE_UPDATE:
1616 * This is an interrupt that interrupt the
1617 * previous update. Still more to do.
1619 break;
1620 case RB_PAGE_NORMAL:
1622 * An interrupt came in before the update
1623 * and processed this for us.
1624 * Nothing left to do.
1626 return 1;
1627 case RB_PAGE_MOVED:
1629 * The reader is on another CPU and just did
1630 * a swap with our next_page.
1631 * Try again.
1633 return 1;
1634 default:
1635 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1636 return -1;
1640 * Now that we are here, the old head pointer is
1641 * set to UPDATE. This will keep the reader from
1642 * swapping the head page with the reader page.
1643 * The reader (on another CPU) will spin till
1644 * we are finished.
1646 * We just need to protect against interrupts
1647 * doing the job. We will set the next pointer
1648 * to HEAD. After that, we set the old pointer
1649 * to NORMAL, but only if it was HEAD before.
1650 * otherwise we are an interrupt, and only
1651 * want the outer most commit to reset it.
1653 new_head = next_page;
1654 rb_inc_page(cpu_buffer, &new_head);
1656 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1657 RB_PAGE_NORMAL);
1660 * Valid returns are:
1661 * HEAD - an interrupt came in and already set it.
1662 * NORMAL - One of two things:
1663 * 1) We really set it.
1664 * 2) A bunch of interrupts came in and moved
1665 * the page forward again.
1667 switch (ret) {
1668 case RB_PAGE_HEAD:
1669 case RB_PAGE_NORMAL:
1670 /* OK */
1671 break;
1672 default:
1673 RB_WARN_ON(cpu_buffer, 1);
1674 return -1;
1678 * It is possible that an interrupt came in,
1679 * set the head up, then more interrupts came in
1680 * and moved it again. When we get back here,
1681 * the page would have been set to NORMAL but we
1682 * just set it back to HEAD.
1684 * How do you detect this? Well, if that happened
1685 * the tail page would have moved.
1687 if (ret == RB_PAGE_NORMAL) {
1689 * If the tail had moved passed next, then we need
1690 * to reset the pointer.
1692 if (cpu_buffer->tail_page != tail_page &&
1693 cpu_buffer->tail_page != next_page)
1694 rb_head_page_set_normal(cpu_buffer, new_head,
1695 next_page,
1696 RB_PAGE_HEAD);
1700 * If this was the outer most commit (the one that
1701 * changed the original pointer from HEAD to UPDATE),
1702 * then it is up to us to reset it to NORMAL.
1704 if (type == RB_PAGE_HEAD) {
1705 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1706 tail_page,
1707 RB_PAGE_UPDATE);
1708 if (RB_WARN_ON(cpu_buffer,
1709 ret != RB_PAGE_UPDATE))
1710 return -1;
1713 return 0;
1716 static unsigned rb_calculate_event_length(unsigned length)
1718 struct ring_buffer_event event; /* Used only for sizeof array */
1720 /* zero length can cause confusions */
1721 if (!length)
1722 length = 1;
1724 if (length > RB_MAX_SMALL_DATA)
1725 length += sizeof(event.array[0]);
1727 length += RB_EVNT_HDR_SIZE;
1728 length = ALIGN(length, RB_ALIGNMENT);
1730 return length;
1733 static inline void
1734 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1735 struct buffer_page *tail_page,
1736 unsigned long tail, unsigned long length)
1738 struct ring_buffer_event *event;
1741 * Only the event that crossed the page boundary
1742 * must fill the old tail_page with padding.
1744 if (tail >= BUF_PAGE_SIZE) {
1745 local_sub(length, &tail_page->write);
1746 return;
1749 event = __rb_page_index(tail_page, tail);
1750 kmemcheck_annotate_bitfield(event, bitfield);
1753 * If this event is bigger than the minimum size, then
1754 * we need to be careful that we don't subtract the
1755 * write counter enough to allow another writer to slip
1756 * in on this page.
1757 * We put in a discarded commit instead, to make sure
1758 * that this space is not used again.
1760 * If we are less than the minimum size, we don't need to
1761 * worry about it.
1763 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1764 /* No room for any events */
1766 /* Mark the rest of the page with padding */
1767 rb_event_set_padding(event);
1769 /* Set the write back to the previous setting */
1770 local_sub(length, &tail_page->write);
1771 return;
1774 /* Put in a discarded event */
1775 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1776 event->type_len = RINGBUF_TYPE_PADDING;
1777 /* time delta must be non zero */
1778 event->time_delta = 1;
1780 /* Set write to end of buffer */
1781 length = (tail + length) - BUF_PAGE_SIZE;
1782 local_sub(length, &tail_page->write);
1785 static struct ring_buffer_event *
1786 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1787 unsigned long length, unsigned long tail,
1788 struct buffer_page *commit_page,
1789 struct buffer_page *tail_page, u64 *ts)
1791 struct ring_buffer *buffer = cpu_buffer->buffer;
1792 struct buffer_page *next_page;
1793 int ret;
1795 next_page = tail_page;
1797 rb_inc_page(cpu_buffer, &next_page);
1800 * If for some reason, we had an interrupt storm that made
1801 * it all the way around the buffer, bail, and warn
1802 * about it.
1804 if (unlikely(next_page == commit_page)) {
1805 local_inc(&cpu_buffer->commit_overrun);
1806 goto out_reset;
1810 * This is where the fun begins!
1812 * We are fighting against races between a reader that
1813 * could be on another CPU trying to swap its reader
1814 * page with the buffer head.
1816 * We are also fighting against interrupts coming in and
1817 * moving the head or tail on us as well.
1819 * If the next page is the head page then we have filled
1820 * the buffer, unless the commit page is still on the
1821 * reader page.
1823 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1826 * If the commit is not on the reader page, then
1827 * move the header page.
1829 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1831 * If we are not in overwrite mode,
1832 * this is easy, just stop here.
1834 if (!(buffer->flags & RB_FL_OVERWRITE))
1835 goto out_reset;
1837 ret = rb_handle_head_page(cpu_buffer,
1838 tail_page,
1839 next_page);
1840 if (ret < 0)
1841 goto out_reset;
1842 if (ret)
1843 goto out_again;
1844 } else {
1846 * We need to be careful here too. The
1847 * commit page could still be on the reader
1848 * page. We could have a small buffer, and
1849 * have filled up the buffer with events
1850 * from interrupts and such, and wrapped.
1852 * Note, if the tail page is also the on the
1853 * reader_page, we let it move out.
1855 if (unlikely((cpu_buffer->commit_page !=
1856 cpu_buffer->tail_page) &&
1857 (cpu_buffer->commit_page ==
1858 cpu_buffer->reader_page))) {
1859 local_inc(&cpu_buffer->commit_overrun);
1860 goto out_reset;
1865 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1866 if (ret) {
1868 * Nested commits always have zero deltas, so
1869 * just reread the time stamp
1871 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1872 next_page->page->time_stamp = *ts;
1875 out_again:
1877 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1879 /* fail and let the caller try again */
1880 return ERR_PTR(-EAGAIN);
1882 out_reset:
1883 /* reset write */
1884 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1886 return NULL;
1889 static struct ring_buffer_event *
1890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1891 unsigned type, unsigned long length, u64 *ts)
1893 struct buffer_page *tail_page, *commit_page;
1894 struct ring_buffer_event *event;
1895 unsigned long tail, write;
1897 commit_page = cpu_buffer->commit_page;
1898 /* we just need to protect against interrupts */
1899 barrier();
1900 tail_page = cpu_buffer->tail_page;
1901 write = local_add_return(length, &tail_page->write);
1903 /* set write to only the index of the write */
1904 write &= RB_WRITE_MASK;
1905 tail = write - length;
1907 /* See if we shot pass the end of this buffer page */
1908 if (write > BUF_PAGE_SIZE)
1909 return rb_move_tail(cpu_buffer, length, tail,
1910 commit_page, tail_page, ts);
1912 /* We reserved something on the buffer */
1914 event = __rb_page_index(tail_page, tail);
1915 kmemcheck_annotate_bitfield(event, bitfield);
1916 rb_update_event(event, type, length);
1918 /* The passed in type is zero for DATA */
1919 if (likely(!type))
1920 local_inc(&tail_page->entries);
1923 * If this is the first commit on the page, then update
1924 * its timestamp.
1926 if (!tail)
1927 tail_page->page->time_stamp = *ts;
1929 return event;
1932 static inline int
1933 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1934 struct ring_buffer_event *event)
1936 unsigned long new_index, old_index;
1937 struct buffer_page *bpage;
1938 unsigned long index;
1939 unsigned long addr;
1941 new_index = rb_event_index(event);
1942 old_index = new_index + rb_event_length(event);
1943 addr = (unsigned long)event;
1944 addr &= PAGE_MASK;
1946 bpage = cpu_buffer->tail_page;
1948 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1949 unsigned long write_mask =
1950 local_read(&bpage->write) & ~RB_WRITE_MASK;
1952 * This is on the tail page. It is possible that
1953 * a write could come in and move the tail page
1954 * and write to the next page. That is fine
1955 * because we just shorten what is on this page.
1957 old_index += write_mask;
1958 new_index += write_mask;
1959 index = local_cmpxchg(&bpage->write, old_index, new_index);
1960 if (index == old_index)
1961 return 1;
1964 /* could not discard */
1965 return 0;
1968 static int
1969 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1970 u64 *ts, u64 *delta)
1972 struct ring_buffer_event *event;
1973 static int once;
1974 int ret;
1976 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1977 printk(KERN_WARNING "Delta way too big! %llu"
1978 " ts=%llu write stamp = %llu\n",
1979 (unsigned long long)*delta,
1980 (unsigned long long)*ts,
1981 (unsigned long long)cpu_buffer->write_stamp);
1982 WARN_ON(1);
1986 * The delta is too big, we to add a
1987 * new timestamp.
1989 event = __rb_reserve_next(cpu_buffer,
1990 RINGBUF_TYPE_TIME_EXTEND,
1991 RB_LEN_TIME_EXTEND,
1992 ts);
1993 if (!event)
1994 return -EBUSY;
1996 if (PTR_ERR(event) == -EAGAIN)
1997 return -EAGAIN;
1999 /* Only a commited time event can update the write stamp */
2000 if (rb_event_is_commit(cpu_buffer, event)) {
2002 * If this is the first on the page, then it was
2003 * updated with the page itself. Try to discard it
2004 * and if we can't just make it zero.
2006 if (rb_event_index(event)) {
2007 event->time_delta = *delta & TS_MASK;
2008 event->array[0] = *delta >> TS_SHIFT;
2009 } else {
2010 /* try to discard, since we do not need this */
2011 if (!rb_try_to_discard(cpu_buffer, event)) {
2012 /* nope, just zero it */
2013 event->time_delta = 0;
2014 event->array[0] = 0;
2017 cpu_buffer->write_stamp = *ts;
2018 /* let the caller know this was the commit */
2019 ret = 1;
2020 } else {
2021 /* Try to discard the event */
2022 if (!rb_try_to_discard(cpu_buffer, event)) {
2023 /* Darn, this is just wasted space */
2024 event->time_delta = 0;
2025 event->array[0] = 0;
2027 ret = 0;
2030 *delta = 0;
2032 return ret;
2035 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2037 local_inc(&cpu_buffer->committing);
2038 local_inc(&cpu_buffer->commits);
2041 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2043 unsigned long commits;
2045 if (RB_WARN_ON(cpu_buffer,
2046 !local_read(&cpu_buffer->committing)))
2047 return;
2049 again:
2050 commits = local_read(&cpu_buffer->commits);
2051 /* synchronize with interrupts */
2052 barrier();
2053 if (local_read(&cpu_buffer->committing) == 1)
2054 rb_set_commit_to_write(cpu_buffer);
2056 local_dec(&cpu_buffer->committing);
2058 /* synchronize with interrupts */
2059 barrier();
2062 * Need to account for interrupts coming in between the
2063 * updating of the commit page and the clearing of the
2064 * committing counter.
2066 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2067 !local_read(&cpu_buffer->committing)) {
2068 local_inc(&cpu_buffer->committing);
2069 goto again;
2073 static struct ring_buffer_event *
2074 rb_reserve_next_event(struct ring_buffer *buffer,
2075 struct ring_buffer_per_cpu *cpu_buffer,
2076 unsigned long length)
2078 struct ring_buffer_event *event;
2079 u64 ts, delta = 0;
2080 int commit = 0;
2081 int nr_loops = 0;
2083 rb_start_commit(cpu_buffer);
2085 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2087 * Due to the ability to swap a cpu buffer from a buffer
2088 * it is possible it was swapped before we committed.
2089 * (committing stops a swap). We check for it here and
2090 * if it happened, we have to fail the write.
2092 barrier();
2093 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2094 local_dec(&cpu_buffer->committing);
2095 local_dec(&cpu_buffer->commits);
2096 return NULL;
2098 #endif
2100 length = rb_calculate_event_length(length);
2101 again:
2103 * We allow for interrupts to reenter here and do a trace.
2104 * If one does, it will cause this original code to loop
2105 * back here. Even with heavy interrupts happening, this
2106 * should only happen a few times in a row. If this happens
2107 * 1000 times in a row, there must be either an interrupt
2108 * storm or we have something buggy.
2109 * Bail!
2111 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2112 goto out_fail;
2114 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
2117 * Only the first commit can update the timestamp.
2118 * Yes there is a race here. If an interrupt comes in
2119 * just after the conditional and it traces too, then it
2120 * will also check the deltas. More than one timestamp may
2121 * also be made. But only the entry that did the actual
2122 * commit will be something other than zero.
2124 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2125 rb_page_write(cpu_buffer->tail_page) ==
2126 rb_commit_index(cpu_buffer))) {
2127 u64 diff;
2129 diff = ts - cpu_buffer->write_stamp;
2131 /* make sure this diff is calculated here */
2132 barrier();
2134 /* Did the write stamp get updated already? */
2135 if (unlikely(ts < cpu_buffer->write_stamp))
2136 goto get_event;
2138 delta = diff;
2139 if (unlikely(test_time_stamp(delta))) {
2141 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2142 if (commit == -EBUSY)
2143 goto out_fail;
2145 if (commit == -EAGAIN)
2146 goto again;
2148 RB_WARN_ON(cpu_buffer, commit < 0);
2152 get_event:
2153 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2154 if (unlikely(PTR_ERR(event) == -EAGAIN))
2155 goto again;
2157 if (!event)
2158 goto out_fail;
2160 if (!rb_event_is_commit(cpu_buffer, event))
2161 delta = 0;
2163 event->time_delta = delta;
2165 return event;
2167 out_fail:
2168 rb_end_commit(cpu_buffer);
2169 return NULL;
2172 #ifdef CONFIG_TRACING
2174 #define TRACE_RECURSIVE_DEPTH 16
2176 static int trace_recursive_lock(void)
2178 current->trace_recursion++;
2180 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2181 return 0;
2183 /* Disable all tracing before we do anything else */
2184 tracing_off_permanent();
2186 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2187 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2188 current->trace_recursion,
2189 hardirq_count() >> HARDIRQ_SHIFT,
2190 softirq_count() >> SOFTIRQ_SHIFT,
2191 in_nmi());
2193 WARN_ON_ONCE(1);
2194 return -1;
2197 static void trace_recursive_unlock(void)
2199 WARN_ON_ONCE(!current->trace_recursion);
2201 current->trace_recursion--;
2204 #else
2206 #define trace_recursive_lock() (0)
2207 #define trace_recursive_unlock() do { } while (0)
2209 #endif
2211 static DEFINE_PER_CPU(int, rb_need_resched);
2214 * ring_buffer_lock_reserve - reserve a part of the buffer
2215 * @buffer: the ring buffer to reserve from
2216 * @length: the length of the data to reserve (excluding event header)
2218 * Returns a reseverd event on the ring buffer to copy directly to.
2219 * The user of this interface will need to get the body to write into
2220 * and can use the ring_buffer_event_data() interface.
2222 * The length is the length of the data needed, not the event length
2223 * which also includes the event header.
2225 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2226 * If NULL is returned, then nothing has been allocated or locked.
2228 struct ring_buffer_event *
2229 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2231 struct ring_buffer_per_cpu *cpu_buffer;
2232 struct ring_buffer_event *event;
2233 int cpu, resched;
2235 if (ring_buffer_flags != RB_BUFFERS_ON)
2236 return NULL;
2238 if (atomic_read(&buffer->record_disabled))
2239 return NULL;
2241 /* If we are tracing schedule, we don't want to recurse */
2242 resched = ftrace_preempt_disable();
2244 if (trace_recursive_lock())
2245 goto out_nocheck;
2247 cpu = raw_smp_processor_id();
2249 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2250 goto out;
2252 cpu_buffer = buffer->buffers[cpu];
2254 if (atomic_read(&cpu_buffer->record_disabled))
2255 goto out;
2257 if (length > BUF_MAX_DATA_SIZE)
2258 goto out;
2260 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2261 if (!event)
2262 goto out;
2265 * Need to store resched state on this cpu.
2266 * Only the first needs to.
2269 if (preempt_count() == 1)
2270 per_cpu(rb_need_resched, cpu) = resched;
2272 return event;
2274 out:
2275 trace_recursive_unlock();
2277 out_nocheck:
2278 ftrace_preempt_enable(resched);
2279 return NULL;
2281 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2283 static void
2284 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2285 struct ring_buffer_event *event)
2288 * The event first in the commit queue updates the
2289 * time stamp.
2291 if (rb_event_is_commit(cpu_buffer, event))
2292 cpu_buffer->write_stamp += event->time_delta;
2295 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2296 struct ring_buffer_event *event)
2298 local_inc(&cpu_buffer->entries);
2299 rb_update_write_stamp(cpu_buffer, event);
2300 rb_end_commit(cpu_buffer);
2304 * ring_buffer_unlock_commit - commit a reserved
2305 * @buffer: The buffer to commit to
2306 * @event: The event pointer to commit.
2308 * This commits the data to the ring buffer, and releases any locks held.
2310 * Must be paired with ring_buffer_lock_reserve.
2312 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2313 struct ring_buffer_event *event)
2315 struct ring_buffer_per_cpu *cpu_buffer;
2316 int cpu = raw_smp_processor_id();
2318 cpu_buffer = buffer->buffers[cpu];
2320 rb_commit(cpu_buffer, event);
2322 trace_recursive_unlock();
2325 * Only the last preempt count needs to restore preemption.
2327 if (preempt_count() == 1)
2328 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2329 else
2330 preempt_enable_no_resched_notrace();
2332 return 0;
2334 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2336 static inline void rb_event_discard(struct ring_buffer_event *event)
2338 /* array[0] holds the actual length for the discarded event */
2339 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2340 event->type_len = RINGBUF_TYPE_PADDING;
2341 /* time delta must be non zero */
2342 if (!event->time_delta)
2343 event->time_delta = 1;
2347 * Decrement the entries to the page that an event is on.
2348 * The event does not even need to exist, only the pointer
2349 * to the page it is on. This may only be called before the commit
2350 * takes place.
2352 static inline void
2353 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2354 struct ring_buffer_event *event)
2356 unsigned long addr = (unsigned long)event;
2357 struct buffer_page *bpage = cpu_buffer->commit_page;
2358 struct buffer_page *start;
2360 addr &= PAGE_MASK;
2362 /* Do the likely case first */
2363 if (likely(bpage->page == (void *)addr)) {
2364 local_dec(&bpage->entries);
2365 return;
2369 * Because the commit page may be on the reader page we
2370 * start with the next page and check the end loop there.
2372 rb_inc_page(cpu_buffer, &bpage);
2373 start = bpage;
2374 do {
2375 if (bpage->page == (void *)addr) {
2376 local_dec(&bpage->entries);
2377 return;
2379 rb_inc_page(cpu_buffer, &bpage);
2380 } while (bpage != start);
2382 /* commit not part of this buffer?? */
2383 RB_WARN_ON(cpu_buffer, 1);
2387 * ring_buffer_commit_discard - discard an event that has not been committed
2388 * @buffer: the ring buffer
2389 * @event: non committed event to discard
2391 * Sometimes an event that is in the ring buffer needs to be ignored.
2392 * This function lets the user discard an event in the ring buffer
2393 * and then that event will not be read later.
2395 * This function only works if it is called before the the item has been
2396 * committed. It will try to free the event from the ring buffer
2397 * if another event has not been added behind it.
2399 * If another event has been added behind it, it will set the event
2400 * up as discarded, and perform the commit.
2402 * If this function is called, do not call ring_buffer_unlock_commit on
2403 * the event.
2405 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2406 struct ring_buffer_event *event)
2408 struct ring_buffer_per_cpu *cpu_buffer;
2409 int cpu;
2411 /* The event is discarded regardless */
2412 rb_event_discard(event);
2414 cpu = smp_processor_id();
2415 cpu_buffer = buffer->buffers[cpu];
2418 * This must only be called if the event has not been
2419 * committed yet. Thus we can assume that preemption
2420 * is still disabled.
2422 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2424 rb_decrement_entry(cpu_buffer, event);
2425 if (rb_try_to_discard(cpu_buffer, event))
2426 goto out;
2429 * The commit is still visible by the reader, so we
2430 * must still update the timestamp.
2432 rb_update_write_stamp(cpu_buffer, event);
2433 out:
2434 rb_end_commit(cpu_buffer);
2436 trace_recursive_unlock();
2439 * Only the last preempt count needs to restore preemption.
2441 if (preempt_count() == 1)
2442 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2443 else
2444 preempt_enable_no_resched_notrace();
2447 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2450 * ring_buffer_write - write data to the buffer without reserving
2451 * @buffer: The ring buffer to write to.
2452 * @length: The length of the data being written (excluding the event header)
2453 * @data: The data to write to the buffer.
2455 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2456 * one function. If you already have the data to write to the buffer, it
2457 * may be easier to simply call this function.
2459 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2460 * and not the length of the event which would hold the header.
2462 int ring_buffer_write(struct ring_buffer *buffer,
2463 unsigned long length,
2464 void *data)
2466 struct ring_buffer_per_cpu *cpu_buffer;
2467 struct ring_buffer_event *event;
2468 void *body;
2469 int ret = -EBUSY;
2470 int cpu, resched;
2472 if (ring_buffer_flags != RB_BUFFERS_ON)
2473 return -EBUSY;
2475 if (atomic_read(&buffer->record_disabled))
2476 return -EBUSY;
2478 resched = ftrace_preempt_disable();
2480 cpu = raw_smp_processor_id();
2482 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2483 goto out;
2485 cpu_buffer = buffer->buffers[cpu];
2487 if (atomic_read(&cpu_buffer->record_disabled))
2488 goto out;
2490 if (length > BUF_MAX_DATA_SIZE)
2491 goto out;
2493 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2494 if (!event)
2495 goto out;
2497 body = rb_event_data(event);
2499 memcpy(body, data, length);
2501 rb_commit(cpu_buffer, event);
2503 ret = 0;
2504 out:
2505 ftrace_preempt_enable(resched);
2507 return ret;
2509 EXPORT_SYMBOL_GPL(ring_buffer_write);
2511 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2513 struct buffer_page *reader = cpu_buffer->reader_page;
2514 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2515 struct buffer_page *commit = cpu_buffer->commit_page;
2517 /* In case of error, head will be NULL */
2518 if (unlikely(!head))
2519 return 1;
2521 return reader->read == rb_page_commit(reader) &&
2522 (commit == reader ||
2523 (commit == head &&
2524 head->read == rb_page_commit(commit)));
2528 * ring_buffer_record_disable - stop all writes into the buffer
2529 * @buffer: The ring buffer to stop writes to.
2531 * This prevents all writes to the buffer. Any attempt to write
2532 * to the buffer after this will fail and return NULL.
2534 * The caller should call synchronize_sched() after this.
2536 void ring_buffer_record_disable(struct ring_buffer *buffer)
2538 atomic_inc(&buffer->record_disabled);
2540 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2543 * ring_buffer_record_enable - enable writes to the buffer
2544 * @buffer: The ring buffer to enable writes
2546 * Note, multiple disables will need the same number of enables
2547 * to truely enable the writing (much like preempt_disable).
2549 void ring_buffer_record_enable(struct ring_buffer *buffer)
2551 atomic_dec(&buffer->record_disabled);
2553 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2556 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2557 * @buffer: The ring buffer to stop writes to.
2558 * @cpu: The CPU buffer to stop
2560 * This prevents all writes to the buffer. Any attempt to write
2561 * to the buffer after this will fail and return NULL.
2563 * The caller should call synchronize_sched() after this.
2565 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2567 struct ring_buffer_per_cpu *cpu_buffer;
2569 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2570 return;
2572 cpu_buffer = buffer->buffers[cpu];
2573 atomic_inc(&cpu_buffer->record_disabled);
2575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2578 * ring_buffer_record_enable_cpu - enable writes to the buffer
2579 * @buffer: The ring buffer to enable writes
2580 * @cpu: The CPU to enable.
2582 * Note, multiple disables will need the same number of enables
2583 * to truely enable the writing (much like preempt_disable).
2585 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2587 struct ring_buffer_per_cpu *cpu_buffer;
2589 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2590 return;
2592 cpu_buffer = buffer->buffers[cpu];
2593 atomic_dec(&cpu_buffer->record_disabled);
2595 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2598 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2599 * @buffer: The ring buffer
2600 * @cpu: The per CPU buffer to get the entries from.
2602 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2604 struct ring_buffer_per_cpu *cpu_buffer;
2605 unsigned long ret;
2607 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2608 return 0;
2610 cpu_buffer = buffer->buffers[cpu];
2611 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2612 - cpu_buffer->read;
2614 return ret;
2616 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2619 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2620 * @buffer: The ring buffer
2621 * @cpu: The per CPU buffer to get the number of overruns from
2623 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2625 struct ring_buffer_per_cpu *cpu_buffer;
2626 unsigned long ret;
2628 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2629 return 0;
2631 cpu_buffer = buffer->buffers[cpu];
2632 ret = local_read(&cpu_buffer->overrun);
2634 return ret;
2636 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2639 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2640 * @buffer: The ring buffer
2641 * @cpu: The per CPU buffer to get the number of overruns from
2643 unsigned long
2644 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2646 struct ring_buffer_per_cpu *cpu_buffer;
2647 unsigned long ret;
2649 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2650 return 0;
2652 cpu_buffer = buffer->buffers[cpu];
2653 ret = local_read(&cpu_buffer->commit_overrun);
2655 return ret;
2657 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2660 * ring_buffer_entries - get the number of entries in a buffer
2661 * @buffer: The ring buffer
2663 * Returns the total number of entries in the ring buffer
2664 * (all CPU entries)
2666 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2668 struct ring_buffer_per_cpu *cpu_buffer;
2669 unsigned long entries = 0;
2670 int cpu;
2672 /* if you care about this being correct, lock the buffer */
2673 for_each_buffer_cpu(buffer, cpu) {
2674 cpu_buffer = buffer->buffers[cpu];
2675 entries += (local_read(&cpu_buffer->entries) -
2676 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2679 return entries;
2681 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2684 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2685 * @buffer: The ring buffer
2687 * Returns the total number of overruns in the ring buffer
2688 * (all CPU entries)
2690 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2692 struct ring_buffer_per_cpu *cpu_buffer;
2693 unsigned long overruns = 0;
2694 int cpu;
2696 /* if you care about this being correct, lock the buffer */
2697 for_each_buffer_cpu(buffer, cpu) {
2698 cpu_buffer = buffer->buffers[cpu];
2699 overruns += local_read(&cpu_buffer->overrun);
2702 return overruns;
2704 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2706 static void rb_iter_reset(struct ring_buffer_iter *iter)
2708 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2710 /* Iterator usage is expected to have record disabled */
2711 if (list_empty(&cpu_buffer->reader_page->list)) {
2712 iter->head_page = rb_set_head_page(cpu_buffer);
2713 if (unlikely(!iter->head_page))
2714 return;
2715 iter->head = iter->head_page->read;
2716 } else {
2717 iter->head_page = cpu_buffer->reader_page;
2718 iter->head = cpu_buffer->reader_page->read;
2720 if (iter->head)
2721 iter->read_stamp = cpu_buffer->read_stamp;
2722 else
2723 iter->read_stamp = iter->head_page->page->time_stamp;
2727 * ring_buffer_iter_reset - reset an iterator
2728 * @iter: The iterator to reset
2730 * Resets the iterator, so that it will start from the beginning
2731 * again.
2733 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2735 struct ring_buffer_per_cpu *cpu_buffer;
2736 unsigned long flags;
2738 if (!iter)
2739 return;
2741 cpu_buffer = iter->cpu_buffer;
2743 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2744 rb_iter_reset(iter);
2745 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2747 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2750 * ring_buffer_iter_empty - check if an iterator has no more to read
2751 * @iter: The iterator to check
2753 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2755 struct ring_buffer_per_cpu *cpu_buffer;
2757 cpu_buffer = iter->cpu_buffer;
2759 return iter->head_page == cpu_buffer->commit_page &&
2760 iter->head == rb_commit_index(cpu_buffer);
2762 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2764 static void
2765 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2766 struct ring_buffer_event *event)
2768 u64 delta;
2770 switch (event->type_len) {
2771 case RINGBUF_TYPE_PADDING:
2772 return;
2774 case RINGBUF_TYPE_TIME_EXTEND:
2775 delta = event->array[0];
2776 delta <<= TS_SHIFT;
2777 delta += event->time_delta;
2778 cpu_buffer->read_stamp += delta;
2779 return;
2781 case RINGBUF_TYPE_TIME_STAMP:
2782 /* FIXME: not implemented */
2783 return;
2785 case RINGBUF_TYPE_DATA:
2786 cpu_buffer->read_stamp += event->time_delta;
2787 return;
2789 default:
2790 BUG();
2792 return;
2795 static void
2796 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2797 struct ring_buffer_event *event)
2799 u64 delta;
2801 switch (event->type_len) {
2802 case RINGBUF_TYPE_PADDING:
2803 return;
2805 case RINGBUF_TYPE_TIME_EXTEND:
2806 delta = event->array[0];
2807 delta <<= TS_SHIFT;
2808 delta += event->time_delta;
2809 iter->read_stamp += delta;
2810 return;
2812 case RINGBUF_TYPE_TIME_STAMP:
2813 /* FIXME: not implemented */
2814 return;
2816 case RINGBUF_TYPE_DATA:
2817 iter->read_stamp += event->time_delta;
2818 return;
2820 default:
2821 BUG();
2823 return;
2826 static struct buffer_page *
2827 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2829 struct buffer_page *reader = NULL;
2830 unsigned long flags;
2831 int nr_loops = 0;
2832 int ret;
2834 local_irq_save(flags);
2835 __raw_spin_lock(&cpu_buffer->lock);
2837 again:
2839 * This should normally only loop twice. But because the
2840 * start of the reader inserts an empty page, it causes
2841 * a case where we will loop three times. There should be no
2842 * reason to loop four times (that I know of).
2844 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2845 reader = NULL;
2846 goto out;
2849 reader = cpu_buffer->reader_page;
2851 /* If there's more to read, return this page */
2852 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2853 goto out;
2855 /* Never should we have an index greater than the size */
2856 if (RB_WARN_ON(cpu_buffer,
2857 cpu_buffer->reader_page->read > rb_page_size(reader)))
2858 goto out;
2860 /* check if we caught up to the tail */
2861 reader = NULL;
2862 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2863 goto out;
2866 * Reset the reader page to size zero.
2868 local_set(&cpu_buffer->reader_page->write, 0);
2869 local_set(&cpu_buffer->reader_page->entries, 0);
2870 local_set(&cpu_buffer->reader_page->page->commit, 0);
2872 spin:
2874 * Splice the empty reader page into the list around the head.
2876 reader = rb_set_head_page(cpu_buffer);
2877 cpu_buffer->reader_page->list.next = reader->list.next;
2878 cpu_buffer->reader_page->list.prev = reader->list.prev;
2881 * cpu_buffer->pages just needs to point to the buffer, it
2882 * has no specific buffer page to point to. Lets move it out
2883 * of our way so we don't accidently swap it.
2885 cpu_buffer->pages = reader->list.prev;
2887 /* The reader page will be pointing to the new head */
2888 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2891 * Here's the tricky part.
2893 * We need to move the pointer past the header page.
2894 * But we can only do that if a writer is not currently
2895 * moving it. The page before the header page has the
2896 * flag bit '1' set if it is pointing to the page we want.
2897 * but if the writer is in the process of moving it
2898 * than it will be '2' or already moved '0'.
2901 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2904 * If we did not convert it, then we must try again.
2906 if (!ret)
2907 goto spin;
2910 * Yeah! We succeeded in replacing the page.
2912 * Now make the new head point back to the reader page.
2914 reader->list.next->prev = &cpu_buffer->reader_page->list;
2915 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2917 /* Finally update the reader page to the new head */
2918 cpu_buffer->reader_page = reader;
2919 rb_reset_reader_page(cpu_buffer);
2921 goto again;
2923 out:
2924 __raw_spin_unlock(&cpu_buffer->lock);
2925 local_irq_restore(flags);
2927 return reader;
2930 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2932 struct ring_buffer_event *event;
2933 struct buffer_page *reader;
2934 unsigned length;
2936 reader = rb_get_reader_page(cpu_buffer);
2938 /* This function should not be called when buffer is empty */
2939 if (RB_WARN_ON(cpu_buffer, !reader))
2940 return;
2942 event = rb_reader_event(cpu_buffer);
2944 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2945 cpu_buffer->read++;
2947 rb_update_read_stamp(cpu_buffer, event);
2949 length = rb_event_length(event);
2950 cpu_buffer->reader_page->read += length;
2953 static void rb_advance_iter(struct ring_buffer_iter *iter)
2955 struct ring_buffer *buffer;
2956 struct ring_buffer_per_cpu *cpu_buffer;
2957 struct ring_buffer_event *event;
2958 unsigned length;
2960 cpu_buffer = iter->cpu_buffer;
2961 buffer = cpu_buffer->buffer;
2964 * Check if we are at the end of the buffer.
2966 if (iter->head >= rb_page_size(iter->head_page)) {
2967 /* discarded commits can make the page empty */
2968 if (iter->head_page == cpu_buffer->commit_page)
2969 return;
2970 rb_inc_iter(iter);
2971 return;
2974 event = rb_iter_head_event(iter);
2976 length = rb_event_length(event);
2979 * This should not be called to advance the header if we are
2980 * at the tail of the buffer.
2982 if (RB_WARN_ON(cpu_buffer,
2983 (iter->head_page == cpu_buffer->commit_page) &&
2984 (iter->head + length > rb_commit_index(cpu_buffer))))
2985 return;
2987 rb_update_iter_read_stamp(iter, event);
2989 iter->head += length;
2991 /* check for end of page padding */
2992 if ((iter->head >= rb_page_size(iter->head_page)) &&
2993 (iter->head_page != cpu_buffer->commit_page))
2994 rb_advance_iter(iter);
2997 static struct ring_buffer_event *
2998 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3000 struct ring_buffer_event *event;
3001 struct buffer_page *reader;
3002 int nr_loops = 0;
3004 again:
3006 * We repeat when a timestamp is encountered. It is possible
3007 * to get multiple timestamps from an interrupt entering just
3008 * as one timestamp is about to be written, or from discarded
3009 * commits. The most that we can have is the number on a single page.
3011 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3012 return NULL;
3014 reader = rb_get_reader_page(cpu_buffer);
3015 if (!reader)
3016 return NULL;
3018 event = rb_reader_event(cpu_buffer);
3020 switch (event->type_len) {
3021 case RINGBUF_TYPE_PADDING:
3022 if (rb_null_event(event))
3023 RB_WARN_ON(cpu_buffer, 1);
3025 * Because the writer could be discarding every
3026 * event it creates (which would probably be bad)
3027 * if we were to go back to "again" then we may never
3028 * catch up, and will trigger the warn on, or lock
3029 * the box. Return the padding, and we will release
3030 * the current locks, and try again.
3032 return event;
3034 case RINGBUF_TYPE_TIME_EXTEND:
3035 /* Internal data, OK to advance */
3036 rb_advance_reader(cpu_buffer);
3037 goto again;
3039 case RINGBUF_TYPE_TIME_STAMP:
3040 /* FIXME: not implemented */
3041 rb_advance_reader(cpu_buffer);
3042 goto again;
3044 case RINGBUF_TYPE_DATA:
3045 if (ts) {
3046 *ts = cpu_buffer->read_stamp + event->time_delta;
3047 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3048 cpu_buffer->cpu, ts);
3050 return event;
3052 default:
3053 BUG();
3056 return NULL;
3058 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3060 static struct ring_buffer_event *
3061 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3063 struct ring_buffer *buffer;
3064 struct ring_buffer_per_cpu *cpu_buffer;
3065 struct ring_buffer_event *event;
3066 int nr_loops = 0;
3068 if (ring_buffer_iter_empty(iter))
3069 return NULL;
3071 cpu_buffer = iter->cpu_buffer;
3072 buffer = cpu_buffer->buffer;
3074 again:
3076 * We repeat when a timestamp is encountered.
3077 * We can get multiple timestamps by nested interrupts or also
3078 * if filtering is on (discarding commits). Since discarding
3079 * commits can be frequent we can get a lot of timestamps.
3080 * But we limit them by not adding timestamps if they begin
3081 * at the start of a page.
3083 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3084 return NULL;
3086 if (rb_per_cpu_empty(cpu_buffer))
3087 return NULL;
3089 event = rb_iter_head_event(iter);
3091 switch (event->type_len) {
3092 case RINGBUF_TYPE_PADDING:
3093 if (rb_null_event(event)) {
3094 rb_inc_iter(iter);
3095 goto again;
3097 rb_advance_iter(iter);
3098 return event;
3100 case RINGBUF_TYPE_TIME_EXTEND:
3101 /* Internal data, OK to advance */
3102 rb_advance_iter(iter);
3103 goto again;
3105 case RINGBUF_TYPE_TIME_STAMP:
3106 /* FIXME: not implemented */
3107 rb_advance_iter(iter);
3108 goto again;
3110 case RINGBUF_TYPE_DATA:
3111 if (ts) {
3112 *ts = iter->read_stamp + event->time_delta;
3113 ring_buffer_normalize_time_stamp(buffer,
3114 cpu_buffer->cpu, ts);
3116 return event;
3118 default:
3119 BUG();
3122 return NULL;
3124 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3126 static inline int rb_ok_to_lock(void)
3129 * If an NMI die dumps out the content of the ring buffer
3130 * do not grab locks. We also permanently disable the ring
3131 * buffer too. A one time deal is all you get from reading
3132 * the ring buffer from an NMI.
3134 if (likely(!in_nmi()))
3135 return 1;
3137 tracing_off_permanent();
3138 return 0;
3142 * ring_buffer_peek - peek at the next event to be read
3143 * @buffer: The ring buffer to read
3144 * @cpu: The cpu to peak at
3145 * @ts: The timestamp counter of this event.
3147 * This will return the event that will be read next, but does
3148 * not consume the data.
3150 struct ring_buffer_event *
3151 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3153 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3154 struct ring_buffer_event *event;
3155 unsigned long flags;
3156 int dolock;
3158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159 return NULL;
3161 dolock = rb_ok_to_lock();
3162 again:
3163 local_irq_save(flags);
3164 if (dolock)
3165 spin_lock(&cpu_buffer->reader_lock);
3166 event = rb_buffer_peek(cpu_buffer, ts);
3167 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3168 rb_advance_reader(cpu_buffer);
3169 if (dolock)
3170 spin_unlock(&cpu_buffer->reader_lock);
3171 local_irq_restore(flags);
3173 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3174 goto again;
3176 return event;
3180 * ring_buffer_iter_peek - peek at the next event to be read
3181 * @iter: The ring buffer iterator
3182 * @ts: The timestamp counter of this event.
3184 * This will return the event that will be read next, but does
3185 * not increment the iterator.
3187 struct ring_buffer_event *
3188 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3190 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3191 struct ring_buffer_event *event;
3192 unsigned long flags;
3194 again:
3195 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3196 event = rb_iter_peek(iter, ts);
3197 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3199 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3200 goto again;
3202 return event;
3206 * ring_buffer_consume - return an event and consume it
3207 * @buffer: The ring buffer to get the next event from
3209 * Returns the next event in the ring buffer, and that event is consumed.
3210 * Meaning, that sequential reads will keep returning a different event,
3211 * and eventually empty the ring buffer if the producer is slower.
3213 struct ring_buffer_event *
3214 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3216 struct ring_buffer_per_cpu *cpu_buffer;
3217 struct ring_buffer_event *event = NULL;
3218 unsigned long flags;
3219 int dolock;
3221 dolock = rb_ok_to_lock();
3223 again:
3224 /* might be called in atomic */
3225 preempt_disable();
3227 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228 goto out;
3230 cpu_buffer = buffer->buffers[cpu];
3231 local_irq_save(flags);
3232 if (dolock)
3233 spin_lock(&cpu_buffer->reader_lock);
3235 event = rb_buffer_peek(cpu_buffer, ts);
3236 if (event)
3237 rb_advance_reader(cpu_buffer);
3239 if (dolock)
3240 spin_unlock(&cpu_buffer->reader_lock);
3241 local_irq_restore(flags);
3243 out:
3244 preempt_enable();
3246 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3247 goto again;
3249 return event;
3251 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3254 * ring_buffer_read_start - start a non consuming read of the buffer
3255 * @buffer: The ring buffer to read from
3256 * @cpu: The cpu buffer to iterate over
3258 * This starts up an iteration through the buffer. It also disables
3259 * the recording to the buffer until the reading is finished.
3260 * This prevents the reading from being corrupted. This is not
3261 * a consuming read, so a producer is not expected.
3263 * Must be paired with ring_buffer_finish.
3265 struct ring_buffer_iter *
3266 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3268 struct ring_buffer_per_cpu *cpu_buffer;
3269 struct ring_buffer_iter *iter;
3270 unsigned long flags;
3272 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273 return NULL;
3275 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3276 if (!iter)
3277 return NULL;
3279 cpu_buffer = buffer->buffers[cpu];
3281 iter->cpu_buffer = cpu_buffer;
3283 atomic_inc(&cpu_buffer->record_disabled);
3284 synchronize_sched();
3286 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3287 __raw_spin_lock(&cpu_buffer->lock);
3288 rb_iter_reset(iter);
3289 __raw_spin_unlock(&cpu_buffer->lock);
3290 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3292 return iter;
3294 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3297 * ring_buffer_finish - finish reading the iterator of the buffer
3298 * @iter: The iterator retrieved by ring_buffer_start
3300 * This re-enables the recording to the buffer, and frees the
3301 * iterator.
3303 void
3304 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3306 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3308 atomic_dec(&cpu_buffer->record_disabled);
3309 kfree(iter);
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3314 * ring_buffer_read - read the next item in the ring buffer by the iterator
3315 * @iter: The ring buffer iterator
3316 * @ts: The time stamp of the event read.
3318 * This reads the next event in the ring buffer and increments the iterator.
3320 struct ring_buffer_event *
3321 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3323 struct ring_buffer_event *event;
3324 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3325 unsigned long flags;
3327 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3328 again:
3329 event = rb_iter_peek(iter, ts);
3330 if (!event)
3331 goto out;
3333 if (event->type_len == RINGBUF_TYPE_PADDING)
3334 goto again;
3336 rb_advance_iter(iter);
3337 out:
3338 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3340 return event;
3342 EXPORT_SYMBOL_GPL(ring_buffer_read);
3345 * ring_buffer_size - return the size of the ring buffer (in bytes)
3346 * @buffer: The ring buffer.
3348 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3350 return BUF_PAGE_SIZE * buffer->pages;
3352 EXPORT_SYMBOL_GPL(ring_buffer_size);
3354 static void
3355 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3357 rb_head_page_deactivate(cpu_buffer);
3359 cpu_buffer->head_page
3360 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3361 local_set(&cpu_buffer->head_page->write, 0);
3362 local_set(&cpu_buffer->head_page->entries, 0);
3363 local_set(&cpu_buffer->head_page->page->commit, 0);
3365 cpu_buffer->head_page->read = 0;
3367 cpu_buffer->tail_page = cpu_buffer->head_page;
3368 cpu_buffer->commit_page = cpu_buffer->head_page;
3370 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3371 local_set(&cpu_buffer->reader_page->write, 0);
3372 local_set(&cpu_buffer->reader_page->entries, 0);
3373 local_set(&cpu_buffer->reader_page->page->commit, 0);
3374 cpu_buffer->reader_page->read = 0;
3376 local_set(&cpu_buffer->commit_overrun, 0);
3377 local_set(&cpu_buffer->overrun, 0);
3378 local_set(&cpu_buffer->entries, 0);
3379 local_set(&cpu_buffer->committing, 0);
3380 local_set(&cpu_buffer->commits, 0);
3381 cpu_buffer->read = 0;
3383 cpu_buffer->write_stamp = 0;
3384 cpu_buffer->read_stamp = 0;
3386 rb_head_page_activate(cpu_buffer);
3390 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3391 * @buffer: The ring buffer to reset a per cpu buffer of
3392 * @cpu: The CPU buffer to be reset
3394 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3396 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3397 unsigned long flags;
3399 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3400 return;
3402 atomic_inc(&cpu_buffer->record_disabled);
3404 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3406 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3407 goto out;
3409 __raw_spin_lock(&cpu_buffer->lock);
3411 rb_reset_cpu(cpu_buffer);
3413 __raw_spin_unlock(&cpu_buffer->lock);
3415 out:
3416 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3418 atomic_dec(&cpu_buffer->record_disabled);
3420 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3423 * ring_buffer_reset - reset a ring buffer
3424 * @buffer: The ring buffer to reset all cpu buffers
3426 void ring_buffer_reset(struct ring_buffer *buffer)
3428 int cpu;
3430 for_each_buffer_cpu(buffer, cpu)
3431 ring_buffer_reset_cpu(buffer, cpu);
3433 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3436 * rind_buffer_empty - is the ring buffer empty?
3437 * @buffer: The ring buffer to test
3439 int ring_buffer_empty(struct ring_buffer *buffer)
3441 struct ring_buffer_per_cpu *cpu_buffer;
3442 unsigned long flags;
3443 int dolock;
3444 int cpu;
3445 int ret;
3447 dolock = rb_ok_to_lock();
3449 /* yes this is racy, but if you don't like the race, lock the buffer */
3450 for_each_buffer_cpu(buffer, cpu) {
3451 cpu_buffer = buffer->buffers[cpu];
3452 local_irq_save(flags);
3453 if (dolock)
3454 spin_lock(&cpu_buffer->reader_lock);
3455 ret = rb_per_cpu_empty(cpu_buffer);
3456 if (dolock)
3457 spin_unlock(&cpu_buffer->reader_lock);
3458 local_irq_restore(flags);
3460 if (!ret)
3461 return 0;
3464 return 1;
3466 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3469 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3470 * @buffer: The ring buffer
3471 * @cpu: The CPU buffer to test
3473 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3475 struct ring_buffer_per_cpu *cpu_buffer;
3476 unsigned long flags;
3477 int dolock;
3478 int ret;
3480 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3481 return 1;
3483 dolock = rb_ok_to_lock();
3485 cpu_buffer = buffer->buffers[cpu];
3486 local_irq_save(flags);
3487 if (dolock)
3488 spin_lock(&cpu_buffer->reader_lock);
3489 ret = rb_per_cpu_empty(cpu_buffer);
3490 if (dolock)
3491 spin_unlock(&cpu_buffer->reader_lock);
3492 local_irq_restore(flags);
3494 return ret;
3496 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3498 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3500 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3501 * @buffer_a: One buffer to swap with
3502 * @buffer_b: The other buffer to swap with
3504 * This function is useful for tracers that want to take a "snapshot"
3505 * of a CPU buffer and has another back up buffer lying around.
3506 * it is expected that the tracer handles the cpu buffer not being
3507 * used at the moment.
3509 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3510 struct ring_buffer *buffer_b, int cpu)
3512 struct ring_buffer_per_cpu *cpu_buffer_a;
3513 struct ring_buffer_per_cpu *cpu_buffer_b;
3514 int ret = -EINVAL;
3516 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3517 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3518 goto out;
3520 /* At least make sure the two buffers are somewhat the same */
3521 if (buffer_a->pages != buffer_b->pages)
3522 goto out;
3524 ret = -EAGAIN;
3526 if (ring_buffer_flags != RB_BUFFERS_ON)
3527 goto out;
3529 if (atomic_read(&buffer_a->record_disabled))
3530 goto out;
3532 if (atomic_read(&buffer_b->record_disabled))
3533 goto out;
3535 cpu_buffer_a = buffer_a->buffers[cpu];
3536 cpu_buffer_b = buffer_b->buffers[cpu];
3538 if (atomic_read(&cpu_buffer_a->record_disabled))
3539 goto out;
3541 if (atomic_read(&cpu_buffer_b->record_disabled))
3542 goto out;
3545 * We can't do a synchronize_sched here because this
3546 * function can be called in atomic context.
3547 * Normally this will be called from the same CPU as cpu.
3548 * If not it's up to the caller to protect this.
3550 atomic_inc(&cpu_buffer_a->record_disabled);
3551 atomic_inc(&cpu_buffer_b->record_disabled);
3553 ret = -EBUSY;
3554 if (local_read(&cpu_buffer_a->committing))
3555 goto out_dec;
3556 if (local_read(&cpu_buffer_b->committing))
3557 goto out_dec;
3559 buffer_a->buffers[cpu] = cpu_buffer_b;
3560 buffer_b->buffers[cpu] = cpu_buffer_a;
3562 cpu_buffer_b->buffer = buffer_a;
3563 cpu_buffer_a->buffer = buffer_b;
3565 ret = 0;
3567 out_dec:
3568 atomic_dec(&cpu_buffer_a->record_disabled);
3569 atomic_dec(&cpu_buffer_b->record_disabled);
3570 out:
3571 return ret;
3573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3577 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3578 * @buffer: the buffer to allocate for.
3580 * This function is used in conjunction with ring_buffer_read_page.
3581 * When reading a full page from the ring buffer, these functions
3582 * can be used to speed up the process. The calling function should
3583 * allocate a few pages first with this function. Then when it
3584 * needs to get pages from the ring buffer, it passes the result
3585 * of this function into ring_buffer_read_page, which will swap
3586 * the page that was allocated, with the read page of the buffer.
3588 * Returns:
3589 * The page allocated, or NULL on error.
3591 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3593 struct buffer_data_page *bpage;
3594 unsigned long addr;
3596 addr = __get_free_page(GFP_KERNEL);
3597 if (!addr)
3598 return NULL;
3600 bpage = (void *)addr;
3602 rb_init_page(bpage);
3604 return bpage;
3606 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3609 * ring_buffer_free_read_page - free an allocated read page
3610 * @buffer: the buffer the page was allocate for
3611 * @data: the page to free
3613 * Free a page allocated from ring_buffer_alloc_read_page.
3615 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3617 free_page((unsigned long)data);
3619 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3622 * ring_buffer_read_page - extract a page from the ring buffer
3623 * @buffer: buffer to extract from
3624 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3625 * @len: amount to extract
3626 * @cpu: the cpu of the buffer to extract
3627 * @full: should the extraction only happen when the page is full.
3629 * This function will pull out a page from the ring buffer and consume it.
3630 * @data_page must be the address of the variable that was returned
3631 * from ring_buffer_alloc_read_page. This is because the page might be used
3632 * to swap with a page in the ring buffer.
3634 * for example:
3635 * rpage = ring_buffer_alloc_read_page(buffer);
3636 * if (!rpage)
3637 * return error;
3638 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3639 * if (ret >= 0)
3640 * process_page(rpage, ret);
3642 * When @full is set, the function will not return true unless
3643 * the writer is off the reader page.
3645 * Note: it is up to the calling functions to handle sleeps and wakeups.
3646 * The ring buffer can be used anywhere in the kernel and can not
3647 * blindly call wake_up. The layer that uses the ring buffer must be
3648 * responsible for that.
3650 * Returns:
3651 * >=0 if data has been transferred, returns the offset of consumed data.
3652 * <0 if no data has been transferred.
3654 int ring_buffer_read_page(struct ring_buffer *buffer,
3655 void **data_page, size_t len, int cpu, int full)
3657 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3658 struct ring_buffer_event *event;
3659 struct buffer_data_page *bpage;
3660 struct buffer_page *reader;
3661 unsigned long flags;
3662 unsigned int commit;
3663 unsigned int read;
3664 u64 save_timestamp;
3665 int ret = -1;
3667 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3668 goto out;
3671 * If len is not big enough to hold the page header, then
3672 * we can not copy anything.
3674 if (len <= BUF_PAGE_HDR_SIZE)
3675 goto out;
3677 len -= BUF_PAGE_HDR_SIZE;
3679 if (!data_page)
3680 goto out;
3682 bpage = *data_page;
3683 if (!bpage)
3684 goto out;
3686 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3688 reader = rb_get_reader_page(cpu_buffer);
3689 if (!reader)
3690 goto out_unlock;
3692 event = rb_reader_event(cpu_buffer);
3694 read = reader->read;
3695 commit = rb_page_commit(reader);
3698 * If this page has been partially read or
3699 * if len is not big enough to read the rest of the page or
3700 * a writer is still on the page, then
3701 * we must copy the data from the page to the buffer.
3702 * Otherwise, we can simply swap the page with the one passed in.
3704 if (read || (len < (commit - read)) ||
3705 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3706 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3707 unsigned int rpos = read;
3708 unsigned int pos = 0;
3709 unsigned int size;
3711 if (full)
3712 goto out_unlock;
3714 if (len > (commit - read))
3715 len = (commit - read);
3717 size = rb_event_length(event);
3719 if (len < size)
3720 goto out_unlock;
3722 /* save the current timestamp, since the user will need it */
3723 save_timestamp = cpu_buffer->read_stamp;
3725 /* Need to copy one event at a time */
3726 do {
3727 memcpy(bpage->data + pos, rpage->data + rpos, size);
3729 len -= size;
3731 rb_advance_reader(cpu_buffer);
3732 rpos = reader->read;
3733 pos += size;
3735 event = rb_reader_event(cpu_buffer);
3736 size = rb_event_length(event);
3737 } while (len > size);
3739 /* update bpage */
3740 local_set(&bpage->commit, pos);
3741 bpage->time_stamp = save_timestamp;
3743 /* we copied everything to the beginning */
3744 read = 0;
3745 } else {
3746 /* update the entry counter */
3747 cpu_buffer->read += rb_page_entries(reader);
3749 /* swap the pages */
3750 rb_init_page(bpage);
3751 bpage = reader->page;
3752 reader->page = *data_page;
3753 local_set(&reader->write, 0);
3754 local_set(&reader->entries, 0);
3755 reader->read = 0;
3756 *data_page = bpage;
3758 ret = read;
3760 out_unlock:
3761 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3763 out:
3764 return ret;
3766 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3768 #ifdef CONFIG_TRACING
3769 static ssize_t
3770 rb_simple_read(struct file *filp, char __user *ubuf,
3771 size_t cnt, loff_t *ppos)
3773 unsigned long *p = filp->private_data;
3774 char buf[64];
3775 int r;
3777 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3778 r = sprintf(buf, "permanently disabled\n");
3779 else
3780 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3782 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3785 static ssize_t
3786 rb_simple_write(struct file *filp, const char __user *ubuf,
3787 size_t cnt, loff_t *ppos)
3789 unsigned long *p = filp->private_data;
3790 char buf[64];
3791 unsigned long val;
3792 int ret;
3794 if (cnt >= sizeof(buf))
3795 return -EINVAL;
3797 if (copy_from_user(&buf, ubuf, cnt))
3798 return -EFAULT;
3800 buf[cnt] = 0;
3802 ret = strict_strtoul(buf, 10, &val);
3803 if (ret < 0)
3804 return ret;
3806 if (val)
3807 set_bit(RB_BUFFERS_ON_BIT, p);
3808 else
3809 clear_bit(RB_BUFFERS_ON_BIT, p);
3811 (*ppos)++;
3813 return cnt;
3816 static const struct file_operations rb_simple_fops = {
3817 .open = tracing_open_generic,
3818 .read = rb_simple_read,
3819 .write = rb_simple_write,
3823 static __init int rb_init_debugfs(void)
3825 struct dentry *d_tracer;
3827 d_tracer = tracing_init_dentry();
3829 trace_create_file("tracing_on", 0644, d_tracer,
3830 &ring_buffer_flags, &rb_simple_fops);
3832 return 0;
3835 fs_initcall(rb_init_debugfs);
3836 #endif
3838 #ifdef CONFIG_HOTPLUG_CPU
3839 static int rb_cpu_notify(struct notifier_block *self,
3840 unsigned long action, void *hcpu)
3842 struct ring_buffer *buffer =
3843 container_of(self, struct ring_buffer, cpu_notify);
3844 long cpu = (long)hcpu;
3846 switch (action) {
3847 case CPU_UP_PREPARE:
3848 case CPU_UP_PREPARE_FROZEN:
3849 if (cpumask_test_cpu(cpu, buffer->cpumask))
3850 return NOTIFY_OK;
3852 buffer->buffers[cpu] =
3853 rb_allocate_cpu_buffer(buffer, cpu);
3854 if (!buffer->buffers[cpu]) {
3855 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3856 cpu);
3857 return NOTIFY_OK;
3859 smp_wmb();
3860 cpumask_set_cpu(cpu, buffer->cpumask);
3861 break;
3862 case CPU_DOWN_PREPARE:
3863 case CPU_DOWN_PREPARE_FROZEN:
3865 * Do nothing.
3866 * If we were to free the buffer, then the user would
3867 * lose any trace that was in the buffer.
3869 break;
3870 default:
3871 break;
3873 return NOTIFY_OK;
3875 #endif