OMAP3 SRF: Generic shared resource f/w
[linux-ginger.git] / fs / btrfs / inode.c
blobdae12dc7e1595e5e4a78e6f9b03fe566b7dcc24e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
53 struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93 int err;
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
130 path = btrfs_alloc_path();
131 if (!path)
132 return -ENOMEM;
134 path->leave_spinning = 1;
135 btrfs_set_trans_block_group(trans, inode);
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
148 goto fail;
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
163 while (compressed_size > 0) {
164 cpage = compressed_pages[i];
165 cur_size = min_t(unsigned long, compressed_size,
166 PAGE_CACHE_SIZE);
168 kaddr = kmap_atomic(cpage, KM_USER0);
169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 kunmap_atomic(kaddr, KM_USER0);
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194 fail:
195 btrfs_free_path(path);
196 return err;
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
220 if (compressed_size)
221 data_len = compressed_size;
223 if (start > 0 ||
224 actual_end >= PAGE_CACHE_SIZE ||
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
233 ret = btrfs_drop_extents(trans, root, inode, start,
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
236 BUG_ON(ret);
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245 return 0;
248 struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
257 struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
267 static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
273 struct async_extent *async_extent;
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
309 u64 num_bytes;
310 u64 orig_start;
311 u64 disk_num_bytes;
312 u64 blocksize = root->sectorsize;
313 u64 actual_end;
314 u64 isize = i_size_read(inode);
315 int ret = 0;
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
322 unsigned long max_uncompressed = 128 * 1024;
323 int i;
324 int will_compress;
326 orig_start = start;
328 actual_end = min_t(u64, isize, end + 1);
329 again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
347 total_compressed = actual_end - start;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed = min(total_compressed, max_uncompressed);
360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 num_bytes = max(blocksize, num_bytes);
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
398 will_compress = 1;
401 if (start == 0) {
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
406 /* lets try to make an inline extent */
407 if (ret || total_in < (actual_end - start)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
414 /* try making a compressed inline extent */
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
419 btrfs_end_transaction(trans, root);
420 if (ret == 0) {
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430 EXTENT_CLEAR_DELALLOC |
431 EXTENT_CLEAR_ACCOUNTING |
432 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
433 ret = 0;
434 goto free_pages_out;
438 if (will_compress) {
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
442 * things
444 total_compressed = (total_compressed + blocksize - 1) &
445 ~(blocksize - 1);
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
451 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 ~(PAGE_CACHE_SIZE - 1);
453 if (total_compressed >= total_in) {
454 will_compress = 0;
455 } else {
456 disk_num_bytes = total_compressed;
457 num_bytes = total_in;
460 if (!will_compress && pages) {
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
465 for (i = 0; i < nr_pages_ret; i++) {
466 WARN_ON(pages[i]->mapping);
467 page_cache_release(pages[i]);
469 kfree(pages);
470 pages = NULL;
471 total_compressed = 0;
472 nr_pages_ret = 0;
474 /* flag the file so we don't compress in the future */
475 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
477 if (will_compress) {
478 *num_added += 1;
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
484 add_async_extent(async_cow, start, num_bytes,
485 total_compressed, pages, nr_pages_ret);
487 if (start + num_bytes < end && start + num_bytes < actual_end) {
488 start += num_bytes;
489 pages = NULL;
490 cond_resched();
491 goto again;
493 } else {
494 cleanup_and_bail_uncompressed:
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
502 if (page_offset(locked_page) >= start &&
503 page_offset(locked_page) <= end) {
504 __set_page_dirty_nobuffers(locked_page);
505 /* unlocked later on in the async handlers */
507 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508 *num_added += 1;
511 out:
512 return 0;
514 free_pages_out:
515 for (i = 0; i < nr_pages_ret; i++) {
516 WARN_ON(pages[i]->mapping);
517 page_cache_release(pages[i]);
519 kfree(pages);
521 goto out;
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
530 static noinline int submit_compressed_extents(struct inode *inode,
531 struct async_cow *async_cow)
533 struct async_extent *async_extent;
534 u64 alloc_hint = 0;
535 struct btrfs_trans_handle *trans;
536 struct btrfs_key ins;
537 struct extent_map *em;
538 struct btrfs_root *root = BTRFS_I(inode)->root;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 struct extent_io_tree *io_tree;
541 int ret;
543 if (list_empty(&async_cow->extents))
544 return 0;
546 trans = btrfs_join_transaction(root, 1);
548 while (!list_empty(&async_cow->extents)) {
549 async_extent = list_entry(async_cow->extents.next,
550 struct async_extent, list);
551 list_del(&async_extent->list);
553 io_tree = &BTRFS_I(inode)->io_tree;
555 /* did the compression code fall back to uncompressed IO? */
556 if (!async_extent->pages) {
557 int page_started = 0;
558 unsigned long nr_written = 0;
560 lock_extent(io_tree, async_extent->start,
561 async_extent->start +
562 async_extent->ram_size - 1, GFP_NOFS);
564 /* allocate blocks */
565 cow_file_range(inode, async_cow->locked_page,
566 async_extent->start,
567 async_extent->start +
568 async_extent->ram_size - 1,
569 &page_started, &nr_written, 0);
572 * if page_started, cow_file_range inserted an
573 * inline extent and took care of all the unlocking
574 * and IO for us. Otherwise, we need to submit
575 * all those pages down to the drive.
577 if (!page_started)
578 extent_write_locked_range(io_tree,
579 inode, async_extent->start,
580 async_extent->start +
581 async_extent->ram_size - 1,
582 btrfs_get_extent,
583 WB_SYNC_ALL);
584 kfree(async_extent);
585 cond_resched();
586 continue;
589 lock_extent(io_tree, async_extent->start,
590 async_extent->start + async_extent->ram_size - 1,
591 GFP_NOFS);
593 * here we're doing allocation and writeback of the
594 * compressed pages
596 btrfs_drop_extent_cache(inode, async_extent->start,
597 async_extent->start +
598 async_extent->ram_size - 1, 0);
600 ret = btrfs_reserve_extent(trans, root,
601 async_extent->compressed_size,
602 async_extent->compressed_size,
603 0, alloc_hint,
604 (u64)-1, &ins, 1);
605 BUG_ON(ret);
606 em = alloc_extent_map(GFP_NOFS);
607 em->start = async_extent->start;
608 em->len = async_extent->ram_size;
609 em->orig_start = em->start;
611 em->block_start = ins.objectid;
612 em->block_len = ins.offset;
613 em->bdev = root->fs_info->fs_devices->latest_bdev;
614 set_bit(EXTENT_FLAG_PINNED, &em->flags);
615 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
617 while (1) {
618 write_lock(&em_tree->lock);
619 ret = add_extent_mapping(em_tree, em);
620 write_unlock(&em_tree->lock);
621 if (ret != -EEXIST) {
622 free_extent_map(em);
623 break;
625 btrfs_drop_extent_cache(inode, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1, 0);
630 ret = btrfs_add_ordered_extent(inode, async_extent->start,
631 ins.objectid,
632 async_extent->ram_size,
633 ins.offset,
634 BTRFS_ORDERED_COMPRESSED);
635 BUG_ON(ret);
637 btrfs_end_transaction(trans, root);
640 * clear dirty, set writeback and unlock the pages.
642 extent_clear_unlock_delalloc(inode,
643 &BTRFS_I(inode)->io_tree,
644 async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1,
647 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
648 EXTENT_CLEAR_UNLOCK |
649 EXTENT_CLEAR_DELALLOC |
650 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
652 ret = btrfs_submit_compressed_write(inode,
653 async_extent->start,
654 async_extent->ram_size,
655 ins.objectid,
656 ins.offset, async_extent->pages,
657 async_extent->nr_pages);
659 BUG_ON(ret);
660 trans = btrfs_join_transaction(root, 1);
661 alloc_hint = ins.objectid + ins.offset;
662 kfree(async_extent);
663 cond_resched();
666 btrfs_end_transaction(trans, root);
667 return 0;
671 * when extent_io.c finds a delayed allocation range in the file,
672 * the call backs end up in this code. The basic idea is to
673 * allocate extents on disk for the range, and create ordered data structs
674 * in ram to track those extents.
676 * locked_page is the page that writepage had locked already. We use
677 * it to make sure we don't do extra locks or unlocks.
679 * *page_started is set to one if we unlock locked_page and do everything
680 * required to start IO on it. It may be clean and already done with
681 * IO when we return.
683 static noinline int cow_file_range(struct inode *inode,
684 struct page *locked_page,
685 u64 start, u64 end, int *page_started,
686 unsigned long *nr_written,
687 int unlock)
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct btrfs_trans_handle *trans;
691 u64 alloc_hint = 0;
692 u64 num_bytes;
693 unsigned long ram_size;
694 u64 disk_num_bytes;
695 u64 cur_alloc_size;
696 u64 blocksize = root->sectorsize;
697 u64 actual_end;
698 u64 isize = i_size_read(inode);
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 int ret = 0;
704 trans = btrfs_join_transaction(root, 1);
705 BUG_ON(!trans);
706 btrfs_set_trans_block_group(trans, inode);
708 actual_end = min_t(u64, isize, end + 1);
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
713 ret = 0;
715 if (start == 0) {
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
719 if (ret == 0) {
720 extent_clear_unlock_delalloc(inode,
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL,
723 EXTENT_CLEAR_UNLOCK_PAGE |
724 EXTENT_CLEAR_UNLOCK |
725 EXTENT_CLEAR_DELALLOC |
726 EXTENT_CLEAR_ACCOUNTING |
727 EXTENT_CLEAR_DIRTY |
728 EXTENT_SET_WRITEBACK |
729 EXTENT_END_WRITEBACK);
730 *nr_written = *nr_written +
731 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732 *page_started = 1;
733 ret = 0;
734 goto out;
738 BUG_ON(disk_num_bytes >
739 btrfs_super_total_bytes(&root->fs_info->super_copy));
742 read_lock(&BTRFS_I(inode)->extent_tree.lock);
743 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
744 start, num_bytes);
745 if (em) {
746 alloc_hint = em->block_start;
747 free_extent_map(em);
749 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
750 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
752 while (disk_num_bytes > 0) {
753 unsigned long op;
755 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
756 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
757 root->sectorsize, 0, alloc_hint,
758 (u64)-1, &ins, 1);
759 BUG_ON(ret);
761 em = alloc_extent_map(GFP_NOFS);
762 em->start = start;
763 em->orig_start = em->start;
764 ram_size = ins.offset;
765 em->len = ins.offset;
767 em->block_start = ins.objectid;
768 em->block_len = ins.offset;
769 em->bdev = root->fs_info->fs_devices->latest_bdev;
770 set_bit(EXTENT_FLAG_PINNED, &em->flags);
772 while (1) {
773 write_lock(&em_tree->lock);
774 ret = add_extent_mapping(em_tree, em);
775 write_unlock(&em_tree->lock);
776 if (ret != -EEXIST) {
777 free_extent_map(em);
778 break;
780 btrfs_drop_extent_cache(inode, start,
781 start + ram_size - 1, 0);
784 cur_alloc_size = ins.offset;
785 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
786 ram_size, cur_alloc_size, 0);
787 BUG_ON(ret);
789 if (root->root_key.objectid ==
790 BTRFS_DATA_RELOC_TREE_OBJECTID) {
791 ret = btrfs_reloc_clone_csums(inode, start,
792 cur_alloc_size);
793 BUG_ON(ret);
796 if (disk_num_bytes < cur_alloc_size)
797 break;
799 /* we're not doing compressed IO, don't unlock the first
800 * page (which the caller expects to stay locked), don't
801 * clear any dirty bits and don't set any writeback bits
803 * Do set the Private2 bit so we know this page was properly
804 * setup for writepage
806 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
807 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
808 EXTENT_SET_PRIVATE2;
810 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811 start, start + ram_size - 1,
812 locked_page, op);
813 disk_num_bytes -= cur_alloc_size;
814 num_bytes -= cur_alloc_size;
815 alloc_hint = ins.objectid + ins.offset;
816 start += cur_alloc_size;
818 out:
819 ret = 0;
820 btrfs_end_transaction(trans, root);
822 return ret;
826 * work queue call back to started compression on a file and pages
828 static noinline void async_cow_start(struct btrfs_work *work)
830 struct async_cow *async_cow;
831 int num_added = 0;
832 async_cow = container_of(work, struct async_cow, work);
834 compress_file_range(async_cow->inode, async_cow->locked_page,
835 async_cow->start, async_cow->end, async_cow,
836 &num_added);
837 if (num_added == 0)
838 async_cow->inode = NULL;
842 * work queue call back to submit previously compressed pages
844 static noinline void async_cow_submit(struct btrfs_work *work)
846 struct async_cow *async_cow;
847 struct btrfs_root *root;
848 unsigned long nr_pages;
850 async_cow = container_of(work, struct async_cow, work);
852 root = async_cow->root;
853 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
854 PAGE_CACHE_SHIFT;
856 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
858 if (atomic_read(&root->fs_info->async_delalloc_pages) <
859 5 * 1042 * 1024 &&
860 waitqueue_active(&root->fs_info->async_submit_wait))
861 wake_up(&root->fs_info->async_submit_wait);
863 if (async_cow->inode)
864 submit_compressed_extents(async_cow->inode, async_cow);
867 static noinline void async_cow_free(struct btrfs_work *work)
869 struct async_cow *async_cow;
870 async_cow = container_of(work, struct async_cow, work);
871 kfree(async_cow);
874 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
875 u64 start, u64 end, int *page_started,
876 unsigned long *nr_written)
878 struct async_cow *async_cow;
879 struct btrfs_root *root = BTRFS_I(inode)->root;
880 unsigned long nr_pages;
881 u64 cur_end;
882 int limit = 10 * 1024 * 1042;
884 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
885 1, 0, NULL, GFP_NOFS);
886 while (start < end) {
887 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
888 async_cow->inode = inode;
889 async_cow->root = root;
890 async_cow->locked_page = locked_page;
891 async_cow->start = start;
893 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
894 cur_end = end;
895 else
896 cur_end = min(end, start + 512 * 1024 - 1);
898 async_cow->end = cur_end;
899 INIT_LIST_HEAD(&async_cow->extents);
901 async_cow->work.func = async_cow_start;
902 async_cow->work.ordered_func = async_cow_submit;
903 async_cow->work.ordered_free = async_cow_free;
904 async_cow->work.flags = 0;
906 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
907 PAGE_CACHE_SHIFT;
908 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
910 btrfs_queue_worker(&root->fs_info->delalloc_workers,
911 &async_cow->work);
913 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
914 wait_event(root->fs_info->async_submit_wait,
915 (atomic_read(&root->fs_info->async_delalloc_pages) <
916 limit));
919 while (atomic_read(&root->fs_info->async_submit_draining) &&
920 atomic_read(&root->fs_info->async_delalloc_pages)) {
921 wait_event(root->fs_info->async_submit_wait,
922 (atomic_read(&root->fs_info->async_delalloc_pages) ==
923 0));
926 *nr_written += nr_pages;
927 start = cur_end + 1;
929 *page_started = 1;
930 return 0;
933 static noinline int csum_exist_in_range(struct btrfs_root *root,
934 u64 bytenr, u64 num_bytes)
936 int ret;
937 struct btrfs_ordered_sum *sums;
938 LIST_HEAD(list);
940 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
941 bytenr + num_bytes - 1, &list);
942 if (ret == 0 && list_empty(&list))
943 return 0;
945 while (!list_empty(&list)) {
946 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
947 list_del(&sums->list);
948 kfree(sums);
950 return 1;
954 * when nowcow writeback call back. This checks for snapshots or COW copies
955 * of the extents that exist in the file, and COWs the file as required.
957 * If no cow copies or snapshots exist, we write directly to the existing
958 * blocks on disk
960 static noinline int run_delalloc_nocow(struct inode *inode,
961 struct page *locked_page,
962 u64 start, u64 end, int *page_started, int force,
963 unsigned long *nr_written)
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 struct btrfs_trans_handle *trans;
967 struct extent_buffer *leaf;
968 struct btrfs_path *path;
969 struct btrfs_file_extent_item *fi;
970 struct btrfs_key found_key;
971 u64 cow_start;
972 u64 cur_offset;
973 u64 extent_end;
974 u64 extent_offset;
975 u64 disk_bytenr;
976 u64 num_bytes;
977 int extent_type;
978 int ret;
979 int type;
980 int nocow;
981 int check_prev = 1;
983 path = btrfs_alloc_path();
984 BUG_ON(!path);
985 trans = btrfs_join_transaction(root, 1);
986 BUG_ON(!trans);
988 cow_start = (u64)-1;
989 cur_offset = start;
990 while (1) {
991 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
992 cur_offset, 0);
993 BUG_ON(ret < 0);
994 if (ret > 0 && path->slots[0] > 0 && check_prev) {
995 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &found_key,
997 path->slots[0] - 1);
998 if (found_key.objectid == inode->i_ino &&
999 found_key.type == BTRFS_EXTENT_DATA_KEY)
1000 path->slots[0]--;
1002 check_prev = 0;
1003 next_slot:
1004 leaf = path->nodes[0];
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 BUG_ON(1);
1009 if (ret > 0)
1010 break;
1011 leaf = path->nodes[0];
1014 nocow = 0;
1015 disk_bytenr = 0;
1016 num_bytes = 0;
1017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1019 if (found_key.objectid > inode->i_ino ||
1020 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1021 found_key.offset > end)
1022 break;
1024 if (found_key.offset > cur_offset) {
1025 extent_end = found_key.offset;
1026 extent_type = 0;
1027 goto out_check;
1030 fi = btrfs_item_ptr(leaf, path->slots[0],
1031 struct btrfs_file_extent_item);
1032 extent_type = btrfs_file_extent_type(leaf, fi);
1034 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1035 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1036 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1037 extent_offset = btrfs_file_extent_offset(leaf, fi);
1038 extent_end = found_key.offset +
1039 btrfs_file_extent_num_bytes(leaf, fi);
1040 if (extent_end <= start) {
1041 path->slots[0]++;
1042 goto next_slot;
1044 if (disk_bytenr == 0)
1045 goto out_check;
1046 if (btrfs_file_extent_compression(leaf, fi) ||
1047 btrfs_file_extent_encryption(leaf, fi) ||
1048 btrfs_file_extent_other_encoding(leaf, fi))
1049 goto out_check;
1050 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1051 goto out_check;
1052 if (btrfs_extent_readonly(root, disk_bytenr))
1053 goto out_check;
1054 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1055 found_key.offset -
1056 extent_offset, disk_bytenr))
1057 goto out_check;
1058 disk_bytenr += extent_offset;
1059 disk_bytenr += cur_offset - found_key.offset;
1060 num_bytes = min(end + 1, extent_end) - cur_offset;
1062 * force cow if csum exists in the range.
1063 * this ensure that csum for a given extent are
1064 * either valid or do not exist.
1066 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1067 goto out_check;
1068 nocow = 1;
1069 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1070 extent_end = found_key.offset +
1071 btrfs_file_extent_inline_len(leaf, fi);
1072 extent_end = ALIGN(extent_end, root->sectorsize);
1073 } else {
1074 BUG_ON(1);
1076 out_check:
1077 if (extent_end <= start) {
1078 path->slots[0]++;
1079 goto next_slot;
1081 if (!nocow) {
1082 if (cow_start == (u64)-1)
1083 cow_start = cur_offset;
1084 cur_offset = extent_end;
1085 if (cur_offset > end)
1086 break;
1087 path->slots[0]++;
1088 goto next_slot;
1091 btrfs_release_path(root, path);
1092 if (cow_start != (u64)-1) {
1093 ret = cow_file_range(inode, locked_page, cow_start,
1094 found_key.offset - 1, page_started,
1095 nr_written, 1);
1096 BUG_ON(ret);
1097 cow_start = (u64)-1;
1100 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1101 struct extent_map *em;
1102 struct extent_map_tree *em_tree;
1103 em_tree = &BTRFS_I(inode)->extent_tree;
1104 em = alloc_extent_map(GFP_NOFS);
1105 em->start = cur_offset;
1106 em->orig_start = em->start;
1107 em->len = num_bytes;
1108 em->block_len = num_bytes;
1109 em->block_start = disk_bytenr;
1110 em->bdev = root->fs_info->fs_devices->latest_bdev;
1111 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1112 while (1) {
1113 write_lock(&em_tree->lock);
1114 ret = add_extent_mapping(em_tree, em);
1115 write_unlock(&em_tree->lock);
1116 if (ret != -EEXIST) {
1117 free_extent_map(em);
1118 break;
1120 btrfs_drop_extent_cache(inode, em->start,
1121 em->start + em->len - 1, 0);
1123 type = BTRFS_ORDERED_PREALLOC;
1124 } else {
1125 type = BTRFS_ORDERED_NOCOW;
1128 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1129 num_bytes, num_bytes, type);
1130 BUG_ON(ret);
1132 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1133 cur_offset, cur_offset + num_bytes - 1,
1134 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1135 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1136 EXTENT_SET_PRIVATE2);
1137 cur_offset = extent_end;
1138 if (cur_offset > end)
1139 break;
1141 btrfs_release_path(root, path);
1143 if (cur_offset <= end && cow_start == (u64)-1)
1144 cow_start = cur_offset;
1145 if (cow_start != (u64)-1) {
1146 ret = cow_file_range(inode, locked_page, cow_start, end,
1147 page_started, nr_written, 1);
1148 BUG_ON(ret);
1151 ret = btrfs_end_transaction(trans, root);
1152 BUG_ON(ret);
1153 btrfs_free_path(path);
1154 return 0;
1158 * extent_io.c call back to do delayed allocation processing
1160 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1161 u64 start, u64 end, int *page_started,
1162 unsigned long *nr_written)
1164 int ret;
1165 struct btrfs_root *root = BTRFS_I(inode)->root;
1167 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1168 ret = run_delalloc_nocow(inode, locked_page, start, end,
1169 page_started, 1, nr_written);
1170 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1171 ret = run_delalloc_nocow(inode, locked_page, start, end,
1172 page_started, 0, nr_written);
1173 else if (!btrfs_test_opt(root, COMPRESS))
1174 ret = cow_file_range(inode, locked_page, start, end,
1175 page_started, nr_written, 1);
1176 else
1177 ret = cow_file_range_async(inode, locked_page, start, end,
1178 page_started, nr_written);
1179 return ret;
1182 static int btrfs_split_extent_hook(struct inode *inode,
1183 struct extent_state *orig, u64 split)
1185 struct btrfs_root *root = BTRFS_I(inode)->root;
1186 u64 size;
1188 if (!(orig->state & EXTENT_DELALLOC))
1189 return 0;
1191 size = orig->end - orig->start + 1;
1192 if (size > root->fs_info->max_extent) {
1193 u64 num_extents;
1194 u64 new_size;
1196 new_size = orig->end - split + 1;
1197 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1198 root->fs_info->max_extent);
1201 * if we break a large extent up then leave oustanding_extents
1202 * be, since we've already accounted for the large extent.
1204 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1205 root->fs_info->max_extent) < num_extents)
1206 return 0;
1209 spin_lock(&BTRFS_I(inode)->accounting_lock);
1210 BTRFS_I(inode)->outstanding_extents++;
1211 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1213 return 0;
1217 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1218 * extents so we can keep track of new extents that are just merged onto old
1219 * extents, such as when we are doing sequential writes, so we can properly
1220 * account for the metadata space we'll need.
1222 static int btrfs_merge_extent_hook(struct inode *inode,
1223 struct extent_state *new,
1224 struct extent_state *other)
1226 struct btrfs_root *root = BTRFS_I(inode)->root;
1227 u64 new_size, old_size;
1228 u64 num_extents;
1230 /* not delalloc, ignore it */
1231 if (!(other->state & EXTENT_DELALLOC))
1232 return 0;
1234 old_size = other->end - other->start + 1;
1235 if (new->start < other->start)
1236 new_size = other->end - new->start + 1;
1237 else
1238 new_size = new->end - other->start + 1;
1240 /* we're not bigger than the max, unreserve the space and go */
1241 if (new_size <= root->fs_info->max_extent) {
1242 spin_lock(&BTRFS_I(inode)->accounting_lock);
1243 BTRFS_I(inode)->outstanding_extents--;
1244 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1245 return 0;
1249 * If we grew by another max_extent, just return, we want to keep that
1250 * reserved amount.
1252 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1253 root->fs_info->max_extent);
1254 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1255 root->fs_info->max_extent) > num_extents)
1256 return 0;
1258 spin_lock(&BTRFS_I(inode)->accounting_lock);
1259 BTRFS_I(inode)->outstanding_extents--;
1260 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1262 return 0;
1266 * extent_io.c set_bit_hook, used to track delayed allocation
1267 * bytes in this file, and to maintain the list of inodes that
1268 * have pending delalloc work to be done.
1270 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1271 unsigned long old, unsigned long bits)
1275 * set_bit and clear bit hooks normally require _irqsave/restore
1276 * but in this case, we are only testeing for the DELALLOC
1277 * bit, which is only set or cleared with irqs on
1279 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1280 struct btrfs_root *root = BTRFS_I(inode)->root;
1282 spin_lock(&BTRFS_I(inode)->accounting_lock);
1283 BTRFS_I(inode)->outstanding_extents++;
1284 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1285 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1286 spin_lock(&root->fs_info->delalloc_lock);
1287 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1288 root->fs_info->delalloc_bytes += end - start + 1;
1289 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1290 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1291 &root->fs_info->delalloc_inodes);
1293 spin_unlock(&root->fs_info->delalloc_lock);
1295 return 0;
1299 * extent_io.c clear_bit_hook, see set_bit_hook for why
1301 static int btrfs_clear_bit_hook(struct inode *inode,
1302 struct extent_state *state, unsigned long bits)
1305 * set_bit and clear bit hooks normally require _irqsave/restore
1306 * but in this case, we are only testeing for the DELALLOC
1307 * bit, which is only set or cleared with irqs on
1309 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1310 struct btrfs_root *root = BTRFS_I(inode)->root;
1312 if (bits & EXTENT_DO_ACCOUNTING) {
1313 spin_lock(&BTRFS_I(inode)->accounting_lock);
1314 BTRFS_I(inode)->outstanding_extents--;
1315 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1316 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1319 spin_lock(&root->fs_info->delalloc_lock);
1320 if (state->end - state->start + 1 >
1321 root->fs_info->delalloc_bytes) {
1322 printk(KERN_INFO "btrfs warning: delalloc account "
1323 "%llu %llu\n",
1324 (unsigned long long)
1325 state->end - state->start + 1,
1326 (unsigned long long)
1327 root->fs_info->delalloc_bytes);
1328 btrfs_delalloc_free_space(root, inode, (u64)-1);
1329 root->fs_info->delalloc_bytes = 0;
1330 BTRFS_I(inode)->delalloc_bytes = 0;
1331 } else {
1332 btrfs_delalloc_free_space(root, inode,
1333 state->end -
1334 state->start + 1);
1335 root->fs_info->delalloc_bytes -= state->end -
1336 state->start + 1;
1337 BTRFS_I(inode)->delalloc_bytes -= state->end -
1338 state->start + 1;
1340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1344 spin_unlock(&root->fs_info->delalloc_lock);
1346 return 0;
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1354 size_t size, struct bio *bio,
1355 unsigned long bio_flags)
1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 struct btrfs_mapping_tree *map_tree;
1359 u64 logical = (u64)bio->bi_sector << 9;
1360 u64 length = 0;
1361 u64 map_length;
1362 int ret;
1364 if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 return 0;
1367 length = bio->bi_size;
1368 map_tree = &root->fs_info->mapping_tree;
1369 map_length = length;
1370 ret = btrfs_map_block(map_tree, READ, logical,
1371 &map_length, NULL, 0);
1373 if (map_length < length + size)
1374 return 1;
1375 return 0;
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 struct bio *bio, int mirror_num,
1388 unsigned long bio_flags)
1390 struct btrfs_root *root = BTRFS_I(inode)->root;
1391 int ret = 0;
1393 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1394 BUG_ON(ret);
1395 return 0;
1399 * in order to insert checksums into the metadata in large chunks,
1400 * we wait until bio submission time. All the pages in the bio are
1401 * checksummed and sums are attached onto the ordered extent record.
1403 * At IO completion time the cums attached on the ordered extent record
1404 * are inserted into the btree
1406 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1407 int mirror_num, unsigned long bio_flags)
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1414 * extent_io.c submission hook. This does the right thing for csum calculation
1415 * on write, or reading the csums from the tree before a read
1417 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1418 int mirror_num, unsigned long bio_flags)
1420 struct btrfs_root *root = BTRFS_I(inode)->root;
1421 int ret = 0;
1422 int skip_sum;
1424 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1426 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1427 BUG_ON(ret);
1429 if (!(rw & (1 << BIO_RW))) {
1430 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1431 return btrfs_submit_compressed_read(inode, bio,
1432 mirror_num, bio_flags);
1433 } else if (!skip_sum)
1434 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1435 goto mapit;
1436 } else if (!skip_sum) {
1437 /* csum items have already been cloned */
1438 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1439 goto mapit;
1440 /* we're doing a write, do the async checksumming */
1441 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1442 inode, rw, bio, mirror_num,
1443 bio_flags, __btrfs_submit_bio_start,
1444 __btrfs_submit_bio_done);
1447 mapit:
1448 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1452 * given a list of ordered sums record them in the inode. This happens
1453 * at IO completion time based on sums calculated at bio submission time.
1455 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1456 struct inode *inode, u64 file_offset,
1457 struct list_head *list)
1459 struct btrfs_ordered_sum *sum;
1461 btrfs_set_trans_block_group(trans, inode);
1463 list_for_each_entry(sum, list, list) {
1464 btrfs_csum_file_blocks(trans,
1465 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1467 return 0;
1470 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1472 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1473 WARN_ON(1);
1474 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1475 GFP_NOFS);
1478 /* see btrfs_writepage_start_hook for details on why this is required */
1479 struct btrfs_writepage_fixup {
1480 struct page *page;
1481 struct btrfs_work work;
1484 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1486 struct btrfs_writepage_fixup *fixup;
1487 struct btrfs_ordered_extent *ordered;
1488 struct page *page;
1489 struct inode *inode;
1490 u64 page_start;
1491 u64 page_end;
1493 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1494 page = fixup->page;
1495 again:
1496 lock_page(page);
1497 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1498 ClearPageChecked(page);
1499 goto out_page;
1502 inode = page->mapping->host;
1503 page_start = page_offset(page);
1504 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1506 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1508 /* already ordered? We're done */
1509 if (PagePrivate2(page))
1510 goto out;
1512 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1513 if (ordered) {
1514 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1515 page_end, GFP_NOFS);
1516 unlock_page(page);
1517 btrfs_start_ordered_extent(inode, ordered, 1);
1518 goto again;
1521 btrfs_set_extent_delalloc(inode, page_start, page_end);
1522 ClearPageChecked(page);
1523 out:
1524 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1525 out_page:
1526 unlock_page(page);
1527 page_cache_release(page);
1531 * There are a few paths in the higher layers of the kernel that directly
1532 * set the page dirty bit without asking the filesystem if it is a
1533 * good idea. This causes problems because we want to make sure COW
1534 * properly happens and the data=ordered rules are followed.
1536 * In our case any range that doesn't have the ORDERED bit set
1537 * hasn't been properly setup for IO. We kick off an async process
1538 * to fix it up. The async helper will wait for ordered extents, set
1539 * the delalloc bit and make it safe to write the page.
1541 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1543 struct inode *inode = page->mapping->host;
1544 struct btrfs_writepage_fixup *fixup;
1545 struct btrfs_root *root = BTRFS_I(inode)->root;
1547 /* this page is properly in the ordered list */
1548 if (TestClearPagePrivate2(page))
1549 return 0;
1551 if (PageChecked(page))
1552 return -EAGAIN;
1554 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1555 if (!fixup)
1556 return -EAGAIN;
1558 SetPageChecked(page);
1559 page_cache_get(page);
1560 fixup->work.func = btrfs_writepage_fixup_worker;
1561 fixup->page = page;
1562 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1563 return -EAGAIN;
1566 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1567 struct inode *inode, u64 file_pos,
1568 u64 disk_bytenr, u64 disk_num_bytes,
1569 u64 num_bytes, u64 ram_bytes,
1570 u64 locked_end,
1571 u8 compression, u8 encryption,
1572 u16 other_encoding, int extent_type)
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1575 struct btrfs_file_extent_item *fi;
1576 struct btrfs_path *path;
1577 struct extent_buffer *leaf;
1578 struct btrfs_key ins;
1579 u64 hint;
1580 int ret;
1582 path = btrfs_alloc_path();
1583 BUG_ON(!path);
1585 path->leave_spinning = 1;
1588 * we may be replacing one extent in the tree with another.
1589 * The new extent is pinned in the extent map, and we don't want
1590 * to drop it from the cache until it is completely in the btree.
1592 * So, tell btrfs_drop_extents to leave this extent in the cache.
1593 * the caller is expected to unpin it and allow it to be merged
1594 * with the others.
1596 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1597 file_pos + num_bytes, locked_end,
1598 file_pos, &hint, 0);
1599 BUG_ON(ret);
1601 ins.objectid = inode->i_ino;
1602 ins.offset = file_pos;
1603 ins.type = BTRFS_EXTENT_DATA_KEY;
1604 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1605 BUG_ON(ret);
1606 leaf = path->nodes[0];
1607 fi = btrfs_item_ptr(leaf, path->slots[0],
1608 struct btrfs_file_extent_item);
1609 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1610 btrfs_set_file_extent_type(leaf, fi, extent_type);
1611 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1612 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1613 btrfs_set_file_extent_offset(leaf, fi, 0);
1614 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1615 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1616 btrfs_set_file_extent_compression(leaf, fi, compression);
1617 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1618 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1620 btrfs_unlock_up_safe(path, 1);
1621 btrfs_set_lock_blocking(leaf);
1623 btrfs_mark_buffer_dirty(leaf);
1625 inode_add_bytes(inode, num_bytes);
1627 ins.objectid = disk_bytenr;
1628 ins.offset = disk_num_bytes;
1629 ins.type = BTRFS_EXTENT_ITEM_KEY;
1630 ret = btrfs_alloc_reserved_file_extent(trans, root,
1631 root->root_key.objectid,
1632 inode->i_ino, file_pos, &ins);
1633 BUG_ON(ret);
1634 btrfs_free_path(path);
1636 return 0;
1640 * helper function for btrfs_finish_ordered_io, this
1641 * just reads in some of the csum leaves to prime them into ram
1642 * before we start the transaction. It limits the amount of btree
1643 * reads required while inside the transaction.
1645 static noinline void reada_csum(struct btrfs_root *root,
1646 struct btrfs_path *path,
1647 struct btrfs_ordered_extent *ordered_extent)
1649 struct btrfs_ordered_sum *sum;
1650 u64 bytenr;
1652 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1653 list);
1654 bytenr = sum->sums[0].bytenr;
1657 * we don't care about the results, the point of this search is
1658 * just to get the btree leaves into ram
1660 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1663 /* as ordered data IO finishes, this gets called so we can finish
1664 * an ordered extent if the range of bytes in the file it covers are
1665 * fully written.
1667 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1669 struct btrfs_root *root = BTRFS_I(inode)->root;
1670 struct btrfs_trans_handle *trans;
1671 struct btrfs_ordered_extent *ordered_extent = NULL;
1672 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1673 struct btrfs_path *path;
1674 int compressed = 0;
1675 int ret;
1677 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1678 if (!ret)
1679 return 0;
1682 * before we join the transaction, try to do some of our IO.
1683 * This will limit the amount of IO that we have to do with
1684 * the transaction running. We're unlikely to need to do any
1685 * IO if the file extents are new, the disk_i_size checks
1686 * covers the most common case.
1688 if (start < BTRFS_I(inode)->disk_i_size) {
1689 path = btrfs_alloc_path();
1690 if (path) {
1691 ret = btrfs_lookup_file_extent(NULL, root, path,
1692 inode->i_ino,
1693 start, 0);
1694 ordered_extent = btrfs_lookup_ordered_extent(inode,
1695 start);
1696 if (!list_empty(&ordered_extent->list)) {
1697 btrfs_release_path(root, path);
1698 reada_csum(root, path, ordered_extent);
1700 btrfs_free_path(path);
1704 trans = btrfs_join_transaction(root, 1);
1706 if (!ordered_extent)
1707 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1708 BUG_ON(!ordered_extent);
1709 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1710 goto nocow;
1712 lock_extent(io_tree, ordered_extent->file_offset,
1713 ordered_extent->file_offset + ordered_extent->len - 1,
1714 GFP_NOFS);
1716 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1717 compressed = 1;
1718 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1719 BUG_ON(compressed);
1720 ret = btrfs_mark_extent_written(trans, root, inode,
1721 ordered_extent->file_offset,
1722 ordered_extent->file_offset +
1723 ordered_extent->len);
1724 BUG_ON(ret);
1725 } else {
1726 ret = insert_reserved_file_extent(trans, inode,
1727 ordered_extent->file_offset,
1728 ordered_extent->start,
1729 ordered_extent->disk_len,
1730 ordered_extent->len,
1731 ordered_extent->len,
1732 ordered_extent->file_offset +
1733 ordered_extent->len,
1734 compressed, 0, 0,
1735 BTRFS_FILE_EXTENT_REG);
1736 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1737 ordered_extent->file_offset,
1738 ordered_extent->len);
1739 BUG_ON(ret);
1741 unlock_extent(io_tree, ordered_extent->file_offset,
1742 ordered_extent->file_offset + ordered_extent->len - 1,
1743 GFP_NOFS);
1744 nocow:
1745 add_pending_csums(trans, inode, ordered_extent->file_offset,
1746 &ordered_extent->list);
1748 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1749 btrfs_ordered_update_i_size(inode, ordered_extent);
1750 btrfs_update_inode(trans, root, inode);
1751 btrfs_remove_ordered_extent(inode, ordered_extent);
1752 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1754 /* once for us */
1755 btrfs_put_ordered_extent(ordered_extent);
1756 /* once for the tree */
1757 btrfs_put_ordered_extent(ordered_extent);
1759 btrfs_end_transaction(trans, root);
1760 return 0;
1763 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1764 struct extent_state *state, int uptodate)
1766 ClearPagePrivate2(page);
1767 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1771 * When IO fails, either with EIO or csum verification fails, we
1772 * try other mirrors that might have a good copy of the data. This
1773 * io_failure_record is used to record state as we go through all the
1774 * mirrors. If another mirror has good data, the page is set up to date
1775 * and things continue. If a good mirror can't be found, the original
1776 * bio end_io callback is called to indicate things have failed.
1778 struct io_failure_record {
1779 struct page *page;
1780 u64 start;
1781 u64 len;
1782 u64 logical;
1783 unsigned long bio_flags;
1784 int last_mirror;
1787 static int btrfs_io_failed_hook(struct bio *failed_bio,
1788 struct page *page, u64 start, u64 end,
1789 struct extent_state *state)
1791 struct io_failure_record *failrec = NULL;
1792 u64 private;
1793 struct extent_map *em;
1794 struct inode *inode = page->mapping->host;
1795 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1796 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1797 struct bio *bio;
1798 int num_copies;
1799 int ret;
1800 int rw;
1801 u64 logical;
1803 ret = get_state_private(failure_tree, start, &private);
1804 if (ret) {
1805 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1806 if (!failrec)
1807 return -ENOMEM;
1808 failrec->start = start;
1809 failrec->len = end - start + 1;
1810 failrec->last_mirror = 0;
1811 failrec->bio_flags = 0;
1813 read_lock(&em_tree->lock);
1814 em = lookup_extent_mapping(em_tree, start, failrec->len);
1815 if (em->start > start || em->start + em->len < start) {
1816 free_extent_map(em);
1817 em = NULL;
1819 read_unlock(&em_tree->lock);
1821 if (!em || IS_ERR(em)) {
1822 kfree(failrec);
1823 return -EIO;
1825 logical = start - em->start;
1826 logical = em->block_start + logical;
1827 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1828 logical = em->block_start;
1829 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1831 failrec->logical = logical;
1832 free_extent_map(em);
1833 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1834 EXTENT_DIRTY, GFP_NOFS);
1835 set_state_private(failure_tree, start,
1836 (u64)(unsigned long)failrec);
1837 } else {
1838 failrec = (struct io_failure_record *)(unsigned long)private;
1840 num_copies = btrfs_num_copies(
1841 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1842 failrec->logical, failrec->len);
1843 failrec->last_mirror++;
1844 if (!state) {
1845 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1846 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1847 failrec->start,
1848 EXTENT_LOCKED);
1849 if (state && state->start != failrec->start)
1850 state = NULL;
1851 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1853 if (!state || failrec->last_mirror > num_copies) {
1854 set_state_private(failure_tree, failrec->start, 0);
1855 clear_extent_bits(failure_tree, failrec->start,
1856 failrec->start + failrec->len - 1,
1857 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1858 kfree(failrec);
1859 return -EIO;
1861 bio = bio_alloc(GFP_NOFS, 1);
1862 bio->bi_private = state;
1863 bio->bi_end_io = failed_bio->bi_end_io;
1864 bio->bi_sector = failrec->logical >> 9;
1865 bio->bi_bdev = failed_bio->bi_bdev;
1866 bio->bi_size = 0;
1868 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1869 if (failed_bio->bi_rw & (1 << BIO_RW))
1870 rw = WRITE;
1871 else
1872 rw = READ;
1874 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1875 failrec->last_mirror,
1876 failrec->bio_flags);
1877 return 0;
1881 * each time an IO finishes, we do a fast check in the IO failure tree
1882 * to see if we need to process or clean up an io_failure_record
1884 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1886 u64 private;
1887 u64 private_failure;
1888 struct io_failure_record *failure;
1889 int ret;
1891 private = 0;
1892 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1893 (u64)-1, 1, EXTENT_DIRTY)) {
1894 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1895 start, &private_failure);
1896 if (ret == 0) {
1897 failure = (struct io_failure_record *)(unsigned long)
1898 private_failure;
1899 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1900 failure->start, 0);
1901 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1902 failure->start,
1903 failure->start + failure->len - 1,
1904 EXTENT_DIRTY | EXTENT_LOCKED,
1905 GFP_NOFS);
1906 kfree(failure);
1909 return 0;
1913 * when reads are done, we need to check csums to verify the data is correct
1914 * if there's a match, we allow the bio to finish. If not, we go through
1915 * the io_failure_record routines to find good copies
1917 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1918 struct extent_state *state)
1920 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1921 struct inode *inode = page->mapping->host;
1922 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1923 char *kaddr;
1924 u64 private = ~(u32)0;
1925 int ret;
1926 struct btrfs_root *root = BTRFS_I(inode)->root;
1927 u32 csum = ~(u32)0;
1929 if (PageChecked(page)) {
1930 ClearPageChecked(page);
1931 goto good;
1934 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1935 return 0;
1937 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1938 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1939 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1940 GFP_NOFS);
1941 return 0;
1944 if (state && state->start == start) {
1945 private = state->private;
1946 ret = 0;
1947 } else {
1948 ret = get_state_private(io_tree, start, &private);
1950 kaddr = kmap_atomic(page, KM_USER0);
1951 if (ret)
1952 goto zeroit;
1954 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1955 btrfs_csum_final(csum, (char *)&csum);
1956 if (csum != private)
1957 goto zeroit;
1959 kunmap_atomic(kaddr, KM_USER0);
1960 good:
1961 /* if the io failure tree for this inode is non-empty,
1962 * check to see if we've recovered from a failed IO
1964 btrfs_clean_io_failures(inode, start);
1965 return 0;
1967 zeroit:
1968 if (printk_ratelimit()) {
1969 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1970 "private %llu\n", page->mapping->host->i_ino,
1971 (unsigned long long)start, csum,
1972 (unsigned long long)private);
1974 memset(kaddr + offset, 1, end - start + 1);
1975 flush_dcache_page(page);
1976 kunmap_atomic(kaddr, KM_USER0);
1977 if (private == 0)
1978 return 0;
1979 return -EIO;
1983 * This creates an orphan entry for the given inode in case something goes
1984 * wrong in the middle of an unlink/truncate.
1986 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1988 struct btrfs_root *root = BTRFS_I(inode)->root;
1989 int ret = 0;
1991 spin_lock(&root->list_lock);
1993 /* already on the orphan list, we're good */
1994 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1995 spin_unlock(&root->list_lock);
1996 return 0;
1999 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2001 spin_unlock(&root->list_lock);
2004 * insert an orphan item to track this unlinked/truncated file
2006 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2008 return ret;
2012 * We have done the truncate/delete so we can go ahead and remove the orphan
2013 * item for this particular inode.
2015 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2017 struct btrfs_root *root = BTRFS_I(inode)->root;
2018 int ret = 0;
2020 spin_lock(&root->list_lock);
2022 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2023 spin_unlock(&root->list_lock);
2024 return 0;
2027 list_del_init(&BTRFS_I(inode)->i_orphan);
2028 if (!trans) {
2029 spin_unlock(&root->list_lock);
2030 return 0;
2033 spin_unlock(&root->list_lock);
2035 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2037 return ret;
2041 * this cleans up any orphans that may be left on the list from the last use
2042 * of this root.
2044 void btrfs_orphan_cleanup(struct btrfs_root *root)
2046 struct btrfs_path *path;
2047 struct extent_buffer *leaf;
2048 struct btrfs_item *item;
2049 struct btrfs_key key, found_key;
2050 struct btrfs_trans_handle *trans;
2051 struct inode *inode;
2052 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2054 path = btrfs_alloc_path();
2055 if (!path)
2056 return;
2057 path->reada = -1;
2059 key.objectid = BTRFS_ORPHAN_OBJECTID;
2060 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2061 key.offset = (u64)-1;
2064 while (1) {
2065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066 if (ret < 0) {
2067 printk(KERN_ERR "Error searching slot for orphan: %d"
2068 "\n", ret);
2069 break;
2073 * if ret == 0 means we found what we were searching for, which
2074 * is weird, but possible, so only screw with path if we didnt
2075 * find the key and see if we have stuff that matches
2077 if (ret > 0) {
2078 if (path->slots[0] == 0)
2079 break;
2080 path->slots[0]--;
2083 /* pull out the item */
2084 leaf = path->nodes[0];
2085 item = btrfs_item_nr(leaf, path->slots[0]);
2086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2088 /* make sure the item matches what we want */
2089 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2090 break;
2091 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2092 break;
2094 /* release the path since we're done with it */
2095 btrfs_release_path(root, path);
2098 * this is where we are basically btrfs_lookup, without the
2099 * crossing root thing. we store the inode number in the
2100 * offset of the orphan item.
2102 found_key.objectid = found_key.offset;
2103 found_key.type = BTRFS_INODE_ITEM_KEY;
2104 found_key.offset = 0;
2105 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2106 if (IS_ERR(inode))
2107 break;
2110 * add this inode to the orphan list so btrfs_orphan_del does
2111 * the proper thing when we hit it
2113 spin_lock(&root->list_lock);
2114 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2115 spin_unlock(&root->list_lock);
2118 * if this is a bad inode, means we actually succeeded in
2119 * removing the inode, but not the orphan record, which means
2120 * we need to manually delete the orphan since iput will just
2121 * do a destroy_inode
2123 if (is_bad_inode(inode)) {
2124 trans = btrfs_start_transaction(root, 1);
2125 btrfs_orphan_del(trans, inode);
2126 btrfs_end_transaction(trans, root);
2127 iput(inode);
2128 continue;
2131 /* if we have links, this was a truncate, lets do that */
2132 if (inode->i_nlink) {
2133 nr_truncate++;
2134 btrfs_truncate(inode);
2135 } else {
2136 nr_unlink++;
2139 /* this will do delete_inode and everything for us */
2140 iput(inode);
2143 if (nr_unlink)
2144 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2145 if (nr_truncate)
2146 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2148 btrfs_free_path(path);
2152 * very simple check to peek ahead in the leaf looking for xattrs. If we
2153 * don't find any xattrs, we know there can't be any acls.
2155 * slot is the slot the inode is in, objectid is the objectid of the inode
2157 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2158 int slot, u64 objectid)
2160 u32 nritems = btrfs_header_nritems(leaf);
2161 struct btrfs_key found_key;
2162 int scanned = 0;
2164 slot++;
2165 while (slot < nritems) {
2166 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2168 /* we found a different objectid, there must not be acls */
2169 if (found_key.objectid != objectid)
2170 return 0;
2172 /* we found an xattr, assume we've got an acl */
2173 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2174 return 1;
2177 * we found a key greater than an xattr key, there can't
2178 * be any acls later on
2180 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2181 return 0;
2183 slot++;
2184 scanned++;
2187 * it goes inode, inode backrefs, xattrs, extents,
2188 * so if there are a ton of hard links to an inode there can
2189 * be a lot of backrefs. Don't waste time searching too hard,
2190 * this is just an optimization
2192 if (scanned >= 8)
2193 break;
2195 /* we hit the end of the leaf before we found an xattr or
2196 * something larger than an xattr. We have to assume the inode
2197 * has acls
2199 return 1;
2203 * read an inode from the btree into the in-memory inode
2205 static void btrfs_read_locked_inode(struct inode *inode)
2207 struct btrfs_path *path;
2208 struct extent_buffer *leaf;
2209 struct btrfs_inode_item *inode_item;
2210 struct btrfs_timespec *tspec;
2211 struct btrfs_root *root = BTRFS_I(inode)->root;
2212 struct btrfs_key location;
2213 int maybe_acls;
2214 u64 alloc_group_block;
2215 u32 rdev;
2216 int ret;
2218 path = btrfs_alloc_path();
2219 BUG_ON(!path);
2220 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2222 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2223 if (ret)
2224 goto make_bad;
2226 leaf = path->nodes[0];
2227 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2228 struct btrfs_inode_item);
2230 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2231 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2232 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2233 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2234 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2236 tspec = btrfs_inode_atime(inode_item);
2237 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2238 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2240 tspec = btrfs_inode_mtime(inode_item);
2241 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2242 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2244 tspec = btrfs_inode_ctime(inode_item);
2245 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2246 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2248 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2249 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2250 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2251 inode->i_generation = BTRFS_I(inode)->generation;
2252 inode->i_rdev = 0;
2253 rdev = btrfs_inode_rdev(leaf, inode_item);
2255 BTRFS_I(inode)->index_cnt = (u64)-1;
2256 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2258 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2261 * try to precache a NULL acl entry for files that don't have
2262 * any xattrs or acls
2264 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2265 if (!maybe_acls)
2266 cache_no_acl(inode);
2268 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2269 alloc_group_block, 0);
2270 btrfs_free_path(path);
2271 inode_item = NULL;
2273 switch (inode->i_mode & S_IFMT) {
2274 case S_IFREG:
2275 inode->i_mapping->a_ops = &btrfs_aops;
2276 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2277 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2278 inode->i_fop = &btrfs_file_operations;
2279 inode->i_op = &btrfs_file_inode_operations;
2280 break;
2281 case S_IFDIR:
2282 inode->i_fop = &btrfs_dir_file_operations;
2283 if (root == root->fs_info->tree_root)
2284 inode->i_op = &btrfs_dir_ro_inode_operations;
2285 else
2286 inode->i_op = &btrfs_dir_inode_operations;
2287 break;
2288 case S_IFLNK:
2289 inode->i_op = &btrfs_symlink_inode_operations;
2290 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2291 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2292 break;
2293 default:
2294 inode->i_op = &btrfs_special_inode_operations;
2295 init_special_inode(inode, inode->i_mode, rdev);
2296 break;
2299 btrfs_update_iflags(inode);
2300 return;
2302 make_bad:
2303 btrfs_free_path(path);
2304 make_bad_inode(inode);
2308 * given a leaf and an inode, copy the inode fields into the leaf
2310 static void fill_inode_item(struct btrfs_trans_handle *trans,
2311 struct extent_buffer *leaf,
2312 struct btrfs_inode_item *item,
2313 struct inode *inode)
2315 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2316 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2317 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2318 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2319 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2321 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2322 inode->i_atime.tv_sec);
2323 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2324 inode->i_atime.tv_nsec);
2326 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2327 inode->i_mtime.tv_sec);
2328 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2329 inode->i_mtime.tv_nsec);
2331 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2332 inode->i_ctime.tv_sec);
2333 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2334 inode->i_ctime.tv_nsec);
2336 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2337 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2338 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2339 btrfs_set_inode_transid(leaf, item, trans->transid);
2340 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2341 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2342 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2346 * copy everything in the in-memory inode into the btree.
2348 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2349 struct btrfs_root *root, struct inode *inode)
2351 struct btrfs_inode_item *inode_item;
2352 struct btrfs_path *path;
2353 struct extent_buffer *leaf;
2354 int ret;
2356 path = btrfs_alloc_path();
2357 BUG_ON(!path);
2358 path->leave_spinning = 1;
2359 ret = btrfs_lookup_inode(trans, root, path,
2360 &BTRFS_I(inode)->location, 1);
2361 if (ret) {
2362 if (ret > 0)
2363 ret = -ENOENT;
2364 goto failed;
2367 btrfs_unlock_up_safe(path, 1);
2368 leaf = path->nodes[0];
2369 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2370 struct btrfs_inode_item);
2372 fill_inode_item(trans, leaf, inode_item, inode);
2373 btrfs_mark_buffer_dirty(leaf);
2374 btrfs_set_inode_last_trans(trans, inode);
2375 ret = 0;
2376 failed:
2377 btrfs_free_path(path);
2378 return ret;
2383 * unlink helper that gets used here in inode.c and in the tree logging
2384 * recovery code. It remove a link in a directory with a given name, and
2385 * also drops the back refs in the inode to the directory
2387 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct inode *dir, struct inode *inode,
2390 const char *name, int name_len)
2392 struct btrfs_path *path;
2393 int ret = 0;
2394 struct extent_buffer *leaf;
2395 struct btrfs_dir_item *di;
2396 struct btrfs_key key;
2397 u64 index;
2399 path = btrfs_alloc_path();
2400 if (!path) {
2401 ret = -ENOMEM;
2402 goto err;
2405 path->leave_spinning = 1;
2406 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2407 name, name_len, -1);
2408 if (IS_ERR(di)) {
2409 ret = PTR_ERR(di);
2410 goto err;
2412 if (!di) {
2413 ret = -ENOENT;
2414 goto err;
2416 leaf = path->nodes[0];
2417 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2418 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2419 if (ret)
2420 goto err;
2421 btrfs_release_path(root, path);
2423 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2424 inode->i_ino,
2425 dir->i_ino, &index);
2426 if (ret) {
2427 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2428 "inode %lu parent %lu\n", name_len, name,
2429 inode->i_ino, dir->i_ino);
2430 goto err;
2433 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2434 index, name, name_len, -1);
2435 if (IS_ERR(di)) {
2436 ret = PTR_ERR(di);
2437 goto err;
2439 if (!di) {
2440 ret = -ENOENT;
2441 goto err;
2443 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2444 btrfs_release_path(root, path);
2446 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2447 inode, dir->i_ino);
2448 BUG_ON(ret != 0 && ret != -ENOENT);
2450 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2451 dir, index);
2452 BUG_ON(ret);
2453 err:
2454 btrfs_free_path(path);
2455 if (ret)
2456 goto out;
2458 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2459 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2460 btrfs_update_inode(trans, root, dir);
2461 btrfs_drop_nlink(inode);
2462 ret = btrfs_update_inode(trans, root, inode);
2463 out:
2464 return ret;
2467 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2469 struct btrfs_root *root;
2470 struct btrfs_trans_handle *trans;
2471 struct inode *inode = dentry->d_inode;
2472 int ret;
2473 unsigned long nr = 0;
2475 root = BTRFS_I(dir)->root;
2477 trans = btrfs_start_transaction(root, 1);
2479 btrfs_set_trans_block_group(trans, dir);
2481 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2483 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2484 dentry->d_name.name, dentry->d_name.len);
2486 if (inode->i_nlink == 0)
2487 ret = btrfs_orphan_add(trans, inode);
2489 nr = trans->blocks_used;
2491 btrfs_end_transaction_throttle(trans, root);
2492 btrfs_btree_balance_dirty(root, nr);
2493 return ret;
2496 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2497 struct btrfs_root *root,
2498 struct inode *dir, u64 objectid,
2499 const char *name, int name_len)
2501 struct btrfs_path *path;
2502 struct extent_buffer *leaf;
2503 struct btrfs_dir_item *di;
2504 struct btrfs_key key;
2505 u64 index;
2506 int ret;
2508 path = btrfs_alloc_path();
2509 if (!path)
2510 return -ENOMEM;
2512 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2513 name, name_len, -1);
2514 BUG_ON(!di || IS_ERR(di));
2516 leaf = path->nodes[0];
2517 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2518 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2519 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2520 BUG_ON(ret);
2521 btrfs_release_path(root, path);
2523 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2524 objectid, root->root_key.objectid,
2525 dir->i_ino, &index, name, name_len);
2526 if (ret < 0) {
2527 BUG_ON(ret != -ENOENT);
2528 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2529 name, name_len);
2530 BUG_ON(!di || IS_ERR(di));
2532 leaf = path->nodes[0];
2533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2534 btrfs_release_path(root, path);
2535 index = key.offset;
2538 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2539 index, name, name_len, -1);
2540 BUG_ON(!di || IS_ERR(di));
2542 leaf = path->nodes[0];
2543 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2544 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2545 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2546 BUG_ON(ret);
2547 btrfs_release_path(root, path);
2549 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2550 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2551 ret = btrfs_update_inode(trans, root, dir);
2552 BUG_ON(ret);
2553 dir->i_sb->s_dirt = 1;
2555 btrfs_free_path(path);
2556 return 0;
2559 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2561 struct inode *inode = dentry->d_inode;
2562 int err = 0;
2563 int ret;
2564 struct btrfs_root *root = BTRFS_I(dir)->root;
2565 struct btrfs_trans_handle *trans;
2566 unsigned long nr = 0;
2568 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2569 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2570 return -ENOTEMPTY;
2572 trans = btrfs_start_transaction(root, 1);
2573 btrfs_set_trans_block_group(trans, dir);
2575 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2576 err = btrfs_unlink_subvol(trans, root, dir,
2577 BTRFS_I(inode)->location.objectid,
2578 dentry->d_name.name,
2579 dentry->d_name.len);
2580 goto out;
2583 err = btrfs_orphan_add(trans, inode);
2584 if (err)
2585 goto out;
2587 /* now the directory is empty */
2588 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589 dentry->d_name.name, dentry->d_name.len);
2590 if (!err)
2591 btrfs_i_size_write(inode, 0);
2592 out:
2593 nr = trans->blocks_used;
2594 ret = btrfs_end_transaction_throttle(trans, root);
2595 btrfs_btree_balance_dirty(root, nr);
2597 if (ret && !err)
2598 err = ret;
2599 return err;
2602 #if 0
2604 * when truncating bytes in a file, it is possible to avoid reading
2605 * the leaves that contain only checksum items. This can be the
2606 * majority of the IO required to delete a large file, but it must
2607 * be done carefully.
2609 * The keys in the level just above the leaves are checked to make sure
2610 * the lowest key in a given leaf is a csum key, and starts at an offset
2611 * after the new size.
2613 * Then the key for the next leaf is checked to make sure it also has
2614 * a checksum item for the same file. If it does, we know our target leaf
2615 * contains only checksum items, and it can be safely freed without reading
2616 * it.
2618 * This is just an optimization targeted at large files. It may do
2619 * nothing. It will return 0 unless things went badly.
2621 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *root,
2623 struct btrfs_path *path,
2624 struct inode *inode, u64 new_size)
2626 struct btrfs_key key;
2627 int ret;
2628 int nritems;
2629 struct btrfs_key found_key;
2630 struct btrfs_key other_key;
2631 struct btrfs_leaf_ref *ref;
2632 u64 leaf_gen;
2633 u64 leaf_start;
2635 path->lowest_level = 1;
2636 key.objectid = inode->i_ino;
2637 key.type = BTRFS_CSUM_ITEM_KEY;
2638 key.offset = new_size;
2639 again:
2640 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2641 if (ret < 0)
2642 goto out;
2644 if (path->nodes[1] == NULL) {
2645 ret = 0;
2646 goto out;
2648 ret = 0;
2649 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2650 nritems = btrfs_header_nritems(path->nodes[1]);
2652 if (!nritems)
2653 goto out;
2655 if (path->slots[1] >= nritems)
2656 goto next_node;
2658 /* did we find a key greater than anything we want to delete? */
2659 if (found_key.objectid > inode->i_ino ||
2660 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2661 goto out;
2663 /* we check the next key in the node to make sure the leave contains
2664 * only checksum items. This comparison doesn't work if our
2665 * leaf is the last one in the node
2667 if (path->slots[1] + 1 >= nritems) {
2668 next_node:
2669 /* search forward from the last key in the node, this
2670 * will bring us into the next node in the tree
2672 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2674 /* unlikely, but we inc below, so check to be safe */
2675 if (found_key.offset == (u64)-1)
2676 goto out;
2678 /* search_forward needs a path with locks held, do the
2679 * search again for the original key. It is possible
2680 * this will race with a balance and return a path that
2681 * we could modify, but this drop is just an optimization
2682 * and is allowed to miss some leaves.
2684 btrfs_release_path(root, path);
2685 found_key.offset++;
2687 /* setup a max key for search_forward */
2688 other_key.offset = (u64)-1;
2689 other_key.type = key.type;
2690 other_key.objectid = key.objectid;
2692 path->keep_locks = 1;
2693 ret = btrfs_search_forward(root, &found_key, &other_key,
2694 path, 0, 0);
2695 path->keep_locks = 0;
2696 if (ret || found_key.objectid != key.objectid ||
2697 found_key.type != key.type) {
2698 ret = 0;
2699 goto out;
2702 key.offset = found_key.offset;
2703 btrfs_release_path(root, path);
2704 cond_resched();
2705 goto again;
2708 /* we know there's one more slot after us in the tree,
2709 * read that key so we can verify it is also a checksum item
2711 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2713 if (found_key.objectid < inode->i_ino)
2714 goto next_key;
2716 if (found_key.type != key.type || found_key.offset < new_size)
2717 goto next_key;
2720 * if the key for the next leaf isn't a csum key from this objectid,
2721 * we can't be sure there aren't good items inside this leaf.
2722 * Bail out
2724 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2725 goto out;
2727 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2728 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2730 * it is safe to delete this leaf, it contains only
2731 * csum items from this inode at an offset >= new_size
2733 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2734 BUG_ON(ret);
2736 if (root->ref_cows && leaf_gen < trans->transid) {
2737 ref = btrfs_alloc_leaf_ref(root, 0);
2738 if (ref) {
2739 ref->root_gen = root->root_key.offset;
2740 ref->bytenr = leaf_start;
2741 ref->owner = 0;
2742 ref->generation = leaf_gen;
2743 ref->nritems = 0;
2745 btrfs_sort_leaf_ref(ref);
2747 ret = btrfs_add_leaf_ref(root, ref, 0);
2748 WARN_ON(ret);
2749 btrfs_free_leaf_ref(root, ref);
2750 } else {
2751 WARN_ON(1);
2754 next_key:
2755 btrfs_release_path(root, path);
2757 if (other_key.objectid == inode->i_ino &&
2758 other_key.type == key.type && other_key.offset > key.offset) {
2759 key.offset = other_key.offset;
2760 cond_resched();
2761 goto again;
2763 ret = 0;
2764 out:
2765 /* fixup any changes we've made to the path */
2766 path->lowest_level = 0;
2767 path->keep_locks = 0;
2768 btrfs_release_path(root, path);
2769 return ret;
2772 #endif
2775 * this can truncate away extent items, csum items and directory items.
2776 * It starts at a high offset and removes keys until it can't find
2777 * any higher than new_size
2779 * csum items that cross the new i_size are truncated to the new size
2780 * as well.
2782 * min_type is the minimum key type to truncate down to. If set to 0, this
2783 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2785 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2786 struct btrfs_root *root,
2787 struct inode *inode,
2788 u64 new_size, u32 min_type)
2790 int ret;
2791 struct btrfs_path *path;
2792 struct btrfs_key key;
2793 struct btrfs_key found_key;
2794 u32 found_type = (u8)-1;
2795 struct extent_buffer *leaf;
2796 struct btrfs_file_extent_item *fi;
2797 u64 extent_start = 0;
2798 u64 extent_num_bytes = 0;
2799 u64 extent_offset = 0;
2800 u64 item_end = 0;
2801 int found_extent;
2802 int del_item;
2803 int pending_del_nr = 0;
2804 int pending_del_slot = 0;
2805 int extent_type = -1;
2806 int encoding;
2807 u64 mask = root->sectorsize - 1;
2809 if (root->ref_cows)
2810 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2811 path = btrfs_alloc_path();
2812 BUG_ON(!path);
2813 path->reada = -1;
2815 /* FIXME, add redo link to tree so we don't leak on crash */
2816 key.objectid = inode->i_ino;
2817 key.offset = (u64)-1;
2818 key.type = (u8)-1;
2820 search_again:
2821 path->leave_spinning = 1;
2822 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2823 if (ret < 0)
2824 goto error;
2826 if (ret > 0) {
2827 /* there are no items in the tree for us to truncate, we're
2828 * done
2830 if (path->slots[0] == 0) {
2831 ret = 0;
2832 goto error;
2834 path->slots[0]--;
2837 while (1) {
2838 fi = NULL;
2839 leaf = path->nodes[0];
2840 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2841 found_type = btrfs_key_type(&found_key);
2842 encoding = 0;
2844 if (found_key.objectid != inode->i_ino)
2845 break;
2847 if (found_type < min_type)
2848 break;
2850 item_end = found_key.offset;
2851 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2852 fi = btrfs_item_ptr(leaf, path->slots[0],
2853 struct btrfs_file_extent_item);
2854 extent_type = btrfs_file_extent_type(leaf, fi);
2855 encoding = btrfs_file_extent_compression(leaf, fi);
2856 encoding |= btrfs_file_extent_encryption(leaf, fi);
2857 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2859 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2860 item_end +=
2861 btrfs_file_extent_num_bytes(leaf, fi);
2862 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2863 item_end += btrfs_file_extent_inline_len(leaf,
2864 fi);
2866 item_end--;
2868 if (item_end < new_size) {
2869 if (found_type == BTRFS_DIR_ITEM_KEY)
2870 found_type = BTRFS_INODE_ITEM_KEY;
2871 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2872 found_type = BTRFS_EXTENT_DATA_KEY;
2873 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2874 found_type = BTRFS_XATTR_ITEM_KEY;
2875 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2876 found_type = BTRFS_INODE_REF_KEY;
2877 else if (found_type)
2878 found_type--;
2879 else
2880 break;
2881 btrfs_set_key_type(&key, found_type);
2882 goto next;
2884 if (found_key.offset >= new_size)
2885 del_item = 1;
2886 else
2887 del_item = 0;
2888 found_extent = 0;
2890 /* FIXME, shrink the extent if the ref count is only 1 */
2891 if (found_type != BTRFS_EXTENT_DATA_KEY)
2892 goto delete;
2894 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2895 u64 num_dec;
2896 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2897 if (!del_item && !encoding) {
2898 u64 orig_num_bytes =
2899 btrfs_file_extent_num_bytes(leaf, fi);
2900 extent_num_bytes = new_size -
2901 found_key.offset + root->sectorsize - 1;
2902 extent_num_bytes = extent_num_bytes &
2903 ~((u64)root->sectorsize - 1);
2904 btrfs_set_file_extent_num_bytes(leaf, fi,
2905 extent_num_bytes);
2906 num_dec = (orig_num_bytes -
2907 extent_num_bytes);
2908 if (root->ref_cows && extent_start != 0)
2909 inode_sub_bytes(inode, num_dec);
2910 btrfs_mark_buffer_dirty(leaf);
2911 } else {
2912 extent_num_bytes =
2913 btrfs_file_extent_disk_num_bytes(leaf,
2914 fi);
2915 extent_offset = found_key.offset -
2916 btrfs_file_extent_offset(leaf, fi);
2918 /* FIXME blocksize != 4096 */
2919 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2920 if (extent_start != 0) {
2921 found_extent = 1;
2922 if (root->ref_cows)
2923 inode_sub_bytes(inode, num_dec);
2926 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2928 * we can't truncate inline items that have had
2929 * special encodings
2931 if (!del_item &&
2932 btrfs_file_extent_compression(leaf, fi) == 0 &&
2933 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2934 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2935 u32 size = new_size - found_key.offset;
2937 if (root->ref_cows) {
2938 inode_sub_bytes(inode, item_end + 1 -
2939 new_size);
2941 size =
2942 btrfs_file_extent_calc_inline_size(size);
2943 ret = btrfs_truncate_item(trans, root, path,
2944 size, 1);
2945 BUG_ON(ret);
2946 } else if (root->ref_cows) {
2947 inode_sub_bytes(inode, item_end + 1 -
2948 found_key.offset);
2951 delete:
2952 if (del_item) {
2953 if (!pending_del_nr) {
2954 /* no pending yet, add ourselves */
2955 pending_del_slot = path->slots[0];
2956 pending_del_nr = 1;
2957 } else if (pending_del_nr &&
2958 path->slots[0] + 1 == pending_del_slot) {
2959 /* hop on the pending chunk */
2960 pending_del_nr++;
2961 pending_del_slot = path->slots[0];
2962 } else {
2963 BUG();
2965 } else {
2966 break;
2968 if (found_extent && root->ref_cows) {
2969 btrfs_set_path_blocking(path);
2970 ret = btrfs_free_extent(trans, root, extent_start,
2971 extent_num_bytes, 0,
2972 btrfs_header_owner(leaf),
2973 inode->i_ino, extent_offset);
2974 BUG_ON(ret);
2976 next:
2977 if (path->slots[0] == 0) {
2978 if (pending_del_nr)
2979 goto del_pending;
2980 btrfs_release_path(root, path);
2981 if (found_type == BTRFS_INODE_ITEM_KEY)
2982 break;
2983 goto search_again;
2986 path->slots[0]--;
2987 if (pending_del_nr &&
2988 path->slots[0] + 1 != pending_del_slot) {
2989 struct btrfs_key debug;
2990 del_pending:
2991 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2992 pending_del_slot);
2993 ret = btrfs_del_items(trans, root, path,
2994 pending_del_slot,
2995 pending_del_nr);
2996 BUG_ON(ret);
2997 pending_del_nr = 0;
2998 btrfs_release_path(root, path);
2999 if (found_type == BTRFS_INODE_ITEM_KEY)
3000 break;
3001 goto search_again;
3004 ret = 0;
3005 error:
3006 if (pending_del_nr) {
3007 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3008 pending_del_nr);
3010 btrfs_free_path(path);
3011 return ret;
3015 * taken from block_truncate_page, but does cow as it zeros out
3016 * any bytes left in the last page in the file.
3018 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3020 struct inode *inode = mapping->host;
3021 struct btrfs_root *root = BTRFS_I(inode)->root;
3022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3023 struct btrfs_ordered_extent *ordered;
3024 char *kaddr;
3025 u32 blocksize = root->sectorsize;
3026 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3027 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3028 struct page *page;
3029 int ret = 0;
3030 u64 page_start;
3031 u64 page_end;
3033 if ((offset & (blocksize - 1)) == 0)
3034 goto out;
3035 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3036 if (ret)
3037 goto out;
3039 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3040 if (ret)
3041 goto out;
3043 ret = -ENOMEM;
3044 again:
3045 page = grab_cache_page(mapping, index);
3046 if (!page) {
3047 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3048 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3049 goto out;
3052 page_start = page_offset(page);
3053 page_end = page_start + PAGE_CACHE_SIZE - 1;
3055 if (!PageUptodate(page)) {
3056 ret = btrfs_readpage(NULL, page);
3057 lock_page(page);
3058 if (page->mapping != mapping) {
3059 unlock_page(page);
3060 page_cache_release(page);
3061 goto again;
3063 if (!PageUptodate(page)) {
3064 ret = -EIO;
3065 goto out_unlock;
3068 wait_on_page_writeback(page);
3070 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3071 set_page_extent_mapped(page);
3073 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3074 if (ordered) {
3075 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3076 unlock_page(page);
3077 page_cache_release(page);
3078 btrfs_start_ordered_extent(inode, ordered, 1);
3079 btrfs_put_ordered_extent(ordered);
3080 goto again;
3083 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3084 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3085 GFP_NOFS);
3087 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3088 if (ret) {
3089 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3090 goto out_unlock;
3093 ret = 0;
3094 if (offset != PAGE_CACHE_SIZE) {
3095 kaddr = kmap(page);
3096 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3097 flush_dcache_page(page);
3098 kunmap(page);
3100 ClearPageChecked(page);
3101 set_page_dirty(page);
3102 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3104 out_unlock:
3105 if (ret)
3106 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3107 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3108 unlock_page(page);
3109 page_cache_release(page);
3110 out:
3111 return ret;
3114 int btrfs_cont_expand(struct inode *inode, loff_t size)
3116 struct btrfs_trans_handle *trans;
3117 struct btrfs_root *root = BTRFS_I(inode)->root;
3118 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3119 struct extent_map *em;
3120 u64 mask = root->sectorsize - 1;
3121 u64 hole_start = (inode->i_size + mask) & ~mask;
3122 u64 block_end = (size + mask) & ~mask;
3123 u64 last_byte;
3124 u64 cur_offset;
3125 u64 hole_size;
3126 int err = 0;
3128 if (size <= hole_start)
3129 return 0;
3131 err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3132 if (err)
3133 return err;
3135 while (1) {
3136 struct btrfs_ordered_extent *ordered;
3137 btrfs_wait_ordered_range(inode, hole_start,
3138 block_end - hole_start);
3139 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3140 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3141 if (!ordered)
3142 break;
3143 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3144 btrfs_put_ordered_extent(ordered);
3147 trans = btrfs_start_transaction(root, 1);
3148 btrfs_set_trans_block_group(trans, inode);
3150 cur_offset = hole_start;
3151 while (1) {
3152 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3153 block_end - cur_offset, 0);
3154 BUG_ON(IS_ERR(em) || !em);
3155 last_byte = min(extent_map_end(em), block_end);
3156 last_byte = (last_byte + mask) & ~mask;
3157 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3158 u64 hint_byte = 0;
3159 hole_size = last_byte - cur_offset;
3160 err = btrfs_drop_extents(trans, root, inode,
3161 cur_offset,
3162 cur_offset + hole_size,
3163 block_end,
3164 cur_offset, &hint_byte, 1);
3165 if (err)
3166 break;
3168 err = btrfs_reserve_metadata_space(root, 1);
3169 if (err)
3170 break;
3172 err = btrfs_insert_file_extent(trans, root,
3173 inode->i_ino, cur_offset, 0,
3174 0, hole_size, 0, hole_size,
3175 0, 0, 0);
3176 btrfs_drop_extent_cache(inode, hole_start,
3177 last_byte - 1, 0);
3178 btrfs_unreserve_metadata_space(root, 1);
3180 free_extent_map(em);
3181 cur_offset = last_byte;
3182 if (err || cur_offset >= block_end)
3183 break;
3186 btrfs_end_transaction(trans, root);
3187 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3188 return err;
3191 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3193 struct inode *inode = dentry->d_inode;
3194 int err;
3196 err = inode_change_ok(inode, attr);
3197 if (err)
3198 return err;
3200 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3201 if (attr->ia_size > inode->i_size) {
3202 err = btrfs_cont_expand(inode, attr->ia_size);
3203 if (err)
3204 return err;
3205 } else if (inode->i_size > 0 &&
3206 attr->ia_size == 0) {
3208 /* we're truncating a file that used to have good
3209 * data down to zero. Make sure it gets into
3210 * the ordered flush list so that any new writes
3211 * get down to disk quickly.
3213 BTRFS_I(inode)->ordered_data_close = 1;
3217 err = inode_setattr(inode, attr);
3219 if (!err && ((attr->ia_valid & ATTR_MODE)))
3220 err = btrfs_acl_chmod(inode);
3221 return err;
3224 void btrfs_delete_inode(struct inode *inode)
3226 struct btrfs_trans_handle *trans;
3227 struct btrfs_root *root = BTRFS_I(inode)->root;
3228 unsigned long nr;
3229 int ret;
3231 truncate_inode_pages(&inode->i_data, 0);
3232 if (is_bad_inode(inode)) {
3233 btrfs_orphan_del(NULL, inode);
3234 goto no_delete;
3236 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3238 if (inode->i_nlink > 0) {
3239 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3240 goto no_delete;
3243 btrfs_i_size_write(inode, 0);
3244 trans = btrfs_join_transaction(root, 1);
3246 btrfs_set_trans_block_group(trans, inode);
3247 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3248 if (ret) {
3249 btrfs_orphan_del(NULL, inode);
3250 goto no_delete_lock;
3253 btrfs_orphan_del(trans, inode);
3255 nr = trans->blocks_used;
3256 clear_inode(inode);
3258 btrfs_end_transaction(trans, root);
3259 btrfs_btree_balance_dirty(root, nr);
3260 return;
3262 no_delete_lock:
3263 nr = trans->blocks_used;
3264 btrfs_end_transaction(trans, root);
3265 btrfs_btree_balance_dirty(root, nr);
3266 no_delete:
3267 clear_inode(inode);
3271 * this returns the key found in the dir entry in the location pointer.
3272 * If no dir entries were found, location->objectid is 0.
3274 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3275 struct btrfs_key *location)
3277 const char *name = dentry->d_name.name;
3278 int namelen = dentry->d_name.len;
3279 struct btrfs_dir_item *di;
3280 struct btrfs_path *path;
3281 struct btrfs_root *root = BTRFS_I(dir)->root;
3282 int ret = 0;
3284 path = btrfs_alloc_path();
3285 BUG_ON(!path);
3287 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3288 namelen, 0);
3289 if (IS_ERR(di))
3290 ret = PTR_ERR(di);
3292 if (!di || IS_ERR(di))
3293 goto out_err;
3295 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3296 out:
3297 btrfs_free_path(path);
3298 return ret;
3299 out_err:
3300 location->objectid = 0;
3301 goto out;
3305 * when we hit a tree root in a directory, the btrfs part of the inode
3306 * needs to be changed to reflect the root directory of the tree root. This
3307 * is kind of like crossing a mount point.
3309 static int fixup_tree_root_location(struct btrfs_root *root,
3310 struct inode *dir,
3311 struct dentry *dentry,
3312 struct btrfs_key *location,
3313 struct btrfs_root **sub_root)
3315 struct btrfs_path *path;
3316 struct btrfs_root *new_root;
3317 struct btrfs_root_ref *ref;
3318 struct extent_buffer *leaf;
3319 int ret;
3320 int err = 0;
3322 path = btrfs_alloc_path();
3323 if (!path) {
3324 err = -ENOMEM;
3325 goto out;
3328 err = -ENOENT;
3329 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3330 BTRFS_I(dir)->root->root_key.objectid,
3331 location->objectid);
3332 if (ret) {
3333 if (ret < 0)
3334 err = ret;
3335 goto out;
3338 leaf = path->nodes[0];
3339 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3340 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3341 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3342 goto out;
3344 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3345 (unsigned long)(ref + 1),
3346 dentry->d_name.len);
3347 if (ret)
3348 goto out;
3350 btrfs_release_path(root->fs_info->tree_root, path);
3352 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3353 if (IS_ERR(new_root)) {
3354 err = PTR_ERR(new_root);
3355 goto out;
3358 if (btrfs_root_refs(&new_root->root_item) == 0) {
3359 err = -ENOENT;
3360 goto out;
3363 *sub_root = new_root;
3364 location->objectid = btrfs_root_dirid(&new_root->root_item);
3365 location->type = BTRFS_INODE_ITEM_KEY;
3366 location->offset = 0;
3367 err = 0;
3368 out:
3369 btrfs_free_path(path);
3370 return err;
3373 static void inode_tree_add(struct inode *inode)
3375 struct btrfs_root *root = BTRFS_I(inode)->root;
3376 struct btrfs_inode *entry;
3377 struct rb_node **p;
3378 struct rb_node *parent;
3379 again:
3380 p = &root->inode_tree.rb_node;
3381 parent = NULL;
3383 if (hlist_unhashed(&inode->i_hash))
3384 return;
3386 spin_lock(&root->inode_lock);
3387 while (*p) {
3388 parent = *p;
3389 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3391 if (inode->i_ino < entry->vfs_inode.i_ino)
3392 p = &parent->rb_left;
3393 else if (inode->i_ino > entry->vfs_inode.i_ino)
3394 p = &parent->rb_right;
3395 else {
3396 WARN_ON(!(entry->vfs_inode.i_state &
3397 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3398 rb_erase(parent, &root->inode_tree);
3399 RB_CLEAR_NODE(parent);
3400 spin_unlock(&root->inode_lock);
3401 goto again;
3404 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3405 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3406 spin_unlock(&root->inode_lock);
3409 static void inode_tree_del(struct inode *inode)
3411 struct btrfs_root *root = BTRFS_I(inode)->root;
3412 int empty = 0;
3414 spin_lock(&root->inode_lock);
3415 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3416 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3417 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3418 empty = RB_EMPTY_ROOT(&root->inode_tree);
3420 spin_unlock(&root->inode_lock);
3422 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3423 synchronize_srcu(&root->fs_info->subvol_srcu);
3424 spin_lock(&root->inode_lock);
3425 empty = RB_EMPTY_ROOT(&root->inode_tree);
3426 spin_unlock(&root->inode_lock);
3427 if (empty)
3428 btrfs_add_dead_root(root);
3432 int btrfs_invalidate_inodes(struct btrfs_root *root)
3434 struct rb_node *node;
3435 struct rb_node *prev;
3436 struct btrfs_inode *entry;
3437 struct inode *inode;
3438 u64 objectid = 0;
3440 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3442 spin_lock(&root->inode_lock);
3443 again:
3444 node = root->inode_tree.rb_node;
3445 prev = NULL;
3446 while (node) {
3447 prev = node;
3448 entry = rb_entry(node, struct btrfs_inode, rb_node);
3450 if (objectid < entry->vfs_inode.i_ino)
3451 node = node->rb_left;
3452 else if (objectid > entry->vfs_inode.i_ino)
3453 node = node->rb_right;
3454 else
3455 break;
3457 if (!node) {
3458 while (prev) {
3459 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3460 if (objectid <= entry->vfs_inode.i_ino) {
3461 node = prev;
3462 break;
3464 prev = rb_next(prev);
3467 while (node) {
3468 entry = rb_entry(node, struct btrfs_inode, rb_node);
3469 objectid = entry->vfs_inode.i_ino + 1;
3470 inode = igrab(&entry->vfs_inode);
3471 if (inode) {
3472 spin_unlock(&root->inode_lock);
3473 if (atomic_read(&inode->i_count) > 1)
3474 d_prune_aliases(inode);
3476 * btrfs_drop_inode will remove it from
3477 * the inode cache when its usage count
3478 * hits zero.
3480 iput(inode);
3481 cond_resched();
3482 spin_lock(&root->inode_lock);
3483 goto again;
3486 if (cond_resched_lock(&root->inode_lock))
3487 goto again;
3489 node = rb_next(node);
3491 spin_unlock(&root->inode_lock);
3492 return 0;
3495 static noinline void init_btrfs_i(struct inode *inode)
3497 struct btrfs_inode *bi = BTRFS_I(inode);
3499 bi->generation = 0;
3500 bi->sequence = 0;
3501 bi->last_trans = 0;
3502 bi->last_sub_trans = 0;
3503 bi->logged_trans = 0;
3504 bi->delalloc_bytes = 0;
3505 bi->reserved_bytes = 0;
3506 bi->disk_i_size = 0;
3507 bi->flags = 0;
3508 bi->index_cnt = (u64)-1;
3509 bi->last_unlink_trans = 0;
3510 bi->ordered_data_close = 0;
3511 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3512 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3513 inode->i_mapping, GFP_NOFS);
3514 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3515 inode->i_mapping, GFP_NOFS);
3516 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3517 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3518 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3519 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3520 mutex_init(&BTRFS_I(inode)->extent_mutex);
3521 mutex_init(&BTRFS_I(inode)->log_mutex);
3524 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3526 struct btrfs_iget_args *args = p;
3527 inode->i_ino = args->ino;
3528 init_btrfs_i(inode);
3529 BTRFS_I(inode)->root = args->root;
3530 btrfs_set_inode_space_info(args->root, inode);
3531 return 0;
3534 static int btrfs_find_actor(struct inode *inode, void *opaque)
3536 struct btrfs_iget_args *args = opaque;
3537 return args->ino == inode->i_ino &&
3538 args->root == BTRFS_I(inode)->root;
3541 static struct inode *btrfs_iget_locked(struct super_block *s,
3542 u64 objectid,
3543 struct btrfs_root *root)
3545 struct inode *inode;
3546 struct btrfs_iget_args args;
3547 args.ino = objectid;
3548 args.root = root;
3550 inode = iget5_locked(s, objectid, btrfs_find_actor,
3551 btrfs_init_locked_inode,
3552 (void *)&args);
3553 return inode;
3556 /* Get an inode object given its location and corresponding root.
3557 * Returns in *is_new if the inode was read from disk
3559 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3560 struct btrfs_root *root)
3562 struct inode *inode;
3564 inode = btrfs_iget_locked(s, location->objectid, root);
3565 if (!inode)
3566 return ERR_PTR(-ENOMEM);
3568 if (inode->i_state & I_NEW) {
3569 BTRFS_I(inode)->root = root;
3570 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3571 btrfs_read_locked_inode(inode);
3573 inode_tree_add(inode);
3574 unlock_new_inode(inode);
3577 return inode;
3580 static struct inode *new_simple_dir(struct super_block *s,
3581 struct btrfs_key *key,
3582 struct btrfs_root *root)
3584 struct inode *inode = new_inode(s);
3586 if (!inode)
3587 return ERR_PTR(-ENOMEM);
3589 init_btrfs_i(inode);
3591 BTRFS_I(inode)->root = root;
3592 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3593 BTRFS_I(inode)->dummy_inode = 1;
3595 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3596 inode->i_op = &simple_dir_inode_operations;
3597 inode->i_fop = &simple_dir_operations;
3598 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3599 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3601 return inode;
3604 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3606 struct inode *inode;
3607 struct btrfs_root *root = BTRFS_I(dir)->root;
3608 struct btrfs_root *sub_root = root;
3609 struct btrfs_key location;
3610 int index;
3611 int ret;
3613 dentry->d_op = &btrfs_dentry_operations;
3615 if (dentry->d_name.len > BTRFS_NAME_LEN)
3616 return ERR_PTR(-ENAMETOOLONG);
3618 ret = btrfs_inode_by_name(dir, dentry, &location);
3620 if (ret < 0)
3621 return ERR_PTR(ret);
3623 if (location.objectid == 0)
3624 return NULL;
3626 if (location.type == BTRFS_INODE_ITEM_KEY) {
3627 inode = btrfs_iget(dir->i_sb, &location, root);
3628 return inode;
3631 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3633 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3634 ret = fixup_tree_root_location(root, dir, dentry,
3635 &location, &sub_root);
3636 if (ret < 0) {
3637 if (ret != -ENOENT)
3638 inode = ERR_PTR(ret);
3639 else
3640 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3641 } else {
3642 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3644 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3646 return inode;
3649 static int btrfs_dentry_delete(struct dentry *dentry)
3651 struct btrfs_root *root;
3653 if (!dentry->d_inode && !IS_ROOT(dentry))
3654 dentry = dentry->d_parent;
3656 if (dentry->d_inode) {
3657 root = BTRFS_I(dentry->d_inode)->root;
3658 if (btrfs_root_refs(&root->root_item) == 0)
3659 return 1;
3661 return 0;
3664 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3665 struct nameidata *nd)
3667 struct inode *inode;
3669 inode = btrfs_lookup_dentry(dir, dentry);
3670 if (IS_ERR(inode))
3671 return ERR_CAST(inode);
3673 return d_splice_alias(inode, dentry);
3676 static unsigned char btrfs_filetype_table[] = {
3677 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3680 static int btrfs_real_readdir(struct file *filp, void *dirent,
3681 filldir_t filldir)
3683 struct inode *inode = filp->f_dentry->d_inode;
3684 struct btrfs_root *root = BTRFS_I(inode)->root;
3685 struct btrfs_item *item;
3686 struct btrfs_dir_item *di;
3687 struct btrfs_key key;
3688 struct btrfs_key found_key;
3689 struct btrfs_path *path;
3690 int ret;
3691 u32 nritems;
3692 struct extent_buffer *leaf;
3693 int slot;
3694 int advance;
3695 unsigned char d_type;
3696 int over = 0;
3697 u32 di_cur;
3698 u32 di_total;
3699 u32 di_len;
3700 int key_type = BTRFS_DIR_INDEX_KEY;
3701 char tmp_name[32];
3702 char *name_ptr;
3703 int name_len;
3705 /* FIXME, use a real flag for deciding about the key type */
3706 if (root->fs_info->tree_root == root)
3707 key_type = BTRFS_DIR_ITEM_KEY;
3709 /* special case for "." */
3710 if (filp->f_pos == 0) {
3711 over = filldir(dirent, ".", 1,
3712 1, inode->i_ino,
3713 DT_DIR);
3714 if (over)
3715 return 0;
3716 filp->f_pos = 1;
3718 /* special case for .., just use the back ref */
3719 if (filp->f_pos == 1) {
3720 u64 pino = parent_ino(filp->f_path.dentry);
3721 over = filldir(dirent, "..", 2,
3722 2, pino, DT_DIR);
3723 if (over)
3724 return 0;
3725 filp->f_pos = 2;
3727 path = btrfs_alloc_path();
3728 path->reada = 2;
3730 btrfs_set_key_type(&key, key_type);
3731 key.offset = filp->f_pos;
3732 key.objectid = inode->i_ino;
3734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3735 if (ret < 0)
3736 goto err;
3737 advance = 0;
3739 while (1) {
3740 leaf = path->nodes[0];
3741 nritems = btrfs_header_nritems(leaf);
3742 slot = path->slots[0];
3743 if (advance || slot >= nritems) {
3744 if (slot >= nritems - 1) {
3745 ret = btrfs_next_leaf(root, path);
3746 if (ret)
3747 break;
3748 leaf = path->nodes[0];
3749 nritems = btrfs_header_nritems(leaf);
3750 slot = path->slots[0];
3751 } else {
3752 slot++;
3753 path->slots[0]++;
3757 advance = 1;
3758 item = btrfs_item_nr(leaf, slot);
3759 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3761 if (found_key.objectid != key.objectid)
3762 break;
3763 if (btrfs_key_type(&found_key) != key_type)
3764 break;
3765 if (found_key.offset < filp->f_pos)
3766 continue;
3768 filp->f_pos = found_key.offset;
3770 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3771 di_cur = 0;
3772 di_total = btrfs_item_size(leaf, item);
3774 while (di_cur < di_total) {
3775 struct btrfs_key location;
3777 name_len = btrfs_dir_name_len(leaf, di);
3778 if (name_len <= sizeof(tmp_name)) {
3779 name_ptr = tmp_name;
3780 } else {
3781 name_ptr = kmalloc(name_len, GFP_NOFS);
3782 if (!name_ptr) {
3783 ret = -ENOMEM;
3784 goto err;
3787 read_extent_buffer(leaf, name_ptr,
3788 (unsigned long)(di + 1), name_len);
3790 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3791 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3793 /* is this a reference to our own snapshot? If so
3794 * skip it
3796 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3797 location.objectid == root->root_key.objectid) {
3798 over = 0;
3799 goto skip;
3801 over = filldir(dirent, name_ptr, name_len,
3802 found_key.offset, location.objectid,
3803 d_type);
3805 skip:
3806 if (name_ptr != tmp_name)
3807 kfree(name_ptr);
3809 if (over)
3810 goto nopos;
3811 di_len = btrfs_dir_name_len(leaf, di) +
3812 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3813 di_cur += di_len;
3814 di = (struct btrfs_dir_item *)((char *)di + di_len);
3818 /* Reached end of directory/root. Bump pos past the last item. */
3819 if (key_type == BTRFS_DIR_INDEX_KEY)
3820 filp->f_pos = INT_LIMIT(off_t);
3821 else
3822 filp->f_pos++;
3823 nopos:
3824 ret = 0;
3825 err:
3826 btrfs_free_path(path);
3827 return ret;
3830 int btrfs_write_inode(struct inode *inode, int wait)
3832 struct btrfs_root *root = BTRFS_I(inode)->root;
3833 struct btrfs_trans_handle *trans;
3834 int ret = 0;
3836 if (root->fs_info->btree_inode == inode)
3837 return 0;
3839 if (wait) {
3840 trans = btrfs_join_transaction(root, 1);
3841 btrfs_set_trans_block_group(trans, inode);
3842 ret = btrfs_commit_transaction(trans, root);
3844 return ret;
3848 * This is somewhat expensive, updating the tree every time the
3849 * inode changes. But, it is most likely to find the inode in cache.
3850 * FIXME, needs more benchmarking...there are no reasons other than performance
3851 * to keep or drop this code.
3853 void btrfs_dirty_inode(struct inode *inode)
3855 struct btrfs_root *root = BTRFS_I(inode)->root;
3856 struct btrfs_trans_handle *trans;
3858 trans = btrfs_join_transaction(root, 1);
3859 btrfs_set_trans_block_group(trans, inode);
3860 btrfs_update_inode(trans, root, inode);
3861 btrfs_end_transaction(trans, root);
3865 * find the highest existing sequence number in a directory
3866 * and then set the in-memory index_cnt variable to reflect
3867 * free sequence numbers
3869 static int btrfs_set_inode_index_count(struct inode *inode)
3871 struct btrfs_root *root = BTRFS_I(inode)->root;
3872 struct btrfs_key key, found_key;
3873 struct btrfs_path *path;
3874 struct extent_buffer *leaf;
3875 int ret;
3877 key.objectid = inode->i_ino;
3878 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3879 key.offset = (u64)-1;
3881 path = btrfs_alloc_path();
3882 if (!path)
3883 return -ENOMEM;
3885 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3886 if (ret < 0)
3887 goto out;
3888 /* FIXME: we should be able to handle this */
3889 if (ret == 0)
3890 goto out;
3891 ret = 0;
3894 * MAGIC NUMBER EXPLANATION:
3895 * since we search a directory based on f_pos we have to start at 2
3896 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3897 * else has to start at 2
3899 if (path->slots[0] == 0) {
3900 BTRFS_I(inode)->index_cnt = 2;
3901 goto out;
3904 path->slots[0]--;
3906 leaf = path->nodes[0];
3907 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3909 if (found_key.objectid != inode->i_ino ||
3910 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3911 BTRFS_I(inode)->index_cnt = 2;
3912 goto out;
3915 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3916 out:
3917 btrfs_free_path(path);
3918 return ret;
3922 * helper to find a free sequence number in a given directory. This current
3923 * code is very simple, later versions will do smarter things in the btree
3925 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3927 int ret = 0;
3929 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3930 ret = btrfs_set_inode_index_count(dir);
3931 if (ret)
3932 return ret;
3935 *index = BTRFS_I(dir)->index_cnt;
3936 BTRFS_I(dir)->index_cnt++;
3938 return ret;
3941 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3942 struct btrfs_root *root,
3943 struct inode *dir,
3944 const char *name, int name_len,
3945 u64 ref_objectid, u64 objectid,
3946 u64 alloc_hint, int mode, u64 *index)
3948 struct inode *inode;
3949 struct btrfs_inode_item *inode_item;
3950 struct btrfs_key *location;
3951 struct btrfs_path *path;
3952 struct btrfs_inode_ref *ref;
3953 struct btrfs_key key[2];
3954 u32 sizes[2];
3955 unsigned long ptr;
3956 int ret;
3957 int owner;
3959 path = btrfs_alloc_path();
3960 BUG_ON(!path);
3962 inode = new_inode(root->fs_info->sb);
3963 if (!inode)
3964 return ERR_PTR(-ENOMEM);
3966 if (dir) {
3967 ret = btrfs_set_inode_index(dir, index);
3968 if (ret) {
3969 iput(inode);
3970 return ERR_PTR(ret);
3974 * index_cnt is ignored for everything but a dir,
3975 * btrfs_get_inode_index_count has an explanation for the magic
3976 * number
3978 init_btrfs_i(inode);
3979 BTRFS_I(inode)->index_cnt = 2;
3980 BTRFS_I(inode)->root = root;
3981 BTRFS_I(inode)->generation = trans->transid;
3982 btrfs_set_inode_space_info(root, inode);
3984 if (mode & S_IFDIR)
3985 owner = 0;
3986 else
3987 owner = 1;
3988 BTRFS_I(inode)->block_group =
3989 btrfs_find_block_group(root, 0, alloc_hint, owner);
3991 key[0].objectid = objectid;
3992 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3993 key[0].offset = 0;
3995 key[1].objectid = objectid;
3996 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3997 key[1].offset = ref_objectid;
3999 sizes[0] = sizeof(struct btrfs_inode_item);
4000 sizes[1] = name_len + sizeof(*ref);
4002 path->leave_spinning = 1;
4003 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4004 if (ret != 0)
4005 goto fail;
4007 inode->i_uid = current_fsuid();
4009 if (dir && (dir->i_mode & S_ISGID)) {
4010 inode->i_gid = dir->i_gid;
4011 if (S_ISDIR(mode))
4012 mode |= S_ISGID;
4013 } else
4014 inode->i_gid = current_fsgid();
4016 inode->i_mode = mode;
4017 inode->i_ino = objectid;
4018 inode_set_bytes(inode, 0);
4019 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4020 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4021 struct btrfs_inode_item);
4022 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4024 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4025 struct btrfs_inode_ref);
4026 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4027 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4028 ptr = (unsigned long)(ref + 1);
4029 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4031 btrfs_mark_buffer_dirty(path->nodes[0]);
4032 btrfs_free_path(path);
4034 location = &BTRFS_I(inode)->location;
4035 location->objectid = objectid;
4036 location->offset = 0;
4037 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4039 btrfs_inherit_iflags(inode, dir);
4041 if ((mode & S_IFREG)) {
4042 if (btrfs_test_opt(root, NODATASUM))
4043 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4044 if (btrfs_test_opt(root, NODATACOW))
4045 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4048 insert_inode_hash(inode);
4049 inode_tree_add(inode);
4050 return inode;
4051 fail:
4052 if (dir)
4053 BTRFS_I(dir)->index_cnt--;
4054 btrfs_free_path(path);
4055 iput(inode);
4056 return ERR_PTR(ret);
4059 static inline u8 btrfs_inode_type(struct inode *inode)
4061 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4065 * utility function to add 'inode' into 'parent_inode' with
4066 * a give name and a given sequence number.
4067 * if 'add_backref' is true, also insert a backref from the
4068 * inode to the parent directory.
4070 int btrfs_add_link(struct btrfs_trans_handle *trans,
4071 struct inode *parent_inode, struct inode *inode,
4072 const char *name, int name_len, int add_backref, u64 index)
4074 int ret = 0;
4075 struct btrfs_key key;
4076 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4078 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4079 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4080 } else {
4081 key.objectid = inode->i_ino;
4082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4083 key.offset = 0;
4086 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4087 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4088 key.objectid, root->root_key.objectid,
4089 parent_inode->i_ino,
4090 index, name, name_len);
4091 } else if (add_backref) {
4092 ret = btrfs_insert_inode_ref(trans, root,
4093 name, name_len, inode->i_ino,
4094 parent_inode->i_ino, index);
4097 if (ret == 0) {
4098 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4099 parent_inode->i_ino, &key,
4100 btrfs_inode_type(inode), index);
4101 BUG_ON(ret);
4103 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4104 name_len * 2);
4105 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4106 ret = btrfs_update_inode(trans, root, parent_inode);
4108 return ret;
4111 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4112 struct dentry *dentry, struct inode *inode,
4113 int backref, u64 index)
4115 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4116 inode, dentry->d_name.name,
4117 dentry->d_name.len, backref, index);
4118 if (!err) {
4119 d_instantiate(dentry, inode);
4120 return 0;
4122 if (err > 0)
4123 err = -EEXIST;
4124 return err;
4127 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4128 int mode, dev_t rdev)
4130 struct btrfs_trans_handle *trans;
4131 struct btrfs_root *root = BTRFS_I(dir)->root;
4132 struct inode *inode = NULL;
4133 int err;
4134 int drop_inode = 0;
4135 u64 objectid;
4136 unsigned long nr = 0;
4137 u64 index = 0;
4139 if (!new_valid_dev(rdev))
4140 return -EINVAL;
4143 * 2 for inode item and ref
4144 * 2 for dir items
4145 * 1 for xattr if selinux is on
4147 err = btrfs_reserve_metadata_space(root, 5);
4148 if (err)
4149 return err;
4151 trans = btrfs_start_transaction(root, 1);
4152 if (!trans)
4153 goto fail;
4154 btrfs_set_trans_block_group(trans, dir);
4156 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4157 if (err) {
4158 err = -ENOSPC;
4159 goto out_unlock;
4162 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4163 dentry->d_name.len,
4164 dentry->d_parent->d_inode->i_ino, objectid,
4165 BTRFS_I(dir)->block_group, mode, &index);
4166 err = PTR_ERR(inode);
4167 if (IS_ERR(inode))
4168 goto out_unlock;
4170 err = btrfs_init_inode_security(inode, dir);
4171 if (err) {
4172 drop_inode = 1;
4173 goto out_unlock;
4176 btrfs_set_trans_block_group(trans, inode);
4177 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4178 if (err)
4179 drop_inode = 1;
4180 else {
4181 inode->i_op = &btrfs_special_inode_operations;
4182 init_special_inode(inode, inode->i_mode, rdev);
4183 btrfs_update_inode(trans, root, inode);
4185 btrfs_update_inode_block_group(trans, inode);
4186 btrfs_update_inode_block_group(trans, dir);
4187 out_unlock:
4188 nr = trans->blocks_used;
4189 btrfs_end_transaction_throttle(trans, root);
4190 fail:
4191 btrfs_unreserve_metadata_space(root, 5);
4192 if (drop_inode) {
4193 inode_dec_link_count(inode);
4194 iput(inode);
4196 btrfs_btree_balance_dirty(root, nr);
4197 return err;
4200 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4201 int mode, struct nameidata *nd)
4203 struct btrfs_trans_handle *trans;
4204 struct btrfs_root *root = BTRFS_I(dir)->root;
4205 struct inode *inode = NULL;
4206 int err;
4207 int drop_inode = 0;
4208 unsigned long nr = 0;
4209 u64 objectid;
4210 u64 index = 0;
4213 * 2 for inode item and ref
4214 * 2 for dir items
4215 * 1 for xattr if selinux is on
4217 err = btrfs_reserve_metadata_space(root, 5);
4218 if (err)
4219 return err;
4221 trans = btrfs_start_transaction(root, 1);
4222 if (!trans)
4223 goto fail;
4224 btrfs_set_trans_block_group(trans, dir);
4226 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4227 if (err) {
4228 err = -ENOSPC;
4229 goto out_unlock;
4232 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4233 dentry->d_name.len,
4234 dentry->d_parent->d_inode->i_ino,
4235 objectid, BTRFS_I(dir)->block_group, mode,
4236 &index);
4237 err = PTR_ERR(inode);
4238 if (IS_ERR(inode))
4239 goto out_unlock;
4241 err = btrfs_init_inode_security(inode, dir);
4242 if (err) {
4243 drop_inode = 1;
4244 goto out_unlock;
4247 btrfs_set_trans_block_group(trans, inode);
4248 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4249 if (err)
4250 drop_inode = 1;
4251 else {
4252 inode->i_mapping->a_ops = &btrfs_aops;
4253 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4254 inode->i_fop = &btrfs_file_operations;
4255 inode->i_op = &btrfs_file_inode_operations;
4256 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4258 btrfs_update_inode_block_group(trans, inode);
4259 btrfs_update_inode_block_group(trans, dir);
4260 out_unlock:
4261 nr = trans->blocks_used;
4262 btrfs_end_transaction_throttle(trans, root);
4263 fail:
4264 btrfs_unreserve_metadata_space(root, 5);
4265 if (drop_inode) {
4266 inode_dec_link_count(inode);
4267 iput(inode);
4269 btrfs_btree_balance_dirty(root, nr);
4270 return err;
4273 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4274 struct dentry *dentry)
4276 struct btrfs_trans_handle *trans;
4277 struct btrfs_root *root = BTRFS_I(dir)->root;
4278 struct inode *inode = old_dentry->d_inode;
4279 u64 index;
4280 unsigned long nr = 0;
4281 int err;
4282 int drop_inode = 0;
4284 if (inode->i_nlink == 0)
4285 return -ENOENT;
4288 * 1 item for inode ref
4289 * 2 items for dir items
4291 err = btrfs_reserve_metadata_space(root, 3);
4292 if (err)
4293 return err;
4295 btrfs_inc_nlink(inode);
4297 err = btrfs_set_inode_index(dir, &index);
4298 if (err)
4299 goto fail;
4301 trans = btrfs_start_transaction(root, 1);
4303 btrfs_set_trans_block_group(trans, dir);
4304 atomic_inc(&inode->i_count);
4306 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4308 if (err) {
4309 drop_inode = 1;
4310 } else {
4311 btrfs_update_inode_block_group(trans, dir);
4312 err = btrfs_update_inode(trans, root, inode);
4313 BUG_ON(err);
4314 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4317 nr = trans->blocks_used;
4318 btrfs_end_transaction_throttle(trans, root);
4319 fail:
4320 btrfs_unreserve_metadata_space(root, 3);
4321 if (drop_inode) {
4322 inode_dec_link_count(inode);
4323 iput(inode);
4325 btrfs_btree_balance_dirty(root, nr);
4326 return err;
4329 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4331 struct inode *inode = NULL;
4332 struct btrfs_trans_handle *trans;
4333 struct btrfs_root *root = BTRFS_I(dir)->root;
4334 int err = 0;
4335 int drop_on_err = 0;
4336 u64 objectid = 0;
4337 u64 index = 0;
4338 unsigned long nr = 1;
4341 * 2 items for inode and ref
4342 * 2 items for dir items
4343 * 1 for xattr if selinux is on
4345 err = btrfs_reserve_metadata_space(root, 5);
4346 if (err)
4347 return err;
4349 trans = btrfs_start_transaction(root, 1);
4350 if (!trans) {
4351 err = -ENOMEM;
4352 goto out_unlock;
4354 btrfs_set_trans_block_group(trans, dir);
4356 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4357 if (err) {
4358 err = -ENOSPC;
4359 goto out_unlock;
4362 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4363 dentry->d_name.len,
4364 dentry->d_parent->d_inode->i_ino, objectid,
4365 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4366 &index);
4367 if (IS_ERR(inode)) {
4368 err = PTR_ERR(inode);
4369 goto out_fail;
4372 drop_on_err = 1;
4374 err = btrfs_init_inode_security(inode, dir);
4375 if (err)
4376 goto out_fail;
4378 inode->i_op = &btrfs_dir_inode_operations;
4379 inode->i_fop = &btrfs_dir_file_operations;
4380 btrfs_set_trans_block_group(trans, inode);
4382 btrfs_i_size_write(inode, 0);
4383 err = btrfs_update_inode(trans, root, inode);
4384 if (err)
4385 goto out_fail;
4387 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4388 inode, dentry->d_name.name,
4389 dentry->d_name.len, 0, index);
4390 if (err)
4391 goto out_fail;
4393 d_instantiate(dentry, inode);
4394 drop_on_err = 0;
4395 btrfs_update_inode_block_group(trans, inode);
4396 btrfs_update_inode_block_group(trans, dir);
4398 out_fail:
4399 nr = trans->blocks_used;
4400 btrfs_end_transaction_throttle(trans, root);
4402 out_unlock:
4403 btrfs_unreserve_metadata_space(root, 5);
4404 if (drop_on_err)
4405 iput(inode);
4406 btrfs_btree_balance_dirty(root, nr);
4407 return err;
4410 /* helper for btfs_get_extent. Given an existing extent in the tree,
4411 * and an extent that you want to insert, deal with overlap and insert
4412 * the new extent into the tree.
4414 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4415 struct extent_map *existing,
4416 struct extent_map *em,
4417 u64 map_start, u64 map_len)
4419 u64 start_diff;
4421 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4422 start_diff = map_start - em->start;
4423 em->start = map_start;
4424 em->len = map_len;
4425 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4426 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4427 em->block_start += start_diff;
4428 em->block_len -= start_diff;
4430 return add_extent_mapping(em_tree, em);
4433 static noinline int uncompress_inline(struct btrfs_path *path,
4434 struct inode *inode, struct page *page,
4435 size_t pg_offset, u64 extent_offset,
4436 struct btrfs_file_extent_item *item)
4438 int ret;
4439 struct extent_buffer *leaf = path->nodes[0];
4440 char *tmp;
4441 size_t max_size;
4442 unsigned long inline_size;
4443 unsigned long ptr;
4445 WARN_ON(pg_offset != 0);
4446 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4447 inline_size = btrfs_file_extent_inline_item_len(leaf,
4448 btrfs_item_nr(leaf, path->slots[0]));
4449 tmp = kmalloc(inline_size, GFP_NOFS);
4450 ptr = btrfs_file_extent_inline_start(item);
4452 read_extent_buffer(leaf, tmp, ptr, inline_size);
4454 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4455 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4456 inline_size, max_size);
4457 if (ret) {
4458 char *kaddr = kmap_atomic(page, KM_USER0);
4459 unsigned long copy_size = min_t(u64,
4460 PAGE_CACHE_SIZE - pg_offset,
4461 max_size - extent_offset);
4462 memset(kaddr + pg_offset, 0, copy_size);
4463 kunmap_atomic(kaddr, KM_USER0);
4465 kfree(tmp);
4466 return 0;
4470 * a bit scary, this does extent mapping from logical file offset to the disk.
4471 * the ugly parts come from merging extents from the disk with the in-ram
4472 * representation. This gets more complex because of the data=ordered code,
4473 * where the in-ram extents might be locked pending data=ordered completion.
4475 * This also copies inline extents directly into the page.
4478 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4479 size_t pg_offset, u64 start, u64 len,
4480 int create)
4482 int ret;
4483 int err = 0;
4484 u64 bytenr;
4485 u64 extent_start = 0;
4486 u64 extent_end = 0;
4487 u64 objectid = inode->i_ino;
4488 u32 found_type;
4489 struct btrfs_path *path = NULL;
4490 struct btrfs_root *root = BTRFS_I(inode)->root;
4491 struct btrfs_file_extent_item *item;
4492 struct extent_buffer *leaf;
4493 struct btrfs_key found_key;
4494 struct extent_map *em = NULL;
4495 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4496 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4497 struct btrfs_trans_handle *trans = NULL;
4498 int compressed;
4500 again:
4501 read_lock(&em_tree->lock);
4502 em = lookup_extent_mapping(em_tree, start, len);
4503 if (em)
4504 em->bdev = root->fs_info->fs_devices->latest_bdev;
4505 read_unlock(&em_tree->lock);
4507 if (em) {
4508 if (em->start > start || em->start + em->len <= start)
4509 free_extent_map(em);
4510 else if (em->block_start == EXTENT_MAP_INLINE && page)
4511 free_extent_map(em);
4512 else
4513 goto out;
4515 em = alloc_extent_map(GFP_NOFS);
4516 if (!em) {
4517 err = -ENOMEM;
4518 goto out;
4520 em->bdev = root->fs_info->fs_devices->latest_bdev;
4521 em->start = EXTENT_MAP_HOLE;
4522 em->orig_start = EXTENT_MAP_HOLE;
4523 em->len = (u64)-1;
4524 em->block_len = (u64)-1;
4526 if (!path) {
4527 path = btrfs_alloc_path();
4528 BUG_ON(!path);
4531 ret = btrfs_lookup_file_extent(trans, root, path,
4532 objectid, start, trans != NULL);
4533 if (ret < 0) {
4534 err = ret;
4535 goto out;
4538 if (ret != 0) {
4539 if (path->slots[0] == 0)
4540 goto not_found;
4541 path->slots[0]--;
4544 leaf = path->nodes[0];
4545 item = btrfs_item_ptr(leaf, path->slots[0],
4546 struct btrfs_file_extent_item);
4547 /* are we inside the extent that was found? */
4548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4549 found_type = btrfs_key_type(&found_key);
4550 if (found_key.objectid != objectid ||
4551 found_type != BTRFS_EXTENT_DATA_KEY) {
4552 goto not_found;
4555 found_type = btrfs_file_extent_type(leaf, item);
4556 extent_start = found_key.offset;
4557 compressed = btrfs_file_extent_compression(leaf, item);
4558 if (found_type == BTRFS_FILE_EXTENT_REG ||
4559 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4560 extent_end = extent_start +
4561 btrfs_file_extent_num_bytes(leaf, item);
4562 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4563 size_t size;
4564 size = btrfs_file_extent_inline_len(leaf, item);
4565 extent_end = (extent_start + size + root->sectorsize - 1) &
4566 ~((u64)root->sectorsize - 1);
4569 if (start >= extent_end) {
4570 path->slots[0]++;
4571 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4572 ret = btrfs_next_leaf(root, path);
4573 if (ret < 0) {
4574 err = ret;
4575 goto out;
4577 if (ret > 0)
4578 goto not_found;
4579 leaf = path->nodes[0];
4581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4582 if (found_key.objectid != objectid ||
4583 found_key.type != BTRFS_EXTENT_DATA_KEY)
4584 goto not_found;
4585 if (start + len <= found_key.offset)
4586 goto not_found;
4587 em->start = start;
4588 em->len = found_key.offset - start;
4589 goto not_found_em;
4592 if (found_type == BTRFS_FILE_EXTENT_REG ||
4593 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4594 em->start = extent_start;
4595 em->len = extent_end - extent_start;
4596 em->orig_start = extent_start -
4597 btrfs_file_extent_offset(leaf, item);
4598 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4599 if (bytenr == 0) {
4600 em->block_start = EXTENT_MAP_HOLE;
4601 goto insert;
4603 if (compressed) {
4604 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4605 em->block_start = bytenr;
4606 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4607 item);
4608 } else {
4609 bytenr += btrfs_file_extent_offset(leaf, item);
4610 em->block_start = bytenr;
4611 em->block_len = em->len;
4612 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4613 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4615 goto insert;
4616 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4617 unsigned long ptr;
4618 char *map;
4619 size_t size;
4620 size_t extent_offset;
4621 size_t copy_size;
4623 em->block_start = EXTENT_MAP_INLINE;
4624 if (!page || create) {
4625 em->start = extent_start;
4626 em->len = extent_end - extent_start;
4627 goto out;
4630 size = btrfs_file_extent_inline_len(leaf, item);
4631 extent_offset = page_offset(page) + pg_offset - extent_start;
4632 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4633 size - extent_offset);
4634 em->start = extent_start + extent_offset;
4635 em->len = (copy_size + root->sectorsize - 1) &
4636 ~((u64)root->sectorsize - 1);
4637 em->orig_start = EXTENT_MAP_INLINE;
4638 if (compressed)
4639 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4640 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4641 if (create == 0 && !PageUptodate(page)) {
4642 if (btrfs_file_extent_compression(leaf, item) ==
4643 BTRFS_COMPRESS_ZLIB) {
4644 ret = uncompress_inline(path, inode, page,
4645 pg_offset,
4646 extent_offset, item);
4647 BUG_ON(ret);
4648 } else {
4649 map = kmap(page);
4650 read_extent_buffer(leaf, map + pg_offset, ptr,
4651 copy_size);
4652 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4653 memset(map + pg_offset + copy_size, 0,
4654 PAGE_CACHE_SIZE - pg_offset -
4655 copy_size);
4657 kunmap(page);
4659 flush_dcache_page(page);
4660 } else if (create && PageUptodate(page)) {
4661 if (!trans) {
4662 kunmap(page);
4663 free_extent_map(em);
4664 em = NULL;
4665 btrfs_release_path(root, path);
4666 trans = btrfs_join_transaction(root, 1);
4667 goto again;
4669 map = kmap(page);
4670 write_extent_buffer(leaf, map + pg_offset, ptr,
4671 copy_size);
4672 kunmap(page);
4673 btrfs_mark_buffer_dirty(leaf);
4675 set_extent_uptodate(io_tree, em->start,
4676 extent_map_end(em) - 1, GFP_NOFS);
4677 goto insert;
4678 } else {
4679 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4680 WARN_ON(1);
4682 not_found:
4683 em->start = start;
4684 em->len = len;
4685 not_found_em:
4686 em->block_start = EXTENT_MAP_HOLE;
4687 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4688 insert:
4689 btrfs_release_path(root, path);
4690 if (em->start > start || extent_map_end(em) <= start) {
4691 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4692 "[%llu %llu]\n", (unsigned long long)em->start,
4693 (unsigned long long)em->len,
4694 (unsigned long long)start,
4695 (unsigned long long)len);
4696 err = -EIO;
4697 goto out;
4700 err = 0;
4701 write_lock(&em_tree->lock);
4702 ret = add_extent_mapping(em_tree, em);
4703 /* it is possible that someone inserted the extent into the tree
4704 * while we had the lock dropped. It is also possible that
4705 * an overlapping map exists in the tree
4707 if (ret == -EEXIST) {
4708 struct extent_map *existing;
4710 ret = 0;
4712 existing = lookup_extent_mapping(em_tree, start, len);
4713 if (existing && (existing->start > start ||
4714 existing->start + existing->len <= start)) {
4715 free_extent_map(existing);
4716 existing = NULL;
4718 if (!existing) {
4719 existing = lookup_extent_mapping(em_tree, em->start,
4720 em->len);
4721 if (existing) {
4722 err = merge_extent_mapping(em_tree, existing,
4723 em, start,
4724 root->sectorsize);
4725 free_extent_map(existing);
4726 if (err) {
4727 free_extent_map(em);
4728 em = NULL;
4730 } else {
4731 err = -EIO;
4732 free_extent_map(em);
4733 em = NULL;
4735 } else {
4736 free_extent_map(em);
4737 em = existing;
4738 err = 0;
4741 write_unlock(&em_tree->lock);
4742 out:
4743 if (path)
4744 btrfs_free_path(path);
4745 if (trans) {
4746 ret = btrfs_end_transaction(trans, root);
4747 if (!err)
4748 err = ret;
4750 if (err) {
4751 free_extent_map(em);
4752 return ERR_PTR(err);
4754 return em;
4757 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4758 const struct iovec *iov, loff_t offset,
4759 unsigned long nr_segs)
4761 return -EINVAL;
4764 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4765 __u64 start, __u64 len)
4767 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4770 int btrfs_readpage(struct file *file, struct page *page)
4772 struct extent_io_tree *tree;
4773 tree = &BTRFS_I(page->mapping->host)->io_tree;
4774 return extent_read_full_page(tree, page, btrfs_get_extent);
4777 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4779 struct extent_io_tree *tree;
4782 if (current->flags & PF_MEMALLOC) {
4783 redirty_page_for_writepage(wbc, page);
4784 unlock_page(page);
4785 return 0;
4787 tree = &BTRFS_I(page->mapping->host)->io_tree;
4788 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4791 int btrfs_writepages(struct address_space *mapping,
4792 struct writeback_control *wbc)
4794 struct extent_io_tree *tree;
4796 tree = &BTRFS_I(mapping->host)->io_tree;
4797 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4800 static int
4801 btrfs_readpages(struct file *file, struct address_space *mapping,
4802 struct list_head *pages, unsigned nr_pages)
4804 struct extent_io_tree *tree;
4805 tree = &BTRFS_I(mapping->host)->io_tree;
4806 return extent_readpages(tree, mapping, pages, nr_pages,
4807 btrfs_get_extent);
4809 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4811 struct extent_io_tree *tree;
4812 struct extent_map_tree *map;
4813 int ret;
4815 tree = &BTRFS_I(page->mapping->host)->io_tree;
4816 map = &BTRFS_I(page->mapping->host)->extent_tree;
4817 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4818 if (ret == 1) {
4819 ClearPagePrivate(page);
4820 set_page_private(page, 0);
4821 page_cache_release(page);
4823 return ret;
4826 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4828 if (PageWriteback(page) || PageDirty(page))
4829 return 0;
4830 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4833 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4835 struct extent_io_tree *tree;
4836 struct btrfs_ordered_extent *ordered;
4837 u64 page_start = page_offset(page);
4838 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4842 * we have the page locked, so new writeback can't start,
4843 * and the dirty bit won't be cleared while we are here.
4845 * Wait for IO on this page so that we can safely clear
4846 * the PagePrivate2 bit and do ordered accounting
4848 wait_on_page_writeback(page);
4850 tree = &BTRFS_I(page->mapping->host)->io_tree;
4851 if (offset) {
4852 btrfs_releasepage(page, GFP_NOFS);
4853 return;
4855 lock_extent(tree, page_start, page_end, GFP_NOFS);
4856 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4857 page_offset(page));
4858 if (ordered) {
4860 * IO on this page will never be started, so we need
4861 * to account for any ordered extents now
4863 clear_extent_bit(tree, page_start, page_end,
4864 EXTENT_DIRTY | EXTENT_DELALLOC |
4865 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4866 NULL, GFP_NOFS);
4868 * whoever cleared the private bit is responsible
4869 * for the finish_ordered_io
4871 if (TestClearPagePrivate2(page)) {
4872 btrfs_finish_ordered_io(page->mapping->host,
4873 page_start, page_end);
4875 btrfs_put_ordered_extent(ordered);
4876 lock_extent(tree, page_start, page_end, GFP_NOFS);
4878 clear_extent_bit(tree, page_start, page_end,
4879 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4880 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
4881 __btrfs_releasepage(page, GFP_NOFS);
4883 ClearPageChecked(page);
4884 if (PagePrivate(page)) {
4885 ClearPagePrivate(page);
4886 set_page_private(page, 0);
4887 page_cache_release(page);
4892 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4893 * called from a page fault handler when a page is first dirtied. Hence we must
4894 * be careful to check for EOF conditions here. We set the page up correctly
4895 * for a written page which means we get ENOSPC checking when writing into
4896 * holes and correct delalloc and unwritten extent mapping on filesystems that
4897 * support these features.
4899 * We are not allowed to take the i_mutex here so we have to play games to
4900 * protect against truncate races as the page could now be beyond EOF. Because
4901 * vmtruncate() writes the inode size before removing pages, once we have the
4902 * page lock we can determine safely if the page is beyond EOF. If it is not
4903 * beyond EOF, then the page is guaranteed safe against truncation until we
4904 * unlock the page.
4906 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4908 struct page *page = vmf->page;
4909 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4910 struct btrfs_root *root = BTRFS_I(inode)->root;
4911 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4912 struct btrfs_ordered_extent *ordered;
4913 char *kaddr;
4914 unsigned long zero_start;
4915 loff_t size;
4916 int ret;
4917 u64 page_start;
4918 u64 page_end;
4920 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4921 if (ret) {
4922 if (ret == -ENOMEM)
4923 ret = VM_FAULT_OOM;
4924 else /* -ENOSPC, -EIO, etc */
4925 ret = VM_FAULT_SIGBUS;
4926 goto out;
4929 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4930 if (ret) {
4931 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4932 ret = VM_FAULT_SIGBUS;
4933 goto out;
4936 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4937 again:
4938 lock_page(page);
4939 size = i_size_read(inode);
4940 page_start = page_offset(page);
4941 page_end = page_start + PAGE_CACHE_SIZE - 1;
4943 if ((page->mapping != inode->i_mapping) ||
4944 (page_start >= size)) {
4945 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4946 /* page got truncated out from underneath us */
4947 goto out_unlock;
4949 wait_on_page_writeback(page);
4951 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4952 set_page_extent_mapped(page);
4955 * we can't set the delalloc bits if there are pending ordered
4956 * extents. Drop our locks and wait for them to finish
4958 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4959 if (ordered) {
4960 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4961 unlock_page(page);
4962 btrfs_start_ordered_extent(inode, ordered, 1);
4963 btrfs_put_ordered_extent(ordered);
4964 goto again;
4968 * XXX - page_mkwrite gets called every time the page is dirtied, even
4969 * if it was already dirty, so for space accounting reasons we need to
4970 * clear any delalloc bits for the range we are fixing to save. There
4971 * is probably a better way to do this, but for now keep consistent with
4972 * prepare_pages in the normal write path.
4974 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4975 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
4976 GFP_NOFS);
4978 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4979 if (ret) {
4980 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4981 ret = VM_FAULT_SIGBUS;
4982 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4983 goto out_unlock;
4985 ret = 0;
4987 /* page is wholly or partially inside EOF */
4988 if (page_start + PAGE_CACHE_SIZE > size)
4989 zero_start = size & ~PAGE_CACHE_MASK;
4990 else
4991 zero_start = PAGE_CACHE_SIZE;
4993 if (zero_start != PAGE_CACHE_SIZE) {
4994 kaddr = kmap(page);
4995 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4996 flush_dcache_page(page);
4997 kunmap(page);
4999 ClearPageChecked(page);
5000 set_page_dirty(page);
5001 SetPageUptodate(page);
5003 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5004 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5006 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5008 out_unlock:
5009 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5010 if (!ret)
5011 return VM_FAULT_LOCKED;
5012 unlock_page(page);
5013 out:
5014 return ret;
5017 static void btrfs_truncate(struct inode *inode)
5019 struct btrfs_root *root = BTRFS_I(inode)->root;
5020 int ret;
5021 struct btrfs_trans_handle *trans;
5022 unsigned long nr;
5023 u64 mask = root->sectorsize - 1;
5025 if (!S_ISREG(inode->i_mode))
5026 return;
5027 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5028 return;
5030 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5031 if (ret)
5032 return;
5033 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5035 trans = btrfs_start_transaction(root, 1);
5038 * setattr is responsible for setting the ordered_data_close flag,
5039 * but that is only tested during the last file release. That
5040 * could happen well after the next commit, leaving a great big
5041 * window where new writes may get lost if someone chooses to write
5042 * to this file after truncating to zero
5044 * The inode doesn't have any dirty data here, and so if we commit
5045 * this is a noop. If someone immediately starts writing to the inode
5046 * it is very likely we'll catch some of their writes in this
5047 * transaction, and the commit will find this file on the ordered
5048 * data list with good things to send down.
5050 * This is a best effort solution, there is still a window where
5051 * using truncate to replace the contents of the file will
5052 * end up with a zero length file after a crash.
5054 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5055 btrfs_add_ordered_operation(trans, root, inode);
5057 btrfs_set_trans_block_group(trans, inode);
5058 btrfs_i_size_write(inode, inode->i_size);
5060 ret = btrfs_orphan_add(trans, inode);
5061 if (ret)
5062 goto out;
5063 /* FIXME, add redo link to tree so we don't leak on crash */
5064 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5065 BTRFS_EXTENT_DATA_KEY);
5066 btrfs_update_inode(trans, root, inode);
5068 ret = btrfs_orphan_del(trans, inode);
5069 BUG_ON(ret);
5071 out:
5072 nr = trans->blocks_used;
5073 ret = btrfs_end_transaction_throttle(trans, root);
5074 BUG_ON(ret);
5075 btrfs_btree_balance_dirty(root, nr);
5079 * create a new subvolume directory/inode (helper for the ioctl).
5081 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5082 struct btrfs_root *new_root,
5083 u64 new_dirid, u64 alloc_hint)
5085 struct inode *inode;
5086 int err;
5087 u64 index = 0;
5089 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5090 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5091 if (IS_ERR(inode))
5092 return PTR_ERR(inode);
5093 inode->i_op = &btrfs_dir_inode_operations;
5094 inode->i_fop = &btrfs_dir_file_operations;
5096 inode->i_nlink = 1;
5097 btrfs_i_size_write(inode, 0);
5099 err = btrfs_update_inode(trans, new_root, inode);
5100 BUG_ON(err);
5102 iput(inode);
5103 return 0;
5106 /* helper function for file defrag and space balancing. This
5107 * forces readahead on a given range of bytes in an inode
5109 unsigned long btrfs_force_ra(struct address_space *mapping,
5110 struct file_ra_state *ra, struct file *file,
5111 pgoff_t offset, pgoff_t last_index)
5113 pgoff_t req_size = last_index - offset + 1;
5115 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5116 return offset + req_size;
5119 struct inode *btrfs_alloc_inode(struct super_block *sb)
5121 struct btrfs_inode *ei;
5123 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5124 if (!ei)
5125 return NULL;
5126 ei->last_trans = 0;
5127 ei->last_sub_trans = 0;
5128 ei->logged_trans = 0;
5129 ei->outstanding_extents = 0;
5130 ei->reserved_extents = 0;
5131 spin_lock_init(&ei->accounting_lock);
5132 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5133 INIT_LIST_HEAD(&ei->i_orphan);
5134 INIT_LIST_HEAD(&ei->ordered_operations);
5135 return &ei->vfs_inode;
5138 void btrfs_destroy_inode(struct inode *inode)
5140 struct btrfs_ordered_extent *ordered;
5141 struct btrfs_root *root = BTRFS_I(inode)->root;
5143 WARN_ON(!list_empty(&inode->i_dentry));
5144 WARN_ON(inode->i_data.nrpages);
5147 * Make sure we're properly removed from the ordered operation
5148 * lists.
5150 smp_mb();
5151 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5152 spin_lock(&root->fs_info->ordered_extent_lock);
5153 list_del_init(&BTRFS_I(inode)->ordered_operations);
5154 spin_unlock(&root->fs_info->ordered_extent_lock);
5157 spin_lock(&root->list_lock);
5158 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5159 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5160 " list\n", inode->i_ino);
5161 dump_stack();
5163 spin_unlock(&root->list_lock);
5165 while (1) {
5166 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5167 if (!ordered)
5168 break;
5169 else {
5170 printk(KERN_ERR "btrfs found ordered "
5171 "extent %llu %llu on inode cleanup\n",
5172 (unsigned long long)ordered->file_offset,
5173 (unsigned long long)ordered->len);
5174 btrfs_remove_ordered_extent(inode, ordered);
5175 btrfs_put_ordered_extent(ordered);
5176 btrfs_put_ordered_extent(ordered);
5179 inode_tree_del(inode);
5180 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5181 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5184 void btrfs_drop_inode(struct inode *inode)
5186 struct btrfs_root *root = BTRFS_I(inode)->root;
5188 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5189 generic_delete_inode(inode);
5190 else
5191 generic_drop_inode(inode);
5194 static void init_once(void *foo)
5196 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5198 inode_init_once(&ei->vfs_inode);
5201 void btrfs_destroy_cachep(void)
5203 if (btrfs_inode_cachep)
5204 kmem_cache_destroy(btrfs_inode_cachep);
5205 if (btrfs_trans_handle_cachep)
5206 kmem_cache_destroy(btrfs_trans_handle_cachep);
5207 if (btrfs_transaction_cachep)
5208 kmem_cache_destroy(btrfs_transaction_cachep);
5209 if (btrfs_path_cachep)
5210 kmem_cache_destroy(btrfs_path_cachep);
5213 int btrfs_init_cachep(void)
5215 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5216 sizeof(struct btrfs_inode), 0,
5217 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5218 if (!btrfs_inode_cachep)
5219 goto fail;
5221 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5222 sizeof(struct btrfs_trans_handle), 0,
5223 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5224 if (!btrfs_trans_handle_cachep)
5225 goto fail;
5227 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5228 sizeof(struct btrfs_transaction), 0,
5229 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5230 if (!btrfs_transaction_cachep)
5231 goto fail;
5233 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5234 sizeof(struct btrfs_path), 0,
5235 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5236 if (!btrfs_path_cachep)
5237 goto fail;
5239 return 0;
5240 fail:
5241 btrfs_destroy_cachep();
5242 return -ENOMEM;
5245 static int btrfs_getattr(struct vfsmount *mnt,
5246 struct dentry *dentry, struct kstat *stat)
5248 struct inode *inode = dentry->d_inode;
5249 generic_fillattr(inode, stat);
5250 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5251 stat->blksize = PAGE_CACHE_SIZE;
5252 stat->blocks = (inode_get_bytes(inode) +
5253 BTRFS_I(inode)->delalloc_bytes) >> 9;
5254 return 0;
5257 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5258 struct inode *new_dir, struct dentry *new_dentry)
5260 struct btrfs_trans_handle *trans;
5261 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5262 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5263 struct inode *new_inode = new_dentry->d_inode;
5264 struct inode *old_inode = old_dentry->d_inode;
5265 struct timespec ctime = CURRENT_TIME;
5266 u64 index = 0;
5267 u64 root_objectid;
5268 int ret;
5270 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5271 return -EPERM;
5273 /* we only allow rename subvolume link between subvolumes */
5274 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5275 return -EXDEV;
5277 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5278 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5279 return -ENOTEMPTY;
5281 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5282 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5283 return -ENOTEMPTY;
5286 * 2 items for dir items
5287 * 1 item for orphan entry
5288 * 1 item for ref
5290 ret = btrfs_reserve_metadata_space(root, 4);
5291 if (ret)
5292 return ret;
5295 * we're using rename to replace one file with another.
5296 * and the replacement file is large. Start IO on it now so
5297 * we don't add too much work to the end of the transaction
5299 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5300 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5301 filemap_flush(old_inode->i_mapping);
5303 /* close the racy window with snapshot create/destroy ioctl */
5304 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5305 down_read(&root->fs_info->subvol_sem);
5307 trans = btrfs_start_transaction(root, 1);
5308 btrfs_set_trans_block_group(trans, new_dir);
5310 if (dest != root)
5311 btrfs_record_root_in_trans(trans, dest);
5313 ret = btrfs_set_inode_index(new_dir, &index);
5314 if (ret)
5315 goto out_fail;
5317 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5318 /* force full log commit if subvolume involved. */
5319 root->fs_info->last_trans_log_full_commit = trans->transid;
5320 } else {
5321 ret = btrfs_insert_inode_ref(trans, dest,
5322 new_dentry->d_name.name,
5323 new_dentry->d_name.len,
5324 old_inode->i_ino,
5325 new_dir->i_ino, index);
5326 if (ret)
5327 goto out_fail;
5329 * this is an ugly little race, but the rename is required
5330 * to make sure that if we crash, the inode is either at the
5331 * old name or the new one. pinning the log transaction lets
5332 * us make sure we don't allow a log commit to come in after
5333 * we unlink the name but before we add the new name back in.
5335 btrfs_pin_log_trans(root);
5338 * make sure the inode gets flushed if it is replacing
5339 * something.
5341 if (new_inode && new_inode->i_size &&
5342 old_inode && S_ISREG(old_inode->i_mode)) {
5343 btrfs_add_ordered_operation(trans, root, old_inode);
5346 old_dir->i_ctime = old_dir->i_mtime = ctime;
5347 new_dir->i_ctime = new_dir->i_mtime = ctime;
5348 old_inode->i_ctime = ctime;
5350 if (old_dentry->d_parent != new_dentry->d_parent)
5351 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5353 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5354 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5355 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5356 old_dentry->d_name.name,
5357 old_dentry->d_name.len);
5358 } else {
5359 btrfs_inc_nlink(old_dentry->d_inode);
5360 ret = btrfs_unlink_inode(trans, root, old_dir,
5361 old_dentry->d_inode,
5362 old_dentry->d_name.name,
5363 old_dentry->d_name.len);
5365 BUG_ON(ret);
5367 if (new_inode) {
5368 new_inode->i_ctime = CURRENT_TIME;
5369 if (unlikely(new_inode->i_ino ==
5370 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5371 root_objectid = BTRFS_I(new_inode)->location.objectid;
5372 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5373 root_objectid,
5374 new_dentry->d_name.name,
5375 new_dentry->d_name.len);
5376 BUG_ON(new_inode->i_nlink == 0);
5377 } else {
5378 ret = btrfs_unlink_inode(trans, dest, new_dir,
5379 new_dentry->d_inode,
5380 new_dentry->d_name.name,
5381 new_dentry->d_name.len);
5383 BUG_ON(ret);
5384 if (new_inode->i_nlink == 0) {
5385 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5386 BUG_ON(ret);
5390 ret = btrfs_add_link(trans, new_dir, old_inode,
5391 new_dentry->d_name.name,
5392 new_dentry->d_name.len, 0, index);
5393 BUG_ON(ret);
5395 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5396 btrfs_log_new_name(trans, old_inode, old_dir,
5397 new_dentry->d_parent);
5398 btrfs_end_log_trans(root);
5400 out_fail:
5401 btrfs_end_transaction_throttle(trans, root);
5403 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5404 up_read(&root->fs_info->subvol_sem);
5406 btrfs_unreserve_metadata_space(root, 4);
5407 return ret;
5411 * some fairly slow code that needs optimization. This walks the list
5412 * of all the inodes with pending delalloc and forces them to disk.
5414 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5416 struct list_head *head = &root->fs_info->delalloc_inodes;
5417 struct btrfs_inode *binode;
5418 struct inode *inode;
5420 if (root->fs_info->sb->s_flags & MS_RDONLY)
5421 return -EROFS;
5423 spin_lock(&root->fs_info->delalloc_lock);
5424 while (!list_empty(head)) {
5425 binode = list_entry(head->next, struct btrfs_inode,
5426 delalloc_inodes);
5427 inode = igrab(&binode->vfs_inode);
5428 if (!inode)
5429 list_del_init(&binode->delalloc_inodes);
5430 spin_unlock(&root->fs_info->delalloc_lock);
5431 if (inode) {
5432 filemap_flush(inode->i_mapping);
5433 iput(inode);
5435 cond_resched();
5436 spin_lock(&root->fs_info->delalloc_lock);
5438 spin_unlock(&root->fs_info->delalloc_lock);
5440 /* the filemap_flush will queue IO into the worker threads, but
5441 * we have to make sure the IO is actually started and that
5442 * ordered extents get created before we return
5444 atomic_inc(&root->fs_info->async_submit_draining);
5445 while (atomic_read(&root->fs_info->nr_async_submits) ||
5446 atomic_read(&root->fs_info->async_delalloc_pages)) {
5447 wait_event(root->fs_info->async_submit_wait,
5448 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5449 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5451 atomic_dec(&root->fs_info->async_submit_draining);
5452 return 0;
5455 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5456 const char *symname)
5458 struct btrfs_trans_handle *trans;
5459 struct btrfs_root *root = BTRFS_I(dir)->root;
5460 struct btrfs_path *path;
5461 struct btrfs_key key;
5462 struct inode *inode = NULL;
5463 int err;
5464 int drop_inode = 0;
5465 u64 objectid;
5466 u64 index = 0 ;
5467 int name_len;
5468 int datasize;
5469 unsigned long ptr;
5470 struct btrfs_file_extent_item *ei;
5471 struct extent_buffer *leaf;
5472 unsigned long nr = 0;
5474 name_len = strlen(symname) + 1;
5475 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5476 return -ENAMETOOLONG;
5479 * 2 items for inode item and ref
5480 * 2 items for dir items
5481 * 1 item for xattr if selinux is on
5483 err = btrfs_reserve_metadata_space(root, 5);
5484 if (err)
5485 return err;
5487 trans = btrfs_start_transaction(root, 1);
5488 if (!trans)
5489 goto out_fail;
5490 btrfs_set_trans_block_group(trans, dir);
5492 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5493 if (err) {
5494 err = -ENOSPC;
5495 goto out_unlock;
5498 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5499 dentry->d_name.len,
5500 dentry->d_parent->d_inode->i_ino, objectid,
5501 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5502 &index);
5503 err = PTR_ERR(inode);
5504 if (IS_ERR(inode))
5505 goto out_unlock;
5507 err = btrfs_init_inode_security(inode, dir);
5508 if (err) {
5509 drop_inode = 1;
5510 goto out_unlock;
5513 btrfs_set_trans_block_group(trans, inode);
5514 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5515 if (err)
5516 drop_inode = 1;
5517 else {
5518 inode->i_mapping->a_ops = &btrfs_aops;
5519 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5520 inode->i_fop = &btrfs_file_operations;
5521 inode->i_op = &btrfs_file_inode_operations;
5522 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5524 btrfs_update_inode_block_group(trans, inode);
5525 btrfs_update_inode_block_group(trans, dir);
5526 if (drop_inode)
5527 goto out_unlock;
5529 path = btrfs_alloc_path();
5530 BUG_ON(!path);
5531 key.objectid = inode->i_ino;
5532 key.offset = 0;
5533 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5534 datasize = btrfs_file_extent_calc_inline_size(name_len);
5535 err = btrfs_insert_empty_item(trans, root, path, &key,
5536 datasize);
5537 if (err) {
5538 drop_inode = 1;
5539 goto out_unlock;
5541 leaf = path->nodes[0];
5542 ei = btrfs_item_ptr(leaf, path->slots[0],
5543 struct btrfs_file_extent_item);
5544 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5545 btrfs_set_file_extent_type(leaf, ei,
5546 BTRFS_FILE_EXTENT_INLINE);
5547 btrfs_set_file_extent_encryption(leaf, ei, 0);
5548 btrfs_set_file_extent_compression(leaf, ei, 0);
5549 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5550 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5552 ptr = btrfs_file_extent_inline_start(ei);
5553 write_extent_buffer(leaf, symname, ptr, name_len);
5554 btrfs_mark_buffer_dirty(leaf);
5555 btrfs_free_path(path);
5557 inode->i_op = &btrfs_symlink_inode_operations;
5558 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5559 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5560 inode_set_bytes(inode, name_len);
5561 btrfs_i_size_write(inode, name_len - 1);
5562 err = btrfs_update_inode(trans, root, inode);
5563 if (err)
5564 drop_inode = 1;
5566 out_unlock:
5567 nr = trans->blocks_used;
5568 btrfs_end_transaction_throttle(trans, root);
5569 out_fail:
5570 btrfs_unreserve_metadata_space(root, 5);
5571 if (drop_inode) {
5572 inode_dec_link_count(inode);
5573 iput(inode);
5575 btrfs_btree_balance_dirty(root, nr);
5576 return err;
5579 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5580 struct inode *inode, u64 start, u64 end,
5581 u64 locked_end, u64 alloc_hint, int mode)
5583 struct btrfs_root *root = BTRFS_I(inode)->root;
5584 struct btrfs_key ins;
5585 u64 alloc_size;
5586 u64 cur_offset = start;
5587 u64 num_bytes = end - start;
5588 int ret = 0;
5590 while (num_bytes > 0) {
5591 alloc_size = min(num_bytes, root->fs_info->max_extent);
5593 ret = btrfs_reserve_metadata_space(root, 1);
5594 if (ret)
5595 goto out;
5597 ret = btrfs_reserve_extent(trans, root, alloc_size,
5598 root->sectorsize, 0, alloc_hint,
5599 (u64)-1, &ins, 1);
5600 if (ret) {
5601 WARN_ON(1);
5602 goto out;
5604 ret = insert_reserved_file_extent(trans, inode,
5605 cur_offset, ins.objectid,
5606 ins.offset, ins.offset,
5607 ins.offset, locked_end,
5608 0, 0, 0,
5609 BTRFS_FILE_EXTENT_PREALLOC);
5610 BUG_ON(ret);
5611 btrfs_drop_extent_cache(inode, cur_offset,
5612 cur_offset + ins.offset -1, 0);
5613 num_bytes -= ins.offset;
5614 cur_offset += ins.offset;
5615 alloc_hint = ins.objectid + ins.offset;
5616 btrfs_unreserve_metadata_space(root, 1);
5618 out:
5619 if (cur_offset > start) {
5620 inode->i_ctime = CURRENT_TIME;
5621 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5622 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5623 cur_offset > i_size_read(inode))
5624 btrfs_i_size_write(inode, cur_offset);
5625 ret = btrfs_update_inode(trans, root, inode);
5626 BUG_ON(ret);
5629 return ret;
5632 static long btrfs_fallocate(struct inode *inode, int mode,
5633 loff_t offset, loff_t len)
5635 u64 cur_offset;
5636 u64 last_byte;
5637 u64 alloc_start;
5638 u64 alloc_end;
5639 u64 alloc_hint = 0;
5640 u64 locked_end;
5641 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5642 struct extent_map *em;
5643 struct btrfs_trans_handle *trans;
5644 struct btrfs_root *root;
5645 int ret;
5647 alloc_start = offset & ~mask;
5648 alloc_end = (offset + len + mask) & ~mask;
5651 * wait for ordered IO before we have any locks. We'll loop again
5652 * below with the locks held.
5654 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5656 mutex_lock(&inode->i_mutex);
5657 if (alloc_start > inode->i_size) {
5658 ret = btrfs_cont_expand(inode, alloc_start);
5659 if (ret)
5660 goto out;
5663 root = BTRFS_I(inode)->root;
5665 ret = btrfs_check_data_free_space(root, inode,
5666 alloc_end - alloc_start);
5667 if (ret)
5668 goto out;
5670 locked_end = alloc_end - 1;
5671 while (1) {
5672 struct btrfs_ordered_extent *ordered;
5674 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5675 if (!trans) {
5676 ret = -EIO;
5677 goto out_free;
5680 /* the extent lock is ordered inside the running
5681 * transaction
5683 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5684 GFP_NOFS);
5685 ordered = btrfs_lookup_first_ordered_extent(inode,
5686 alloc_end - 1);
5687 if (ordered &&
5688 ordered->file_offset + ordered->len > alloc_start &&
5689 ordered->file_offset < alloc_end) {
5690 btrfs_put_ordered_extent(ordered);
5691 unlock_extent(&BTRFS_I(inode)->io_tree,
5692 alloc_start, locked_end, GFP_NOFS);
5693 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5696 * we can't wait on the range with the transaction
5697 * running or with the extent lock held
5699 btrfs_wait_ordered_range(inode, alloc_start,
5700 alloc_end - alloc_start);
5701 } else {
5702 if (ordered)
5703 btrfs_put_ordered_extent(ordered);
5704 break;
5708 cur_offset = alloc_start;
5709 while (1) {
5710 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5711 alloc_end - cur_offset, 0);
5712 BUG_ON(IS_ERR(em) || !em);
5713 last_byte = min(extent_map_end(em), alloc_end);
5714 last_byte = (last_byte + mask) & ~mask;
5715 if (em->block_start == EXTENT_MAP_HOLE) {
5716 ret = prealloc_file_range(trans, inode, cur_offset,
5717 last_byte, locked_end + 1,
5718 alloc_hint, mode);
5719 if (ret < 0) {
5720 free_extent_map(em);
5721 break;
5724 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5725 alloc_hint = em->block_start;
5726 free_extent_map(em);
5728 cur_offset = last_byte;
5729 if (cur_offset >= alloc_end) {
5730 ret = 0;
5731 break;
5734 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5735 GFP_NOFS);
5737 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5738 out_free:
5739 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5740 out:
5741 mutex_unlock(&inode->i_mutex);
5742 return ret;
5745 static int btrfs_set_page_dirty(struct page *page)
5747 return __set_page_dirty_nobuffers(page);
5750 static int btrfs_permission(struct inode *inode, int mask)
5752 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5753 return -EACCES;
5754 return generic_permission(inode, mask, btrfs_check_acl);
5757 static const struct inode_operations btrfs_dir_inode_operations = {
5758 .getattr = btrfs_getattr,
5759 .lookup = btrfs_lookup,
5760 .create = btrfs_create,
5761 .unlink = btrfs_unlink,
5762 .link = btrfs_link,
5763 .mkdir = btrfs_mkdir,
5764 .rmdir = btrfs_rmdir,
5765 .rename = btrfs_rename,
5766 .symlink = btrfs_symlink,
5767 .setattr = btrfs_setattr,
5768 .mknod = btrfs_mknod,
5769 .setxattr = btrfs_setxattr,
5770 .getxattr = btrfs_getxattr,
5771 .listxattr = btrfs_listxattr,
5772 .removexattr = btrfs_removexattr,
5773 .permission = btrfs_permission,
5775 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5776 .lookup = btrfs_lookup,
5777 .permission = btrfs_permission,
5780 static const struct file_operations btrfs_dir_file_operations = {
5781 .llseek = generic_file_llseek,
5782 .read = generic_read_dir,
5783 .readdir = btrfs_real_readdir,
5784 .unlocked_ioctl = btrfs_ioctl,
5785 #ifdef CONFIG_COMPAT
5786 .compat_ioctl = btrfs_ioctl,
5787 #endif
5788 .release = btrfs_release_file,
5789 .fsync = btrfs_sync_file,
5792 static struct extent_io_ops btrfs_extent_io_ops = {
5793 .fill_delalloc = run_delalloc_range,
5794 .submit_bio_hook = btrfs_submit_bio_hook,
5795 .merge_bio_hook = btrfs_merge_bio_hook,
5796 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5797 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5798 .writepage_start_hook = btrfs_writepage_start_hook,
5799 .readpage_io_failed_hook = btrfs_io_failed_hook,
5800 .set_bit_hook = btrfs_set_bit_hook,
5801 .clear_bit_hook = btrfs_clear_bit_hook,
5802 .merge_extent_hook = btrfs_merge_extent_hook,
5803 .split_extent_hook = btrfs_split_extent_hook,
5807 * btrfs doesn't support the bmap operation because swapfiles
5808 * use bmap to make a mapping of extents in the file. They assume
5809 * these extents won't change over the life of the file and they
5810 * use the bmap result to do IO directly to the drive.
5812 * the btrfs bmap call would return logical addresses that aren't
5813 * suitable for IO and they also will change frequently as COW
5814 * operations happen. So, swapfile + btrfs == corruption.
5816 * For now we're avoiding this by dropping bmap.
5818 static const struct address_space_operations btrfs_aops = {
5819 .readpage = btrfs_readpage,
5820 .writepage = btrfs_writepage,
5821 .writepages = btrfs_writepages,
5822 .readpages = btrfs_readpages,
5823 .sync_page = block_sync_page,
5824 .direct_IO = btrfs_direct_IO,
5825 .invalidatepage = btrfs_invalidatepage,
5826 .releasepage = btrfs_releasepage,
5827 .set_page_dirty = btrfs_set_page_dirty,
5828 .error_remove_page = generic_error_remove_page,
5831 static const struct address_space_operations btrfs_symlink_aops = {
5832 .readpage = btrfs_readpage,
5833 .writepage = btrfs_writepage,
5834 .invalidatepage = btrfs_invalidatepage,
5835 .releasepage = btrfs_releasepage,
5838 static const struct inode_operations btrfs_file_inode_operations = {
5839 .truncate = btrfs_truncate,
5840 .getattr = btrfs_getattr,
5841 .setattr = btrfs_setattr,
5842 .setxattr = btrfs_setxattr,
5843 .getxattr = btrfs_getxattr,
5844 .listxattr = btrfs_listxattr,
5845 .removexattr = btrfs_removexattr,
5846 .permission = btrfs_permission,
5847 .fallocate = btrfs_fallocate,
5848 .fiemap = btrfs_fiemap,
5850 static const struct inode_operations btrfs_special_inode_operations = {
5851 .getattr = btrfs_getattr,
5852 .setattr = btrfs_setattr,
5853 .permission = btrfs_permission,
5854 .setxattr = btrfs_setxattr,
5855 .getxattr = btrfs_getxattr,
5856 .listxattr = btrfs_listxattr,
5857 .removexattr = btrfs_removexattr,
5859 static const struct inode_operations btrfs_symlink_inode_operations = {
5860 .readlink = generic_readlink,
5861 .follow_link = page_follow_link_light,
5862 .put_link = page_put_link,
5863 .permission = btrfs_permission,
5864 .setxattr = btrfs_setxattr,
5865 .getxattr = btrfs_getxattr,
5866 .listxattr = btrfs_listxattr,
5867 .removexattr = btrfs_removexattr,
5870 const struct dentry_operations btrfs_dentry_operations = {
5871 .d_delete = btrfs_dentry_delete,