OMAP3 SRF: Generic shared resource f/w
[linux-ginger.git] / fs / btrfs / tree-log.c
blob741666a7676a80a6553f5b22a37a41dd31971d3e
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root, struct inode *inode,
95 int inode_only);
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
136 int ret;
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
140 if (!root->log_start_pid) {
141 root->log_start_pid = current->pid;
142 root->log_multiple_pids = false;
143 } else if (root->log_start_pid != current->pid) {
144 root->log_multiple_pids = true;
147 root->log_batch++;
148 atomic_inc(&root->log_writers);
149 mutex_unlock(&root->log_mutex);
150 return 0;
152 root->log_multiple_pids = false;
153 root->log_start_pid = current->pid;
154 mutex_lock(&root->fs_info->tree_log_mutex);
155 if (!root->fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, root->fs_info);
157 BUG_ON(ret);
159 if (!root->log_root) {
160 ret = btrfs_add_log_tree(trans, root);
161 BUG_ON(ret);
163 mutex_unlock(&root->fs_info->tree_log_mutex);
164 root->log_batch++;
165 atomic_inc(&root->log_writers);
166 mutex_unlock(&root->log_mutex);
167 return 0;
171 * returns 0 if there was a log transaction running and we were able
172 * to join, or returns -ENOENT if there were not transactions
173 * in progress
175 static int join_running_log_trans(struct btrfs_root *root)
177 int ret = -ENOENT;
179 smp_mb();
180 if (!root->log_root)
181 return -ENOENT;
183 mutex_lock(&root->log_mutex);
184 if (root->log_root) {
185 ret = 0;
186 atomic_inc(&root->log_writers);
188 mutex_unlock(&root->log_mutex);
189 return ret;
193 * This either makes the current running log transaction wait
194 * until you call btrfs_end_log_trans() or it makes any future
195 * log transactions wait until you call btrfs_end_log_trans()
197 int btrfs_pin_log_trans(struct btrfs_root *root)
199 int ret = -ENOENT;
201 mutex_lock(&root->log_mutex);
202 atomic_inc(&root->log_writers);
203 mutex_unlock(&root->log_mutex);
204 return ret;
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
211 int btrfs_end_log_trans(struct btrfs_root *root)
213 if (atomic_dec_and_test(&root->log_writers)) {
214 smp_mb();
215 if (waitqueue_active(&root->log_writer_wait))
216 wake_up(&root->log_writer_wait);
218 return 0;
223 * the walk control struct is used to pass state down the chain when
224 * processing the log tree. The stage field tells us which part
225 * of the log tree processing we are currently doing. The others
226 * are state fields used for that specific part
228 struct walk_control {
229 /* should we free the extent on disk when done? This is used
230 * at transaction commit time while freeing a log tree
232 int free;
234 /* should we write out the extent buffer? This is used
235 * while flushing the log tree to disk during a sync
237 int write;
239 /* should we wait for the extent buffer io to finish? Also used
240 * while flushing the log tree to disk for a sync
242 int wait;
244 /* pin only walk, we record which extents on disk belong to the
245 * log trees
247 int pin;
249 /* what stage of the replay code we're currently in */
250 int stage;
252 /* the root we are currently replaying */
253 struct btrfs_root *replay_dest;
255 /* the trans handle for the current replay */
256 struct btrfs_trans_handle *trans;
258 /* the function that gets used to process blocks we find in the
259 * tree. Note the extent_buffer might not be up to date when it is
260 * passed in, and it must be checked or read if you need the data
261 * inside it
263 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264 struct walk_control *wc, u64 gen);
268 * process_func used to pin down extents, write them or wait on them
270 static int process_one_buffer(struct btrfs_root *log,
271 struct extent_buffer *eb,
272 struct walk_control *wc, u64 gen)
274 if (wc->pin)
275 btrfs_pin_extent(log->fs_info->extent_root,
276 eb->start, eb->len, 0);
278 if (btrfs_buffer_uptodate(eb, gen)) {
279 if (wc->write)
280 btrfs_write_tree_block(eb);
281 if (wc->wait)
282 btrfs_wait_tree_block_writeback(eb);
284 return 0;
288 * Item overwrite used by replay and tree logging. eb, slot and key all refer
289 * to the src data we are copying out.
291 * root is the tree we are copying into, and path is a scratch
292 * path for use in this function (it should be released on entry and
293 * will be released on exit).
295 * If the key is already in the destination tree the existing item is
296 * overwritten. If the existing item isn't big enough, it is extended.
297 * If it is too large, it is truncated.
299 * If the key isn't in the destination yet, a new item is inserted.
301 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
302 struct btrfs_root *root,
303 struct btrfs_path *path,
304 struct extent_buffer *eb, int slot,
305 struct btrfs_key *key)
307 int ret;
308 u32 item_size;
309 u64 saved_i_size = 0;
310 int save_old_i_size = 0;
311 unsigned long src_ptr;
312 unsigned long dst_ptr;
313 int overwrite_root = 0;
315 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
316 overwrite_root = 1;
318 item_size = btrfs_item_size_nr(eb, slot);
319 src_ptr = btrfs_item_ptr_offset(eb, slot);
321 /* look for the key in the destination tree */
322 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
323 if (ret == 0) {
324 char *src_copy;
325 char *dst_copy;
326 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
327 path->slots[0]);
328 if (dst_size != item_size)
329 goto insert;
331 if (item_size == 0) {
332 btrfs_release_path(root, path);
333 return 0;
335 dst_copy = kmalloc(item_size, GFP_NOFS);
336 src_copy = kmalloc(item_size, GFP_NOFS);
338 read_extent_buffer(eb, src_copy, src_ptr, item_size);
340 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
341 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
342 item_size);
343 ret = memcmp(dst_copy, src_copy, item_size);
345 kfree(dst_copy);
346 kfree(src_copy);
348 * they have the same contents, just return, this saves
349 * us from cowing blocks in the destination tree and doing
350 * extra writes that may not have been done by a previous
351 * sync
353 if (ret == 0) {
354 btrfs_release_path(root, path);
355 return 0;
359 insert:
360 btrfs_release_path(root, path);
361 /* try to insert the key into the destination tree */
362 ret = btrfs_insert_empty_item(trans, root, path,
363 key, item_size);
365 /* make sure any existing item is the correct size */
366 if (ret == -EEXIST) {
367 u32 found_size;
368 found_size = btrfs_item_size_nr(path->nodes[0],
369 path->slots[0]);
370 if (found_size > item_size) {
371 btrfs_truncate_item(trans, root, path, item_size, 1);
372 } else if (found_size < item_size) {
373 ret = btrfs_extend_item(trans, root, path,
374 item_size - found_size);
375 BUG_ON(ret);
377 } else if (ret) {
378 BUG();
380 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
381 path->slots[0]);
383 /* don't overwrite an existing inode if the generation number
384 * was logged as zero. This is done when the tree logging code
385 * is just logging an inode to make sure it exists after recovery.
387 * Also, don't overwrite i_size on directories during replay.
388 * log replay inserts and removes directory items based on the
389 * state of the tree found in the subvolume, and i_size is modified
390 * as it goes
392 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
393 struct btrfs_inode_item *src_item;
394 struct btrfs_inode_item *dst_item;
396 src_item = (struct btrfs_inode_item *)src_ptr;
397 dst_item = (struct btrfs_inode_item *)dst_ptr;
399 if (btrfs_inode_generation(eb, src_item) == 0)
400 goto no_copy;
402 if (overwrite_root &&
403 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
404 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
405 save_old_i_size = 1;
406 saved_i_size = btrfs_inode_size(path->nodes[0],
407 dst_item);
411 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
412 src_ptr, item_size);
414 if (save_old_i_size) {
415 struct btrfs_inode_item *dst_item;
416 dst_item = (struct btrfs_inode_item *)dst_ptr;
417 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
420 /* make sure the generation is filled in */
421 if (key->type == BTRFS_INODE_ITEM_KEY) {
422 struct btrfs_inode_item *dst_item;
423 dst_item = (struct btrfs_inode_item *)dst_ptr;
424 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
425 btrfs_set_inode_generation(path->nodes[0], dst_item,
426 trans->transid);
429 no_copy:
430 btrfs_mark_buffer_dirty(path->nodes[0]);
431 btrfs_release_path(root, path);
432 return 0;
436 * simple helper to read an inode off the disk from a given root
437 * This can only be called for subvolume roots and not for the log
439 static noinline struct inode *read_one_inode(struct btrfs_root *root,
440 u64 objectid)
442 struct btrfs_key key;
443 struct inode *inode;
445 key.objectid = objectid;
446 key.type = BTRFS_INODE_ITEM_KEY;
447 key.offset = 0;
448 inode = btrfs_iget(root->fs_info->sb, &key, root);
449 if (IS_ERR(inode)) {
450 inode = NULL;
451 } else if (is_bad_inode(inode)) {
452 iput(inode);
453 inode = NULL;
455 return inode;
458 /* replays a single extent in 'eb' at 'slot' with 'key' into the
459 * subvolume 'root'. path is released on entry and should be released
460 * on exit.
462 * extents in the log tree have not been allocated out of the extent
463 * tree yet. So, this completes the allocation, taking a reference
464 * as required if the extent already exists or creating a new extent
465 * if it isn't in the extent allocation tree yet.
467 * The extent is inserted into the file, dropping any existing extents
468 * from the file that overlap the new one.
470 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
471 struct btrfs_root *root,
472 struct btrfs_path *path,
473 struct extent_buffer *eb, int slot,
474 struct btrfs_key *key)
476 int found_type;
477 u64 mask = root->sectorsize - 1;
478 u64 extent_end;
479 u64 alloc_hint;
480 u64 start = key->offset;
481 u64 saved_nbytes;
482 struct btrfs_file_extent_item *item;
483 struct inode *inode = NULL;
484 unsigned long size;
485 int ret = 0;
487 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 found_type = btrfs_file_extent_type(eb, item);
490 if (found_type == BTRFS_FILE_EXTENT_REG ||
491 found_type == BTRFS_FILE_EXTENT_PREALLOC)
492 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
493 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
494 size = btrfs_file_extent_inline_len(eb, item);
495 extent_end = (start + size + mask) & ~mask;
496 } else {
497 ret = 0;
498 goto out;
501 inode = read_one_inode(root, key->objectid);
502 if (!inode) {
503 ret = -EIO;
504 goto out;
508 * first check to see if we already have this extent in the
509 * file. This must be done before the btrfs_drop_extents run
510 * so we don't try to drop this extent.
512 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
513 start, 0);
515 if (ret == 0 &&
516 (found_type == BTRFS_FILE_EXTENT_REG ||
517 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
518 struct btrfs_file_extent_item cmp1;
519 struct btrfs_file_extent_item cmp2;
520 struct btrfs_file_extent_item *existing;
521 struct extent_buffer *leaf;
523 leaf = path->nodes[0];
524 existing = btrfs_item_ptr(leaf, path->slots[0],
525 struct btrfs_file_extent_item);
527 read_extent_buffer(eb, &cmp1, (unsigned long)item,
528 sizeof(cmp1));
529 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
530 sizeof(cmp2));
533 * we already have a pointer to this exact extent,
534 * we don't have to do anything
536 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
537 btrfs_release_path(root, path);
538 goto out;
541 btrfs_release_path(root, path);
543 saved_nbytes = inode_get_bytes(inode);
544 /* drop any overlapping extents */
545 ret = btrfs_drop_extents(trans, root, inode,
546 start, extent_end, extent_end, start, &alloc_hint, 1);
547 BUG_ON(ret);
549 if (found_type == BTRFS_FILE_EXTENT_REG ||
550 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
551 u64 offset;
552 unsigned long dest_offset;
553 struct btrfs_key ins;
555 ret = btrfs_insert_empty_item(trans, root, path, key,
556 sizeof(*item));
557 BUG_ON(ret);
558 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
559 path->slots[0]);
560 copy_extent_buffer(path->nodes[0], eb, dest_offset,
561 (unsigned long)item, sizeof(*item));
563 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
564 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
565 ins.type = BTRFS_EXTENT_ITEM_KEY;
566 offset = key->offset - btrfs_file_extent_offset(eb, item);
568 if (ins.objectid > 0) {
569 u64 csum_start;
570 u64 csum_end;
571 LIST_HEAD(ordered_sums);
573 * is this extent already allocated in the extent
574 * allocation tree? If so, just add a reference
576 ret = btrfs_lookup_extent(root, ins.objectid,
577 ins.offset);
578 if (ret == 0) {
579 ret = btrfs_inc_extent_ref(trans, root,
580 ins.objectid, ins.offset,
581 0, root->root_key.objectid,
582 key->objectid, offset);
583 } else {
585 * insert the extent pointer in the extent
586 * allocation tree
588 ret = btrfs_alloc_logged_file_extent(trans,
589 root, root->root_key.objectid,
590 key->objectid, offset, &ins);
591 BUG_ON(ret);
593 btrfs_release_path(root, path);
595 if (btrfs_file_extent_compression(eb, item)) {
596 csum_start = ins.objectid;
597 csum_end = csum_start + ins.offset;
598 } else {
599 csum_start = ins.objectid +
600 btrfs_file_extent_offset(eb, item);
601 csum_end = csum_start +
602 btrfs_file_extent_num_bytes(eb, item);
605 ret = btrfs_lookup_csums_range(root->log_root,
606 csum_start, csum_end - 1,
607 &ordered_sums);
608 BUG_ON(ret);
609 while (!list_empty(&ordered_sums)) {
610 struct btrfs_ordered_sum *sums;
611 sums = list_entry(ordered_sums.next,
612 struct btrfs_ordered_sum,
613 list);
614 ret = btrfs_csum_file_blocks(trans,
615 root->fs_info->csum_root,
616 sums);
617 BUG_ON(ret);
618 list_del(&sums->list);
619 kfree(sums);
621 } else {
622 btrfs_release_path(root, path);
624 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
625 /* inline extents are easy, we just overwrite them */
626 ret = overwrite_item(trans, root, path, eb, slot, key);
627 BUG_ON(ret);
630 inode_set_bytes(inode, saved_nbytes);
631 btrfs_update_inode(trans, root, inode);
632 out:
633 if (inode)
634 iput(inode);
635 return ret;
639 * when cleaning up conflicts between the directory names in the
640 * subvolume, directory names in the log and directory names in the
641 * inode back references, we may have to unlink inodes from directories.
643 * This is a helper function to do the unlink of a specific directory
644 * item
646 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root,
648 struct btrfs_path *path,
649 struct inode *dir,
650 struct btrfs_dir_item *di)
652 struct inode *inode;
653 char *name;
654 int name_len;
655 struct extent_buffer *leaf;
656 struct btrfs_key location;
657 int ret;
659 leaf = path->nodes[0];
661 btrfs_dir_item_key_to_cpu(leaf, di, &location);
662 name_len = btrfs_dir_name_len(leaf, di);
663 name = kmalloc(name_len, GFP_NOFS);
664 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
665 btrfs_release_path(root, path);
667 inode = read_one_inode(root, location.objectid);
668 BUG_ON(!inode);
670 ret = link_to_fixup_dir(trans, root, path, location.objectid);
671 BUG_ON(ret);
673 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
674 BUG_ON(ret);
675 kfree(name);
677 iput(inode);
678 return ret;
682 * helper function to see if a given name and sequence number found
683 * in an inode back reference are already in a directory and correctly
684 * point to this inode
686 static noinline int inode_in_dir(struct btrfs_root *root,
687 struct btrfs_path *path,
688 u64 dirid, u64 objectid, u64 index,
689 const char *name, int name_len)
691 struct btrfs_dir_item *di;
692 struct btrfs_key location;
693 int match = 0;
695 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
696 index, name, name_len, 0);
697 if (di && !IS_ERR(di)) {
698 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
699 if (location.objectid != objectid)
700 goto out;
701 } else
702 goto out;
703 btrfs_release_path(root, path);
705 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
706 if (di && !IS_ERR(di)) {
707 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
708 if (location.objectid != objectid)
709 goto out;
710 } else
711 goto out;
712 match = 1;
713 out:
714 btrfs_release_path(root, path);
715 return match;
719 * helper function to check a log tree for a named back reference in
720 * an inode. This is used to decide if a back reference that is
721 * found in the subvolume conflicts with what we find in the log.
723 * inode backreferences may have multiple refs in a single item,
724 * during replay we process one reference at a time, and we don't
725 * want to delete valid links to a file from the subvolume if that
726 * link is also in the log.
728 static noinline int backref_in_log(struct btrfs_root *log,
729 struct btrfs_key *key,
730 char *name, int namelen)
732 struct btrfs_path *path;
733 struct btrfs_inode_ref *ref;
734 unsigned long ptr;
735 unsigned long ptr_end;
736 unsigned long name_ptr;
737 int found_name_len;
738 int item_size;
739 int ret;
740 int match = 0;
742 path = btrfs_alloc_path();
743 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
744 if (ret != 0)
745 goto out;
747 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
748 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
749 ptr_end = ptr + item_size;
750 while (ptr < ptr_end) {
751 ref = (struct btrfs_inode_ref *)ptr;
752 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
753 if (found_name_len == namelen) {
754 name_ptr = (unsigned long)(ref + 1);
755 ret = memcmp_extent_buffer(path->nodes[0], name,
756 name_ptr, namelen);
757 if (ret == 0) {
758 match = 1;
759 goto out;
762 ptr = (unsigned long)(ref + 1) + found_name_len;
764 out:
765 btrfs_free_path(path);
766 return match;
771 * replay one inode back reference item found in the log tree.
772 * eb, slot and key refer to the buffer and key found in the log tree.
773 * root is the destination we are replaying into, and path is for temp
774 * use by this function. (it should be released on return).
776 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
777 struct btrfs_root *root,
778 struct btrfs_root *log,
779 struct btrfs_path *path,
780 struct extent_buffer *eb, int slot,
781 struct btrfs_key *key)
783 struct inode *dir;
784 int ret;
785 struct btrfs_key location;
786 struct btrfs_inode_ref *ref;
787 struct btrfs_dir_item *di;
788 struct inode *inode;
789 char *name;
790 int namelen;
791 unsigned long ref_ptr;
792 unsigned long ref_end;
794 location.objectid = key->objectid;
795 location.type = BTRFS_INODE_ITEM_KEY;
796 location.offset = 0;
799 * it is possible that we didn't log all the parent directories
800 * for a given inode. If we don't find the dir, just don't
801 * copy the back ref in. The link count fixup code will take
802 * care of the rest
804 dir = read_one_inode(root, key->offset);
805 if (!dir)
806 return -ENOENT;
808 inode = read_one_inode(root, key->objectid);
809 BUG_ON(!inode);
811 ref_ptr = btrfs_item_ptr_offset(eb, slot);
812 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
814 again:
815 ref = (struct btrfs_inode_ref *)ref_ptr;
817 namelen = btrfs_inode_ref_name_len(eb, ref);
818 name = kmalloc(namelen, GFP_NOFS);
819 BUG_ON(!name);
821 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
823 /* if we already have a perfect match, we're done */
824 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
825 btrfs_inode_ref_index(eb, ref),
826 name, namelen)) {
827 goto out;
831 * look for a conflicting back reference in the metadata.
832 * if we find one we have to unlink that name of the file
833 * before we add our new link. Later on, we overwrite any
834 * existing back reference, and we don't want to create
835 * dangling pointers in the directory.
837 conflict_again:
838 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
839 if (ret == 0) {
840 char *victim_name;
841 int victim_name_len;
842 struct btrfs_inode_ref *victim_ref;
843 unsigned long ptr;
844 unsigned long ptr_end;
845 struct extent_buffer *leaf = path->nodes[0];
847 /* are we trying to overwrite a back ref for the root directory
848 * if so, just jump out, we're done
850 if (key->objectid == key->offset)
851 goto out_nowrite;
853 /* check all the names in this back reference to see
854 * if they are in the log. if so, we allow them to stay
855 * otherwise they must be unlinked as a conflict
857 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
858 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
859 while (ptr < ptr_end) {
860 victim_ref = (struct btrfs_inode_ref *)ptr;
861 victim_name_len = btrfs_inode_ref_name_len(leaf,
862 victim_ref);
863 victim_name = kmalloc(victim_name_len, GFP_NOFS);
864 BUG_ON(!victim_name);
866 read_extent_buffer(leaf, victim_name,
867 (unsigned long)(victim_ref + 1),
868 victim_name_len);
870 if (!backref_in_log(log, key, victim_name,
871 victim_name_len)) {
872 btrfs_inc_nlink(inode);
873 btrfs_release_path(root, path);
875 ret = btrfs_unlink_inode(trans, root, dir,
876 inode, victim_name,
877 victim_name_len);
878 kfree(victim_name);
879 btrfs_release_path(root, path);
880 goto conflict_again;
882 kfree(victim_name);
883 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
885 BUG_ON(ret);
887 btrfs_release_path(root, path);
889 /* look for a conflicting sequence number */
890 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
891 btrfs_inode_ref_index(eb, ref),
892 name, namelen, 0);
893 if (di && !IS_ERR(di)) {
894 ret = drop_one_dir_item(trans, root, path, dir, di);
895 BUG_ON(ret);
897 btrfs_release_path(root, path);
900 /* look for a conflicting name */
901 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
902 name, namelen, 0);
903 if (di && !IS_ERR(di)) {
904 ret = drop_one_dir_item(trans, root, path, dir, di);
905 BUG_ON(ret);
907 btrfs_release_path(root, path);
909 /* insert our name */
910 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
911 btrfs_inode_ref_index(eb, ref));
912 BUG_ON(ret);
914 btrfs_update_inode(trans, root, inode);
916 out:
917 ref_ptr = (unsigned long)(ref + 1) + namelen;
918 kfree(name);
919 if (ref_ptr < ref_end)
920 goto again;
922 /* finally write the back reference in the inode */
923 ret = overwrite_item(trans, root, path, eb, slot, key);
924 BUG_ON(ret);
926 out_nowrite:
927 btrfs_release_path(root, path);
928 iput(dir);
929 iput(inode);
930 return 0;
934 * There are a few corners where the link count of the file can't
935 * be properly maintained during replay. So, instead of adding
936 * lots of complexity to the log code, we just scan the backrefs
937 * for any file that has been through replay.
939 * The scan will update the link count on the inode to reflect the
940 * number of back refs found. If it goes down to zero, the iput
941 * will free the inode.
943 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct inode *inode)
947 struct btrfs_path *path;
948 int ret;
949 struct btrfs_key key;
950 u64 nlink = 0;
951 unsigned long ptr;
952 unsigned long ptr_end;
953 int name_len;
955 key.objectid = inode->i_ino;
956 key.type = BTRFS_INODE_REF_KEY;
957 key.offset = (u64)-1;
959 path = btrfs_alloc_path();
961 while (1) {
962 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
963 if (ret < 0)
964 break;
965 if (ret > 0) {
966 if (path->slots[0] == 0)
967 break;
968 path->slots[0]--;
970 btrfs_item_key_to_cpu(path->nodes[0], &key,
971 path->slots[0]);
972 if (key.objectid != inode->i_ino ||
973 key.type != BTRFS_INODE_REF_KEY)
974 break;
975 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
976 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
977 path->slots[0]);
978 while (ptr < ptr_end) {
979 struct btrfs_inode_ref *ref;
981 ref = (struct btrfs_inode_ref *)ptr;
982 name_len = btrfs_inode_ref_name_len(path->nodes[0],
983 ref);
984 ptr = (unsigned long)(ref + 1) + name_len;
985 nlink++;
988 if (key.offset == 0)
989 break;
990 key.offset--;
991 btrfs_release_path(root, path);
993 btrfs_release_path(root, path);
994 if (nlink != inode->i_nlink) {
995 inode->i_nlink = nlink;
996 btrfs_update_inode(trans, root, inode);
998 BTRFS_I(inode)->index_cnt = (u64)-1;
1000 if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
1001 ret = replay_dir_deletes(trans, root, NULL, path,
1002 inode->i_ino, 1);
1003 BUG_ON(ret);
1005 btrfs_free_path(path);
1007 return 0;
1010 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root,
1012 struct btrfs_path *path)
1014 int ret;
1015 struct btrfs_key key;
1016 struct inode *inode;
1018 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1019 key.type = BTRFS_ORPHAN_ITEM_KEY;
1020 key.offset = (u64)-1;
1021 while (1) {
1022 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1023 if (ret < 0)
1024 break;
1026 if (ret == 1) {
1027 if (path->slots[0] == 0)
1028 break;
1029 path->slots[0]--;
1032 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1033 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1034 key.type != BTRFS_ORPHAN_ITEM_KEY)
1035 break;
1037 ret = btrfs_del_item(trans, root, path);
1038 BUG_ON(ret);
1040 btrfs_release_path(root, path);
1041 inode = read_one_inode(root, key.offset);
1042 BUG_ON(!inode);
1044 ret = fixup_inode_link_count(trans, root, inode);
1045 BUG_ON(ret);
1047 iput(inode);
1050 * fixup on a directory may create new entries,
1051 * make sure we always look for the highset possible
1052 * offset
1054 key.offset = (u64)-1;
1056 btrfs_release_path(root, path);
1057 return 0;
1062 * record a given inode in the fixup dir so we can check its link
1063 * count when replay is done. The link count is incremented here
1064 * so the inode won't go away until we check it
1066 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1067 struct btrfs_root *root,
1068 struct btrfs_path *path,
1069 u64 objectid)
1071 struct btrfs_key key;
1072 int ret = 0;
1073 struct inode *inode;
1075 inode = read_one_inode(root, objectid);
1076 BUG_ON(!inode);
1078 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1079 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1080 key.offset = objectid;
1082 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1084 btrfs_release_path(root, path);
1085 if (ret == 0) {
1086 btrfs_inc_nlink(inode);
1087 btrfs_update_inode(trans, root, inode);
1088 } else if (ret == -EEXIST) {
1089 ret = 0;
1090 } else {
1091 BUG();
1093 iput(inode);
1095 return ret;
1099 * when replaying the log for a directory, we only insert names
1100 * for inodes that actually exist. This means an fsync on a directory
1101 * does not implicitly fsync all the new files in it
1103 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 dirid, u64 index,
1107 char *name, int name_len, u8 type,
1108 struct btrfs_key *location)
1110 struct inode *inode;
1111 struct inode *dir;
1112 int ret;
1114 inode = read_one_inode(root, location->objectid);
1115 if (!inode)
1116 return -ENOENT;
1118 dir = read_one_inode(root, dirid);
1119 if (!dir) {
1120 iput(inode);
1121 return -EIO;
1123 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1125 /* FIXME, put inode into FIXUP list */
1127 iput(inode);
1128 iput(dir);
1129 return ret;
1133 * take a single entry in a log directory item and replay it into
1134 * the subvolume.
1136 * if a conflicting item exists in the subdirectory already,
1137 * the inode it points to is unlinked and put into the link count
1138 * fix up tree.
1140 * If a name from the log points to a file or directory that does
1141 * not exist in the FS, it is skipped. fsyncs on directories
1142 * do not force down inodes inside that directory, just changes to the
1143 * names or unlinks in a directory.
1145 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root,
1147 struct btrfs_path *path,
1148 struct extent_buffer *eb,
1149 struct btrfs_dir_item *di,
1150 struct btrfs_key *key)
1152 char *name;
1153 int name_len;
1154 struct btrfs_dir_item *dst_di;
1155 struct btrfs_key found_key;
1156 struct btrfs_key log_key;
1157 struct inode *dir;
1158 u8 log_type;
1159 int exists;
1160 int ret;
1162 dir = read_one_inode(root, key->objectid);
1163 BUG_ON(!dir);
1165 name_len = btrfs_dir_name_len(eb, di);
1166 name = kmalloc(name_len, GFP_NOFS);
1167 log_type = btrfs_dir_type(eb, di);
1168 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1169 name_len);
1171 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1172 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1173 if (exists == 0)
1174 exists = 1;
1175 else
1176 exists = 0;
1177 btrfs_release_path(root, path);
1179 if (key->type == BTRFS_DIR_ITEM_KEY) {
1180 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1181 name, name_len, 1);
1182 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1183 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1184 key->objectid,
1185 key->offset, name,
1186 name_len, 1);
1187 } else {
1188 BUG();
1190 if (!dst_di || IS_ERR(dst_di)) {
1191 /* we need a sequence number to insert, so we only
1192 * do inserts for the BTRFS_DIR_INDEX_KEY types
1194 if (key->type != BTRFS_DIR_INDEX_KEY)
1195 goto out;
1196 goto insert;
1199 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1200 /* the existing item matches the logged item */
1201 if (found_key.objectid == log_key.objectid &&
1202 found_key.type == log_key.type &&
1203 found_key.offset == log_key.offset &&
1204 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1205 goto out;
1209 * don't drop the conflicting directory entry if the inode
1210 * for the new entry doesn't exist
1212 if (!exists)
1213 goto out;
1215 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1216 BUG_ON(ret);
1218 if (key->type == BTRFS_DIR_INDEX_KEY)
1219 goto insert;
1220 out:
1221 btrfs_release_path(root, path);
1222 kfree(name);
1223 iput(dir);
1224 return 0;
1226 insert:
1227 btrfs_release_path(root, path);
1228 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1229 name, name_len, log_type, &log_key);
1231 BUG_ON(ret && ret != -ENOENT);
1232 goto out;
1236 * find all the names in a directory item and reconcile them into
1237 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1238 * one name in a directory item, but the same code gets used for
1239 * both directory index types
1241 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1242 struct btrfs_root *root,
1243 struct btrfs_path *path,
1244 struct extent_buffer *eb, int slot,
1245 struct btrfs_key *key)
1247 int ret;
1248 u32 item_size = btrfs_item_size_nr(eb, slot);
1249 struct btrfs_dir_item *di;
1250 int name_len;
1251 unsigned long ptr;
1252 unsigned long ptr_end;
1254 ptr = btrfs_item_ptr_offset(eb, slot);
1255 ptr_end = ptr + item_size;
1256 while (ptr < ptr_end) {
1257 di = (struct btrfs_dir_item *)ptr;
1258 name_len = btrfs_dir_name_len(eb, di);
1259 ret = replay_one_name(trans, root, path, eb, di, key);
1260 BUG_ON(ret);
1261 ptr = (unsigned long)(di + 1);
1262 ptr += name_len;
1264 return 0;
1268 * directory replay has two parts. There are the standard directory
1269 * items in the log copied from the subvolume, and range items
1270 * created in the log while the subvolume was logged.
1272 * The range items tell us which parts of the key space the log
1273 * is authoritative for. During replay, if a key in the subvolume
1274 * directory is in a logged range item, but not actually in the log
1275 * that means it was deleted from the directory before the fsync
1276 * and should be removed.
1278 static noinline int find_dir_range(struct btrfs_root *root,
1279 struct btrfs_path *path,
1280 u64 dirid, int key_type,
1281 u64 *start_ret, u64 *end_ret)
1283 struct btrfs_key key;
1284 u64 found_end;
1285 struct btrfs_dir_log_item *item;
1286 int ret;
1287 int nritems;
1289 if (*start_ret == (u64)-1)
1290 return 1;
1292 key.objectid = dirid;
1293 key.type = key_type;
1294 key.offset = *start_ret;
1296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1297 if (ret < 0)
1298 goto out;
1299 if (ret > 0) {
1300 if (path->slots[0] == 0)
1301 goto out;
1302 path->slots[0]--;
1304 if (ret != 0)
1305 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1307 if (key.type != key_type || key.objectid != dirid) {
1308 ret = 1;
1309 goto next;
1311 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1312 struct btrfs_dir_log_item);
1313 found_end = btrfs_dir_log_end(path->nodes[0], item);
1315 if (*start_ret >= key.offset && *start_ret <= found_end) {
1316 ret = 0;
1317 *start_ret = key.offset;
1318 *end_ret = found_end;
1319 goto out;
1321 ret = 1;
1322 next:
1323 /* check the next slot in the tree to see if it is a valid item */
1324 nritems = btrfs_header_nritems(path->nodes[0]);
1325 if (path->slots[0] >= nritems) {
1326 ret = btrfs_next_leaf(root, path);
1327 if (ret)
1328 goto out;
1329 } else {
1330 path->slots[0]++;
1333 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1335 if (key.type != key_type || key.objectid != dirid) {
1336 ret = 1;
1337 goto out;
1339 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1340 struct btrfs_dir_log_item);
1341 found_end = btrfs_dir_log_end(path->nodes[0], item);
1342 *start_ret = key.offset;
1343 *end_ret = found_end;
1344 ret = 0;
1345 out:
1346 btrfs_release_path(root, path);
1347 return ret;
1351 * this looks for a given directory item in the log. If the directory
1352 * item is not in the log, the item is removed and the inode it points
1353 * to is unlinked
1355 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root,
1357 struct btrfs_root *log,
1358 struct btrfs_path *path,
1359 struct btrfs_path *log_path,
1360 struct inode *dir,
1361 struct btrfs_key *dir_key)
1363 int ret;
1364 struct extent_buffer *eb;
1365 int slot;
1366 u32 item_size;
1367 struct btrfs_dir_item *di;
1368 struct btrfs_dir_item *log_di;
1369 int name_len;
1370 unsigned long ptr;
1371 unsigned long ptr_end;
1372 char *name;
1373 struct inode *inode;
1374 struct btrfs_key location;
1376 again:
1377 eb = path->nodes[0];
1378 slot = path->slots[0];
1379 item_size = btrfs_item_size_nr(eb, slot);
1380 ptr = btrfs_item_ptr_offset(eb, slot);
1381 ptr_end = ptr + item_size;
1382 while (ptr < ptr_end) {
1383 di = (struct btrfs_dir_item *)ptr;
1384 name_len = btrfs_dir_name_len(eb, di);
1385 name = kmalloc(name_len, GFP_NOFS);
1386 if (!name) {
1387 ret = -ENOMEM;
1388 goto out;
1390 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1391 name_len);
1392 log_di = NULL;
1393 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1394 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1395 dir_key->objectid,
1396 name, name_len, 0);
1397 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1398 log_di = btrfs_lookup_dir_index_item(trans, log,
1399 log_path,
1400 dir_key->objectid,
1401 dir_key->offset,
1402 name, name_len, 0);
1404 if (!log_di || IS_ERR(log_di)) {
1405 btrfs_dir_item_key_to_cpu(eb, di, &location);
1406 btrfs_release_path(root, path);
1407 btrfs_release_path(log, log_path);
1408 inode = read_one_inode(root, location.objectid);
1409 BUG_ON(!inode);
1411 ret = link_to_fixup_dir(trans, root,
1412 path, location.objectid);
1413 BUG_ON(ret);
1414 btrfs_inc_nlink(inode);
1415 ret = btrfs_unlink_inode(trans, root, dir, inode,
1416 name, name_len);
1417 BUG_ON(ret);
1418 kfree(name);
1419 iput(inode);
1421 /* there might still be more names under this key
1422 * check and repeat if required
1424 ret = btrfs_search_slot(NULL, root, dir_key, path,
1425 0, 0);
1426 if (ret == 0)
1427 goto again;
1428 ret = 0;
1429 goto out;
1431 btrfs_release_path(log, log_path);
1432 kfree(name);
1434 ptr = (unsigned long)(di + 1);
1435 ptr += name_len;
1437 ret = 0;
1438 out:
1439 btrfs_release_path(root, path);
1440 btrfs_release_path(log, log_path);
1441 return ret;
1445 * deletion replay happens before we copy any new directory items
1446 * out of the log or out of backreferences from inodes. It
1447 * scans the log to find ranges of keys that log is authoritative for,
1448 * and then scans the directory to find items in those ranges that are
1449 * not present in the log.
1451 * Anything we don't find in the log is unlinked and removed from the
1452 * directory.
1454 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1455 struct btrfs_root *root,
1456 struct btrfs_root *log,
1457 struct btrfs_path *path,
1458 u64 dirid, int del_all)
1460 u64 range_start;
1461 u64 range_end;
1462 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1463 int ret = 0;
1464 struct btrfs_key dir_key;
1465 struct btrfs_key found_key;
1466 struct btrfs_path *log_path;
1467 struct inode *dir;
1469 dir_key.objectid = dirid;
1470 dir_key.type = BTRFS_DIR_ITEM_KEY;
1471 log_path = btrfs_alloc_path();
1472 if (!log_path)
1473 return -ENOMEM;
1475 dir = read_one_inode(root, dirid);
1476 /* it isn't an error if the inode isn't there, that can happen
1477 * because we replay the deletes before we copy in the inode item
1478 * from the log
1480 if (!dir) {
1481 btrfs_free_path(log_path);
1482 return 0;
1484 again:
1485 range_start = 0;
1486 range_end = 0;
1487 while (1) {
1488 if (del_all)
1489 range_end = (u64)-1;
1490 else {
1491 ret = find_dir_range(log, path, dirid, key_type,
1492 &range_start, &range_end);
1493 if (ret != 0)
1494 break;
1497 dir_key.offset = range_start;
1498 while (1) {
1499 int nritems;
1500 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1501 0, 0);
1502 if (ret < 0)
1503 goto out;
1505 nritems = btrfs_header_nritems(path->nodes[0]);
1506 if (path->slots[0] >= nritems) {
1507 ret = btrfs_next_leaf(root, path);
1508 if (ret)
1509 break;
1511 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1512 path->slots[0]);
1513 if (found_key.objectid != dirid ||
1514 found_key.type != dir_key.type)
1515 goto next_type;
1517 if (found_key.offset > range_end)
1518 break;
1520 ret = check_item_in_log(trans, root, log, path,
1521 log_path, dir,
1522 &found_key);
1523 BUG_ON(ret);
1524 if (found_key.offset == (u64)-1)
1525 break;
1526 dir_key.offset = found_key.offset + 1;
1528 btrfs_release_path(root, path);
1529 if (range_end == (u64)-1)
1530 break;
1531 range_start = range_end + 1;
1534 next_type:
1535 ret = 0;
1536 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1537 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1538 dir_key.type = BTRFS_DIR_INDEX_KEY;
1539 btrfs_release_path(root, path);
1540 goto again;
1542 out:
1543 btrfs_release_path(root, path);
1544 btrfs_free_path(log_path);
1545 iput(dir);
1546 return ret;
1550 * the process_func used to replay items from the log tree. This
1551 * gets called in two different stages. The first stage just looks
1552 * for inodes and makes sure they are all copied into the subvolume.
1554 * The second stage copies all the other item types from the log into
1555 * the subvolume. The two stage approach is slower, but gets rid of
1556 * lots of complexity around inodes referencing other inodes that exist
1557 * only in the log (references come from either directory items or inode
1558 * back refs).
1560 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1561 struct walk_control *wc, u64 gen)
1563 int nritems;
1564 struct btrfs_path *path;
1565 struct btrfs_root *root = wc->replay_dest;
1566 struct btrfs_key key;
1567 u32 item_size;
1568 int level;
1569 int i;
1570 int ret;
1572 btrfs_read_buffer(eb, gen);
1574 level = btrfs_header_level(eb);
1576 if (level != 0)
1577 return 0;
1579 path = btrfs_alloc_path();
1580 BUG_ON(!path);
1582 nritems = btrfs_header_nritems(eb);
1583 for (i = 0; i < nritems; i++) {
1584 btrfs_item_key_to_cpu(eb, &key, i);
1585 item_size = btrfs_item_size_nr(eb, i);
1587 /* inode keys are done during the first stage */
1588 if (key.type == BTRFS_INODE_ITEM_KEY &&
1589 wc->stage == LOG_WALK_REPLAY_INODES) {
1590 struct inode *inode;
1591 struct btrfs_inode_item *inode_item;
1592 u32 mode;
1594 inode_item = btrfs_item_ptr(eb, i,
1595 struct btrfs_inode_item);
1596 mode = btrfs_inode_mode(eb, inode_item);
1597 if (S_ISDIR(mode)) {
1598 ret = replay_dir_deletes(wc->trans,
1599 root, log, path, key.objectid, 0);
1600 BUG_ON(ret);
1602 ret = overwrite_item(wc->trans, root, path,
1603 eb, i, &key);
1604 BUG_ON(ret);
1606 /* for regular files, truncate away
1607 * extents past the new EOF
1609 if (S_ISREG(mode)) {
1610 inode = read_one_inode(root,
1611 key.objectid);
1612 BUG_ON(!inode);
1614 ret = btrfs_truncate_inode_items(wc->trans,
1615 root, inode, inode->i_size,
1616 BTRFS_EXTENT_DATA_KEY);
1617 BUG_ON(ret);
1619 /* if the nlink count is zero here, the iput
1620 * will free the inode. We bump it to make
1621 * sure it doesn't get freed until the link
1622 * count fixup is done
1624 if (inode->i_nlink == 0) {
1625 btrfs_inc_nlink(inode);
1626 btrfs_update_inode(wc->trans,
1627 root, inode);
1629 iput(inode);
1631 ret = link_to_fixup_dir(wc->trans, root,
1632 path, key.objectid);
1633 BUG_ON(ret);
1635 if (wc->stage < LOG_WALK_REPLAY_ALL)
1636 continue;
1638 /* these keys are simply copied */
1639 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1640 ret = overwrite_item(wc->trans, root, path,
1641 eb, i, &key);
1642 BUG_ON(ret);
1643 } else if (key.type == BTRFS_INODE_REF_KEY) {
1644 ret = add_inode_ref(wc->trans, root, log, path,
1645 eb, i, &key);
1646 BUG_ON(ret && ret != -ENOENT);
1647 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1648 ret = replay_one_extent(wc->trans, root, path,
1649 eb, i, &key);
1650 BUG_ON(ret);
1651 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1652 key.type == BTRFS_DIR_INDEX_KEY) {
1653 ret = replay_one_dir_item(wc->trans, root, path,
1654 eb, i, &key);
1655 BUG_ON(ret);
1658 btrfs_free_path(path);
1659 return 0;
1662 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1663 struct btrfs_root *root,
1664 struct btrfs_path *path, int *level,
1665 struct walk_control *wc)
1667 u64 root_owner;
1668 u64 root_gen;
1669 u64 bytenr;
1670 u64 ptr_gen;
1671 struct extent_buffer *next;
1672 struct extent_buffer *cur;
1673 struct extent_buffer *parent;
1674 u32 blocksize;
1675 int ret = 0;
1677 WARN_ON(*level < 0);
1678 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1680 while (*level > 0) {
1681 WARN_ON(*level < 0);
1682 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1683 cur = path->nodes[*level];
1685 if (btrfs_header_level(cur) != *level)
1686 WARN_ON(1);
1688 if (path->slots[*level] >=
1689 btrfs_header_nritems(cur))
1690 break;
1692 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1693 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1694 blocksize = btrfs_level_size(root, *level - 1);
1696 parent = path->nodes[*level];
1697 root_owner = btrfs_header_owner(parent);
1698 root_gen = btrfs_header_generation(parent);
1700 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1702 wc->process_func(root, next, wc, ptr_gen);
1704 if (*level == 1) {
1705 path->slots[*level]++;
1706 if (wc->free) {
1707 btrfs_read_buffer(next, ptr_gen);
1709 btrfs_tree_lock(next);
1710 clean_tree_block(trans, root, next);
1711 btrfs_set_lock_blocking(next);
1712 btrfs_wait_tree_block_writeback(next);
1713 btrfs_tree_unlock(next);
1715 WARN_ON(root_owner !=
1716 BTRFS_TREE_LOG_OBJECTID);
1717 ret = btrfs_free_reserved_extent(root,
1718 bytenr, blocksize);
1719 BUG_ON(ret);
1721 free_extent_buffer(next);
1722 continue;
1724 btrfs_read_buffer(next, ptr_gen);
1726 WARN_ON(*level <= 0);
1727 if (path->nodes[*level-1])
1728 free_extent_buffer(path->nodes[*level-1]);
1729 path->nodes[*level-1] = next;
1730 *level = btrfs_header_level(next);
1731 path->slots[*level] = 0;
1732 cond_resched();
1734 WARN_ON(*level < 0);
1735 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1737 if (path->nodes[*level] == root->node)
1738 parent = path->nodes[*level];
1739 else
1740 parent = path->nodes[*level + 1];
1742 bytenr = path->nodes[*level]->start;
1744 blocksize = btrfs_level_size(root, *level);
1745 root_owner = btrfs_header_owner(parent);
1746 root_gen = btrfs_header_generation(parent);
1748 wc->process_func(root, path->nodes[*level], wc,
1749 btrfs_header_generation(path->nodes[*level]));
1751 if (wc->free) {
1752 next = path->nodes[*level];
1753 btrfs_tree_lock(next);
1754 clean_tree_block(trans, root, next);
1755 btrfs_set_lock_blocking(next);
1756 btrfs_wait_tree_block_writeback(next);
1757 btrfs_tree_unlock(next);
1759 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1760 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1761 BUG_ON(ret);
1763 free_extent_buffer(path->nodes[*level]);
1764 path->nodes[*level] = NULL;
1765 *level += 1;
1767 cond_resched();
1768 return 0;
1771 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1772 struct btrfs_root *root,
1773 struct btrfs_path *path, int *level,
1774 struct walk_control *wc)
1776 u64 root_owner;
1777 u64 root_gen;
1778 int i;
1779 int slot;
1780 int ret;
1782 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1783 slot = path->slots[i];
1784 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1785 struct extent_buffer *node;
1786 node = path->nodes[i];
1787 path->slots[i]++;
1788 *level = i;
1789 WARN_ON(*level == 0);
1790 return 0;
1791 } else {
1792 struct extent_buffer *parent;
1793 if (path->nodes[*level] == root->node)
1794 parent = path->nodes[*level];
1795 else
1796 parent = path->nodes[*level + 1];
1798 root_owner = btrfs_header_owner(parent);
1799 root_gen = btrfs_header_generation(parent);
1800 wc->process_func(root, path->nodes[*level], wc,
1801 btrfs_header_generation(path->nodes[*level]));
1802 if (wc->free) {
1803 struct extent_buffer *next;
1805 next = path->nodes[*level];
1807 btrfs_tree_lock(next);
1808 clean_tree_block(trans, root, next);
1809 btrfs_set_lock_blocking(next);
1810 btrfs_wait_tree_block_writeback(next);
1811 btrfs_tree_unlock(next);
1813 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1814 ret = btrfs_free_reserved_extent(root,
1815 path->nodes[*level]->start,
1816 path->nodes[*level]->len);
1817 BUG_ON(ret);
1819 free_extent_buffer(path->nodes[*level]);
1820 path->nodes[*level] = NULL;
1821 *level = i + 1;
1824 return 1;
1828 * drop the reference count on the tree rooted at 'snap'. This traverses
1829 * the tree freeing any blocks that have a ref count of zero after being
1830 * decremented.
1832 static int walk_log_tree(struct btrfs_trans_handle *trans,
1833 struct btrfs_root *log, struct walk_control *wc)
1835 int ret = 0;
1836 int wret;
1837 int level;
1838 struct btrfs_path *path;
1839 int i;
1840 int orig_level;
1842 path = btrfs_alloc_path();
1843 BUG_ON(!path);
1845 level = btrfs_header_level(log->node);
1846 orig_level = level;
1847 path->nodes[level] = log->node;
1848 extent_buffer_get(log->node);
1849 path->slots[level] = 0;
1851 while (1) {
1852 wret = walk_down_log_tree(trans, log, path, &level, wc);
1853 if (wret > 0)
1854 break;
1855 if (wret < 0)
1856 ret = wret;
1858 wret = walk_up_log_tree(trans, log, path, &level, wc);
1859 if (wret > 0)
1860 break;
1861 if (wret < 0)
1862 ret = wret;
1865 /* was the root node processed? if not, catch it here */
1866 if (path->nodes[orig_level]) {
1867 wc->process_func(log, path->nodes[orig_level], wc,
1868 btrfs_header_generation(path->nodes[orig_level]));
1869 if (wc->free) {
1870 struct extent_buffer *next;
1872 next = path->nodes[orig_level];
1874 btrfs_tree_lock(next);
1875 clean_tree_block(trans, log, next);
1876 btrfs_set_lock_blocking(next);
1877 btrfs_wait_tree_block_writeback(next);
1878 btrfs_tree_unlock(next);
1880 WARN_ON(log->root_key.objectid !=
1881 BTRFS_TREE_LOG_OBJECTID);
1882 ret = btrfs_free_reserved_extent(log, next->start,
1883 next->len);
1884 BUG_ON(ret);
1888 for (i = 0; i <= orig_level; i++) {
1889 if (path->nodes[i]) {
1890 free_extent_buffer(path->nodes[i]);
1891 path->nodes[i] = NULL;
1894 btrfs_free_path(path);
1895 return ret;
1899 * helper function to update the item for a given subvolumes log root
1900 * in the tree of log roots
1902 static int update_log_root(struct btrfs_trans_handle *trans,
1903 struct btrfs_root *log)
1905 int ret;
1907 if (log->log_transid == 1) {
1908 /* insert root item on the first sync */
1909 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1910 &log->root_key, &log->root_item);
1911 } else {
1912 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1913 &log->root_key, &log->root_item);
1915 return ret;
1918 static int wait_log_commit(struct btrfs_trans_handle *trans,
1919 struct btrfs_root *root, unsigned long transid)
1921 DEFINE_WAIT(wait);
1922 int index = transid % 2;
1925 * we only allow two pending log transactions at a time,
1926 * so we know that if ours is more than 2 older than the
1927 * current transaction, we're done
1929 do {
1930 prepare_to_wait(&root->log_commit_wait[index],
1931 &wait, TASK_UNINTERRUPTIBLE);
1932 mutex_unlock(&root->log_mutex);
1934 if (root->fs_info->last_trans_log_full_commit !=
1935 trans->transid && root->log_transid < transid + 2 &&
1936 atomic_read(&root->log_commit[index]))
1937 schedule();
1939 finish_wait(&root->log_commit_wait[index], &wait);
1940 mutex_lock(&root->log_mutex);
1941 } while (root->log_transid < transid + 2 &&
1942 atomic_read(&root->log_commit[index]));
1943 return 0;
1946 static int wait_for_writer(struct btrfs_trans_handle *trans,
1947 struct btrfs_root *root)
1949 DEFINE_WAIT(wait);
1950 while (atomic_read(&root->log_writers)) {
1951 prepare_to_wait(&root->log_writer_wait,
1952 &wait, TASK_UNINTERRUPTIBLE);
1953 mutex_unlock(&root->log_mutex);
1954 if (root->fs_info->last_trans_log_full_commit !=
1955 trans->transid && atomic_read(&root->log_writers))
1956 schedule();
1957 mutex_lock(&root->log_mutex);
1958 finish_wait(&root->log_writer_wait, &wait);
1960 return 0;
1964 * btrfs_sync_log does sends a given tree log down to the disk and
1965 * updates the super blocks to record it. When this call is done,
1966 * you know that any inodes previously logged are safely on disk only
1967 * if it returns 0.
1969 * Any other return value means you need to call btrfs_commit_transaction.
1970 * Some of the edge cases for fsyncing directories that have had unlinks
1971 * or renames done in the past mean that sometimes the only safe
1972 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1973 * that has happened.
1975 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1976 struct btrfs_root *root)
1978 int index1;
1979 int index2;
1980 int ret;
1981 struct btrfs_root *log = root->log_root;
1982 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1983 u64 log_transid = 0;
1985 mutex_lock(&root->log_mutex);
1986 index1 = root->log_transid % 2;
1987 if (atomic_read(&root->log_commit[index1])) {
1988 wait_log_commit(trans, root, root->log_transid);
1989 mutex_unlock(&root->log_mutex);
1990 return 0;
1992 atomic_set(&root->log_commit[index1], 1);
1994 /* wait for previous tree log sync to complete */
1995 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1996 wait_log_commit(trans, root, root->log_transid - 1);
1998 while (1) {
1999 unsigned long batch = root->log_batch;
2000 if (root->log_multiple_pids) {
2001 mutex_unlock(&root->log_mutex);
2002 schedule_timeout_uninterruptible(1);
2003 mutex_lock(&root->log_mutex);
2005 wait_for_writer(trans, root);
2006 if (batch == root->log_batch)
2007 break;
2010 /* bail out if we need to do a full commit */
2011 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2012 ret = -EAGAIN;
2013 mutex_unlock(&root->log_mutex);
2014 goto out;
2017 /* we start IO on all the marked extents here, but we don't actually
2018 * wait for them until later.
2020 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages);
2021 BUG_ON(ret);
2023 btrfs_set_root_node(&log->root_item, log->node);
2025 root->log_batch = 0;
2026 log_transid = root->log_transid;
2027 root->log_transid++;
2028 log->log_transid = root->log_transid;
2029 root->log_start_pid = 0;
2030 smp_mb();
2032 * log tree has been flushed to disk, new modifications of
2033 * the log will be written to new positions. so it's safe to
2034 * allow log writers to go in.
2036 mutex_unlock(&root->log_mutex);
2038 mutex_lock(&log_root_tree->log_mutex);
2039 log_root_tree->log_batch++;
2040 atomic_inc(&log_root_tree->log_writers);
2041 mutex_unlock(&log_root_tree->log_mutex);
2043 ret = update_log_root(trans, log);
2044 BUG_ON(ret);
2046 mutex_lock(&log_root_tree->log_mutex);
2047 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2048 smp_mb();
2049 if (waitqueue_active(&log_root_tree->log_writer_wait))
2050 wake_up(&log_root_tree->log_writer_wait);
2053 index2 = log_root_tree->log_transid % 2;
2054 if (atomic_read(&log_root_tree->log_commit[index2])) {
2055 btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2056 wait_log_commit(trans, log_root_tree,
2057 log_root_tree->log_transid);
2058 mutex_unlock(&log_root_tree->log_mutex);
2059 goto out;
2061 atomic_set(&log_root_tree->log_commit[index2], 1);
2063 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2064 wait_log_commit(trans, log_root_tree,
2065 log_root_tree->log_transid - 1);
2068 wait_for_writer(trans, log_root_tree);
2071 * now that we've moved on to the tree of log tree roots,
2072 * check the full commit flag again
2074 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2075 btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2076 mutex_unlock(&log_root_tree->log_mutex);
2077 ret = -EAGAIN;
2078 goto out_wake_log_root;
2081 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2082 &log_root_tree->dirty_log_pages);
2083 BUG_ON(ret);
2084 btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2086 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2087 log_root_tree->node->start);
2088 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2089 btrfs_header_level(log_root_tree->node));
2091 log_root_tree->log_batch = 0;
2092 log_root_tree->log_transid++;
2093 smp_mb();
2095 mutex_unlock(&log_root_tree->log_mutex);
2098 * nobody else is going to jump in and write the the ctree
2099 * super here because the log_commit atomic below is protecting
2100 * us. We must be called with a transaction handle pinning
2101 * the running transaction open, so a full commit can't hop
2102 * in and cause problems either.
2104 write_ctree_super(trans, root->fs_info->tree_root, 1);
2105 ret = 0;
2107 mutex_lock(&root->log_mutex);
2108 if (root->last_log_commit < log_transid)
2109 root->last_log_commit = log_transid;
2110 mutex_unlock(&root->log_mutex);
2112 out_wake_log_root:
2113 atomic_set(&log_root_tree->log_commit[index2], 0);
2114 smp_mb();
2115 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2116 wake_up(&log_root_tree->log_commit_wait[index2]);
2117 out:
2118 atomic_set(&root->log_commit[index1], 0);
2119 smp_mb();
2120 if (waitqueue_active(&root->log_commit_wait[index1]))
2121 wake_up(&root->log_commit_wait[index1]);
2122 return 0;
2126 * free all the extents used by the tree log. This should be called
2127 * at commit time of the full transaction
2129 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2131 int ret;
2132 struct btrfs_root *log;
2133 struct key;
2134 u64 start;
2135 u64 end;
2136 struct walk_control wc = {
2137 .free = 1,
2138 .process_func = process_one_buffer
2141 if (!root->log_root || root->fs_info->log_root_recovering)
2142 return 0;
2144 log = root->log_root;
2145 ret = walk_log_tree(trans, log, &wc);
2146 BUG_ON(ret);
2148 while (1) {
2149 ret = find_first_extent_bit(&log->dirty_log_pages,
2150 0, &start, &end, EXTENT_DIRTY);
2151 if (ret)
2152 break;
2154 clear_extent_dirty(&log->dirty_log_pages,
2155 start, end, GFP_NOFS);
2158 if (log->log_transid > 0) {
2159 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2160 &log->root_key);
2161 BUG_ON(ret);
2163 root->log_root = NULL;
2164 free_extent_buffer(log->node);
2165 kfree(log);
2166 return 0;
2170 * If both a file and directory are logged, and unlinks or renames are
2171 * mixed in, we have a few interesting corners:
2173 * create file X in dir Y
2174 * link file X to X.link in dir Y
2175 * fsync file X
2176 * unlink file X but leave X.link
2177 * fsync dir Y
2179 * After a crash we would expect only X.link to exist. But file X
2180 * didn't get fsync'd again so the log has back refs for X and X.link.
2182 * We solve this by removing directory entries and inode backrefs from the
2183 * log when a file that was logged in the current transaction is
2184 * unlinked. Any later fsync will include the updated log entries, and
2185 * we'll be able to reconstruct the proper directory items from backrefs.
2187 * This optimizations allows us to avoid relogging the entire inode
2188 * or the entire directory.
2190 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2191 struct btrfs_root *root,
2192 const char *name, int name_len,
2193 struct inode *dir, u64 index)
2195 struct btrfs_root *log;
2196 struct btrfs_dir_item *di;
2197 struct btrfs_path *path;
2198 int ret;
2199 int bytes_del = 0;
2201 if (BTRFS_I(dir)->logged_trans < trans->transid)
2202 return 0;
2204 ret = join_running_log_trans(root);
2205 if (ret)
2206 return 0;
2208 mutex_lock(&BTRFS_I(dir)->log_mutex);
2210 log = root->log_root;
2211 path = btrfs_alloc_path();
2212 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2213 name, name_len, -1);
2214 if (di && !IS_ERR(di)) {
2215 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2216 bytes_del += name_len;
2217 BUG_ON(ret);
2219 btrfs_release_path(log, path);
2220 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2221 index, name, name_len, -1);
2222 if (di && !IS_ERR(di)) {
2223 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2224 bytes_del += name_len;
2225 BUG_ON(ret);
2228 /* update the directory size in the log to reflect the names
2229 * we have removed
2231 if (bytes_del) {
2232 struct btrfs_key key;
2234 key.objectid = dir->i_ino;
2235 key.offset = 0;
2236 key.type = BTRFS_INODE_ITEM_KEY;
2237 btrfs_release_path(log, path);
2239 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2240 if (ret == 0) {
2241 struct btrfs_inode_item *item;
2242 u64 i_size;
2244 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2245 struct btrfs_inode_item);
2246 i_size = btrfs_inode_size(path->nodes[0], item);
2247 if (i_size > bytes_del)
2248 i_size -= bytes_del;
2249 else
2250 i_size = 0;
2251 btrfs_set_inode_size(path->nodes[0], item, i_size);
2252 btrfs_mark_buffer_dirty(path->nodes[0]);
2253 } else
2254 ret = 0;
2255 btrfs_release_path(log, path);
2258 btrfs_free_path(path);
2259 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2260 btrfs_end_log_trans(root);
2262 return 0;
2265 /* see comments for btrfs_del_dir_entries_in_log */
2266 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2267 struct btrfs_root *root,
2268 const char *name, int name_len,
2269 struct inode *inode, u64 dirid)
2271 struct btrfs_root *log;
2272 u64 index;
2273 int ret;
2275 if (BTRFS_I(inode)->logged_trans < trans->transid)
2276 return 0;
2278 ret = join_running_log_trans(root);
2279 if (ret)
2280 return 0;
2281 log = root->log_root;
2282 mutex_lock(&BTRFS_I(inode)->log_mutex);
2284 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2285 dirid, &index);
2286 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2287 btrfs_end_log_trans(root);
2289 return ret;
2293 * creates a range item in the log for 'dirid'. first_offset and
2294 * last_offset tell us which parts of the key space the log should
2295 * be considered authoritative for.
2297 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2298 struct btrfs_root *log,
2299 struct btrfs_path *path,
2300 int key_type, u64 dirid,
2301 u64 first_offset, u64 last_offset)
2303 int ret;
2304 struct btrfs_key key;
2305 struct btrfs_dir_log_item *item;
2307 key.objectid = dirid;
2308 key.offset = first_offset;
2309 if (key_type == BTRFS_DIR_ITEM_KEY)
2310 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2311 else
2312 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2313 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2314 BUG_ON(ret);
2316 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317 struct btrfs_dir_log_item);
2318 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2319 btrfs_mark_buffer_dirty(path->nodes[0]);
2320 btrfs_release_path(log, path);
2321 return 0;
2325 * log all the items included in the current transaction for a given
2326 * directory. This also creates the range items in the log tree required
2327 * to replay anything deleted before the fsync
2329 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2330 struct btrfs_root *root, struct inode *inode,
2331 struct btrfs_path *path,
2332 struct btrfs_path *dst_path, int key_type,
2333 u64 min_offset, u64 *last_offset_ret)
2335 struct btrfs_key min_key;
2336 struct btrfs_key max_key;
2337 struct btrfs_root *log = root->log_root;
2338 struct extent_buffer *src;
2339 int ret;
2340 int i;
2341 int nritems;
2342 u64 first_offset = min_offset;
2343 u64 last_offset = (u64)-1;
2345 log = root->log_root;
2346 max_key.objectid = inode->i_ino;
2347 max_key.offset = (u64)-1;
2348 max_key.type = key_type;
2350 min_key.objectid = inode->i_ino;
2351 min_key.type = key_type;
2352 min_key.offset = min_offset;
2354 path->keep_locks = 1;
2356 ret = btrfs_search_forward(root, &min_key, &max_key,
2357 path, 0, trans->transid);
2360 * we didn't find anything from this transaction, see if there
2361 * is anything at all
2363 if (ret != 0 || min_key.objectid != inode->i_ino ||
2364 min_key.type != key_type) {
2365 min_key.objectid = inode->i_ino;
2366 min_key.type = key_type;
2367 min_key.offset = (u64)-1;
2368 btrfs_release_path(root, path);
2369 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2370 if (ret < 0) {
2371 btrfs_release_path(root, path);
2372 return ret;
2374 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2376 /* if ret == 0 there are items for this type,
2377 * create a range to tell us the last key of this type.
2378 * otherwise, there are no items in this directory after
2379 * *min_offset, and we create a range to indicate that.
2381 if (ret == 0) {
2382 struct btrfs_key tmp;
2383 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2384 path->slots[0]);
2385 if (key_type == tmp.type)
2386 first_offset = max(min_offset, tmp.offset) + 1;
2388 goto done;
2391 /* go backward to find any previous key */
2392 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2393 if (ret == 0) {
2394 struct btrfs_key tmp;
2395 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2396 if (key_type == tmp.type) {
2397 first_offset = tmp.offset;
2398 ret = overwrite_item(trans, log, dst_path,
2399 path->nodes[0], path->slots[0],
2400 &tmp);
2403 btrfs_release_path(root, path);
2405 /* find the first key from this transaction again */
2406 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2407 if (ret != 0) {
2408 WARN_ON(1);
2409 goto done;
2413 * we have a block from this transaction, log every item in it
2414 * from our directory
2416 while (1) {
2417 struct btrfs_key tmp;
2418 src = path->nodes[0];
2419 nritems = btrfs_header_nritems(src);
2420 for (i = path->slots[0]; i < nritems; i++) {
2421 btrfs_item_key_to_cpu(src, &min_key, i);
2423 if (min_key.objectid != inode->i_ino ||
2424 min_key.type != key_type)
2425 goto done;
2426 ret = overwrite_item(trans, log, dst_path, src, i,
2427 &min_key);
2428 BUG_ON(ret);
2430 path->slots[0] = nritems;
2433 * look ahead to the next item and see if it is also
2434 * from this directory and from this transaction
2436 ret = btrfs_next_leaf(root, path);
2437 if (ret == 1) {
2438 last_offset = (u64)-1;
2439 goto done;
2441 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2442 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2443 last_offset = (u64)-1;
2444 goto done;
2446 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2447 ret = overwrite_item(trans, log, dst_path,
2448 path->nodes[0], path->slots[0],
2449 &tmp);
2451 BUG_ON(ret);
2452 last_offset = tmp.offset;
2453 goto done;
2456 done:
2457 *last_offset_ret = last_offset;
2458 btrfs_release_path(root, path);
2459 btrfs_release_path(log, dst_path);
2461 /* insert the log range keys to indicate where the log is valid */
2462 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2463 first_offset, last_offset);
2464 BUG_ON(ret);
2465 return 0;
2469 * logging directories is very similar to logging inodes, We find all the items
2470 * from the current transaction and write them to the log.
2472 * The recovery code scans the directory in the subvolume, and if it finds a
2473 * key in the range logged that is not present in the log tree, then it means
2474 * that dir entry was unlinked during the transaction.
2476 * In order for that scan to work, we must include one key smaller than
2477 * the smallest logged by this transaction and one key larger than the largest
2478 * key logged by this transaction.
2480 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2481 struct btrfs_root *root, struct inode *inode,
2482 struct btrfs_path *path,
2483 struct btrfs_path *dst_path)
2485 u64 min_key;
2486 u64 max_key;
2487 int ret;
2488 int key_type = BTRFS_DIR_ITEM_KEY;
2490 again:
2491 min_key = 0;
2492 max_key = 0;
2493 while (1) {
2494 ret = log_dir_items(trans, root, inode, path,
2495 dst_path, key_type, min_key,
2496 &max_key);
2497 BUG_ON(ret);
2498 if (max_key == (u64)-1)
2499 break;
2500 min_key = max_key + 1;
2503 if (key_type == BTRFS_DIR_ITEM_KEY) {
2504 key_type = BTRFS_DIR_INDEX_KEY;
2505 goto again;
2507 return 0;
2511 * a helper function to drop items from the log before we relog an
2512 * inode. max_key_type indicates the highest item type to remove.
2513 * This cannot be run for file data extents because it does not
2514 * free the extents they point to.
2516 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2517 struct btrfs_root *log,
2518 struct btrfs_path *path,
2519 u64 objectid, int max_key_type)
2521 int ret;
2522 struct btrfs_key key;
2523 struct btrfs_key found_key;
2525 key.objectid = objectid;
2526 key.type = max_key_type;
2527 key.offset = (u64)-1;
2529 while (1) {
2530 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2532 if (ret != 1)
2533 break;
2535 if (path->slots[0] == 0)
2536 break;
2538 path->slots[0]--;
2539 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2540 path->slots[0]);
2542 if (found_key.objectid != objectid)
2543 break;
2545 ret = btrfs_del_item(trans, log, path);
2546 BUG_ON(ret);
2547 btrfs_release_path(log, path);
2549 btrfs_release_path(log, path);
2550 return 0;
2553 static noinline int copy_items(struct btrfs_trans_handle *trans,
2554 struct btrfs_root *log,
2555 struct btrfs_path *dst_path,
2556 struct extent_buffer *src,
2557 int start_slot, int nr, int inode_only)
2559 unsigned long src_offset;
2560 unsigned long dst_offset;
2561 struct btrfs_file_extent_item *extent;
2562 struct btrfs_inode_item *inode_item;
2563 int ret;
2564 struct btrfs_key *ins_keys;
2565 u32 *ins_sizes;
2566 char *ins_data;
2567 int i;
2568 struct list_head ordered_sums;
2570 INIT_LIST_HEAD(&ordered_sums);
2572 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2573 nr * sizeof(u32), GFP_NOFS);
2574 ins_sizes = (u32 *)ins_data;
2575 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2577 for (i = 0; i < nr; i++) {
2578 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2579 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2581 ret = btrfs_insert_empty_items(trans, log, dst_path,
2582 ins_keys, ins_sizes, nr);
2583 BUG_ON(ret);
2585 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2586 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2587 dst_path->slots[0]);
2589 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2591 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2592 src_offset, ins_sizes[i]);
2594 if (inode_only == LOG_INODE_EXISTS &&
2595 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2596 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2597 dst_path->slots[0],
2598 struct btrfs_inode_item);
2599 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2601 /* set the generation to zero so the recover code
2602 * can tell the difference between an logging
2603 * just to say 'this inode exists' and a logging
2604 * to say 'update this inode with these values'
2606 btrfs_set_inode_generation(dst_path->nodes[0],
2607 inode_item, 0);
2609 /* take a reference on file data extents so that truncates
2610 * or deletes of this inode don't have to relog the inode
2611 * again
2613 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2614 int found_type;
2615 extent = btrfs_item_ptr(src, start_slot + i,
2616 struct btrfs_file_extent_item);
2618 found_type = btrfs_file_extent_type(src, extent);
2619 if (found_type == BTRFS_FILE_EXTENT_REG ||
2620 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2621 u64 ds, dl, cs, cl;
2622 ds = btrfs_file_extent_disk_bytenr(src,
2623 extent);
2624 /* ds == 0 is a hole */
2625 if (ds == 0)
2626 continue;
2628 dl = btrfs_file_extent_disk_num_bytes(src,
2629 extent);
2630 cs = btrfs_file_extent_offset(src, extent);
2631 cl = btrfs_file_extent_num_bytes(src,
2632 extent);
2633 if (btrfs_file_extent_compression(src,
2634 extent)) {
2635 cs = 0;
2636 cl = dl;
2639 ret = btrfs_lookup_csums_range(
2640 log->fs_info->csum_root,
2641 ds + cs, ds + cs + cl - 1,
2642 &ordered_sums);
2643 BUG_ON(ret);
2648 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2649 btrfs_release_path(log, dst_path);
2650 kfree(ins_data);
2653 * we have to do this after the loop above to avoid changing the
2654 * log tree while trying to change the log tree.
2656 while (!list_empty(&ordered_sums)) {
2657 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2658 struct btrfs_ordered_sum,
2659 list);
2660 ret = btrfs_csum_file_blocks(trans, log, sums);
2661 BUG_ON(ret);
2662 list_del(&sums->list);
2663 kfree(sums);
2665 return 0;
2668 /* log a single inode in the tree log.
2669 * At least one parent directory for this inode must exist in the tree
2670 * or be logged already.
2672 * Any items from this inode changed by the current transaction are copied
2673 * to the log tree. An extra reference is taken on any extents in this
2674 * file, allowing us to avoid a whole pile of corner cases around logging
2675 * blocks that have been removed from the tree.
2677 * See LOG_INODE_ALL and related defines for a description of what inode_only
2678 * does.
2680 * This handles both files and directories.
2682 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2683 struct btrfs_root *root, struct inode *inode,
2684 int inode_only)
2686 struct btrfs_path *path;
2687 struct btrfs_path *dst_path;
2688 struct btrfs_key min_key;
2689 struct btrfs_key max_key;
2690 struct btrfs_root *log = root->log_root;
2691 struct extent_buffer *src = NULL;
2692 u32 size;
2693 int ret;
2694 int nritems;
2695 int ins_start_slot = 0;
2696 int ins_nr;
2698 log = root->log_root;
2700 path = btrfs_alloc_path();
2701 dst_path = btrfs_alloc_path();
2703 min_key.objectid = inode->i_ino;
2704 min_key.type = BTRFS_INODE_ITEM_KEY;
2705 min_key.offset = 0;
2707 max_key.objectid = inode->i_ino;
2709 /* today the code can only do partial logging of directories */
2710 if (!S_ISDIR(inode->i_mode))
2711 inode_only = LOG_INODE_ALL;
2713 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2714 max_key.type = BTRFS_XATTR_ITEM_KEY;
2715 else
2716 max_key.type = (u8)-1;
2717 max_key.offset = (u64)-1;
2719 mutex_lock(&BTRFS_I(inode)->log_mutex);
2722 * a brute force approach to making sure we get the most uptodate
2723 * copies of everything.
2725 if (S_ISDIR(inode->i_mode)) {
2726 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2728 if (inode_only == LOG_INODE_EXISTS)
2729 max_key_type = BTRFS_XATTR_ITEM_KEY;
2730 ret = drop_objectid_items(trans, log, path,
2731 inode->i_ino, max_key_type);
2732 } else {
2733 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2735 BUG_ON(ret);
2736 path->keep_locks = 1;
2738 while (1) {
2739 ins_nr = 0;
2740 ret = btrfs_search_forward(root, &min_key, &max_key,
2741 path, 0, trans->transid);
2742 if (ret != 0)
2743 break;
2744 again:
2745 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2746 if (min_key.objectid != inode->i_ino)
2747 break;
2748 if (min_key.type > max_key.type)
2749 break;
2751 src = path->nodes[0];
2752 size = btrfs_item_size_nr(src, path->slots[0]);
2753 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2754 ins_nr++;
2755 goto next_slot;
2756 } else if (!ins_nr) {
2757 ins_start_slot = path->slots[0];
2758 ins_nr = 1;
2759 goto next_slot;
2762 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2763 ins_nr, inode_only);
2764 BUG_ON(ret);
2765 ins_nr = 1;
2766 ins_start_slot = path->slots[0];
2767 next_slot:
2769 nritems = btrfs_header_nritems(path->nodes[0]);
2770 path->slots[0]++;
2771 if (path->slots[0] < nritems) {
2772 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2773 path->slots[0]);
2774 goto again;
2776 if (ins_nr) {
2777 ret = copy_items(trans, log, dst_path, src,
2778 ins_start_slot,
2779 ins_nr, inode_only);
2780 BUG_ON(ret);
2781 ins_nr = 0;
2783 btrfs_release_path(root, path);
2785 if (min_key.offset < (u64)-1)
2786 min_key.offset++;
2787 else if (min_key.type < (u8)-1)
2788 min_key.type++;
2789 else if (min_key.objectid < (u64)-1)
2790 min_key.objectid++;
2791 else
2792 break;
2794 if (ins_nr) {
2795 ret = copy_items(trans, log, dst_path, src,
2796 ins_start_slot,
2797 ins_nr, inode_only);
2798 BUG_ON(ret);
2799 ins_nr = 0;
2801 WARN_ON(ins_nr);
2802 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2803 btrfs_release_path(root, path);
2804 btrfs_release_path(log, dst_path);
2805 ret = log_directory_changes(trans, root, inode, path, dst_path);
2806 BUG_ON(ret);
2808 BTRFS_I(inode)->logged_trans = trans->transid;
2809 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2811 btrfs_free_path(path);
2812 btrfs_free_path(dst_path);
2813 return 0;
2817 * follow the dentry parent pointers up the chain and see if any
2818 * of the directories in it require a full commit before they can
2819 * be logged. Returns zero if nothing special needs to be done or 1 if
2820 * a full commit is required.
2822 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2823 struct inode *inode,
2824 struct dentry *parent,
2825 struct super_block *sb,
2826 u64 last_committed)
2828 int ret = 0;
2829 struct btrfs_root *root;
2832 * for regular files, if its inode is already on disk, we don't
2833 * have to worry about the parents at all. This is because
2834 * we can use the last_unlink_trans field to record renames
2835 * and other fun in this file.
2837 if (S_ISREG(inode->i_mode) &&
2838 BTRFS_I(inode)->generation <= last_committed &&
2839 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2840 goto out;
2842 if (!S_ISDIR(inode->i_mode)) {
2843 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2844 goto out;
2845 inode = parent->d_inode;
2848 while (1) {
2849 BTRFS_I(inode)->logged_trans = trans->transid;
2850 smp_mb();
2852 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2853 root = BTRFS_I(inode)->root;
2856 * make sure any commits to the log are forced
2857 * to be full commits
2859 root->fs_info->last_trans_log_full_commit =
2860 trans->transid;
2861 ret = 1;
2862 break;
2865 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2866 break;
2868 if (IS_ROOT(parent))
2869 break;
2871 parent = parent->d_parent;
2872 inode = parent->d_inode;
2875 out:
2876 return ret;
2879 static int inode_in_log(struct btrfs_trans_handle *trans,
2880 struct inode *inode)
2882 struct btrfs_root *root = BTRFS_I(inode)->root;
2883 int ret = 0;
2885 mutex_lock(&root->log_mutex);
2886 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2887 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2888 ret = 1;
2889 mutex_unlock(&root->log_mutex);
2890 return ret;
2895 * helper function around btrfs_log_inode to make sure newly created
2896 * parent directories also end up in the log. A minimal inode and backref
2897 * only logging is done of any parent directories that are older than
2898 * the last committed transaction
2900 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2901 struct btrfs_root *root, struct inode *inode,
2902 struct dentry *parent, int exists_only)
2904 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2905 struct super_block *sb;
2906 int ret = 0;
2907 u64 last_committed = root->fs_info->last_trans_committed;
2909 sb = inode->i_sb;
2911 if (btrfs_test_opt(root, NOTREELOG)) {
2912 ret = 1;
2913 goto end_no_trans;
2916 if (root->fs_info->last_trans_log_full_commit >
2917 root->fs_info->last_trans_committed) {
2918 ret = 1;
2919 goto end_no_trans;
2922 if (root != BTRFS_I(inode)->root ||
2923 btrfs_root_refs(&root->root_item) == 0) {
2924 ret = 1;
2925 goto end_no_trans;
2928 ret = check_parent_dirs_for_sync(trans, inode, parent,
2929 sb, last_committed);
2930 if (ret)
2931 goto end_no_trans;
2933 if (inode_in_log(trans, inode)) {
2934 ret = BTRFS_NO_LOG_SYNC;
2935 goto end_no_trans;
2938 start_log_trans(trans, root);
2940 ret = btrfs_log_inode(trans, root, inode, inode_only);
2941 BUG_ON(ret);
2944 * for regular files, if its inode is already on disk, we don't
2945 * have to worry about the parents at all. This is because
2946 * we can use the last_unlink_trans field to record renames
2947 * and other fun in this file.
2949 if (S_ISREG(inode->i_mode) &&
2950 BTRFS_I(inode)->generation <= last_committed &&
2951 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2952 goto no_parent;
2954 inode_only = LOG_INODE_EXISTS;
2955 while (1) {
2956 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2957 break;
2959 inode = parent->d_inode;
2960 if (root != BTRFS_I(inode)->root)
2961 break;
2963 if (BTRFS_I(inode)->generation >
2964 root->fs_info->last_trans_committed) {
2965 ret = btrfs_log_inode(trans, root, inode, inode_only);
2966 BUG_ON(ret);
2968 if (IS_ROOT(parent))
2969 break;
2971 parent = parent->d_parent;
2973 no_parent:
2974 ret = 0;
2975 btrfs_end_log_trans(root);
2976 end_no_trans:
2977 return ret;
2981 * it is not safe to log dentry if the chunk root has added new
2982 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2983 * If this returns 1, you must commit the transaction to safely get your
2984 * data on disk.
2986 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2987 struct btrfs_root *root, struct dentry *dentry)
2989 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2990 dentry->d_parent, 0);
2994 * should be called during mount to recover any replay any log trees
2995 * from the FS
2997 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2999 int ret;
3000 struct btrfs_path *path;
3001 struct btrfs_trans_handle *trans;
3002 struct btrfs_key key;
3003 struct btrfs_key found_key;
3004 struct btrfs_key tmp_key;
3005 struct btrfs_root *log;
3006 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3007 struct walk_control wc = {
3008 .process_func = process_one_buffer,
3009 .stage = 0,
3012 fs_info->log_root_recovering = 1;
3013 path = btrfs_alloc_path();
3014 BUG_ON(!path);
3016 trans = btrfs_start_transaction(fs_info->tree_root, 1);
3018 wc.trans = trans;
3019 wc.pin = 1;
3021 walk_log_tree(trans, log_root_tree, &wc);
3023 again:
3024 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3025 key.offset = (u64)-1;
3026 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3028 while (1) {
3029 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3030 if (ret < 0)
3031 break;
3032 if (ret > 0) {
3033 if (path->slots[0] == 0)
3034 break;
3035 path->slots[0]--;
3037 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3038 path->slots[0]);
3039 btrfs_release_path(log_root_tree, path);
3040 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3041 break;
3043 log = btrfs_read_fs_root_no_radix(log_root_tree,
3044 &found_key);
3045 BUG_ON(!log);
3048 tmp_key.objectid = found_key.offset;
3049 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3050 tmp_key.offset = (u64)-1;
3052 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3053 BUG_ON(!wc.replay_dest);
3055 wc.replay_dest->log_root = log;
3056 btrfs_record_root_in_trans(trans, wc.replay_dest);
3057 ret = walk_log_tree(trans, log, &wc);
3058 BUG_ON(ret);
3060 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3061 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3062 path);
3063 BUG_ON(ret);
3066 key.offset = found_key.offset - 1;
3067 wc.replay_dest->log_root = NULL;
3068 free_extent_buffer(log->node);
3069 free_extent_buffer(log->commit_root);
3070 kfree(log);
3072 if (found_key.offset == 0)
3073 break;
3075 btrfs_release_path(log_root_tree, path);
3077 /* step one is to pin it all, step two is to replay just inodes */
3078 if (wc.pin) {
3079 wc.pin = 0;
3080 wc.process_func = replay_one_buffer;
3081 wc.stage = LOG_WALK_REPLAY_INODES;
3082 goto again;
3084 /* step three is to replay everything */
3085 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3086 wc.stage++;
3087 goto again;
3090 btrfs_free_path(path);
3092 free_extent_buffer(log_root_tree->node);
3093 log_root_tree->log_root = NULL;
3094 fs_info->log_root_recovering = 0;
3096 /* step 4: commit the transaction, which also unpins the blocks */
3097 btrfs_commit_transaction(trans, fs_info->tree_root);
3099 kfree(log_root_tree);
3100 return 0;
3104 * there are some corner cases where we want to force a full
3105 * commit instead of allowing a directory to be logged.
3107 * They revolve around files there were unlinked from the directory, and
3108 * this function updates the parent directory so that a full commit is
3109 * properly done if it is fsync'd later after the unlinks are done.
3111 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3112 struct inode *dir, struct inode *inode,
3113 int for_rename)
3116 * when we're logging a file, if it hasn't been renamed
3117 * or unlinked, and its inode is fully committed on disk,
3118 * we don't have to worry about walking up the directory chain
3119 * to log its parents.
3121 * So, we use the last_unlink_trans field to put this transid
3122 * into the file. When the file is logged we check it and
3123 * don't log the parents if the file is fully on disk.
3125 if (S_ISREG(inode->i_mode))
3126 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3129 * if this directory was already logged any new
3130 * names for this file/dir will get recorded
3132 smp_mb();
3133 if (BTRFS_I(dir)->logged_trans == trans->transid)
3134 return;
3137 * if the inode we're about to unlink was logged,
3138 * the log will be properly updated for any new names
3140 if (BTRFS_I(inode)->logged_trans == trans->transid)
3141 return;
3144 * when renaming files across directories, if the directory
3145 * there we're unlinking from gets fsync'd later on, there's
3146 * no way to find the destination directory later and fsync it
3147 * properly. So, we have to be conservative and force commits
3148 * so the new name gets discovered.
3150 if (for_rename)
3151 goto record;
3153 /* we can safely do the unlink without any special recording */
3154 return;
3156 record:
3157 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3161 * Call this after adding a new name for a file and it will properly
3162 * update the log to reflect the new name.
3164 * It will return zero if all goes well, and it will return 1 if a
3165 * full transaction commit is required.
3167 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3168 struct inode *inode, struct inode *old_dir,
3169 struct dentry *parent)
3171 struct btrfs_root * root = BTRFS_I(inode)->root;
3174 * this will force the logging code to walk the dentry chain
3175 * up for the file
3177 if (S_ISREG(inode->i_mode))
3178 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3181 * if this inode hasn't been logged and directory we're renaming it
3182 * from hasn't been logged, we don't need to log it
3184 if (BTRFS_I(inode)->logged_trans <=
3185 root->fs_info->last_trans_committed &&
3186 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3187 root->fs_info->last_trans_committed))
3188 return 0;
3190 return btrfs_log_inode_parent(trans, root, inode, parent, 1);