OMAP3 SRF: Generic shared resource f/w
[linux-ginger.git] / fs / xfs / xfs_inode.c
blobb92a4fa2a0a12eda161c2ff897bd820f5cbde1e8
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
131 STATIC int
132 xfs_imap_to_bp(
133 xfs_mount_t *mp,
134 xfs_trans_t *tp,
135 struct xfs_imap *imap,
136 xfs_buf_t **bpp,
137 uint buf_flags,
138 uint iget_flags)
140 int error;
141 int i;
142 int ni;
143 xfs_buf_t *bp;
145 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 (int)imap->im_len, buf_flags, &bp);
147 if (error) {
148 if (error != EAGAIN) {
149 cmn_err(CE_WARN,
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error, mp->m_fsname);
153 } else {
154 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 return error;
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 #ifdef DEBUG
164 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else /* usual case */
166 ni = 1;
167 #endif
169 for (i = 0; i < ni; i++) {
170 int di_ok;
171 xfs_dinode_t *dip;
173 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 (i << mp->m_sb.sb_inodelog));
175 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 XFS_DINODE_GOOD_VERSION(dip->di_version);
177 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 XFS_ERRTAG_ITOBP_INOTOBP,
179 XFS_RANDOM_ITOBP_INOTOBP))) {
180 if (iget_flags & XFS_IGET_BULKSTAT) {
181 xfs_trans_brelse(tp, bp);
182 return XFS_ERROR(EINVAL);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 cmn_err(CE_PANIC,
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 (unsigned long long)imap->im_blkno, i,
192 be16_to_cpu(dip->di_magic));
193 #endif
194 xfs_trans_brelse(tp, bp);
195 return XFS_ERROR(EFSCORRUPTED);
199 xfs_inobp_check(mp, bp);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 *bpp = bp;
207 return 0;
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
224 xfs_inotobp(
225 xfs_mount_t *mp,
226 xfs_trans_t *tp,
227 xfs_ino_t ino,
228 xfs_dinode_t **dipp,
229 xfs_buf_t **bpp,
230 int *offset,
231 uint imap_flags)
233 struct xfs_imap imap;
234 xfs_buf_t *bp;
235 int error;
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 if (error)
240 return error;
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
243 if (error)
244 return error;
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
267 * (see xfs_imap()).
270 xfs_itobp(
271 xfs_mount_t *mp,
272 xfs_trans_t *tp,
273 xfs_inode_t *ip,
274 xfs_dinode_t **dipp,
275 xfs_buf_t **bpp,
276 uint buf_flags)
278 xfs_buf_t *bp;
279 int error;
281 ASSERT(ip->i_imap.im_blkno != 0);
283 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 if (error)
285 return error;
287 if (!bp) {
288 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
289 ASSERT(tp == NULL);
290 *bpp = NULL;
291 return EAGAIN;
294 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 *bpp = bp;
296 return 0;
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
308 STATIC int
309 xfs_iformat(
310 xfs_inode_t *ip,
311 xfs_dinode_t *dip)
313 xfs_attr_shortform_t *atp;
314 int size;
315 int error;
316 xfs_fsize_t di_size;
317 ip->i_df.if_ext_max =
318 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 error = 0;
321 if (unlikely(be32_to_cpu(dip->di_nextents) +
322 be16_to_cpu(dip->di_anextents) >
323 be64_to_cpu(dip->di_nblocks))) {
324 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip->i_ino,
327 (int)(be32_to_cpu(dip->di_nextents) +
328 be16_to_cpu(dip->di_anextents)),
329 (unsigned long long)
330 be64_to_cpu(dip->di_nblocks));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 ip->i_mount, dip);
333 return XFS_ERROR(EFSCORRUPTED);
336 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip->i_ino,
340 dip->di_forkoff);
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 ip->i_mount, dip);
343 return XFS_ERROR(EFSCORRUPTED);
346 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 !ip->i_mount->m_rtdev_targp)) {
348 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 "corrupt dinode %Lu, has realtime flag set.",
350 ip->i_ino);
351 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 return XFS_ERROR(EFSCORRUPTED);
356 switch (ip->i_d.di_mode & S_IFMT) {
357 case S_IFIFO:
358 case S_IFCHR:
359 case S_IFBLK:
360 case S_IFSOCK:
361 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 ip->i_mount, dip);
364 return XFS_ERROR(EFSCORRUPTED);
366 ip->i_d.di_size = 0;
367 ip->i_size = 0;
368 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 break;
371 case S_IFREG:
372 case S_IFLNK:
373 case S_IFDIR:
374 switch (dip->di_format) {
375 case XFS_DINODE_FMT_LOCAL:
377 * no local regular files yet
379 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 "corrupt inode %Lu "
382 "(local format for regular file).",
383 (unsigned long long) ip->i_ino);
384 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 XFS_ERRLEVEL_LOW,
386 ip->i_mount, dip);
387 return XFS_ERROR(EFSCORRUPTED);
390 di_size = be64_to_cpu(dip->di_size);
391 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 "corrupt inode %Lu "
394 "(bad size %Ld for local inode).",
395 (unsigned long long) ip->i_ino,
396 (long long) di_size);
397 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 XFS_ERRLEVEL_LOW,
399 ip->i_mount, dip);
400 return XFS_ERROR(EFSCORRUPTED);
403 size = (int)di_size;
404 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 break;
406 case XFS_DINODE_FMT_EXTENTS:
407 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 break;
409 case XFS_DINODE_FMT_BTREE:
410 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 break;
412 default:
413 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 ip->i_mount);
415 return XFS_ERROR(EFSCORRUPTED);
417 break;
419 default:
420 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 return XFS_ERROR(EFSCORRUPTED);
423 if (error) {
424 return error;
426 if (!XFS_DFORK_Q(dip))
427 return 0;
428 ASSERT(ip->i_afp == NULL);
429 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 ip->i_afp->if_ext_max =
431 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 switch (dip->di_aformat) {
433 case XFS_DINODE_FMT_LOCAL:
434 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 size = be16_to_cpu(atp->hdr.totsize);
437 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 "corrupt inode %Lu "
440 "(bad attr fork size %Ld).",
441 (unsigned long long) ip->i_ino,
442 (long long) size);
443 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 XFS_ERRLEVEL_LOW,
445 ip->i_mount, dip);
446 return XFS_ERROR(EFSCORRUPTED);
449 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 break;
451 case XFS_DINODE_FMT_EXTENTS:
452 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 break;
454 case XFS_DINODE_FMT_BTREE:
455 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 break;
457 default:
458 error = XFS_ERROR(EFSCORRUPTED);
459 break;
461 if (error) {
462 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 ip->i_afp = NULL;
464 xfs_idestroy_fork(ip, XFS_DATA_FORK);
466 return error;
470 * The file is in-lined in the on-disk inode.
471 * If it fits into if_inline_data, then copy
472 * it there, otherwise allocate a buffer for it
473 * and copy the data there. Either way, set
474 * if_data to point at the data.
475 * If we allocate a buffer for the data, make
476 * sure that its size is a multiple of 4 and
477 * record the real size in i_real_bytes.
479 STATIC int
480 xfs_iformat_local(
481 xfs_inode_t *ip,
482 xfs_dinode_t *dip,
483 int whichfork,
484 int size)
486 xfs_ifork_t *ifp;
487 int real_size;
490 * If the size is unreasonable, then something
491 * is wrong and we just bail out rather than crash in
492 * kmem_alloc() or memcpy() below.
494 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 "corrupt inode %Lu "
497 "(bad size %d for local fork, size = %d).",
498 (unsigned long long) ip->i_ino, size,
499 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 ip->i_mount, dip);
502 return XFS_ERROR(EFSCORRUPTED);
504 ifp = XFS_IFORK_PTR(ip, whichfork);
505 real_size = 0;
506 if (size == 0)
507 ifp->if_u1.if_data = NULL;
508 else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 else {
511 real_size = roundup(size, 4);
512 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
514 ifp->if_bytes = size;
515 ifp->if_real_bytes = real_size;
516 if (size)
517 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 ifp->if_flags &= ~XFS_IFEXTENTS;
519 ifp->if_flags |= XFS_IFINLINE;
520 return 0;
524 * The file consists of a set of extents all
525 * of which fit into the on-disk inode.
526 * If there are few enough extents to fit into
527 * the if_inline_ext, then copy them there.
528 * Otherwise allocate a buffer for them and copy
529 * them into it. Either way, set if_extents
530 * to point at the extents.
532 STATIC int
533 xfs_iformat_extents(
534 xfs_inode_t *ip,
535 xfs_dinode_t *dip,
536 int whichfork)
538 xfs_bmbt_rec_t *dp;
539 xfs_ifork_t *ifp;
540 int nex;
541 int size;
542 int i;
544 ifp = XFS_IFORK_PTR(ip, whichfork);
545 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
549 * If the number of extents is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu ((a)extents = %d).",
556 (unsigned long long) ip->i_ino, nex);
557 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 ip->i_mount, dip);
559 return XFS_ERROR(EFSCORRUPTED);
562 ifp->if_real_bytes = 0;
563 if (nex == 0)
564 ifp->if_u1.if_extents = NULL;
565 else if (nex <= XFS_INLINE_EXTS)
566 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 else
568 xfs_iext_add(ifp, 0, nex);
570 ifp->if_bytes = size;
571 if (size) {
572 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 for (i = 0; i < nex; i++, dp++) {
575 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 ep->l0 = get_unaligned_be64(&dp->l0);
577 ep->l1 = get_unaligned_be64(&dp->l1);
579 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 if (whichfork != XFS_DATA_FORK ||
581 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 if (unlikely(xfs_check_nostate_extents(
583 ifp, 0, nex))) {
584 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 XFS_ERRLEVEL_LOW,
586 ip->i_mount);
587 return XFS_ERROR(EFSCORRUPTED);
590 ifp->if_flags |= XFS_IFEXTENTS;
591 return 0;
595 * The file has too many extents to fit into
596 * the inode, so they are in B-tree format.
597 * Allocate a buffer for the root of the B-tree
598 * and copy the root into it. The i_extents
599 * field will remain NULL until all of the
600 * extents are read in (when they are needed).
602 STATIC int
603 xfs_iformat_btree(
604 xfs_inode_t *ip,
605 xfs_dinode_t *dip,
606 int whichfork)
608 xfs_bmdr_block_t *dfp;
609 xfs_ifork_t *ifp;
610 /* REFERENCED */
611 int nrecs;
612 int size;
614 ifp = XFS_IFORK_PTR(ip, whichfork);
615 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 size = XFS_BMAP_BROOT_SPACE(dfp);
617 nrecs = be16_to_cpu(dfp->bb_numrecs);
620 * blow out if -- fork has less extents than can fit in
621 * fork (fork shouldn't be a btree format), root btree
622 * block has more records than can fit into the fork,
623 * or the number of extents is greater than the number of
624 * blocks.
626 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 || XFS_BMDR_SPACE_CALC(nrecs) >
628 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 "corrupt inode %Lu (btree).",
632 (unsigned long long) ip->i_ino);
633 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 ip->i_mount);
635 return XFS_ERROR(EFSCORRUPTED);
638 ifp->if_broot_bytes = size;
639 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 ASSERT(ifp->if_broot != NULL);
642 * Copy and convert from the on-disk structure
643 * to the in-memory structure.
645 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 ifp->if_broot, size);
648 ifp->if_flags &= ~XFS_IFEXTENTS;
649 ifp->if_flags |= XFS_IFBROOT;
651 return 0;
654 STATIC void
655 xfs_dinode_from_disk(
656 xfs_icdinode_t *to,
657 xfs_dinode_t *from)
659 to->di_magic = be16_to_cpu(from->di_magic);
660 to->di_mode = be16_to_cpu(from->di_mode);
661 to->di_version = from ->di_version;
662 to->di_format = from->di_format;
663 to->di_onlink = be16_to_cpu(from->di_onlink);
664 to->di_uid = be32_to_cpu(from->di_uid);
665 to->di_gid = be32_to_cpu(from->di_gid);
666 to->di_nlink = be32_to_cpu(from->di_nlink);
667 to->di_projid = be16_to_cpu(from->di_projid);
668 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 to->di_size = be64_to_cpu(from->di_size);
677 to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 to->di_extsize = be32_to_cpu(from->di_extsize);
679 to->di_nextents = be32_to_cpu(from->di_nextents);
680 to->di_anextents = be16_to_cpu(from->di_anextents);
681 to->di_forkoff = from->di_forkoff;
682 to->di_aformat = from->di_aformat;
683 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
684 to->di_dmstate = be16_to_cpu(from->di_dmstate);
685 to->di_flags = be16_to_cpu(from->di_flags);
686 to->di_gen = be32_to_cpu(from->di_gen);
689 void
690 xfs_dinode_to_disk(
691 xfs_dinode_t *to,
692 xfs_icdinode_t *from)
694 to->di_magic = cpu_to_be16(from->di_magic);
695 to->di_mode = cpu_to_be16(from->di_mode);
696 to->di_version = from ->di_version;
697 to->di_format = from->di_format;
698 to->di_onlink = cpu_to_be16(from->di_onlink);
699 to->di_uid = cpu_to_be32(from->di_uid);
700 to->di_gid = cpu_to_be32(from->di_gid);
701 to->di_nlink = cpu_to_be32(from->di_nlink);
702 to->di_projid = cpu_to_be16(from->di_projid);
703 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 to->di_size = cpu_to_be64(from->di_size);
712 to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 to->di_extsize = cpu_to_be32(from->di_extsize);
714 to->di_nextents = cpu_to_be32(from->di_nextents);
715 to->di_anextents = cpu_to_be16(from->di_anextents);
716 to->di_forkoff = from->di_forkoff;
717 to->di_aformat = from->di_aformat;
718 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 to->di_flags = cpu_to_be16(from->di_flags);
721 to->di_gen = cpu_to_be32(from->di_gen);
724 STATIC uint
725 _xfs_dic2xflags(
726 __uint16_t di_flags)
728 uint flags = 0;
730 if (di_flags & XFS_DIFLAG_ANY) {
731 if (di_flags & XFS_DIFLAG_REALTIME)
732 flags |= XFS_XFLAG_REALTIME;
733 if (di_flags & XFS_DIFLAG_PREALLOC)
734 flags |= XFS_XFLAG_PREALLOC;
735 if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 flags |= XFS_XFLAG_IMMUTABLE;
737 if (di_flags & XFS_DIFLAG_APPEND)
738 flags |= XFS_XFLAG_APPEND;
739 if (di_flags & XFS_DIFLAG_SYNC)
740 flags |= XFS_XFLAG_SYNC;
741 if (di_flags & XFS_DIFLAG_NOATIME)
742 flags |= XFS_XFLAG_NOATIME;
743 if (di_flags & XFS_DIFLAG_NODUMP)
744 flags |= XFS_XFLAG_NODUMP;
745 if (di_flags & XFS_DIFLAG_RTINHERIT)
746 flags |= XFS_XFLAG_RTINHERIT;
747 if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 flags |= XFS_XFLAG_PROJINHERIT;
749 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 flags |= XFS_XFLAG_NOSYMLINKS;
751 if (di_flags & XFS_DIFLAG_EXTSIZE)
752 flags |= XFS_XFLAG_EXTSIZE;
753 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 flags |= XFS_XFLAG_EXTSZINHERIT;
755 if (di_flags & XFS_DIFLAG_NODEFRAG)
756 flags |= XFS_XFLAG_NODEFRAG;
757 if (di_flags & XFS_DIFLAG_FILESTREAM)
758 flags |= XFS_XFLAG_FILESTREAM;
761 return flags;
764 uint
765 xfs_ip2xflags(
766 xfs_inode_t *ip)
768 xfs_icdinode_t *dic = &ip->i_d;
770 return _xfs_dic2xflags(dic->di_flags) |
771 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
774 uint
775 xfs_dic2xflags(
776 xfs_dinode_t *dip)
778 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
783 * Read the disk inode attributes into the in-core inode structure.
786 xfs_iread(
787 xfs_mount_t *mp,
788 xfs_trans_t *tp,
789 xfs_inode_t *ip,
790 xfs_daddr_t bno,
791 uint iget_flags)
793 xfs_buf_t *bp;
794 xfs_dinode_t *dip;
795 int error;
798 * Fill in the location information in the in-core inode.
800 ip->i_imap.im_blkno = bno;
801 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
802 if (error)
803 return error;
804 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
807 * Get pointers to the on-disk inode and the buffer containing it.
809 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
810 XFS_BUF_LOCK, iget_flags);
811 if (error)
812 return error;
813 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
816 * If we got something that isn't an inode it means someone
817 * (nfs or dmi) has a stale handle.
819 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
820 #ifdef DEBUG
821 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
822 "dip->di_magic (0x%x) != "
823 "XFS_DINODE_MAGIC (0x%x)",
824 be16_to_cpu(dip->di_magic),
825 XFS_DINODE_MAGIC);
826 #endif /* DEBUG */
827 error = XFS_ERROR(EINVAL);
828 goto out_brelse;
832 * If the on-disk inode is already linked to a directory
833 * entry, copy all of the inode into the in-core inode.
834 * xfs_iformat() handles copying in the inode format
835 * specific information.
836 * Otherwise, just get the truly permanent information.
838 if (dip->di_mode) {
839 xfs_dinode_from_disk(&ip->i_d, dip);
840 error = xfs_iformat(ip, dip);
841 if (error) {
842 #ifdef DEBUG
843 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
844 "xfs_iformat() returned error %d",
845 error);
846 #endif /* DEBUG */
847 goto out_brelse;
849 } else {
850 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
851 ip->i_d.di_version = dip->di_version;
852 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
853 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
855 * Make sure to pull in the mode here as well in
856 * case the inode is released without being used.
857 * This ensures that xfs_inactive() will see that
858 * the inode is already free and not try to mess
859 * with the uninitialized part of it.
861 ip->i_d.di_mode = 0;
863 * Initialize the per-fork minima and maxima for a new
864 * inode here. xfs_iformat will do it for old inodes.
866 ip->i_df.if_ext_max =
867 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
871 * The inode format changed when we moved the link count and
872 * made it 32 bits long. If this is an old format inode,
873 * convert it in memory to look like a new one. If it gets
874 * flushed to disk we will convert back before flushing or
875 * logging it. We zero out the new projid field and the old link
876 * count field. We'll handle clearing the pad field (the remains
877 * of the old uuid field) when we actually convert the inode to
878 * the new format. We don't change the version number so that we
879 * can distinguish this from a real new format inode.
881 if (ip->i_d.di_version == 1) {
882 ip->i_d.di_nlink = ip->i_d.di_onlink;
883 ip->i_d.di_onlink = 0;
884 ip->i_d.di_projid = 0;
887 ip->i_delayed_blks = 0;
888 ip->i_size = ip->i_d.di_size;
891 * Mark the buffer containing the inode as something to keep
892 * around for a while. This helps to keep recently accessed
893 * meta-data in-core longer.
895 XFS_BUF_SET_REF(bp, XFS_INO_REF);
898 * Use xfs_trans_brelse() to release the buffer containing the
899 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 * in xfs_itobp() above. If tp is NULL, this is just a normal
901 * brelse(). If we're within a transaction, then xfs_trans_brelse()
902 * will only release the buffer if it is not dirty within the
903 * transaction. It will be OK to release the buffer in this case,
904 * because inodes on disk are never destroyed and we will be
905 * locking the new in-core inode before putting it in the hash
906 * table where other processes can find it. Thus we don't have
907 * to worry about the inode being changed just because we released
908 * the buffer.
910 out_brelse:
911 xfs_trans_brelse(tp, bp);
912 return error;
916 * Read in extents from a btree-format inode.
917 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
920 xfs_iread_extents(
921 xfs_trans_t *tp,
922 xfs_inode_t *ip,
923 int whichfork)
925 int error;
926 xfs_ifork_t *ifp;
927 xfs_extnum_t nextents;
928 size_t size;
930 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
931 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
932 ip->i_mount);
933 return XFS_ERROR(EFSCORRUPTED);
935 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
936 size = nextents * sizeof(xfs_bmbt_rec_t);
937 ifp = XFS_IFORK_PTR(ip, whichfork);
940 * We know that the size is valid (it's checked in iformat_btree)
942 ifp->if_lastex = NULLEXTNUM;
943 ifp->if_bytes = ifp->if_real_bytes = 0;
944 ifp->if_flags |= XFS_IFEXTENTS;
945 xfs_iext_add(ifp, 0, nextents);
946 error = xfs_bmap_read_extents(tp, ip, whichfork);
947 if (error) {
948 xfs_iext_destroy(ifp);
949 ifp->if_flags &= ~XFS_IFEXTENTS;
950 return error;
952 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
953 return 0;
957 * Allocate an inode on disk and return a copy of its in-core version.
958 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
959 * appropriately within the inode. The uid and gid for the inode are
960 * set according to the contents of the given cred structure.
962 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963 * has a free inode available, call xfs_iget()
964 * to obtain the in-core version of the allocated inode. Finally,
965 * fill in the inode and log its initial contents. In this case,
966 * ialloc_context would be set to NULL and call_again set to false.
968 * If xfs_dialloc() does not have an available inode,
969 * it will replenish its supply by doing an allocation. Since we can
970 * only do one allocation within a transaction without deadlocks, we
971 * must commit the current transaction before returning the inode itself.
972 * In this case, therefore, we will set call_again to true and return.
973 * The caller should then commit the current transaction, start a new
974 * transaction, and call xfs_ialloc() again to actually get the inode.
976 * To ensure that some other process does not grab the inode that
977 * was allocated during the first call to xfs_ialloc(), this routine
978 * also returns the [locked] bp pointing to the head of the freelist
979 * as ialloc_context. The caller should hold this buffer across
980 * the commit and pass it back into this routine on the second call.
982 * If we are allocating quota inodes, we do not have a parent inode
983 * to attach to or associate with (i.e. pip == NULL) because they
984 * are not linked into the directory structure - they are attached
985 * directly to the superblock - and so have no parent.
988 xfs_ialloc(
989 xfs_trans_t *tp,
990 xfs_inode_t *pip,
991 mode_t mode,
992 xfs_nlink_t nlink,
993 xfs_dev_t rdev,
994 cred_t *cr,
995 xfs_prid_t prid,
996 int okalloc,
997 xfs_buf_t **ialloc_context,
998 boolean_t *call_again,
999 xfs_inode_t **ipp)
1001 xfs_ino_t ino;
1002 xfs_inode_t *ip;
1003 uint flags;
1004 int error;
1005 timespec_t tv;
1006 int filestreams = 0;
1009 * Call the space management code to pick
1010 * the on-disk inode to be allocated.
1012 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1013 ialloc_context, call_again, &ino);
1014 if (error)
1015 return error;
1016 if (*call_again || ino == NULLFSINO) {
1017 *ipp = NULL;
1018 return 0;
1020 ASSERT(*ialloc_context == NULL);
1023 * Get the in-core inode with the lock held exclusively.
1024 * This is because we're setting fields here we need
1025 * to prevent others from looking at until we're done.
1027 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1028 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1029 if (error)
1030 return error;
1031 ASSERT(ip != NULL);
1033 ip->i_d.di_mode = (__uint16_t)mode;
1034 ip->i_d.di_onlink = 0;
1035 ip->i_d.di_nlink = nlink;
1036 ASSERT(ip->i_d.di_nlink == nlink);
1037 ip->i_d.di_uid = current_fsuid();
1038 ip->i_d.di_gid = current_fsgid();
1039 ip->i_d.di_projid = prid;
1040 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1043 * If the superblock version is up to where we support new format
1044 * inodes and this is currently an old format inode, then change
1045 * the inode version number now. This way we only do the conversion
1046 * here rather than here and in the flush/logging code.
1048 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1049 ip->i_d.di_version == 1) {
1050 ip->i_d.di_version = 2;
1052 * We've already zeroed the old link count, the projid field,
1053 * and the pad field.
1058 * Project ids won't be stored on disk if we are using a version 1 inode.
1060 if ((prid != 0) && (ip->i_d.di_version == 1))
1061 xfs_bump_ino_vers2(tp, ip);
1063 if (pip && XFS_INHERIT_GID(pip)) {
1064 ip->i_d.di_gid = pip->i_d.di_gid;
1065 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1066 ip->i_d.di_mode |= S_ISGID;
1071 * If the group ID of the new file does not match the effective group
1072 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 * (and only if the irix_sgid_inherit compatibility variable is set).
1075 if ((irix_sgid_inherit) &&
1076 (ip->i_d.di_mode & S_ISGID) &&
1077 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1078 ip->i_d.di_mode &= ~S_ISGID;
1081 ip->i_d.di_size = 0;
1082 ip->i_size = 0;
1083 ip->i_d.di_nextents = 0;
1084 ASSERT(ip->i_d.di_nblocks == 0);
1086 nanotime(&tv);
1087 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1088 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1089 ip->i_d.di_atime = ip->i_d.di_mtime;
1090 ip->i_d.di_ctime = ip->i_d.di_mtime;
1093 * di_gen will have been taken care of in xfs_iread.
1095 ip->i_d.di_extsize = 0;
1096 ip->i_d.di_dmevmask = 0;
1097 ip->i_d.di_dmstate = 0;
1098 ip->i_d.di_flags = 0;
1099 flags = XFS_ILOG_CORE;
1100 switch (mode & S_IFMT) {
1101 case S_IFIFO:
1102 case S_IFCHR:
1103 case S_IFBLK:
1104 case S_IFSOCK:
1105 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1106 ip->i_df.if_u2.if_rdev = rdev;
1107 ip->i_df.if_flags = 0;
1108 flags |= XFS_ILOG_DEV;
1109 break;
1110 case S_IFREG:
1112 * we can't set up filestreams until after the VFS inode
1113 * is set up properly.
1115 if (pip && xfs_inode_is_filestream(pip))
1116 filestreams = 1;
1117 /* fall through */
1118 case S_IFDIR:
1119 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1120 uint di_flags = 0;
1122 if ((mode & S_IFMT) == S_IFDIR) {
1123 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1124 di_flags |= XFS_DIFLAG_RTINHERIT;
1125 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1126 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1127 ip->i_d.di_extsize = pip->i_d.di_extsize;
1129 } else if ((mode & S_IFMT) == S_IFREG) {
1130 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1131 di_flags |= XFS_DIFLAG_REALTIME;
1132 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1133 di_flags |= XFS_DIFLAG_EXTSIZE;
1134 ip->i_d.di_extsize = pip->i_d.di_extsize;
1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1138 xfs_inherit_noatime)
1139 di_flags |= XFS_DIFLAG_NOATIME;
1140 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1141 xfs_inherit_nodump)
1142 di_flags |= XFS_DIFLAG_NODUMP;
1143 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1144 xfs_inherit_sync)
1145 di_flags |= XFS_DIFLAG_SYNC;
1146 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1147 xfs_inherit_nosymlinks)
1148 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1149 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1150 di_flags |= XFS_DIFLAG_PROJINHERIT;
1151 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1152 xfs_inherit_nodefrag)
1153 di_flags |= XFS_DIFLAG_NODEFRAG;
1154 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1155 di_flags |= XFS_DIFLAG_FILESTREAM;
1156 ip->i_d.di_flags |= di_flags;
1158 /* FALLTHROUGH */
1159 case S_IFLNK:
1160 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1161 ip->i_df.if_flags = XFS_IFEXTENTS;
1162 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1163 ip->i_df.if_u1.if_extents = NULL;
1164 break;
1165 default:
1166 ASSERT(0);
1169 * Attribute fork settings for new inode.
1171 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1172 ip->i_d.di_anextents = 0;
1175 * Log the new values stuffed into the inode.
1177 xfs_trans_log_inode(tp, ip, flags);
1179 /* now that we have an i_mode we can setup inode ops and unlock */
1180 xfs_setup_inode(ip);
1182 /* now we have set up the vfs inode we can associate the filestream */
1183 if (filestreams) {
1184 error = xfs_filestream_associate(pip, ip);
1185 if (error < 0)
1186 return -error;
1187 if (!error)
1188 xfs_iflags_set(ip, XFS_IFILESTREAM);
1191 *ipp = ip;
1192 return 0;
1196 * Check to make sure that there are no blocks allocated to the
1197 * file beyond the size of the file. We don't check this for
1198 * files with fixed size extents or real time extents, but we
1199 * at least do it for regular files.
1201 #ifdef DEBUG
1202 void
1203 xfs_isize_check(
1204 xfs_mount_t *mp,
1205 xfs_inode_t *ip,
1206 xfs_fsize_t isize)
1208 xfs_fileoff_t map_first;
1209 int nimaps;
1210 xfs_bmbt_irec_t imaps[2];
1212 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1213 return;
1215 if (XFS_IS_REALTIME_INODE(ip))
1216 return;
1218 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1219 return;
1221 nimaps = 2;
1222 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1224 * The filesystem could be shutting down, so bmapi may return
1225 * an error.
1227 if (xfs_bmapi(NULL, ip, map_first,
1228 (XFS_B_TO_FSB(mp,
1229 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1230 map_first),
1231 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1232 NULL, NULL))
1233 return;
1234 ASSERT(nimaps == 1);
1235 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1237 #endif /* DEBUG */
1240 * Calculate the last possible buffered byte in a file. This must
1241 * include data that was buffered beyond the EOF by the write code.
1242 * This also needs to deal with overflowing the xfs_fsize_t type
1243 * which can happen for sizes near the limit.
1245 * We also need to take into account any blocks beyond the EOF. It
1246 * may be the case that they were buffered by a write which failed.
1247 * In that case the pages will still be in memory, but the inode size
1248 * will never have been updated.
1250 STATIC xfs_fsize_t
1251 xfs_file_last_byte(
1252 xfs_inode_t *ip)
1254 xfs_mount_t *mp;
1255 xfs_fsize_t last_byte;
1256 xfs_fileoff_t last_block;
1257 xfs_fileoff_t size_last_block;
1258 int error;
1260 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1262 mp = ip->i_mount;
1264 * Only check for blocks beyond the EOF if the extents have
1265 * been read in. This eliminates the need for the inode lock,
1266 * and it also saves us from looking when it really isn't
1267 * necessary.
1269 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1270 xfs_ilock(ip, XFS_ILOCK_SHARED);
1271 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1272 XFS_DATA_FORK);
1273 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1274 if (error) {
1275 last_block = 0;
1277 } else {
1278 last_block = 0;
1280 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1281 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1283 last_byte = XFS_FSB_TO_B(mp, last_block);
1284 if (last_byte < 0) {
1285 return XFS_MAXIOFFSET(mp);
1287 last_byte += (1 << mp->m_writeio_log);
1288 if (last_byte < 0) {
1289 return XFS_MAXIOFFSET(mp);
1291 return last_byte;
1294 #if defined(XFS_RW_TRACE)
1295 STATIC void
1296 xfs_itrunc_trace(
1297 int tag,
1298 xfs_inode_t *ip,
1299 int flag,
1300 xfs_fsize_t new_size,
1301 xfs_off_t toss_start,
1302 xfs_off_t toss_finish)
1304 if (ip->i_rwtrace == NULL) {
1305 return;
1308 ktrace_enter(ip->i_rwtrace,
1309 (void*)((long)tag),
1310 (void*)ip,
1311 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1312 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1313 (void*)((long)flag),
1314 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1315 (void*)(unsigned long)(new_size & 0xffffffff),
1316 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1317 (void*)(unsigned long)(toss_start & 0xffffffff),
1318 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1319 (void*)(unsigned long)(toss_finish & 0xffffffff),
1320 (void*)(unsigned long)current_cpu(),
1321 (void*)(unsigned long)current_pid(),
1322 (void*)NULL,
1323 (void*)NULL,
1324 (void*)NULL);
1326 #else
1327 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1328 #endif
1331 * Start the truncation of the file to new_size. The new size
1332 * must be smaller than the current size. This routine will
1333 * clear the buffer and page caches of file data in the removed
1334 * range, and xfs_itruncate_finish() will remove the underlying
1335 * disk blocks.
1337 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1338 * must NOT have the inode lock held at all. This is because we're
1339 * calling into the buffer/page cache code and we can't hold the
1340 * inode lock when we do so.
1342 * We need to wait for any direct I/Os in flight to complete before we
1343 * proceed with the truncate. This is needed to prevent the extents
1344 * being read or written by the direct I/Os from being removed while the
1345 * I/O is in flight as there is no other method of synchronising
1346 * direct I/O with the truncate operation. Also, because we hold
1347 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1348 * started until the truncate completes and drops the lock. Essentially,
1349 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1350 * ordering between direct I/Os and the truncate operation.
1352 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1353 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1354 * in the case that the caller is locking things out of order and
1355 * may not be able to call xfs_itruncate_finish() with the inode lock
1356 * held without dropping the I/O lock. If the caller must drop the
1357 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1358 * must be called again with all the same restrictions as the initial
1359 * call.
1362 xfs_itruncate_start(
1363 xfs_inode_t *ip,
1364 uint flags,
1365 xfs_fsize_t new_size)
1367 xfs_fsize_t last_byte;
1368 xfs_off_t toss_start;
1369 xfs_mount_t *mp;
1370 int error = 0;
1372 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1373 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1374 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1375 (flags == XFS_ITRUNC_MAYBE));
1377 mp = ip->i_mount;
1379 /* wait for the completion of any pending DIOs */
1380 if (new_size == 0 || new_size < ip->i_size)
1381 xfs_ioend_wait(ip);
1384 * Call toss_pages or flushinval_pages to get rid of pages
1385 * overlapping the region being removed. We have to use
1386 * the less efficient flushinval_pages in the case that the
1387 * caller may not be able to finish the truncate without
1388 * dropping the inode's I/O lock. Make sure
1389 * to catch any pages brought in by buffers overlapping
1390 * the EOF by searching out beyond the isize by our
1391 * block size. We round new_size up to a block boundary
1392 * so that we don't toss things on the same block as
1393 * new_size but before it.
1395 * Before calling toss_page or flushinval_pages, make sure to
1396 * call remapf() over the same region if the file is mapped.
1397 * This frees up mapped file references to the pages in the
1398 * given range and for the flushinval_pages case it ensures
1399 * that we get the latest mapped changes flushed out.
1401 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1402 toss_start = XFS_FSB_TO_B(mp, toss_start);
1403 if (toss_start < 0) {
1405 * The place to start tossing is beyond our maximum
1406 * file size, so there is no way that the data extended
1407 * out there.
1409 return 0;
1411 last_byte = xfs_file_last_byte(ip);
1412 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1413 last_byte);
1414 if (last_byte > toss_start) {
1415 if (flags & XFS_ITRUNC_DEFINITE) {
1416 xfs_tosspages(ip, toss_start,
1417 -1, FI_REMAPF_LOCKED);
1418 } else {
1419 error = xfs_flushinval_pages(ip, toss_start,
1420 -1, FI_REMAPF_LOCKED);
1424 #ifdef DEBUG
1425 if (new_size == 0) {
1426 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1428 #endif
1429 return error;
1433 * Shrink the file to the given new_size. The new size must be smaller than
1434 * the current size. This will free up the underlying blocks in the removed
1435 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1437 * The transaction passed to this routine must have made a permanent log
1438 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1439 * given transaction and start new ones, so make sure everything involved in
1440 * the transaction is tidy before calling here. Some transaction will be
1441 * returned to the caller to be committed. The incoming transaction must
1442 * already include the inode, and both inode locks must be held exclusively.
1443 * The inode must also be "held" within the transaction. On return the inode
1444 * will be "held" within the returned transaction. This routine does NOT
1445 * require any disk space to be reserved for it within the transaction.
1447 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1448 * indicates the fork which is to be truncated. For the attribute fork we only
1449 * support truncation to size 0.
1451 * We use the sync parameter to indicate whether or not the first transaction
1452 * we perform might have to be synchronous. For the attr fork, it needs to be
1453 * so if the unlink of the inode is not yet known to be permanent in the log.
1454 * This keeps us from freeing and reusing the blocks of the attribute fork
1455 * before the unlink of the inode becomes permanent.
1457 * For the data fork, we normally have to run synchronously if we're being
1458 * called out of the inactive path or we're being called out of the create path
1459 * where we're truncating an existing file. Either way, the truncate needs to
1460 * be sync so blocks don't reappear in the file with altered data in case of a
1461 * crash. wsync filesystems can run the first case async because anything that
1462 * shrinks the inode has to run sync so by the time we're called here from
1463 * inactive, the inode size is permanently set to 0.
1465 * Calls from the truncate path always need to be sync unless we're in a wsync
1466 * filesystem and the file has already been unlinked.
1468 * The caller is responsible for correctly setting the sync parameter. It gets
1469 * too hard for us to guess here which path we're being called out of just
1470 * based on inode state.
1472 * If we get an error, we must return with the inode locked and linked into the
1473 * current transaction. This keeps things simple for the higher level code,
1474 * because it always knows that the inode is locked and held in the transaction
1475 * that returns to it whether errors occur or not. We don't mark the inode
1476 * dirty on error so that transactions can be easily aborted if possible.
1479 xfs_itruncate_finish(
1480 xfs_trans_t **tp,
1481 xfs_inode_t *ip,
1482 xfs_fsize_t new_size,
1483 int fork,
1484 int sync)
1486 xfs_fsblock_t first_block;
1487 xfs_fileoff_t first_unmap_block;
1488 xfs_fileoff_t last_block;
1489 xfs_filblks_t unmap_len=0;
1490 xfs_mount_t *mp;
1491 xfs_trans_t *ntp;
1492 int done;
1493 int committed;
1494 xfs_bmap_free_t free_list;
1495 int error;
1497 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1498 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1499 ASSERT(*tp != NULL);
1500 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1501 ASSERT(ip->i_transp == *tp);
1502 ASSERT(ip->i_itemp != NULL);
1503 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1506 ntp = *tp;
1507 mp = (ntp)->t_mountp;
1508 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1511 * We only support truncating the entire attribute fork.
1513 if (fork == XFS_ATTR_FORK) {
1514 new_size = 0LL;
1516 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1517 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1519 * The first thing we do is set the size to new_size permanently
1520 * on disk. This way we don't have to worry about anyone ever
1521 * being able to look at the data being freed even in the face
1522 * of a crash. What we're getting around here is the case where
1523 * we free a block, it is allocated to another file, it is written
1524 * to, and then we crash. If the new data gets written to the
1525 * file but the log buffers containing the free and reallocation
1526 * don't, then we'd end up with garbage in the blocks being freed.
1527 * As long as we make the new_size permanent before actually
1528 * freeing any blocks it doesn't matter if they get writtten to.
1530 * The callers must signal into us whether or not the size
1531 * setting here must be synchronous. There are a few cases
1532 * where it doesn't have to be synchronous. Those cases
1533 * occur if the file is unlinked and we know the unlink is
1534 * permanent or if the blocks being truncated are guaranteed
1535 * to be beyond the inode eof (regardless of the link count)
1536 * and the eof value is permanent. Both of these cases occur
1537 * only on wsync-mounted filesystems. In those cases, we're
1538 * guaranteed that no user will ever see the data in the blocks
1539 * that are being truncated so the truncate can run async.
1540 * In the free beyond eof case, the file may wind up with
1541 * more blocks allocated to it than it needs if we crash
1542 * and that won't get fixed until the next time the file
1543 * is re-opened and closed but that's ok as that shouldn't
1544 * be too many blocks.
1546 * However, we can't just make all wsync xactions run async
1547 * because there's one call out of the create path that needs
1548 * to run sync where it's truncating an existing file to size
1549 * 0 whose size is > 0.
1551 * It's probably possible to come up with a test in this
1552 * routine that would correctly distinguish all the above
1553 * cases from the values of the function parameters and the
1554 * inode state but for sanity's sake, I've decided to let the
1555 * layers above just tell us. It's simpler to correctly figure
1556 * out in the layer above exactly under what conditions we
1557 * can run async and I think it's easier for others read and
1558 * follow the logic in case something has to be changed.
1559 * cscope is your friend -- rcc.
1561 * The attribute fork is much simpler.
1563 * For the attribute fork we allow the caller to tell us whether
1564 * the unlink of the inode that led to this call is yet permanent
1565 * in the on disk log. If it is not and we will be freeing extents
1566 * in this inode then we make the first transaction synchronous
1567 * to make sure that the unlink is permanent by the time we free
1568 * the blocks.
1570 if (fork == XFS_DATA_FORK) {
1571 if (ip->i_d.di_nextents > 0) {
1573 * If we are not changing the file size then do
1574 * not update the on-disk file size - we may be
1575 * called from xfs_inactive_free_eofblocks(). If we
1576 * update the on-disk file size and then the system
1577 * crashes before the contents of the file are
1578 * flushed to disk then the files may be full of
1579 * holes (ie NULL files bug).
1581 if (ip->i_size != new_size) {
1582 ip->i_d.di_size = new_size;
1583 ip->i_size = new_size;
1584 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1587 } else if (sync) {
1588 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1589 if (ip->i_d.di_anextents > 0)
1590 xfs_trans_set_sync(ntp);
1592 ASSERT(fork == XFS_DATA_FORK ||
1593 (fork == XFS_ATTR_FORK &&
1594 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1595 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1598 * Since it is possible for space to become allocated beyond
1599 * the end of the file (in a crash where the space is allocated
1600 * but the inode size is not yet updated), simply remove any
1601 * blocks which show up between the new EOF and the maximum
1602 * possible file size. If the first block to be removed is
1603 * beyond the maximum file size (ie it is the same as last_block),
1604 * then there is nothing to do.
1606 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1607 ASSERT(first_unmap_block <= last_block);
1608 done = 0;
1609 if (last_block == first_unmap_block) {
1610 done = 1;
1611 } else {
1612 unmap_len = last_block - first_unmap_block + 1;
1614 while (!done) {
1616 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1617 * will tell us whether it freed the entire range or
1618 * not. If this is a synchronous mount (wsync),
1619 * then we can tell bunmapi to keep all the
1620 * transactions asynchronous since the unlink
1621 * transaction that made this inode inactive has
1622 * already hit the disk. There's no danger of
1623 * the freed blocks being reused, there being a
1624 * crash, and the reused blocks suddenly reappearing
1625 * in this file with garbage in them once recovery
1626 * runs.
1628 xfs_bmap_init(&free_list, &first_block);
1629 error = xfs_bunmapi(ntp, ip,
1630 first_unmap_block, unmap_len,
1631 xfs_bmapi_aflag(fork) |
1632 (sync ? 0 : XFS_BMAPI_ASYNC),
1633 XFS_ITRUNC_MAX_EXTENTS,
1634 &first_block, &free_list,
1635 NULL, &done);
1636 if (error) {
1638 * If the bunmapi call encounters an error,
1639 * return to the caller where the transaction
1640 * can be properly aborted. We just need to
1641 * make sure we're not holding any resources
1642 * that we were not when we came in.
1644 xfs_bmap_cancel(&free_list);
1645 return error;
1649 * Duplicate the transaction that has the permanent
1650 * reservation and commit the old transaction.
1652 error = xfs_bmap_finish(tp, &free_list, &committed);
1653 ntp = *tp;
1654 if (committed) {
1655 /* link the inode into the next xact in the chain */
1656 xfs_trans_ijoin(ntp, ip,
1657 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1658 xfs_trans_ihold(ntp, ip);
1661 if (error) {
1663 * If the bmap finish call encounters an error, return
1664 * to the caller where the transaction can be properly
1665 * aborted. We just need to make sure we're not
1666 * holding any resources that we were not when we came
1667 * in.
1669 * Aborting from this point might lose some blocks in
1670 * the file system, but oh well.
1672 xfs_bmap_cancel(&free_list);
1673 return error;
1676 if (committed) {
1678 * Mark the inode dirty so it will be logged and
1679 * moved forward in the log as part of every commit.
1681 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1684 ntp = xfs_trans_dup(ntp);
1685 error = xfs_trans_commit(*tp, 0);
1686 *tp = ntp;
1688 /* link the inode into the next transaction in the chain */
1689 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1690 xfs_trans_ihold(ntp, ip);
1692 if (error)
1693 return error;
1695 * transaction commit worked ok so we can drop the extra ticket
1696 * reference that we gained in xfs_trans_dup()
1698 xfs_log_ticket_put(ntp->t_ticket);
1699 error = xfs_trans_reserve(ntp, 0,
1700 XFS_ITRUNCATE_LOG_RES(mp), 0,
1701 XFS_TRANS_PERM_LOG_RES,
1702 XFS_ITRUNCATE_LOG_COUNT);
1703 if (error)
1704 return error;
1707 * Only update the size in the case of the data fork, but
1708 * always re-log the inode so that our permanent transaction
1709 * can keep on rolling it forward in the log.
1711 if (fork == XFS_DATA_FORK) {
1712 xfs_isize_check(mp, ip, new_size);
1714 * If we are not changing the file size then do
1715 * not update the on-disk file size - we may be
1716 * called from xfs_inactive_free_eofblocks(). If we
1717 * update the on-disk file size and then the system
1718 * crashes before the contents of the file are
1719 * flushed to disk then the files may be full of
1720 * holes (ie NULL files bug).
1722 if (ip->i_size != new_size) {
1723 ip->i_d.di_size = new_size;
1724 ip->i_size = new_size;
1727 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1728 ASSERT((new_size != 0) ||
1729 (fork == XFS_ATTR_FORK) ||
1730 (ip->i_delayed_blks == 0));
1731 ASSERT((new_size != 0) ||
1732 (fork == XFS_ATTR_FORK) ||
1733 (ip->i_d.di_nextents == 0));
1734 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1735 return 0;
1739 * This is called when the inode's link count goes to 0.
1740 * We place the on-disk inode on a list in the AGI. It
1741 * will be pulled from this list when the inode is freed.
1744 xfs_iunlink(
1745 xfs_trans_t *tp,
1746 xfs_inode_t *ip)
1748 xfs_mount_t *mp;
1749 xfs_agi_t *agi;
1750 xfs_dinode_t *dip;
1751 xfs_buf_t *agibp;
1752 xfs_buf_t *ibp;
1753 xfs_agino_t agino;
1754 short bucket_index;
1755 int offset;
1756 int error;
1758 ASSERT(ip->i_d.di_nlink == 0);
1759 ASSERT(ip->i_d.di_mode != 0);
1760 ASSERT(ip->i_transp == tp);
1762 mp = tp->t_mountp;
1765 * Get the agi buffer first. It ensures lock ordering
1766 * on the list.
1768 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1769 if (error)
1770 return error;
1771 agi = XFS_BUF_TO_AGI(agibp);
1774 * Get the index into the agi hash table for the
1775 * list this inode will go on.
1777 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1778 ASSERT(agino != 0);
1779 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1780 ASSERT(agi->agi_unlinked[bucket_index]);
1781 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1783 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1785 * There is already another inode in the bucket we need
1786 * to add ourselves to. Add us at the front of the list.
1787 * Here we put the head pointer into our next pointer,
1788 * and then we fall through to point the head at us.
1790 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1791 if (error)
1792 return error;
1794 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1795 /* both on-disk, don't endian flip twice */
1796 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1797 offset = ip->i_imap.im_boffset +
1798 offsetof(xfs_dinode_t, di_next_unlinked);
1799 xfs_trans_inode_buf(tp, ibp);
1800 xfs_trans_log_buf(tp, ibp, offset,
1801 (offset + sizeof(xfs_agino_t) - 1));
1802 xfs_inobp_check(mp, ibp);
1806 * Point the bucket head pointer at the inode being inserted.
1808 ASSERT(agino != 0);
1809 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1810 offset = offsetof(xfs_agi_t, agi_unlinked) +
1811 (sizeof(xfs_agino_t) * bucket_index);
1812 xfs_trans_log_buf(tp, agibp, offset,
1813 (offset + sizeof(xfs_agino_t) - 1));
1814 return 0;
1818 * Pull the on-disk inode from the AGI unlinked list.
1820 STATIC int
1821 xfs_iunlink_remove(
1822 xfs_trans_t *tp,
1823 xfs_inode_t *ip)
1825 xfs_ino_t next_ino;
1826 xfs_mount_t *mp;
1827 xfs_agi_t *agi;
1828 xfs_dinode_t *dip;
1829 xfs_buf_t *agibp;
1830 xfs_buf_t *ibp;
1831 xfs_agnumber_t agno;
1832 xfs_agino_t agino;
1833 xfs_agino_t next_agino;
1834 xfs_buf_t *last_ibp;
1835 xfs_dinode_t *last_dip = NULL;
1836 short bucket_index;
1837 int offset, last_offset = 0;
1838 int error;
1840 mp = tp->t_mountp;
1841 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1844 * Get the agi buffer first. It ensures lock ordering
1845 * on the list.
1847 error = xfs_read_agi(mp, tp, agno, &agibp);
1848 if (error)
1849 return error;
1851 agi = XFS_BUF_TO_AGI(agibp);
1854 * Get the index into the agi hash table for the
1855 * list this inode will go on.
1857 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1858 ASSERT(agino != 0);
1859 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1860 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1861 ASSERT(agi->agi_unlinked[bucket_index]);
1863 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1865 * We're at the head of the list. Get the inode's
1866 * on-disk buffer to see if there is anyone after us
1867 * on the list. Only modify our next pointer if it
1868 * is not already NULLAGINO. This saves us the overhead
1869 * of dealing with the buffer when there is no need to
1870 * change it.
1872 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1873 if (error) {
1874 cmn_err(CE_WARN,
1875 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1876 error, mp->m_fsname);
1877 return error;
1879 next_agino = be32_to_cpu(dip->di_next_unlinked);
1880 ASSERT(next_agino != 0);
1881 if (next_agino != NULLAGINO) {
1882 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1883 offset = ip->i_imap.im_boffset +
1884 offsetof(xfs_dinode_t, di_next_unlinked);
1885 xfs_trans_inode_buf(tp, ibp);
1886 xfs_trans_log_buf(tp, ibp, offset,
1887 (offset + sizeof(xfs_agino_t) - 1));
1888 xfs_inobp_check(mp, ibp);
1889 } else {
1890 xfs_trans_brelse(tp, ibp);
1893 * Point the bucket head pointer at the next inode.
1895 ASSERT(next_agino != 0);
1896 ASSERT(next_agino != agino);
1897 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1898 offset = offsetof(xfs_agi_t, agi_unlinked) +
1899 (sizeof(xfs_agino_t) * bucket_index);
1900 xfs_trans_log_buf(tp, agibp, offset,
1901 (offset + sizeof(xfs_agino_t) - 1));
1902 } else {
1904 * We need to search the list for the inode being freed.
1906 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1907 last_ibp = NULL;
1908 while (next_agino != agino) {
1910 * If the last inode wasn't the one pointing to
1911 * us, then release its buffer since we're not
1912 * going to do anything with it.
1914 if (last_ibp != NULL) {
1915 xfs_trans_brelse(tp, last_ibp);
1917 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1918 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1919 &last_ibp, &last_offset, 0);
1920 if (error) {
1921 cmn_err(CE_WARN,
1922 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1923 error, mp->m_fsname);
1924 return error;
1926 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1927 ASSERT(next_agino != NULLAGINO);
1928 ASSERT(next_agino != 0);
1931 * Now last_ibp points to the buffer previous to us on
1932 * the unlinked list. Pull us from the list.
1934 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1935 if (error) {
1936 cmn_err(CE_WARN,
1937 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1938 error, mp->m_fsname);
1939 return error;
1941 next_agino = be32_to_cpu(dip->di_next_unlinked);
1942 ASSERT(next_agino != 0);
1943 ASSERT(next_agino != agino);
1944 if (next_agino != NULLAGINO) {
1945 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1946 offset = ip->i_imap.im_boffset +
1947 offsetof(xfs_dinode_t, di_next_unlinked);
1948 xfs_trans_inode_buf(tp, ibp);
1949 xfs_trans_log_buf(tp, ibp, offset,
1950 (offset + sizeof(xfs_agino_t) - 1));
1951 xfs_inobp_check(mp, ibp);
1952 } else {
1953 xfs_trans_brelse(tp, ibp);
1956 * Point the previous inode on the list to the next inode.
1958 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1959 ASSERT(next_agino != 0);
1960 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1961 xfs_trans_inode_buf(tp, last_ibp);
1962 xfs_trans_log_buf(tp, last_ibp, offset,
1963 (offset + sizeof(xfs_agino_t) - 1));
1964 xfs_inobp_check(mp, last_ibp);
1966 return 0;
1969 STATIC void
1970 xfs_ifree_cluster(
1971 xfs_inode_t *free_ip,
1972 xfs_trans_t *tp,
1973 xfs_ino_t inum)
1975 xfs_mount_t *mp = free_ip->i_mount;
1976 int blks_per_cluster;
1977 int nbufs;
1978 int ninodes;
1979 int i, j, found, pre_flushed;
1980 xfs_daddr_t blkno;
1981 xfs_buf_t *bp;
1982 xfs_inode_t *ip, **ip_found;
1983 xfs_inode_log_item_t *iip;
1984 xfs_log_item_t *lip;
1985 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1987 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1988 blks_per_cluster = 1;
1989 ninodes = mp->m_sb.sb_inopblock;
1990 nbufs = XFS_IALLOC_BLOCKS(mp);
1991 } else {
1992 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1993 mp->m_sb.sb_blocksize;
1994 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1995 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1998 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2000 for (j = 0; j < nbufs; j++, inum += ninodes) {
2001 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2002 XFS_INO_TO_AGBNO(mp, inum));
2006 * Look for each inode in memory and attempt to lock it,
2007 * we can be racing with flush and tail pushing here.
2008 * any inode we get the locks on, add to an array of
2009 * inode items to process later.
2011 * The get the buffer lock, we could beat a flush
2012 * or tail pushing thread to the lock here, in which
2013 * case they will go looking for the inode buffer
2014 * and fail, we need some other form of interlock
2015 * here.
2017 found = 0;
2018 for (i = 0; i < ninodes; i++) {
2019 read_lock(&pag->pag_ici_lock);
2020 ip = radix_tree_lookup(&pag->pag_ici_root,
2021 XFS_INO_TO_AGINO(mp, (inum + i)));
2023 /* Inode not in memory or we found it already,
2024 * nothing to do
2026 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2027 read_unlock(&pag->pag_ici_lock);
2028 continue;
2031 if (xfs_inode_clean(ip)) {
2032 read_unlock(&pag->pag_ici_lock);
2033 continue;
2036 /* If we can get the locks then add it to the
2037 * list, otherwise by the time we get the bp lock
2038 * below it will already be attached to the
2039 * inode buffer.
2042 /* This inode will already be locked - by us, lets
2043 * keep it that way.
2046 if (ip == free_ip) {
2047 if (xfs_iflock_nowait(ip)) {
2048 xfs_iflags_set(ip, XFS_ISTALE);
2049 if (xfs_inode_clean(ip)) {
2050 xfs_ifunlock(ip);
2051 } else {
2052 ip_found[found++] = ip;
2055 read_unlock(&pag->pag_ici_lock);
2056 continue;
2059 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2060 if (xfs_iflock_nowait(ip)) {
2061 xfs_iflags_set(ip, XFS_ISTALE);
2063 if (xfs_inode_clean(ip)) {
2064 xfs_ifunlock(ip);
2065 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2066 } else {
2067 ip_found[found++] = ip;
2069 } else {
2070 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2073 read_unlock(&pag->pag_ici_lock);
2076 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2077 mp->m_bsize * blks_per_cluster,
2078 XFS_BUF_LOCK);
2080 pre_flushed = 0;
2081 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2082 while (lip) {
2083 if (lip->li_type == XFS_LI_INODE) {
2084 iip = (xfs_inode_log_item_t *)lip;
2085 ASSERT(iip->ili_logged == 1);
2086 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2087 xfs_trans_ail_copy_lsn(mp->m_ail,
2088 &iip->ili_flush_lsn,
2089 &iip->ili_item.li_lsn);
2090 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2091 pre_flushed++;
2093 lip = lip->li_bio_list;
2096 for (i = 0; i < found; i++) {
2097 ip = ip_found[i];
2098 iip = ip->i_itemp;
2100 if (!iip) {
2101 ip->i_update_core = 0;
2102 xfs_ifunlock(ip);
2103 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2104 continue;
2107 iip->ili_last_fields = iip->ili_format.ilf_fields;
2108 iip->ili_format.ilf_fields = 0;
2109 iip->ili_logged = 1;
2110 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2111 &iip->ili_item.li_lsn);
2113 xfs_buf_attach_iodone(bp,
2114 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2115 xfs_istale_done, (xfs_log_item_t *)iip);
2116 if (ip != free_ip) {
2117 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2121 if (found || pre_flushed)
2122 xfs_trans_stale_inode_buf(tp, bp);
2123 xfs_trans_binval(tp, bp);
2126 kmem_free(ip_found);
2127 xfs_put_perag(mp, pag);
2131 * This is called to return an inode to the inode free list.
2132 * The inode should already be truncated to 0 length and have
2133 * no pages associated with it. This routine also assumes that
2134 * the inode is already a part of the transaction.
2136 * The on-disk copy of the inode will have been added to the list
2137 * of unlinked inodes in the AGI. We need to remove the inode from
2138 * that list atomically with respect to freeing it here.
2141 xfs_ifree(
2142 xfs_trans_t *tp,
2143 xfs_inode_t *ip,
2144 xfs_bmap_free_t *flist)
2146 int error;
2147 int delete;
2148 xfs_ino_t first_ino;
2149 xfs_dinode_t *dip;
2150 xfs_buf_t *ibp;
2152 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2153 ASSERT(ip->i_transp == tp);
2154 ASSERT(ip->i_d.di_nlink == 0);
2155 ASSERT(ip->i_d.di_nextents == 0);
2156 ASSERT(ip->i_d.di_anextents == 0);
2157 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2158 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2159 ASSERT(ip->i_d.di_nblocks == 0);
2162 * Pull the on-disk inode from the AGI unlinked list.
2164 error = xfs_iunlink_remove(tp, ip);
2165 if (error != 0) {
2166 return error;
2169 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2170 if (error != 0) {
2171 return error;
2173 ip->i_d.di_mode = 0; /* mark incore inode as free */
2174 ip->i_d.di_flags = 0;
2175 ip->i_d.di_dmevmask = 0;
2176 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2177 ip->i_df.if_ext_max =
2178 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2179 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2180 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2182 * Bump the generation count so no one will be confused
2183 * by reincarnations of this inode.
2185 ip->i_d.di_gen++;
2187 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2189 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2190 if (error)
2191 return error;
2194 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2195 * from picking up this inode when it is reclaimed (its incore state
2196 * initialzed but not flushed to disk yet). The in-core di_mode is
2197 * already cleared and a corresponding transaction logged.
2198 * The hack here just synchronizes the in-core to on-disk
2199 * di_mode value in advance before the actual inode sync to disk.
2200 * This is OK because the inode is already unlinked and would never
2201 * change its di_mode again for this inode generation.
2202 * This is a temporary hack that would require a proper fix
2203 * in the future.
2205 dip->di_mode = 0;
2207 if (delete) {
2208 xfs_ifree_cluster(ip, tp, first_ino);
2211 return 0;
2215 * Reallocate the space for if_broot based on the number of records
2216 * being added or deleted as indicated in rec_diff. Move the records
2217 * and pointers in if_broot to fit the new size. When shrinking this
2218 * will eliminate holes between the records and pointers created by
2219 * the caller. When growing this will create holes to be filled in
2220 * by the caller.
2222 * The caller must not request to add more records than would fit in
2223 * the on-disk inode root. If the if_broot is currently NULL, then
2224 * if we adding records one will be allocated. The caller must also
2225 * not request that the number of records go below zero, although
2226 * it can go to zero.
2228 * ip -- the inode whose if_broot area is changing
2229 * ext_diff -- the change in the number of records, positive or negative,
2230 * requested for the if_broot array.
2232 void
2233 xfs_iroot_realloc(
2234 xfs_inode_t *ip,
2235 int rec_diff,
2236 int whichfork)
2238 struct xfs_mount *mp = ip->i_mount;
2239 int cur_max;
2240 xfs_ifork_t *ifp;
2241 struct xfs_btree_block *new_broot;
2242 int new_max;
2243 size_t new_size;
2244 char *np;
2245 char *op;
2248 * Handle the degenerate case quietly.
2250 if (rec_diff == 0) {
2251 return;
2254 ifp = XFS_IFORK_PTR(ip, whichfork);
2255 if (rec_diff > 0) {
2257 * If there wasn't any memory allocated before, just
2258 * allocate it now and get out.
2260 if (ifp->if_broot_bytes == 0) {
2261 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2262 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2263 ifp->if_broot_bytes = (int)new_size;
2264 return;
2268 * If there is already an existing if_broot, then we need
2269 * to realloc() it and shift the pointers to their new
2270 * location. The records don't change location because
2271 * they are kept butted up against the btree block header.
2273 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2274 new_max = cur_max + rec_diff;
2275 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2276 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2277 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2278 KM_SLEEP);
2279 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2280 ifp->if_broot_bytes);
2281 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2282 (int)new_size);
2283 ifp->if_broot_bytes = (int)new_size;
2284 ASSERT(ifp->if_broot_bytes <=
2285 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2286 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2287 return;
2291 * rec_diff is less than 0. In this case, we are shrinking the
2292 * if_broot buffer. It must already exist. If we go to zero
2293 * records, just get rid of the root and clear the status bit.
2295 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2296 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2297 new_max = cur_max + rec_diff;
2298 ASSERT(new_max >= 0);
2299 if (new_max > 0)
2300 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2301 else
2302 new_size = 0;
2303 if (new_size > 0) {
2304 new_broot = kmem_alloc(new_size, KM_SLEEP);
2306 * First copy over the btree block header.
2308 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2309 } else {
2310 new_broot = NULL;
2311 ifp->if_flags &= ~XFS_IFBROOT;
2315 * Only copy the records and pointers if there are any.
2317 if (new_max > 0) {
2319 * First copy the records.
2321 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2322 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2323 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2326 * Then copy the pointers.
2328 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2329 ifp->if_broot_bytes);
2330 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2331 (int)new_size);
2332 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2334 kmem_free(ifp->if_broot);
2335 ifp->if_broot = new_broot;
2336 ifp->if_broot_bytes = (int)new_size;
2337 ASSERT(ifp->if_broot_bytes <=
2338 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2339 return;
2344 * This is called when the amount of space needed for if_data
2345 * is increased or decreased. The change in size is indicated by
2346 * the number of bytes that need to be added or deleted in the
2347 * byte_diff parameter.
2349 * If the amount of space needed has decreased below the size of the
2350 * inline buffer, then switch to using the inline buffer. Otherwise,
2351 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2352 * to what is needed.
2354 * ip -- the inode whose if_data area is changing
2355 * byte_diff -- the change in the number of bytes, positive or negative,
2356 * requested for the if_data array.
2358 void
2359 xfs_idata_realloc(
2360 xfs_inode_t *ip,
2361 int byte_diff,
2362 int whichfork)
2364 xfs_ifork_t *ifp;
2365 int new_size;
2366 int real_size;
2368 if (byte_diff == 0) {
2369 return;
2372 ifp = XFS_IFORK_PTR(ip, whichfork);
2373 new_size = (int)ifp->if_bytes + byte_diff;
2374 ASSERT(new_size >= 0);
2376 if (new_size == 0) {
2377 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2378 kmem_free(ifp->if_u1.if_data);
2380 ifp->if_u1.if_data = NULL;
2381 real_size = 0;
2382 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2384 * If the valid extents/data can fit in if_inline_ext/data,
2385 * copy them from the malloc'd vector and free it.
2387 if (ifp->if_u1.if_data == NULL) {
2388 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2389 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2390 ASSERT(ifp->if_real_bytes != 0);
2391 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2392 new_size);
2393 kmem_free(ifp->if_u1.if_data);
2394 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2396 real_size = 0;
2397 } else {
2399 * Stuck with malloc/realloc.
2400 * For inline data, the underlying buffer must be
2401 * a multiple of 4 bytes in size so that it can be
2402 * logged and stay on word boundaries. We enforce
2403 * that here.
2405 real_size = roundup(new_size, 4);
2406 if (ifp->if_u1.if_data == NULL) {
2407 ASSERT(ifp->if_real_bytes == 0);
2408 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2409 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2411 * Only do the realloc if the underlying size
2412 * is really changing.
2414 if (ifp->if_real_bytes != real_size) {
2415 ifp->if_u1.if_data =
2416 kmem_realloc(ifp->if_u1.if_data,
2417 real_size,
2418 ifp->if_real_bytes,
2419 KM_SLEEP);
2421 } else {
2422 ASSERT(ifp->if_real_bytes == 0);
2423 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2424 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2425 ifp->if_bytes);
2428 ifp->if_real_bytes = real_size;
2429 ifp->if_bytes = new_size;
2430 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2433 void
2434 xfs_idestroy_fork(
2435 xfs_inode_t *ip,
2436 int whichfork)
2438 xfs_ifork_t *ifp;
2440 ifp = XFS_IFORK_PTR(ip, whichfork);
2441 if (ifp->if_broot != NULL) {
2442 kmem_free(ifp->if_broot);
2443 ifp->if_broot = NULL;
2447 * If the format is local, then we can't have an extents
2448 * array so just look for an inline data array. If we're
2449 * not local then we may or may not have an extents list,
2450 * so check and free it up if we do.
2452 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2453 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2454 (ifp->if_u1.if_data != NULL)) {
2455 ASSERT(ifp->if_real_bytes != 0);
2456 kmem_free(ifp->if_u1.if_data);
2457 ifp->if_u1.if_data = NULL;
2458 ifp->if_real_bytes = 0;
2460 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2461 ((ifp->if_flags & XFS_IFEXTIREC) ||
2462 ((ifp->if_u1.if_extents != NULL) &&
2463 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2464 ASSERT(ifp->if_real_bytes != 0);
2465 xfs_iext_destroy(ifp);
2467 ASSERT(ifp->if_u1.if_extents == NULL ||
2468 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2469 ASSERT(ifp->if_real_bytes == 0);
2470 if (whichfork == XFS_ATTR_FORK) {
2471 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2472 ip->i_afp = NULL;
2477 * Increment the pin count of the given buffer.
2478 * This value is protected by ipinlock spinlock in the mount structure.
2480 void
2481 xfs_ipin(
2482 xfs_inode_t *ip)
2484 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2486 atomic_inc(&ip->i_pincount);
2490 * Decrement the pin count of the given inode, and wake up
2491 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2492 * inode must have been previously pinned with a call to xfs_ipin().
2494 void
2495 xfs_iunpin(
2496 xfs_inode_t *ip)
2498 ASSERT(atomic_read(&ip->i_pincount) > 0);
2500 if (atomic_dec_and_test(&ip->i_pincount))
2501 wake_up(&ip->i_ipin_wait);
2505 * This is called to unpin an inode. It can be directed to wait or to return
2506 * immediately without waiting for the inode to be unpinned. The caller must
2507 * have the inode locked in at least shared mode so that the buffer cannot be
2508 * subsequently pinned once someone is waiting for it to be unpinned.
2510 STATIC void
2511 __xfs_iunpin_wait(
2512 xfs_inode_t *ip,
2513 int wait)
2515 xfs_inode_log_item_t *iip = ip->i_itemp;
2517 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2518 if (atomic_read(&ip->i_pincount) == 0)
2519 return;
2521 /* Give the log a push to start the unpinning I/O */
2522 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2523 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2524 if (wait)
2525 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2528 static inline void
2529 xfs_iunpin_wait(
2530 xfs_inode_t *ip)
2532 __xfs_iunpin_wait(ip, 1);
2535 static inline void
2536 xfs_iunpin_nowait(
2537 xfs_inode_t *ip)
2539 __xfs_iunpin_wait(ip, 0);
2544 * xfs_iextents_copy()
2546 * This is called to copy the REAL extents (as opposed to the delayed
2547 * allocation extents) from the inode into the given buffer. It
2548 * returns the number of bytes copied into the buffer.
2550 * If there are no delayed allocation extents, then we can just
2551 * memcpy() the extents into the buffer. Otherwise, we need to
2552 * examine each extent in turn and skip those which are delayed.
2555 xfs_iextents_copy(
2556 xfs_inode_t *ip,
2557 xfs_bmbt_rec_t *dp,
2558 int whichfork)
2560 int copied;
2561 int i;
2562 xfs_ifork_t *ifp;
2563 int nrecs;
2564 xfs_fsblock_t start_block;
2566 ifp = XFS_IFORK_PTR(ip, whichfork);
2567 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2568 ASSERT(ifp->if_bytes > 0);
2570 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2571 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2572 ASSERT(nrecs > 0);
2575 * There are some delayed allocation extents in the
2576 * inode, so copy the extents one at a time and skip
2577 * the delayed ones. There must be at least one
2578 * non-delayed extent.
2580 copied = 0;
2581 for (i = 0; i < nrecs; i++) {
2582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2583 start_block = xfs_bmbt_get_startblock(ep);
2584 if (isnullstartblock(start_block)) {
2586 * It's a delayed allocation extent, so skip it.
2588 continue;
2591 /* Translate to on disk format */
2592 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2593 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2594 dp++;
2595 copied++;
2597 ASSERT(copied != 0);
2598 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2600 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2604 * Each of the following cases stores data into the same region
2605 * of the on-disk inode, so only one of them can be valid at
2606 * any given time. While it is possible to have conflicting formats
2607 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2608 * in EXTENTS format, this can only happen when the fork has
2609 * changed formats after being modified but before being flushed.
2610 * In these cases, the format always takes precedence, because the
2611 * format indicates the current state of the fork.
2613 /*ARGSUSED*/
2614 STATIC void
2615 xfs_iflush_fork(
2616 xfs_inode_t *ip,
2617 xfs_dinode_t *dip,
2618 xfs_inode_log_item_t *iip,
2619 int whichfork,
2620 xfs_buf_t *bp)
2622 char *cp;
2623 xfs_ifork_t *ifp;
2624 xfs_mount_t *mp;
2625 #ifdef XFS_TRANS_DEBUG
2626 int first;
2627 #endif
2628 static const short brootflag[2] =
2629 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2630 static const short dataflag[2] =
2631 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2632 static const short extflag[2] =
2633 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2635 if (!iip)
2636 return;
2637 ifp = XFS_IFORK_PTR(ip, whichfork);
2639 * This can happen if we gave up in iformat in an error path,
2640 * for the attribute fork.
2642 if (!ifp) {
2643 ASSERT(whichfork == XFS_ATTR_FORK);
2644 return;
2646 cp = XFS_DFORK_PTR(dip, whichfork);
2647 mp = ip->i_mount;
2648 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2649 case XFS_DINODE_FMT_LOCAL:
2650 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2651 (ifp->if_bytes > 0)) {
2652 ASSERT(ifp->if_u1.if_data != NULL);
2653 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2654 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2656 break;
2658 case XFS_DINODE_FMT_EXTENTS:
2659 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2660 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2661 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2662 (ifp->if_bytes == 0));
2663 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2664 (ifp->if_bytes > 0));
2665 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2666 (ifp->if_bytes > 0)) {
2667 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2668 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2669 whichfork);
2671 break;
2673 case XFS_DINODE_FMT_BTREE:
2674 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2675 (ifp->if_broot_bytes > 0)) {
2676 ASSERT(ifp->if_broot != NULL);
2677 ASSERT(ifp->if_broot_bytes <=
2678 (XFS_IFORK_SIZE(ip, whichfork) +
2679 XFS_BROOT_SIZE_ADJ));
2680 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2681 (xfs_bmdr_block_t *)cp,
2682 XFS_DFORK_SIZE(dip, mp, whichfork));
2684 break;
2686 case XFS_DINODE_FMT_DEV:
2687 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2688 ASSERT(whichfork == XFS_DATA_FORK);
2689 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2691 break;
2693 case XFS_DINODE_FMT_UUID:
2694 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2695 ASSERT(whichfork == XFS_DATA_FORK);
2696 memcpy(XFS_DFORK_DPTR(dip),
2697 &ip->i_df.if_u2.if_uuid,
2698 sizeof(uuid_t));
2700 break;
2702 default:
2703 ASSERT(0);
2704 break;
2708 STATIC int
2709 xfs_iflush_cluster(
2710 xfs_inode_t *ip,
2711 xfs_buf_t *bp)
2713 xfs_mount_t *mp = ip->i_mount;
2714 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2715 unsigned long first_index, mask;
2716 unsigned long inodes_per_cluster;
2717 int ilist_size;
2718 xfs_inode_t **ilist;
2719 xfs_inode_t *iq;
2720 int nr_found;
2721 int clcount = 0;
2722 int bufwasdelwri;
2723 int i;
2725 ASSERT(pag->pagi_inodeok);
2726 ASSERT(pag->pag_ici_init);
2728 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2729 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2730 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2731 if (!ilist)
2732 return 0;
2734 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2735 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2736 read_lock(&pag->pag_ici_lock);
2737 /* really need a gang lookup range call here */
2738 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2739 first_index, inodes_per_cluster);
2740 if (nr_found == 0)
2741 goto out_free;
2743 for (i = 0; i < nr_found; i++) {
2744 iq = ilist[i];
2745 if (iq == ip)
2746 continue;
2747 /* if the inode lies outside this cluster, we're done. */
2748 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2749 break;
2751 * Do an un-protected check to see if the inode is dirty and
2752 * is a candidate for flushing. These checks will be repeated
2753 * later after the appropriate locks are acquired.
2755 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2756 continue;
2759 * Try to get locks. If any are unavailable or it is pinned,
2760 * then this inode cannot be flushed and is skipped.
2763 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2764 continue;
2765 if (!xfs_iflock_nowait(iq)) {
2766 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2767 continue;
2769 if (xfs_ipincount(iq)) {
2770 xfs_ifunlock(iq);
2771 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2772 continue;
2776 * arriving here means that this inode can be flushed. First
2777 * re-check that it's dirty before flushing.
2779 if (!xfs_inode_clean(iq)) {
2780 int error;
2781 error = xfs_iflush_int(iq, bp);
2782 if (error) {
2783 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2784 goto cluster_corrupt_out;
2786 clcount++;
2787 } else {
2788 xfs_ifunlock(iq);
2790 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2793 if (clcount) {
2794 XFS_STATS_INC(xs_icluster_flushcnt);
2795 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2798 out_free:
2799 read_unlock(&pag->pag_ici_lock);
2800 kmem_free(ilist);
2801 return 0;
2804 cluster_corrupt_out:
2806 * Corruption detected in the clustering loop. Invalidate the
2807 * inode buffer and shut down the filesystem.
2809 read_unlock(&pag->pag_ici_lock);
2811 * Clean up the buffer. If it was B_DELWRI, just release it --
2812 * brelse can handle it with no problems. If not, shut down the
2813 * filesystem before releasing the buffer.
2815 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2816 if (bufwasdelwri)
2817 xfs_buf_relse(bp);
2819 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2821 if (!bufwasdelwri) {
2823 * Just like incore_relse: if we have b_iodone functions,
2824 * mark the buffer as an error and call them. Otherwise
2825 * mark it as stale and brelse.
2827 if (XFS_BUF_IODONE_FUNC(bp)) {
2828 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2829 XFS_BUF_UNDONE(bp);
2830 XFS_BUF_STALE(bp);
2831 XFS_BUF_ERROR(bp,EIO);
2832 xfs_biodone(bp);
2833 } else {
2834 XFS_BUF_STALE(bp);
2835 xfs_buf_relse(bp);
2840 * Unlocks the flush lock
2842 xfs_iflush_abort(iq);
2843 kmem_free(ilist);
2844 return XFS_ERROR(EFSCORRUPTED);
2848 * xfs_iflush() will write a modified inode's changes out to the
2849 * inode's on disk home. The caller must have the inode lock held
2850 * in at least shared mode and the inode flush completion must be
2851 * active as well. The inode lock will still be held upon return from
2852 * the call and the caller is free to unlock it.
2853 * The inode flush will be completed when the inode reaches the disk.
2854 * The flags indicate how the inode's buffer should be written out.
2857 xfs_iflush(
2858 xfs_inode_t *ip,
2859 uint flags)
2861 xfs_inode_log_item_t *iip;
2862 xfs_buf_t *bp;
2863 xfs_dinode_t *dip;
2864 xfs_mount_t *mp;
2865 int error;
2866 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2867 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2869 XFS_STATS_INC(xs_iflush_count);
2871 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2872 ASSERT(!completion_done(&ip->i_flush));
2873 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2874 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2876 iip = ip->i_itemp;
2877 mp = ip->i_mount;
2880 * If the inode isn't dirty, then just release the inode
2881 * flush lock and do nothing.
2883 if (xfs_inode_clean(ip)) {
2884 xfs_ifunlock(ip);
2885 return 0;
2889 * We can't flush the inode until it is unpinned, so wait for it if we
2890 * are allowed to block. We know noone new can pin it, because we are
2891 * holding the inode lock shared and you need to hold it exclusively to
2892 * pin the inode.
2894 * If we are not allowed to block, force the log out asynchronously so
2895 * that when we come back the inode will be unpinned. If other inodes
2896 * in the same cluster are dirty, they will probably write the inode
2897 * out for us if they occur after the log force completes.
2899 if (noblock && xfs_ipincount(ip)) {
2900 xfs_iunpin_nowait(ip);
2901 xfs_ifunlock(ip);
2902 return EAGAIN;
2904 xfs_iunpin_wait(ip);
2907 * This may have been unpinned because the filesystem is shutting
2908 * down forcibly. If that's the case we must not write this inode
2909 * to disk, because the log record didn't make it to disk!
2911 if (XFS_FORCED_SHUTDOWN(mp)) {
2912 ip->i_update_core = 0;
2913 if (iip)
2914 iip->ili_format.ilf_fields = 0;
2915 xfs_ifunlock(ip);
2916 return XFS_ERROR(EIO);
2920 * Decide how buffer will be flushed out. This is done before
2921 * the call to xfs_iflush_int because this field is zeroed by it.
2923 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2925 * Flush out the inode buffer according to the directions
2926 * of the caller. In the cases where the caller has given
2927 * us a choice choose the non-delwri case. This is because
2928 * the inode is in the AIL and we need to get it out soon.
2930 switch (flags) {
2931 case XFS_IFLUSH_SYNC:
2932 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2933 flags = 0;
2934 break;
2935 case XFS_IFLUSH_ASYNC_NOBLOCK:
2936 case XFS_IFLUSH_ASYNC:
2937 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2938 flags = INT_ASYNC;
2939 break;
2940 case XFS_IFLUSH_DELWRI:
2941 flags = INT_DELWRI;
2942 break;
2943 default:
2944 ASSERT(0);
2945 flags = 0;
2946 break;
2948 } else {
2949 switch (flags) {
2950 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2951 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2952 case XFS_IFLUSH_DELWRI:
2953 flags = INT_DELWRI;
2954 break;
2955 case XFS_IFLUSH_ASYNC_NOBLOCK:
2956 case XFS_IFLUSH_ASYNC:
2957 flags = INT_ASYNC;
2958 break;
2959 case XFS_IFLUSH_SYNC:
2960 flags = 0;
2961 break;
2962 default:
2963 ASSERT(0);
2964 flags = 0;
2965 break;
2970 * Get the buffer containing the on-disk inode.
2972 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2973 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2974 if (error || !bp) {
2975 xfs_ifunlock(ip);
2976 return error;
2980 * First flush out the inode that xfs_iflush was called with.
2982 error = xfs_iflush_int(ip, bp);
2983 if (error)
2984 goto corrupt_out;
2987 * If the buffer is pinned then push on the log now so we won't
2988 * get stuck waiting in the write for too long.
2990 if (XFS_BUF_ISPINNED(bp))
2991 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2994 * inode clustering:
2995 * see if other inodes can be gathered into this write
2997 error = xfs_iflush_cluster(ip, bp);
2998 if (error)
2999 goto cluster_corrupt_out;
3001 if (flags & INT_DELWRI) {
3002 xfs_bdwrite(mp, bp);
3003 } else if (flags & INT_ASYNC) {
3004 error = xfs_bawrite(mp, bp);
3005 } else {
3006 error = xfs_bwrite(mp, bp);
3008 return error;
3010 corrupt_out:
3011 xfs_buf_relse(bp);
3012 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3013 cluster_corrupt_out:
3015 * Unlocks the flush lock
3017 xfs_iflush_abort(ip);
3018 return XFS_ERROR(EFSCORRUPTED);
3022 STATIC int
3023 xfs_iflush_int(
3024 xfs_inode_t *ip,
3025 xfs_buf_t *bp)
3027 xfs_inode_log_item_t *iip;
3028 xfs_dinode_t *dip;
3029 xfs_mount_t *mp;
3030 #ifdef XFS_TRANS_DEBUG
3031 int first;
3032 #endif
3034 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3035 ASSERT(!completion_done(&ip->i_flush));
3036 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3037 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3039 iip = ip->i_itemp;
3040 mp = ip->i_mount;
3044 * If the inode isn't dirty, then just release the inode
3045 * flush lock and do nothing.
3047 if (xfs_inode_clean(ip)) {
3048 xfs_ifunlock(ip);
3049 return 0;
3052 /* set *dip = inode's place in the buffer */
3053 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3056 * Clear i_update_core before copying out the data.
3057 * This is for coordination with our timestamp updates
3058 * that don't hold the inode lock. They will always
3059 * update the timestamps BEFORE setting i_update_core,
3060 * so if we clear i_update_core after they set it we
3061 * are guaranteed to see their updates to the timestamps.
3062 * I believe that this depends on strongly ordered memory
3063 * semantics, but we have that. We use the SYNCHRONIZE
3064 * macro to make sure that the compiler does not reorder
3065 * the i_update_core access below the data copy below.
3067 ip->i_update_core = 0;
3068 SYNCHRONIZE();
3071 * Make sure to get the latest timestamps from the Linux inode.
3073 xfs_synchronize_times(ip);
3075 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3076 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3077 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3078 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3079 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3080 goto corrupt_out;
3082 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3083 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3084 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3085 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3086 ip->i_ino, ip, ip->i_d.di_magic);
3087 goto corrupt_out;
3089 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3090 if (XFS_TEST_ERROR(
3091 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3092 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3093 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3094 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3095 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3096 ip->i_ino, ip);
3097 goto corrupt_out;
3099 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3100 if (XFS_TEST_ERROR(
3101 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3102 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3103 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3104 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3105 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3106 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3107 ip->i_ino, ip);
3108 goto corrupt_out;
3111 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3112 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3113 XFS_RANDOM_IFLUSH_5)) {
3114 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3115 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3116 ip->i_ino,
3117 ip->i_d.di_nextents + ip->i_d.di_anextents,
3118 ip->i_d.di_nblocks,
3119 ip);
3120 goto corrupt_out;
3122 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3123 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3124 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3125 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3126 ip->i_ino, ip->i_d.di_forkoff, ip);
3127 goto corrupt_out;
3130 * bump the flush iteration count, used to detect flushes which
3131 * postdate a log record during recovery.
3134 ip->i_d.di_flushiter++;
3137 * Copy the dirty parts of the inode into the on-disk
3138 * inode. We always copy out the core of the inode,
3139 * because if the inode is dirty at all the core must
3140 * be.
3142 xfs_dinode_to_disk(dip, &ip->i_d);
3144 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3145 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3146 ip->i_d.di_flushiter = 0;
3149 * If this is really an old format inode and the superblock version
3150 * has not been updated to support only new format inodes, then
3151 * convert back to the old inode format. If the superblock version
3152 * has been updated, then make the conversion permanent.
3154 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3155 if (ip->i_d.di_version == 1) {
3156 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3158 * Convert it back.
3160 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3161 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3162 } else {
3164 * The superblock version has already been bumped,
3165 * so just make the conversion to the new inode
3166 * format permanent.
3168 ip->i_d.di_version = 2;
3169 dip->di_version = 2;
3170 ip->i_d.di_onlink = 0;
3171 dip->di_onlink = 0;
3172 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3173 memset(&(dip->di_pad[0]), 0,
3174 sizeof(dip->di_pad));
3175 ASSERT(ip->i_d.di_projid == 0);
3179 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3180 if (XFS_IFORK_Q(ip))
3181 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3182 xfs_inobp_check(mp, bp);
3185 * We've recorded everything logged in the inode, so we'd
3186 * like to clear the ilf_fields bits so we don't log and
3187 * flush things unnecessarily. However, we can't stop
3188 * logging all this information until the data we've copied
3189 * into the disk buffer is written to disk. If we did we might
3190 * overwrite the copy of the inode in the log with all the
3191 * data after re-logging only part of it, and in the face of
3192 * a crash we wouldn't have all the data we need to recover.
3194 * What we do is move the bits to the ili_last_fields field.
3195 * When logging the inode, these bits are moved back to the
3196 * ilf_fields field. In the xfs_iflush_done() routine we
3197 * clear ili_last_fields, since we know that the information
3198 * those bits represent is permanently on disk. As long as
3199 * the flush completes before the inode is logged again, then
3200 * both ilf_fields and ili_last_fields will be cleared.
3202 * We can play with the ilf_fields bits here, because the inode
3203 * lock must be held exclusively in order to set bits there
3204 * and the flush lock protects the ili_last_fields bits.
3205 * Set ili_logged so the flush done
3206 * routine can tell whether or not to look in the AIL.
3207 * Also, store the current LSN of the inode so that we can tell
3208 * whether the item has moved in the AIL from xfs_iflush_done().
3209 * In order to read the lsn we need the AIL lock, because
3210 * it is a 64 bit value that cannot be read atomically.
3212 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3213 iip->ili_last_fields = iip->ili_format.ilf_fields;
3214 iip->ili_format.ilf_fields = 0;
3215 iip->ili_logged = 1;
3217 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3218 &iip->ili_item.li_lsn);
3221 * Attach the function xfs_iflush_done to the inode's
3222 * buffer. This will remove the inode from the AIL
3223 * and unlock the inode's flush lock when the inode is
3224 * completely written to disk.
3226 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3227 xfs_iflush_done, (xfs_log_item_t *)iip);
3229 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3230 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3231 } else {
3233 * We're flushing an inode which is not in the AIL and has
3234 * not been logged but has i_update_core set. For this
3235 * case we can use a B_DELWRI flush and immediately drop
3236 * the inode flush lock because we can avoid the whole
3237 * AIL state thing. It's OK to drop the flush lock now,
3238 * because we've already locked the buffer and to do anything
3239 * you really need both.
3241 if (iip != NULL) {
3242 ASSERT(iip->ili_logged == 0);
3243 ASSERT(iip->ili_last_fields == 0);
3244 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3246 xfs_ifunlock(ip);
3249 return 0;
3251 corrupt_out:
3252 return XFS_ERROR(EFSCORRUPTED);
3257 #ifdef XFS_ILOCK_TRACE
3258 void
3259 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3261 ktrace_enter(ip->i_lock_trace,
3262 (void *)ip,
3263 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3264 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3265 (void *)ra, /* caller of ilock */
3266 (void *)(unsigned long)current_cpu(),
3267 (void *)(unsigned long)current_pid(),
3268 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3270 #endif
3273 * Return a pointer to the extent record at file index idx.
3275 xfs_bmbt_rec_host_t *
3276 xfs_iext_get_ext(
3277 xfs_ifork_t *ifp, /* inode fork pointer */
3278 xfs_extnum_t idx) /* index of target extent */
3280 ASSERT(idx >= 0);
3281 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3282 return ifp->if_u1.if_ext_irec->er_extbuf;
3283 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3284 xfs_ext_irec_t *erp; /* irec pointer */
3285 int erp_idx = 0; /* irec index */
3286 xfs_extnum_t page_idx = idx; /* ext index in target list */
3288 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3289 return &erp->er_extbuf[page_idx];
3290 } else if (ifp->if_bytes) {
3291 return &ifp->if_u1.if_extents[idx];
3292 } else {
3293 return NULL;
3298 * Insert new item(s) into the extent records for incore inode
3299 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3301 void
3302 xfs_iext_insert(
3303 xfs_ifork_t *ifp, /* inode fork pointer */
3304 xfs_extnum_t idx, /* starting index of new items */
3305 xfs_extnum_t count, /* number of inserted items */
3306 xfs_bmbt_irec_t *new) /* items to insert */
3308 xfs_extnum_t i; /* extent record index */
3310 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3311 xfs_iext_add(ifp, idx, count);
3312 for (i = idx; i < idx + count; i++, new++)
3313 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3317 * This is called when the amount of space required for incore file
3318 * extents needs to be increased. The ext_diff parameter stores the
3319 * number of new extents being added and the idx parameter contains
3320 * the extent index where the new extents will be added. If the new
3321 * extents are being appended, then we just need to (re)allocate and
3322 * initialize the space. Otherwise, if the new extents are being
3323 * inserted into the middle of the existing entries, a bit more work
3324 * is required to make room for the new extents to be inserted. The
3325 * caller is responsible for filling in the new extent entries upon
3326 * return.
3328 void
3329 xfs_iext_add(
3330 xfs_ifork_t *ifp, /* inode fork pointer */
3331 xfs_extnum_t idx, /* index to begin adding exts */
3332 int ext_diff) /* number of extents to add */
3334 int byte_diff; /* new bytes being added */
3335 int new_size; /* size of extents after adding */
3336 xfs_extnum_t nextents; /* number of extents in file */
3338 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3339 ASSERT((idx >= 0) && (idx <= nextents));
3340 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3341 new_size = ifp->if_bytes + byte_diff;
3343 * If the new number of extents (nextents + ext_diff)
3344 * fits inside the inode, then continue to use the inline
3345 * extent buffer.
3347 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3348 if (idx < nextents) {
3349 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3350 &ifp->if_u2.if_inline_ext[idx],
3351 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3352 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3354 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3355 ifp->if_real_bytes = 0;
3356 ifp->if_lastex = nextents + ext_diff;
3359 * Otherwise use a linear (direct) extent list.
3360 * If the extents are currently inside the inode,
3361 * xfs_iext_realloc_direct will switch us from
3362 * inline to direct extent allocation mode.
3364 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3365 xfs_iext_realloc_direct(ifp, new_size);
3366 if (idx < nextents) {
3367 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3368 &ifp->if_u1.if_extents[idx],
3369 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3370 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3373 /* Indirection array */
3374 else {
3375 xfs_ext_irec_t *erp;
3376 int erp_idx = 0;
3377 int page_idx = idx;
3379 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3380 if (ifp->if_flags & XFS_IFEXTIREC) {
3381 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3382 } else {
3383 xfs_iext_irec_init(ifp);
3384 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3385 erp = ifp->if_u1.if_ext_irec;
3387 /* Extents fit in target extent page */
3388 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3389 if (page_idx < erp->er_extcount) {
3390 memmove(&erp->er_extbuf[page_idx + ext_diff],
3391 &erp->er_extbuf[page_idx],
3392 (erp->er_extcount - page_idx) *
3393 sizeof(xfs_bmbt_rec_t));
3394 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3396 erp->er_extcount += ext_diff;
3397 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3399 /* Insert a new extent page */
3400 else if (erp) {
3401 xfs_iext_add_indirect_multi(ifp,
3402 erp_idx, page_idx, ext_diff);
3405 * If extent(s) are being appended to the last page in
3406 * the indirection array and the new extent(s) don't fit
3407 * in the page, then erp is NULL and erp_idx is set to
3408 * the next index needed in the indirection array.
3410 else {
3411 int count = ext_diff;
3413 while (count) {
3414 erp = xfs_iext_irec_new(ifp, erp_idx);
3415 erp->er_extcount = count;
3416 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3417 if (count) {
3418 erp_idx++;
3423 ifp->if_bytes = new_size;
3427 * This is called when incore extents are being added to the indirection
3428 * array and the new extents do not fit in the target extent list. The
3429 * erp_idx parameter contains the irec index for the target extent list
3430 * in the indirection array, and the idx parameter contains the extent
3431 * index within the list. The number of extents being added is stored
3432 * in the count parameter.
3434 * |-------| |-------|
3435 * | | | | idx - number of extents before idx
3436 * | idx | | count |
3437 * | | | | count - number of extents being inserted at idx
3438 * |-------| |-------|
3439 * | count | | nex2 | nex2 - number of extents after idx + count
3440 * |-------| |-------|
3442 void
3443 xfs_iext_add_indirect_multi(
3444 xfs_ifork_t *ifp, /* inode fork pointer */
3445 int erp_idx, /* target extent irec index */
3446 xfs_extnum_t idx, /* index within target list */
3447 int count) /* new extents being added */
3449 int byte_diff; /* new bytes being added */
3450 xfs_ext_irec_t *erp; /* pointer to irec entry */
3451 xfs_extnum_t ext_diff; /* number of extents to add */
3452 xfs_extnum_t ext_cnt; /* new extents still needed */
3453 xfs_extnum_t nex2; /* extents after idx + count */
3454 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3455 int nlists; /* number of irec's (lists) */
3457 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3458 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3459 nex2 = erp->er_extcount - idx;
3460 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3463 * Save second part of target extent list
3464 * (all extents past */
3465 if (nex2) {
3466 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3467 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3468 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3469 erp->er_extcount -= nex2;
3470 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3471 memset(&erp->er_extbuf[idx], 0, byte_diff);
3475 * Add the new extents to the end of the target
3476 * list, then allocate new irec record(s) and
3477 * extent buffer(s) as needed to store the rest
3478 * of the new extents.
3480 ext_cnt = count;
3481 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3482 if (ext_diff) {
3483 erp->er_extcount += ext_diff;
3484 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3485 ext_cnt -= ext_diff;
3487 while (ext_cnt) {
3488 erp_idx++;
3489 erp = xfs_iext_irec_new(ifp, erp_idx);
3490 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3491 erp->er_extcount = ext_diff;
3492 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3493 ext_cnt -= ext_diff;
3496 /* Add nex2 extents back to indirection array */
3497 if (nex2) {
3498 xfs_extnum_t ext_avail;
3499 int i;
3501 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3502 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3503 i = 0;
3505 * If nex2 extents fit in the current page, append
3506 * nex2_ep after the new extents.
3508 if (nex2 <= ext_avail) {
3509 i = erp->er_extcount;
3512 * Otherwise, check if space is available in the
3513 * next page.
3515 else if ((erp_idx < nlists - 1) &&
3516 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3517 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3518 erp_idx++;
3519 erp++;
3520 /* Create a hole for nex2 extents */
3521 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3522 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3525 * Final choice, create a new extent page for
3526 * nex2 extents.
3528 else {
3529 erp_idx++;
3530 erp = xfs_iext_irec_new(ifp, erp_idx);
3532 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3533 kmem_free(nex2_ep);
3534 erp->er_extcount += nex2;
3535 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3540 * This is called when the amount of space required for incore file
3541 * extents needs to be decreased. The ext_diff parameter stores the
3542 * number of extents to be removed and the idx parameter contains
3543 * the extent index where the extents will be removed from.
3545 * If the amount of space needed has decreased below the linear
3546 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3547 * extent array. Otherwise, use kmem_realloc() to adjust the
3548 * size to what is needed.
3550 void
3551 xfs_iext_remove(
3552 xfs_ifork_t *ifp, /* inode fork pointer */
3553 xfs_extnum_t idx, /* index to begin removing exts */
3554 int ext_diff) /* number of extents to remove */
3556 xfs_extnum_t nextents; /* number of extents in file */
3557 int new_size; /* size of extents after removal */
3559 ASSERT(ext_diff > 0);
3560 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3561 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3563 if (new_size == 0) {
3564 xfs_iext_destroy(ifp);
3565 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3566 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3567 } else if (ifp->if_real_bytes) {
3568 xfs_iext_remove_direct(ifp, idx, ext_diff);
3569 } else {
3570 xfs_iext_remove_inline(ifp, idx, ext_diff);
3572 ifp->if_bytes = new_size;
3576 * This removes ext_diff extents from the inline buffer, beginning
3577 * at extent index idx.
3579 void
3580 xfs_iext_remove_inline(
3581 xfs_ifork_t *ifp, /* inode fork pointer */
3582 xfs_extnum_t idx, /* index to begin removing exts */
3583 int ext_diff) /* number of extents to remove */
3585 int nextents; /* number of extents in file */
3587 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3588 ASSERT(idx < XFS_INLINE_EXTS);
3589 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3590 ASSERT(((nextents - ext_diff) > 0) &&
3591 (nextents - ext_diff) < XFS_INLINE_EXTS);
3593 if (idx + ext_diff < nextents) {
3594 memmove(&ifp->if_u2.if_inline_ext[idx],
3595 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3596 (nextents - (idx + ext_diff)) *
3597 sizeof(xfs_bmbt_rec_t));
3598 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3599 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3600 } else {
3601 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3602 ext_diff * sizeof(xfs_bmbt_rec_t));
3607 * This removes ext_diff extents from a linear (direct) extent list,
3608 * beginning at extent index idx. If the extents are being removed
3609 * from the end of the list (ie. truncate) then we just need to re-
3610 * allocate the list to remove the extra space. Otherwise, if the
3611 * extents are being removed from the middle of the existing extent
3612 * entries, then we first need to move the extent records beginning
3613 * at idx + ext_diff up in the list to overwrite the records being
3614 * removed, then remove the extra space via kmem_realloc.
3616 void
3617 xfs_iext_remove_direct(
3618 xfs_ifork_t *ifp, /* inode fork pointer */
3619 xfs_extnum_t idx, /* index to begin removing exts */
3620 int ext_diff) /* number of extents to remove */
3622 xfs_extnum_t nextents; /* number of extents in file */
3623 int new_size; /* size of extents after removal */
3625 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3626 new_size = ifp->if_bytes -
3627 (ext_diff * sizeof(xfs_bmbt_rec_t));
3628 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3630 if (new_size == 0) {
3631 xfs_iext_destroy(ifp);
3632 return;
3634 /* Move extents up in the list (if needed) */
3635 if (idx + ext_diff < nextents) {
3636 memmove(&ifp->if_u1.if_extents[idx],
3637 &ifp->if_u1.if_extents[idx + ext_diff],
3638 (nextents - (idx + ext_diff)) *
3639 sizeof(xfs_bmbt_rec_t));
3641 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3642 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3644 * Reallocate the direct extent list. If the extents
3645 * will fit inside the inode then xfs_iext_realloc_direct
3646 * will switch from direct to inline extent allocation
3647 * mode for us.
3649 xfs_iext_realloc_direct(ifp, new_size);
3650 ifp->if_bytes = new_size;
3654 * This is called when incore extents are being removed from the
3655 * indirection array and the extents being removed span multiple extent
3656 * buffers. The idx parameter contains the file extent index where we
3657 * want to begin removing extents, and the count parameter contains
3658 * how many extents need to be removed.
3660 * |-------| |-------|
3661 * | nex1 | | | nex1 - number of extents before idx
3662 * |-------| | count |
3663 * | | | | count - number of extents being removed at idx
3664 * | count | |-------|
3665 * | | | nex2 | nex2 - number of extents after idx + count
3666 * |-------| |-------|
3668 void
3669 xfs_iext_remove_indirect(
3670 xfs_ifork_t *ifp, /* inode fork pointer */
3671 xfs_extnum_t idx, /* index to begin removing extents */
3672 int count) /* number of extents to remove */
3674 xfs_ext_irec_t *erp; /* indirection array pointer */
3675 int erp_idx = 0; /* indirection array index */
3676 xfs_extnum_t ext_cnt; /* extents left to remove */
3677 xfs_extnum_t ext_diff; /* extents to remove in current list */
3678 xfs_extnum_t nex1; /* number of extents before idx */
3679 xfs_extnum_t nex2; /* extents after idx + count */
3680 int nlists; /* entries in indirection array */
3681 int page_idx = idx; /* index in target extent list */
3683 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3685 ASSERT(erp != NULL);
3686 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3687 nex1 = page_idx;
3688 ext_cnt = count;
3689 while (ext_cnt) {
3690 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3691 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3693 * Check for deletion of entire list;
3694 * xfs_iext_irec_remove() updates extent offsets.
3696 if (ext_diff == erp->er_extcount) {
3697 xfs_iext_irec_remove(ifp, erp_idx);
3698 ext_cnt -= ext_diff;
3699 nex1 = 0;
3700 if (ext_cnt) {
3701 ASSERT(erp_idx < ifp->if_real_bytes /
3702 XFS_IEXT_BUFSZ);
3703 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3704 nex1 = 0;
3705 continue;
3706 } else {
3707 break;
3710 /* Move extents up (if needed) */
3711 if (nex2) {
3712 memmove(&erp->er_extbuf[nex1],
3713 &erp->er_extbuf[nex1 + ext_diff],
3714 nex2 * sizeof(xfs_bmbt_rec_t));
3716 /* Zero out rest of page */
3717 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3718 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3719 /* Update remaining counters */
3720 erp->er_extcount -= ext_diff;
3721 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3722 ext_cnt -= ext_diff;
3723 nex1 = 0;
3724 erp_idx++;
3725 erp++;
3727 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3728 xfs_iext_irec_compact(ifp);
3732 * Create, destroy, or resize a linear (direct) block of extents.
3734 void
3735 xfs_iext_realloc_direct(
3736 xfs_ifork_t *ifp, /* inode fork pointer */
3737 int new_size) /* new size of extents */
3739 int rnew_size; /* real new size of extents */
3741 rnew_size = new_size;
3743 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3744 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3745 (new_size != ifp->if_real_bytes)));
3747 /* Free extent records */
3748 if (new_size == 0) {
3749 xfs_iext_destroy(ifp);
3751 /* Resize direct extent list and zero any new bytes */
3752 else if (ifp->if_real_bytes) {
3753 /* Check if extents will fit inside the inode */
3754 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3755 xfs_iext_direct_to_inline(ifp, new_size /
3756 (uint)sizeof(xfs_bmbt_rec_t));
3757 ifp->if_bytes = new_size;
3758 return;
3760 if (!is_power_of_2(new_size)){
3761 rnew_size = roundup_pow_of_two(new_size);
3763 if (rnew_size != ifp->if_real_bytes) {
3764 ifp->if_u1.if_extents =
3765 kmem_realloc(ifp->if_u1.if_extents,
3766 rnew_size,
3767 ifp->if_real_bytes, KM_NOFS);
3769 if (rnew_size > ifp->if_real_bytes) {
3770 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3771 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3772 rnew_size - ifp->if_real_bytes);
3776 * Switch from the inline extent buffer to a direct
3777 * extent list. Be sure to include the inline extent
3778 * bytes in new_size.
3780 else {
3781 new_size += ifp->if_bytes;
3782 if (!is_power_of_2(new_size)) {
3783 rnew_size = roundup_pow_of_two(new_size);
3785 xfs_iext_inline_to_direct(ifp, rnew_size);
3787 ifp->if_real_bytes = rnew_size;
3788 ifp->if_bytes = new_size;
3792 * Switch from linear (direct) extent records to inline buffer.
3794 void
3795 xfs_iext_direct_to_inline(
3796 xfs_ifork_t *ifp, /* inode fork pointer */
3797 xfs_extnum_t nextents) /* number of extents in file */
3799 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3800 ASSERT(nextents <= XFS_INLINE_EXTS);
3802 * The inline buffer was zeroed when we switched
3803 * from inline to direct extent allocation mode,
3804 * so we don't need to clear it here.
3806 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3807 nextents * sizeof(xfs_bmbt_rec_t));
3808 kmem_free(ifp->if_u1.if_extents);
3809 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3810 ifp->if_real_bytes = 0;
3814 * Switch from inline buffer to linear (direct) extent records.
3815 * new_size should already be rounded up to the next power of 2
3816 * by the caller (when appropriate), so use new_size as it is.
3817 * However, since new_size may be rounded up, we can't update
3818 * if_bytes here. It is the caller's responsibility to update
3819 * if_bytes upon return.
3821 void
3822 xfs_iext_inline_to_direct(
3823 xfs_ifork_t *ifp, /* inode fork pointer */
3824 int new_size) /* number of extents in file */
3826 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3827 memset(ifp->if_u1.if_extents, 0, new_size);
3828 if (ifp->if_bytes) {
3829 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3830 ifp->if_bytes);
3831 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3832 sizeof(xfs_bmbt_rec_t));
3834 ifp->if_real_bytes = new_size;
3838 * Resize an extent indirection array to new_size bytes.
3840 STATIC void
3841 xfs_iext_realloc_indirect(
3842 xfs_ifork_t *ifp, /* inode fork pointer */
3843 int new_size) /* new indirection array size */
3845 int nlists; /* number of irec's (ex lists) */
3846 int size; /* current indirection array size */
3848 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3849 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3850 size = nlists * sizeof(xfs_ext_irec_t);
3851 ASSERT(ifp->if_real_bytes);
3852 ASSERT((new_size >= 0) && (new_size != size));
3853 if (new_size == 0) {
3854 xfs_iext_destroy(ifp);
3855 } else {
3856 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3857 kmem_realloc(ifp->if_u1.if_ext_irec,
3858 new_size, size, KM_NOFS);
3863 * Switch from indirection array to linear (direct) extent allocations.
3865 STATIC void
3866 xfs_iext_indirect_to_direct(
3867 xfs_ifork_t *ifp) /* inode fork pointer */
3869 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3870 xfs_extnum_t nextents; /* number of extents in file */
3871 int size; /* size of file extents */
3873 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3874 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3875 ASSERT(nextents <= XFS_LINEAR_EXTS);
3876 size = nextents * sizeof(xfs_bmbt_rec_t);
3878 xfs_iext_irec_compact_pages(ifp);
3879 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3881 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3882 kmem_free(ifp->if_u1.if_ext_irec);
3883 ifp->if_flags &= ~XFS_IFEXTIREC;
3884 ifp->if_u1.if_extents = ep;
3885 ifp->if_bytes = size;
3886 if (nextents < XFS_LINEAR_EXTS) {
3887 xfs_iext_realloc_direct(ifp, size);
3892 * Free incore file extents.
3894 void
3895 xfs_iext_destroy(
3896 xfs_ifork_t *ifp) /* inode fork pointer */
3898 if (ifp->if_flags & XFS_IFEXTIREC) {
3899 int erp_idx;
3900 int nlists;
3902 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3903 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3904 xfs_iext_irec_remove(ifp, erp_idx);
3906 ifp->if_flags &= ~XFS_IFEXTIREC;
3907 } else if (ifp->if_real_bytes) {
3908 kmem_free(ifp->if_u1.if_extents);
3909 } else if (ifp->if_bytes) {
3910 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3911 sizeof(xfs_bmbt_rec_t));
3913 ifp->if_u1.if_extents = NULL;
3914 ifp->if_real_bytes = 0;
3915 ifp->if_bytes = 0;
3919 * Return a pointer to the extent record for file system block bno.
3921 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3922 xfs_iext_bno_to_ext(
3923 xfs_ifork_t *ifp, /* inode fork pointer */
3924 xfs_fileoff_t bno, /* block number to search for */
3925 xfs_extnum_t *idxp) /* index of target extent */
3927 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3928 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3929 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3930 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3931 int high; /* upper boundary in search */
3932 xfs_extnum_t idx = 0; /* index of target extent */
3933 int low; /* lower boundary in search */
3934 xfs_extnum_t nextents; /* number of file extents */
3935 xfs_fileoff_t startoff = 0; /* start offset of extent */
3937 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3938 if (nextents == 0) {
3939 *idxp = 0;
3940 return NULL;
3942 low = 0;
3943 if (ifp->if_flags & XFS_IFEXTIREC) {
3944 /* Find target extent list */
3945 int erp_idx = 0;
3946 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3947 base = erp->er_extbuf;
3948 high = erp->er_extcount - 1;
3949 } else {
3950 base = ifp->if_u1.if_extents;
3951 high = nextents - 1;
3953 /* Binary search extent records */
3954 while (low <= high) {
3955 idx = (low + high) >> 1;
3956 ep = base + idx;
3957 startoff = xfs_bmbt_get_startoff(ep);
3958 blockcount = xfs_bmbt_get_blockcount(ep);
3959 if (bno < startoff) {
3960 high = idx - 1;
3961 } else if (bno >= startoff + blockcount) {
3962 low = idx + 1;
3963 } else {
3964 /* Convert back to file-based extent index */
3965 if (ifp->if_flags & XFS_IFEXTIREC) {
3966 idx += erp->er_extoff;
3968 *idxp = idx;
3969 return ep;
3972 /* Convert back to file-based extent index */
3973 if (ifp->if_flags & XFS_IFEXTIREC) {
3974 idx += erp->er_extoff;
3976 if (bno >= startoff + blockcount) {
3977 if (++idx == nextents) {
3978 ep = NULL;
3979 } else {
3980 ep = xfs_iext_get_ext(ifp, idx);
3983 *idxp = idx;
3984 return ep;
3988 * Return a pointer to the indirection array entry containing the
3989 * extent record for filesystem block bno. Store the index of the
3990 * target irec in *erp_idxp.
3992 xfs_ext_irec_t * /* pointer to found extent record */
3993 xfs_iext_bno_to_irec(
3994 xfs_ifork_t *ifp, /* inode fork pointer */
3995 xfs_fileoff_t bno, /* block number to search for */
3996 int *erp_idxp) /* irec index of target ext list */
3998 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3999 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4000 int erp_idx; /* indirection array index */
4001 int nlists; /* number of extent irec's (lists) */
4002 int high; /* binary search upper limit */
4003 int low; /* binary search lower limit */
4005 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4006 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4007 erp_idx = 0;
4008 low = 0;
4009 high = nlists - 1;
4010 while (low <= high) {
4011 erp_idx = (low + high) >> 1;
4012 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4013 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4014 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4015 high = erp_idx - 1;
4016 } else if (erp_next && bno >=
4017 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4018 low = erp_idx + 1;
4019 } else {
4020 break;
4023 *erp_idxp = erp_idx;
4024 return erp;
4028 * Return a pointer to the indirection array entry containing the
4029 * extent record at file extent index *idxp. Store the index of the
4030 * target irec in *erp_idxp and store the page index of the target
4031 * extent record in *idxp.
4033 xfs_ext_irec_t *
4034 xfs_iext_idx_to_irec(
4035 xfs_ifork_t *ifp, /* inode fork pointer */
4036 xfs_extnum_t *idxp, /* extent index (file -> page) */
4037 int *erp_idxp, /* pointer to target irec */
4038 int realloc) /* new bytes were just added */
4040 xfs_ext_irec_t *prev; /* pointer to previous irec */
4041 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4042 int erp_idx; /* indirection array index */
4043 int nlists; /* number of irec's (ex lists) */
4044 int high; /* binary search upper limit */
4045 int low; /* binary search lower limit */
4046 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4048 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4049 ASSERT(page_idx >= 0 && page_idx <=
4050 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4051 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4052 erp_idx = 0;
4053 low = 0;
4054 high = nlists - 1;
4056 /* Binary search extent irec's */
4057 while (low <= high) {
4058 erp_idx = (low + high) >> 1;
4059 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4060 prev = erp_idx > 0 ? erp - 1 : NULL;
4061 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4062 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4063 high = erp_idx - 1;
4064 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4065 (page_idx == erp->er_extoff + erp->er_extcount &&
4066 !realloc)) {
4067 low = erp_idx + 1;
4068 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4069 erp->er_extcount == XFS_LINEAR_EXTS) {
4070 ASSERT(realloc);
4071 page_idx = 0;
4072 erp_idx++;
4073 erp = erp_idx < nlists ? erp + 1 : NULL;
4074 break;
4075 } else {
4076 page_idx -= erp->er_extoff;
4077 break;
4080 *idxp = page_idx;
4081 *erp_idxp = erp_idx;
4082 return(erp);
4086 * Allocate and initialize an indirection array once the space needed
4087 * for incore extents increases above XFS_IEXT_BUFSZ.
4089 void
4090 xfs_iext_irec_init(
4091 xfs_ifork_t *ifp) /* inode fork pointer */
4093 xfs_ext_irec_t *erp; /* indirection array pointer */
4094 xfs_extnum_t nextents; /* number of extents in file */
4096 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4097 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4098 ASSERT(nextents <= XFS_LINEAR_EXTS);
4100 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4102 if (nextents == 0) {
4103 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4104 } else if (!ifp->if_real_bytes) {
4105 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4106 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4107 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4109 erp->er_extbuf = ifp->if_u1.if_extents;
4110 erp->er_extcount = nextents;
4111 erp->er_extoff = 0;
4113 ifp->if_flags |= XFS_IFEXTIREC;
4114 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4115 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4116 ifp->if_u1.if_ext_irec = erp;
4118 return;
4122 * Allocate and initialize a new entry in the indirection array.
4124 xfs_ext_irec_t *
4125 xfs_iext_irec_new(
4126 xfs_ifork_t *ifp, /* inode fork pointer */
4127 int erp_idx) /* index for new irec */
4129 xfs_ext_irec_t *erp; /* indirection array pointer */
4130 int i; /* loop counter */
4131 int nlists; /* number of irec's (ex lists) */
4133 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4134 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4136 /* Resize indirection array */
4137 xfs_iext_realloc_indirect(ifp, ++nlists *
4138 sizeof(xfs_ext_irec_t));
4140 * Move records down in the array so the
4141 * new page can use erp_idx.
4143 erp = ifp->if_u1.if_ext_irec;
4144 for (i = nlists - 1; i > erp_idx; i--) {
4145 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4147 ASSERT(i == erp_idx);
4149 /* Initialize new extent record */
4150 erp = ifp->if_u1.if_ext_irec;
4151 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4152 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4153 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4154 erp[erp_idx].er_extcount = 0;
4155 erp[erp_idx].er_extoff = erp_idx > 0 ?
4156 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4157 return (&erp[erp_idx]);
4161 * Remove a record from the indirection array.
4163 void
4164 xfs_iext_irec_remove(
4165 xfs_ifork_t *ifp, /* inode fork pointer */
4166 int erp_idx) /* irec index to remove */
4168 xfs_ext_irec_t *erp; /* indirection array pointer */
4169 int i; /* loop counter */
4170 int nlists; /* number of irec's (ex lists) */
4172 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4173 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4174 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4175 if (erp->er_extbuf) {
4176 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4177 -erp->er_extcount);
4178 kmem_free(erp->er_extbuf);
4180 /* Compact extent records */
4181 erp = ifp->if_u1.if_ext_irec;
4182 for (i = erp_idx; i < nlists - 1; i++) {
4183 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4186 * Manually free the last extent record from the indirection
4187 * array. A call to xfs_iext_realloc_indirect() with a size
4188 * of zero would result in a call to xfs_iext_destroy() which
4189 * would in turn call this function again, creating a nasty
4190 * infinite loop.
4192 if (--nlists) {
4193 xfs_iext_realloc_indirect(ifp,
4194 nlists * sizeof(xfs_ext_irec_t));
4195 } else {
4196 kmem_free(ifp->if_u1.if_ext_irec);
4198 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4202 * This is called to clean up large amounts of unused memory allocated
4203 * by the indirection array. Before compacting anything though, verify
4204 * that the indirection array is still needed and switch back to the
4205 * linear extent list (or even the inline buffer) if possible. The
4206 * compaction policy is as follows:
4208 * Full Compaction: Extents fit into a single page (or inline buffer)
4209 * Partial Compaction: Extents occupy less than 50% of allocated space
4210 * No Compaction: Extents occupy at least 50% of allocated space
4212 void
4213 xfs_iext_irec_compact(
4214 xfs_ifork_t *ifp) /* inode fork pointer */
4216 xfs_extnum_t nextents; /* number of extents in file */
4217 int nlists; /* number of irec's (ex lists) */
4219 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4220 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4221 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4223 if (nextents == 0) {
4224 xfs_iext_destroy(ifp);
4225 } else if (nextents <= XFS_INLINE_EXTS) {
4226 xfs_iext_indirect_to_direct(ifp);
4227 xfs_iext_direct_to_inline(ifp, nextents);
4228 } else if (nextents <= XFS_LINEAR_EXTS) {
4229 xfs_iext_indirect_to_direct(ifp);
4230 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4231 xfs_iext_irec_compact_pages(ifp);
4236 * Combine extents from neighboring extent pages.
4238 void
4239 xfs_iext_irec_compact_pages(
4240 xfs_ifork_t *ifp) /* inode fork pointer */
4242 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4243 int erp_idx = 0; /* indirection array index */
4244 int nlists; /* number of irec's (ex lists) */
4246 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4247 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4248 while (erp_idx < nlists - 1) {
4249 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4250 erp_next = erp + 1;
4251 if (erp_next->er_extcount <=
4252 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4253 memcpy(&erp->er_extbuf[erp->er_extcount],
4254 erp_next->er_extbuf, erp_next->er_extcount *
4255 sizeof(xfs_bmbt_rec_t));
4256 erp->er_extcount += erp_next->er_extcount;
4258 * Free page before removing extent record
4259 * so er_extoffs don't get modified in
4260 * xfs_iext_irec_remove.
4262 kmem_free(erp_next->er_extbuf);
4263 erp_next->er_extbuf = NULL;
4264 xfs_iext_irec_remove(ifp, erp_idx + 1);
4265 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4266 } else {
4267 erp_idx++;
4273 * This is called to update the er_extoff field in the indirection
4274 * array when extents have been added or removed from one of the
4275 * extent lists. erp_idx contains the irec index to begin updating
4276 * at and ext_diff contains the number of extents that were added
4277 * or removed.
4279 void
4280 xfs_iext_irec_update_extoffs(
4281 xfs_ifork_t *ifp, /* inode fork pointer */
4282 int erp_idx, /* irec index to update */
4283 int ext_diff) /* number of new extents */
4285 int i; /* loop counter */
4286 int nlists; /* number of irec's (ex lists */
4288 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4289 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4290 for (i = erp_idx; i < nlists; i++) {
4291 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;