OMAP3 SRF: Generic shared resource f/w
[linux-ginger.git] / net / wireless / util.c
blob3fc2df86278fcf7390c5d2b3cce484a7abb04f4d
1 /*
2 * Wireless utility functions
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 */
6 #include <linux/bitops.h>
7 #include <linux/etherdevice.h>
8 #include <net/cfg80211.h>
9 #include <net/ip.h>
10 #include "core.h"
12 struct ieee80211_rate *
13 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
14 u32 basic_rates, int bitrate)
16 struct ieee80211_rate *result = &sband->bitrates[0];
17 int i;
19 for (i = 0; i < sband->n_bitrates; i++) {
20 if (!(basic_rates & BIT(i)))
21 continue;
22 if (sband->bitrates[i].bitrate > bitrate)
23 continue;
24 result = &sband->bitrates[i];
27 return result;
29 EXPORT_SYMBOL(ieee80211_get_response_rate);
31 int ieee80211_channel_to_frequency(int chan)
33 if (chan < 14)
34 return 2407 + chan * 5;
36 if (chan == 14)
37 return 2484;
39 /* FIXME: 802.11j 17.3.8.3.2 */
40 return (chan + 1000) * 5;
42 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
44 int ieee80211_frequency_to_channel(int freq)
46 if (freq == 2484)
47 return 14;
49 if (freq < 2484)
50 return (freq - 2407) / 5;
52 /* FIXME: 802.11j 17.3.8.3.2 */
53 return freq/5 - 1000;
55 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
57 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
58 int freq)
60 enum ieee80211_band band;
61 struct ieee80211_supported_band *sband;
62 int i;
64 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
65 sband = wiphy->bands[band];
67 if (!sband)
68 continue;
70 for (i = 0; i < sband->n_channels; i++) {
71 if (sband->channels[i].center_freq == freq)
72 return &sband->channels[i];
76 return NULL;
78 EXPORT_SYMBOL(__ieee80211_get_channel);
80 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
81 enum ieee80211_band band)
83 int i, want;
85 switch (band) {
86 case IEEE80211_BAND_5GHZ:
87 want = 3;
88 for (i = 0; i < sband->n_bitrates; i++) {
89 if (sband->bitrates[i].bitrate == 60 ||
90 sband->bitrates[i].bitrate == 120 ||
91 sband->bitrates[i].bitrate == 240) {
92 sband->bitrates[i].flags |=
93 IEEE80211_RATE_MANDATORY_A;
94 want--;
97 WARN_ON(want);
98 break;
99 case IEEE80211_BAND_2GHZ:
100 want = 7;
101 for (i = 0; i < sband->n_bitrates; i++) {
102 if (sband->bitrates[i].bitrate == 10) {
103 sband->bitrates[i].flags |=
104 IEEE80211_RATE_MANDATORY_B |
105 IEEE80211_RATE_MANDATORY_G;
106 want--;
109 if (sband->bitrates[i].bitrate == 20 ||
110 sband->bitrates[i].bitrate == 55 ||
111 sband->bitrates[i].bitrate == 110 ||
112 sband->bitrates[i].bitrate == 60 ||
113 sband->bitrates[i].bitrate == 120 ||
114 sband->bitrates[i].bitrate == 240) {
115 sband->bitrates[i].flags |=
116 IEEE80211_RATE_MANDATORY_G;
117 want--;
120 if (sband->bitrates[i].bitrate != 10 &&
121 sband->bitrates[i].bitrate != 20 &&
122 sband->bitrates[i].bitrate != 55 &&
123 sband->bitrates[i].bitrate != 110)
124 sband->bitrates[i].flags |=
125 IEEE80211_RATE_ERP_G;
127 WARN_ON(want != 0 && want != 3 && want != 6);
128 break;
129 case IEEE80211_NUM_BANDS:
130 WARN_ON(1);
131 break;
135 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
137 enum ieee80211_band band;
139 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
140 if (wiphy->bands[band])
141 set_mandatory_flags_band(wiphy->bands[band], band);
144 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
145 struct key_params *params, int key_idx,
146 const u8 *mac_addr)
148 int i;
150 if (key_idx > 5)
151 return -EINVAL;
154 * Disallow pairwise keys with non-zero index unless it's WEP
155 * (because current deployments use pairwise WEP keys with
156 * non-zero indizes but 802.11i clearly specifies to use zero)
158 if (mac_addr && key_idx &&
159 params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
160 params->cipher != WLAN_CIPHER_SUITE_WEP104)
161 return -EINVAL;
163 switch (params->cipher) {
164 case WLAN_CIPHER_SUITE_WEP40:
165 if (params->key_len != WLAN_KEY_LEN_WEP40)
166 return -EINVAL;
167 break;
168 case WLAN_CIPHER_SUITE_TKIP:
169 if (params->key_len != WLAN_KEY_LEN_TKIP)
170 return -EINVAL;
171 break;
172 case WLAN_CIPHER_SUITE_CCMP:
173 if (params->key_len != WLAN_KEY_LEN_CCMP)
174 return -EINVAL;
175 break;
176 case WLAN_CIPHER_SUITE_WEP104:
177 if (params->key_len != WLAN_KEY_LEN_WEP104)
178 return -EINVAL;
179 break;
180 case WLAN_CIPHER_SUITE_AES_CMAC:
181 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
182 return -EINVAL;
183 break;
184 default:
185 return -EINVAL;
188 if (params->seq) {
189 switch (params->cipher) {
190 case WLAN_CIPHER_SUITE_WEP40:
191 case WLAN_CIPHER_SUITE_WEP104:
192 /* These ciphers do not use key sequence */
193 return -EINVAL;
194 case WLAN_CIPHER_SUITE_TKIP:
195 case WLAN_CIPHER_SUITE_CCMP:
196 case WLAN_CIPHER_SUITE_AES_CMAC:
197 if (params->seq_len != 6)
198 return -EINVAL;
199 break;
203 for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
204 if (params->cipher == rdev->wiphy.cipher_suites[i])
205 break;
206 if (i == rdev->wiphy.n_cipher_suites)
207 return -EINVAL;
209 return 0;
212 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
213 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
214 const unsigned char rfc1042_header[] __aligned(2) =
215 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
216 EXPORT_SYMBOL(rfc1042_header);
218 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
219 const unsigned char bridge_tunnel_header[] __aligned(2) =
220 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
221 EXPORT_SYMBOL(bridge_tunnel_header);
223 unsigned int ieee80211_hdrlen(__le16 fc)
225 unsigned int hdrlen = 24;
227 if (ieee80211_is_data(fc)) {
228 if (ieee80211_has_a4(fc))
229 hdrlen = 30;
230 if (ieee80211_is_data_qos(fc))
231 hdrlen += IEEE80211_QOS_CTL_LEN;
232 goto out;
235 if (ieee80211_is_ctl(fc)) {
237 * ACK and CTS are 10 bytes, all others 16. To see how
238 * to get this condition consider
239 * subtype mask: 0b0000000011110000 (0x00F0)
240 * ACK subtype: 0b0000000011010000 (0x00D0)
241 * CTS subtype: 0b0000000011000000 (0x00C0)
242 * bits that matter: ^^^ (0x00E0)
243 * value of those: 0b0000000011000000 (0x00C0)
245 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
246 hdrlen = 10;
247 else
248 hdrlen = 16;
250 out:
251 return hdrlen;
253 EXPORT_SYMBOL(ieee80211_hdrlen);
255 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
257 const struct ieee80211_hdr *hdr =
258 (const struct ieee80211_hdr *)skb->data;
259 unsigned int hdrlen;
261 if (unlikely(skb->len < 10))
262 return 0;
263 hdrlen = ieee80211_hdrlen(hdr->frame_control);
264 if (unlikely(hdrlen > skb->len))
265 return 0;
266 return hdrlen;
268 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
270 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
272 int ae = meshhdr->flags & MESH_FLAGS_AE;
273 /* 7.1.3.5a.2 */
274 switch (ae) {
275 case 0:
276 return 6;
277 case MESH_FLAGS_AE_A4:
278 return 12;
279 case MESH_FLAGS_AE_A5_A6:
280 return 18;
281 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
282 return 24;
283 default:
284 return 6;
288 int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr,
289 enum nl80211_iftype iftype)
291 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
292 u16 hdrlen, ethertype;
293 u8 *payload;
294 u8 dst[ETH_ALEN];
295 u8 src[ETH_ALEN] __aligned(2);
297 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
298 return -1;
300 hdrlen = ieee80211_hdrlen(hdr->frame_control);
302 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
303 * header
304 * IEEE 802.11 address fields:
305 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
306 * 0 0 DA SA BSSID n/a
307 * 0 1 DA BSSID SA n/a
308 * 1 0 BSSID SA DA n/a
309 * 1 1 RA TA DA SA
311 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
312 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
314 switch (hdr->frame_control &
315 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
316 case cpu_to_le16(IEEE80211_FCTL_TODS):
317 if (unlikely(iftype != NL80211_IFTYPE_AP &&
318 iftype != NL80211_IFTYPE_AP_VLAN))
319 return -1;
320 break;
321 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
322 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
323 iftype != NL80211_IFTYPE_MESH_POINT))
324 return -1;
325 if (iftype == NL80211_IFTYPE_MESH_POINT) {
326 struct ieee80211s_hdr *meshdr =
327 (struct ieee80211s_hdr *) (skb->data + hdrlen);
328 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
329 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
330 memcpy(dst, meshdr->eaddr1, ETH_ALEN);
331 memcpy(src, meshdr->eaddr2, ETH_ALEN);
334 break;
335 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
336 if ((iftype != NL80211_IFTYPE_STATION &&
337 iftype != NL80211_IFTYPE_MESH_POINT) ||
338 (is_multicast_ether_addr(dst) &&
339 !compare_ether_addr(src, addr)))
340 return -1;
341 if (iftype == NL80211_IFTYPE_MESH_POINT) {
342 struct ieee80211s_hdr *meshdr =
343 (struct ieee80211s_hdr *) (skb->data + hdrlen);
344 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
345 if (meshdr->flags & MESH_FLAGS_AE_A4)
346 memcpy(src, meshdr->eaddr1, ETH_ALEN);
348 break;
349 case cpu_to_le16(0):
350 if (iftype != NL80211_IFTYPE_ADHOC)
351 return -1;
352 break;
355 if (unlikely(skb->len - hdrlen < 8))
356 return -1;
358 payload = skb->data + hdrlen;
359 ethertype = (payload[6] << 8) | payload[7];
361 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
362 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
363 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
364 /* remove RFC1042 or Bridge-Tunnel encapsulation and
365 * replace EtherType */
366 skb_pull(skb, hdrlen + 6);
367 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
368 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
369 } else {
370 struct ethhdr *ehdr;
371 __be16 len;
373 skb_pull(skb, hdrlen);
374 len = htons(skb->len);
375 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
376 memcpy(ehdr->h_dest, dst, ETH_ALEN);
377 memcpy(ehdr->h_source, src, ETH_ALEN);
378 ehdr->h_proto = len;
380 return 0;
382 EXPORT_SYMBOL(ieee80211_data_to_8023);
384 int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr,
385 enum nl80211_iftype iftype, u8 *bssid, bool qos)
387 struct ieee80211_hdr hdr;
388 u16 hdrlen, ethertype;
389 __le16 fc;
390 const u8 *encaps_data;
391 int encaps_len, skip_header_bytes;
392 int nh_pos, h_pos;
393 int head_need;
395 if (unlikely(skb->len < ETH_HLEN))
396 return -EINVAL;
398 nh_pos = skb_network_header(skb) - skb->data;
399 h_pos = skb_transport_header(skb) - skb->data;
401 /* convert Ethernet header to proper 802.11 header (based on
402 * operation mode) */
403 ethertype = (skb->data[12] << 8) | skb->data[13];
404 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
406 switch (iftype) {
407 case NL80211_IFTYPE_AP:
408 case NL80211_IFTYPE_AP_VLAN:
409 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
410 /* DA BSSID SA */
411 memcpy(hdr.addr1, skb->data, ETH_ALEN);
412 memcpy(hdr.addr2, addr, ETH_ALEN);
413 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
414 hdrlen = 24;
415 break;
416 case NL80211_IFTYPE_STATION:
417 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
418 /* BSSID SA DA */
419 memcpy(hdr.addr1, bssid, ETH_ALEN);
420 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
421 memcpy(hdr.addr3, skb->data, ETH_ALEN);
422 hdrlen = 24;
423 break;
424 case NL80211_IFTYPE_ADHOC:
425 /* DA SA BSSID */
426 memcpy(hdr.addr1, skb->data, ETH_ALEN);
427 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
428 memcpy(hdr.addr3, bssid, ETH_ALEN);
429 hdrlen = 24;
430 break;
431 default:
432 return -EOPNOTSUPP;
435 if (qos) {
436 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
437 hdrlen += 2;
440 hdr.frame_control = fc;
441 hdr.duration_id = 0;
442 hdr.seq_ctrl = 0;
444 skip_header_bytes = ETH_HLEN;
445 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
446 encaps_data = bridge_tunnel_header;
447 encaps_len = sizeof(bridge_tunnel_header);
448 skip_header_bytes -= 2;
449 } else if (ethertype > 0x600) {
450 encaps_data = rfc1042_header;
451 encaps_len = sizeof(rfc1042_header);
452 skip_header_bytes -= 2;
453 } else {
454 encaps_data = NULL;
455 encaps_len = 0;
458 skb_pull(skb, skip_header_bytes);
459 nh_pos -= skip_header_bytes;
460 h_pos -= skip_header_bytes;
462 head_need = hdrlen + encaps_len - skb_headroom(skb);
464 if (head_need > 0 || skb_cloned(skb)) {
465 head_need = max(head_need, 0);
466 if (head_need)
467 skb_orphan(skb);
469 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
470 printk(KERN_ERR "failed to reallocate Tx buffer\n");
471 return -ENOMEM;
473 skb->truesize += head_need;
476 if (encaps_data) {
477 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
478 nh_pos += encaps_len;
479 h_pos += encaps_len;
482 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
484 nh_pos += hdrlen;
485 h_pos += hdrlen;
487 /* Update skb pointers to various headers since this modified frame
488 * is going to go through Linux networking code that may potentially
489 * need things like pointer to IP header. */
490 skb_set_mac_header(skb, 0);
491 skb_set_network_header(skb, nh_pos);
492 skb_set_transport_header(skb, h_pos);
494 return 0;
496 EXPORT_SYMBOL(ieee80211_data_from_8023);
498 /* Given a data frame determine the 802.1p/1d tag to use. */
499 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
501 unsigned int dscp;
503 /* skb->priority values from 256->263 are magic values to
504 * directly indicate a specific 802.1d priority. This is used
505 * to allow 802.1d priority to be passed directly in from VLAN
506 * tags, etc.
508 if (skb->priority >= 256 && skb->priority <= 263)
509 return skb->priority - 256;
511 switch (skb->protocol) {
512 case htons(ETH_P_IP):
513 dscp = ip_hdr(skb)->tos & 0xfc;
514 break;
515 default:
516 return 0;
519 return dscp >> 5;
521 EXPORT_SYMBOL(cfg80211_classify8021d);
523 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
525 u8 *end, *pos;
527 pos = bss->information_elements;
528 if (pos == NULL)
529 return NULL;
530 end = pos + bss->len_information_elements;
532 while (pos + 1 < end) {
533 if (pos + 2 + pos[1] > end)
534 break;
535 if (pos[0] == ie)
536 return pos;
537 pos += 2 + pos[1];
540 return NULL;
542 EXPORT_SYMBOL(ieee80211_bss_get_ie);
544 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
546 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
547 struct net_device *dev = wdev->netdev;
548 int i;
550 if (!wdev->connect_keys)
551 return;
553 for (i = 0; i < 6; i++) {
554 if (!wdev->connect_keys->params[i].cipher)
555 continue;
556 if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL,
557 &wdev->connect_keys->params[i])) {
558 printk(KERN_ERR "%s: failed to set key %d\n",
559 dev->name, i);
560 continue;
562 if (wdev->connect_keys->def == i)
563 if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) {
564 printk(KERN_ERR "%s: failed to set defkey %d\n",
565 dev->name, i);
566 continue;
568 if (wdev->connect_keys->defmgmt == i)
569 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
570 printk(KERN_ERR "%s: failed to set mgtdef %d\n",
571 dev->name, i);
574 kfree(wdev->connect_keys);
575 wdev->connect_keys = NULL;
578 static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
580 struct cfg80211_event *ev;
581 unsigned long flags;
582 const u8 *bssid = NULL;
584 spin_lock_irqsave(&wdev->event_lock, flags);
585 while (!list_empty(&wdev->event_list)) {
586 ev = list_first_entry(&wdev->event_list,
587 struct cfg80211_event, list);
588 list_del(&ev->list);
589 spin_unlock_irqrestore(&wdev->event_lock, flags);
591 wdev_lock(wdev);
592 switch (ev->type) {
593 case EVENT_CONNECT_RESULT:
594 if (!is_zero_ether_addr(ev->cr.bssid))
595 bssid = ev->cr.bssid;
596 __cfg80211_connect_result(
597 wdev->netdev, bssid,
598 ev->cr.req_ie, ev->cr.req_ie_len,
599 ev->cr.resp_ie, ev->cr.resp_ie_len,
600 ev->cr.status,
601 ev->cr.status == WLAN_STATUS_SUCCESS,
602 NULL);
603 break;
604 case EVENT_ROAMED:
605 __cfg80211_roamed(wdev, ev->rm.bssid,
606 ev->rm.req_ie, ev->rm.req_ie_len,
607 ev->rm.resp_ie, ev->rm.resp_ie_len);
608 break;
609 case EVENT_DISCONNECTED:
610 __cfg80211_disconnected(wdev->netdev,
611 ev->dc.ie, ev->dc.ie_len,
612 ev->dc.reason, true);
613 break;
614 case EVENT_IBSS_JOINED:
615 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
616 break;
618 wdev_unlock(wdev);
620 kfree(ev);
622 spin_lock_irqsave(&wdev->event_lock, flags);
624 spin_unlock_irqrestore(&wdev->event_lock, flags);
627 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
629 struct wireless_dev *wdev;
631 ASSERT_RTNL();
632 ASSERT_RDEV_LOCK(rdev);
634 mutex_lock(&rdev->devlist_mtx);
636 list_for_each_entry(wdev, &rdev->netdev_list, list)
637 cfg80211_process_wdev_events(wdev);
639 mutex_unlock(&rdev->devlist_mtx);
642 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
643 struct net_device *dev, enum nl80211_iftype ntype,
644 u32 *flags, struct vif_params *params)
646 int err;
647 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
649 ASSERT_RDEV_LOCK(rdev);
651 /* don't support changing VLANs, you just re-create them */
652 if (otype == NL80211_IFTYPE_AP_VLAN)
653 return -EOPNOTSUPP;
655 if (!rdev->ops->change_virtual_intf ||
656 !(rdev->wiphy.interface_modes & (1 << ntype)))
657 return -EOPNOTSUPP;
659 if (ntype != otype) {
660 switch (otype) {
661 case NL80211_IFTYPE_ADHOC:
662 cfg80211_leave_ibss(rdev, dev, false);
663 break;
664 case NL80211_IFTYPE_STATION:
665 cfg80211_disconnect(rdev, dev,
666 WLAN_REASON_DEAUTH_LEAVING, true);
667 break;
668 case NL80211_IFTYPE_MESH_POINT:
669 /* mesh should be handled? */
670 break;
671 default:
672 break;
675 cfg80211_process_rdev_events(rdev);
678 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
679 ntype, flags, params);
681 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
683 return err;