2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
25 * The current flushing context - we pass it instead of 5 arguments:
34 unsigned force_split
: 1;
38 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
40 void update_page_count(int level
, unsigned long pages
)
44 /* Protect against CPA */
45 spin_lock_irqsave(&pgd_lock
, flags
);
46 direct_pages_count
[level
] += pages
;
47 spin_unlock_irqrestore(&pgd_lock
, flags
);
50 static void split_page_count(int level
)
52 direct_pages_count
[level
]--;
53 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
56 int arch_report_meminfo(char *page
)
58 int n
= sprintf(page
, "DirectMap4k: %8lu kB\n",
59 direct_pages_count
[PG_LEVEL_4K
] << 2);
60 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
61 n
+= sprintf(page
+ n
, "DirectMap2M: %8lu kB\n",
62 direct_pages_count
[PG_LEVEL_2M
] << 11);
64 n
+= sprintf(page
+ n
, "DirectMap4M: %8lu kB\n",
65 direct_pages_count
[PG_LEVEL_2M
] << 12);
69 n
+= sprintf(page
+ n
, "DirectMap1G: %8lu kB\n",
70 direct_pages_count
[PG_LEVEL_1G
] << 20);
75 static inline void split_page_count(int level
) { }
80 static inline unsigned long highmap_start_pfn(void)
82 return __pa(_text
) >> PAGE_SHIFT
;
85 static inline unsigned long highmap_end_pfn(void)
87 return __pa(round_up((unsigned long)_end
, PMD_SIZE
)) >> PAGE_SHIFT
;
92 #ifdef CONFIG_DEBUG_PAGEALLOC
93 # define debug_pagealloc 1
95 # define debug_pagealloc 0
99 within(unsigned long addr
, unsigned long start
, unsigned long end
)
101 return addr
>= start
&& addr
< end
;
109 * clflush_cache_range - flush a cache range with clflush
110 * @addr: virtual start address
111 * @size: number of bytes to flush
113 * clflush is an unordered instruction which needs fencing with mfence
114 * to avoid ordering issues.
116 void clflush_cache_range(void *vaddr
, unsigned int size
)
118 void *vend
= vaddr
+ size
- 1;
122 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
125 * Flush any possible final partial cacheline:
132 static void __cpa_flush_all(void *arg
)
134 unsigned long cache
= (unsigned long)arg
;
137 * Flush all to work around Errata in early athlons regarding
138 * large page flushing.
142 if (cache
&& boot_cpu_data
.x86_model
>= 4)
146 static void cpa_flush_all(unsigned long cache
)
148 BUG_ON(irqs_disabled());
150 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
153 static void __cpa_flush_range(void *arg
)
156 * We could optimize that further and do individual per page
157 * tlb invalidates for a low number of pages. Caveat: we must
158 * flush the high aliases on 64bit as well.
163 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
165 unsigned int i
, level
;
168 BUG_ON(irqs_disabled());
169 WARN_ON(PAGE_ALIGN(start
) != start
);
171 on_each_cpu(__cpa_flush_range
, NULL
, 1);
177 * We only need to flush on one CPU,
178 * clflush is a MESI-coherent instruction that
179 * will cause all other CPUs to flush the same
182 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
183 pte_t
*pte
= lookup_address(addr
, &level
);
186 * Only flush present addresses:
188 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
189 clflush_cache_range((void *) addr
, PAGE_SIZE
);
194 * Certain areas of memory on x86 require very specific protection flags,
195 * for example the BIOS area or kernel text. Callers don't always get this
196 * right (again, ioremap() on BIOS memory is not uncommon) so this function
197 * checks and fixes these known static required protection bits.
199 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
202 pgprot_t forbidden
= __pgprot(0);
205 * The BIOS area between 640k and 1Mb needs to be executable for
206 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
208 if (within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
209 pgprot_val(forbidden
) |= _PAGE_NX
;
212 * The kernel text needs to be executable for obvious reasons
213 * Does not cover __inittext since that is gone later on. On
214 * 64bit we do not enforce !NX on the low mapping
216 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
217 pgprot_val(forbidden
) |= _PAGE_NX
;
220 * The .rodata section needs to be read-only. Using the pfn
221 * catches all aliases.
223 if (within(pfn
, __pa((unsigned long)__start_rodata
) >> PAGE_SHIFT
,
224 __pa((unsigned long)__end_rodata
) >> PAGE_SHIFT
))
225 pgprot_val(forbidden
) |= _PAGE_RW
;
227 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
233 * Lookup the page table entry for a virtual address. Return a pointer
234 * to the entry and the level of the mapping.
236 * Note: We return pud and pmd either when the entry is marked large
237 * or when the present bit is not set. Otherwise we would return a
238 * pointer to a nonexisting mapping.
240 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
242 pgd_t
*pgd
= pgd_offset_k(address
);
246 *level
= PG_LEVEL_NONE
;
251 pud
= pud_offset(pgd
, address
);
255 *level
= PG_LEVEL_1G
;
256 if (pud_large(*pud
) || !pud_present(*pud
))
259 pmd
= pmd_offset(pud
, address
);
263 *level
= PG_LEVEL_2M
;
264 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
267 *level
= PG_LEVEL_4K
;
269 return pte_offset_kernel(pmd
, address
);
271 EXPORT_SYMBOL_GPL(lookup_address
);
274 * Set the new pmd in all the pgds we know about:
276 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
279 set_pte_atomic(kpte
, pte
);
281 if (!SHARED_KERNEL_PMD
) {
284 list_for_each_entry(page
, &pgd_list
, lru
) {
289 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
290 pud
= pud_offset(pgd
, address
);
291 pmd
= pmd_offset(pud
, address
);
292 set_pte_atomic((pte_t
*)pmd
, pte
);
299 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
300 struct cpa_data
*cpa
)
302 unsigned long nextpage_addr
, numpages
, pmask
, psize
, flags
, addr
, pfn
;
303 pte_t new_pte
, old_pte
, *tmp
;
304 pgprot_t old_prot
, new_prot
;
308 if (cpa
->force_split
)
311 spin_lock_irqsave(&pgd_lock
, flags
);
313 * Check for races, another CPU might have split this page
316 tmp
= lookup_address(address
, &level
);
322 psize
= PMD_PAGE_SIZE
;
323 pmask
= PMD_PAGE_MASK
;
327 psize
= PUD_PAGE_SIZE
;
328 pmask
= PUD_PAGE_MASK
;
337 * Calculate the number of pages, which fit into this large
338 * page starting at address:
340 nextpage_addr
= (address
+ psize
) & pmask
;
341 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
342 if (numpages
< cpa
->numpages
)
343 cpa
->numpages
= numpages
;
346 * We are safe now. Check whether the new pgprot is the same:
349 old_prot
= new_prot
= pte_pgprot(old_pte
);
351 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
352 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
355 * old_pte points to the large page base address. So we need
356 * to add the offset of the virtual address:
358 pfn
= pte_pfn(old_pte
) + ((address
& (psize
- 1)) >> PAGE_SHIFT
);
361 new_prot
= static_protections(new_prot
, address
, pfn
);
364 * We need to check the full range, whether
365 * static_protection() requires a different pgprot for one of
366 * the pages in the range we try to preserve:
368 addr
= address
+ PAGE_SIZE
;
370 for (i
= 1; i
< cpa
->numpages
; i
++, addr
+= PAGE_SIZE
, pfn
++) {
371 pgprot_t chk_prot
= static_protections(new_prot
, addr
, pfn
);
373 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
378 * If there are no changes, return. maxpages has been updated
381 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
387 * We need to change the attributes. Check, whether we can
388 * change the large page in one go. We request a split, when
389 * the address is not aligned and the number of pages is
390 * smaller than the number of pages in the large page. Note
391 * that we limited the number of possible pages already to
392 * the number of pages in the large page.
394 if (address
== (nextpage_addr
- psize
) && cpa
->numpages
== numpages
) {
396 * The address is aligned and the number of pages
397 * covers the full page.
399 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
400 __set_pmd_pte(kpte
, address
, new_pte
);
406 spin_unlock_irqrestore(&pgd_lock
, flags
);
411 static LIST_HEAD(page_pool
);
412 static unsigned long pool_size
, pool_pages
, pool_low
;
413 static unsigned long pool_used
, pool_failed
;
415 static void cpa_fill_pool(struct page
**ret
)
417 gfp_t gfp
= GFP_KERNEL
;
422 * Avoid recursion (on debug-pagealloc) and also signal
423 * our priority to get to these pagetables:
425 if (current
->flags
& PF_MEMALLOC
)
427 current
->flags
|= PF_MEMALLOC
;
430 * Allocate atomically from atomic contexts:
432 if (in_atomic() || irqs_disabled() || debug_pagealloc
)
433 gfp
= GFP_ATOMIC
| __GFP_NORETRY
| __GFP_NOWARN
;
435 while (pool_pages
< pool_size
|| (ret
&& !*ret
)) {
436 p
= alloc_pages(gfp
, 0);
442 * If the call site needs a page right now, provide it:
448 spin_lock_irqsave(&pgd_lock
, flags
);
449 list_add(&p
->lru
, &page_pool
);
451 spin_unlock_irqrestore(&pgd_lock
, flags
);
454 current
->flags
&= ~PF_MEMALLOC
;
457 #define SHIFT_MB (20 - PAGE_SHIFT)
458 #define ROUND_MB_GB ((1 << 10) - 1)
459 #define SHIFT_MB_GB 10
460 #define POOL_PAGES_PER_GB 16
462 void __init
cpa_init(void)
469 * Calculate the number of pool pages:
471 * Convert totalram (nr of pages) to MiB and round to the next
472 * GiB. Shift MiB to Gib and multiply the result by
475 if (debug_pagealloc
) {
476 gb
= ((si
.totalram
>> SHIFT_MB
) + ROUND_MB_GB
) >> SHIFT_MB_GB
;
477 pool_size
= POOL_PAGES_PER_GB
* gb
;
481 pool_low
= pool_size
;
485 "CPA: page pool initialized %lu of %lu pages preallocated\n",
486 pool_pages
, pool_size
);
489 static int split_large_page(pte_t
*kpte
, unsigned long address
)
491 unsigned long flags
, pfn
, pfninc
= 1;
492 unsigned int i
, level
;
498 * Get a page from the pool. The pool list is protected by the
499 * pgd_lock, which we have to take anyway for the split
502 spin_lock_irqsave(&pgd_lock
, flags
);
503 if (list_empty(&page_pool
)) {
504 spin_unlock_irqrestore(&pgd_lock
, flags
);
506 cpa_fill_pool(&base
);
509 spin_lock_irqsave(&pgd_lock
, flags
);
511 base
= list_first_entry(&page_pool
, struct page
, lru
);
512 list_del(&base
->lru
);
515 if (pool_pages
< pool_low
)
516 pool_low
= pool_pages
;
520 * Check for races, another CPU might have split this page
523 tmp
= lookup_address(address
, &level
);
527 pbase
= (pte_t
*)page_address(base
);
528 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
529 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
532 if (level
== PG_LEVEL_1G
) {
533 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
534 pgprot_val(ref_prot
) |= _PAGE_PSE
;
539 * Get the target pfn from the original entry:
541 pfn
= pte_pfn(*kpte
);
542 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
543 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
545 if (address
>= (unsigned long)__va(0) &&
546 address
< (unsigned long)__va(max_low_pfn_mapped
<< PAGE_SHIFT
))
547 split_page_count(level
);
550 if (address
>= (unsigned long)__va(1UL<<32) &&
551 address
< (unsigned long)__va(max_pfn_mapped
<< PAGE_SHIFT
))
552 split_page_count(level
);
556 * Install the new, split up pagetable. Important details here:
558 * On Intel the NX bit of all levels must be cleared to make a
559 * page executable. See section 4.13.2 of Intel 64 and IA-32
560 * Architectures Software Developer's Manual).
562 * Mark the entry present. The current mapping might be
563 * set to not present, which we preserved above.
565 ref_prot
= pte_pgprot(pte_mkexec(pte_clrhuge(*kpte
)));
566 pgprot_val(ref_prot
) |= _PAGE_PRESENT
;
567 __set_pmd_pte(kpte
, address
, mk_pte(base
, ref_prot
));
572 * If we dropped out via the lookup_address check under
573 * pgd_lock then stick the page back into the pool:
576 list_add(&base
->lru
, &page_pool
);
580 spin_unlock_irqrestore(&pgd_lock
, flags
);
585 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
587 unsigned long address
= cpa
->vaddr
;
590 pte_t
*kpte
, old_pte
;
593 kpte
= lookup_address(address
, &level
);
598 if (!pte_val(old_pte
)) {
601 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
602 "vaddr = %lx cpa->vaddr = %lx\n", address
,
607 if (level
== PG_LEVEL_4K
) {
609 pgprot_t new_prot
= pte_pgprot(old_pte
);
610 unsigned long pfn
= pte_pfn(old_pte
);
612 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
613 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
615 new_prot
= static_protections(new_prot
, address
, pfn
);
618 * We need to keep the pfn from the existing PTE,
619 * after all we're only going to change it's attributes
620 * not the memory it points to
622 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
625 * Do we really change anything ?
627 if (pte_val(old_pte
) != pte_val(new_pte
)) {
628 set_pte_atomic(kpte
, new_pte
);
636 * Check, whether we can keep the large page intact
637 * and just change the pte:
639 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
641 * When the range fits into the existing large page,
642 * return. cp->numpages and cpa->tlbflush have been updated in
649 * We have to split the large page:
651 err
= split_large_page(kpte
, address
);
660 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
662 static int cpa_process_alias(struct cpa_data
*cpa
)
664 struct cpa_data alias_cpa
;
667 if (cpa
->pfn
>= max_pfn_mapped
)
671 if (cpa
->pfn
>= max_low_pfn_mapped
&& cpa
->pfn
< (1UL<<(32-PAGE_SHIFT
)))
675 * No need to redo, when the primary call touched the direct
678 if (!(within(cpa
->vaddr
, PAGE_OFFSET
,
679 PAGE_OFFSET
+ (max_low_pfn_mapped
<< PAGE_SHIFT
))
681 || within(cpa
->vaddr
, PAGE_OFFSET
+ (1UL<<32),
682 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))
687 alias_cpa
.vaddr
= (unsigned long) __va(cpa
->pfn
<< PAGE_SHIFT
);
689 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
696 * No need to redo, when the primary call touched the high
699 if (within(cpa
->vaddr
, (unsigned long) _text
, (unsigned long) _end
))
703 * If the physical address is inside the kernel map, we need
704 * to touch the high mapped kernel as well:
706 if (!within(cpa
->pfn
, highmap_start_pfn(), highmap_end_pfn()))
711 (cpa
->pfn
<< PAGE_SHIFT
) + __START_KERNEL_map
- phys_base
;
714 * The high mapping range is imprecise, so ignore the return value.
716 __change_page_attr_set_clr(&alias_cpa
, 0);
721 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
723 int ret
, numpages
= cpa
->numpages
;
727 * Store the remaining nr of pages for the large page
728 * preservation check.
730 cpa
->numpages
= numpages
;
732 ret
= __change_page_attr(cpa
, checkalias
);
737 ret
= cpa_process_alias(cpa
);
743 * Adjust the number of pages with the result of the
744 * CPA operation. Either a large page has been
745 * preserved or a single page update happened.
747 BUG_ON(cpa
->numpages
> numpages
);
748 numpages
-= cpa
->numpages
;
749 cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
754 static inline int cache_attr(pgprot_t attr
)
756 return pgprot_val(attr
) &
757 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
760 static int change_page_attr_set_clr(unsigned long addr
, int numpages
,
761 pgprot_t mask_set
, pgprot_t mask_clr
,
765 int ret
, cache
, checkalias
;
768 * Check, if we are requested to change a not supported
771 mask_set
= canon_pgprot(mask_set
);
772 mask_clr
= canon_pgprot(mask_clr
);
773 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
776 /* Ensure we are PAGE_SIZE aligned */
777 if (addr
& ~PAGE_MASK
) {
780 * People should not be passing in unaligned addresses:
786 cpa
.numpages
= numpages
;
787 cpa
.mask_set
= mask_set
;
788 cpa
.mask_clr
= mask_clr
;
790 cpa
.force_split
= force_split
;
792 /* No alias checking for _NX bit modifications */
793 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
795 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
798 * Check whether we really changed something:
804 * No need to flush, when we did not set any of the caching
807 cache
= cache_attr(mask_set
);
810 * On success we use clflush, when the CPU supports it to
811 * avoid the wbindv. If the CPU does not support it and in the
812 * error case we fall back to cpa_flush_all (which uses
815 if (!ret
&& cpu_has_clflush
)
816 cpa_flush_range(addr
, numpages
, cache
);
818 cpa_flush_all(cache
);
826 static inline int change_page_attr_set(unsigned long addr
, int numpages
,
829 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0);
832 static inline int change_page_attr_clear(unsigned long addr
, int numpages
,
835 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0);
838 int _set_memory_uc(unsigned long addr
, int numpages
)
841 * for now UC MINUS. see comments in ioremap_nocache()
843 return change_page_attr_set(addr
, numpages
,
844 __pgprot(_PAGE_CACHE_UC_MINUS
));
847 int set_memory_uc(unsigned long addr
, int numpages
)
850 * for now UC MINUS. see comments in ioremap_nocache()
852 if (reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
853 _PAGE_CACHE_UC_MINUS
, NULL
))
856 return _set_memory_uc(addr
, numpages
);
858 EXPORT_SYMBOL(set_memory_uc
);
860 int _set_memory_wc(unsigned long addr
, int numpages
)
862 return change_page_attr_set(addr
, numpages
,
863 __pgprot(_PAGE_CACHE_WC
));
866 int set_memory_wc(unsigned long addr
, int numpages
)
869 return set_memory_uc(addr
, numpages
);
871 if (reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
872 _PAGE_CACHE_WC
, NULL
))
875 return _set_memory_wc(addr
, numpages
);
877 EXPORT_SYMBOL(set_memory_wc
);
879 int _set_memory_wb(unsigned long addr
, int numpages
)
881 return change_page_attr_clear(addr
, numpages
,
882 __pgprot(_PAGE_CACHE_MASK
));
885 int set_memory_wb(unsigned long addr
, int numpages
)
887 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
889 return _set_memory_wb(addr
, numpages
);
891 EXPORT_SYMBOL(set_memory_wb
);
893 int set_memory_x(unsigned long addr
, int numpages
)
895 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_NX
));
897 EXPORT_SYMBOL(set_memory_x
);
899 int set_memory_nx(unsigned long addr
, int numpages
)
901 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_NX
));
903 EXPORT_SYMBOL(set_memory_nx
);
905 int set_memory_ro(unsigned long addr
, int numpages
)
907 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_RW
));
910 int set_memory_rw(unsigned long addr
, int numpages
)
912 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_RW
));
915 int set_memory_np(unsigned long addr
, int numpages
)
917 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_PRESENT
));
920 int set_memory_4k(unsigned long addr
, int numpages
)
922 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0),
926 int set_pages_uc(struct page
*page
, int numpages
)
928 unsigned long addr
= (unsigned long)page_address(page
);
930 return set_memory_uc(addr
, numpages
);
932 EXPORT_SYMBOL(set_pages_uc
);
934 int set_pages_wb(struct page
*page
, int numpages
)
936 unsigned long addr
= (unsigned long)page_address(page
);
938 return set_memory_wb(addr
, numpages
);
940 EXPORT_SYMBOL(set_pages_wb
);
942 int set_pages_x(struct page
*page
, int numpages
)
944 unsigned long addr
= (unsigned long)page_address(page
);
946 return set_memory_x(addr
, numpages
);
948 EXPORT_SYMBOL(set_pages_x
);
950 int set_pages_nx(struct page
*page
, int numpages
)
952 unsigned long addr
= (unsigned long)page_address(page
);
954 return set_memory_nx(addr
, numpages
);
956 EXPORT_SYMBOL(set_pages_nx
);
958 int set_pages_ro(struct page
*page
, int numpages
)
960 unsigned long addr
= (unsigned long)page_address(page
);
962 return set_memory_ro(addr
, numpages
);
965 int set_pages_rw(struct page
*page
, int numpages
)
967 unsigned long addr
= (unsigned long)page_address(page
);
969 return set_memory_rw(addr
, numpages
);
972 #ifdef CONFIG_DEBUG_PAGEALLOC
974 static int __set_pages_p(struct page
*page
, int numpages
)
976 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
977 .numpages
= numpages
,
978 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
979 .mask_clr
= __pgprot(0)};
981 return __change_page_attr_set_clr(&cpa
, 1);
984 static int __set_pages_np(struct page
*page
, int numpages
)
986 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
987 .numpages
= numpages
,
988 .mask_set
= __pgprot(0),
989 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
)};
991 return __change_page_attr_set_clr(&cpa
, 1);
994 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
996 if (PageHighMem(page
))
999 debug_check_no_locks_freed(page_address(page
),
1000 numpages
* PAGE_SIZE
);
1004 * If page allocator is not up yet then do not call c_p_a():
1006 if (!debug_pagealloc_enabled
)
1010 * The return value is ignored as the calls cannot fail.
1011 * Large pages are kept enabled at boot time, and are
1012 * split up quickly with DEBUG_PAGEALLOC. If a splitup
1013 * fails here (due to temporary memory shortage) no damage
1014 * is done because we just keep the largepage intact up
1015 * to the next attempt when it will likely be split up:
1018 __set_pages_p(page
, numpages
);
1020 __set_pages_np(page
, numpages
);
1023 * We should perform an IPI and flush all tlbs,
1024 * but that can deadlock->flush only current cpu:
1029 * Try to refill the page pool here. We can do this only after
1032 cpa_fill_pool(NULL
);
1035 #ifdef CONFIG_DEBUG_FS
1036 static int dpa_show(struct seq_file
*m
, void *v
)
1038 seq_puts(m
, "DEBUG_PAGEALLOC\n");
1039 seq_printf(m
, "pool_size : %lu\n", pool_size
);
1040 seq_printf(m
, "pool_pages : %lu\n", pool_pages
);
1041 seq_printf(m
, "pool_low : %lu\n", pool_low
);
1042 seq_printf(m
, "pool_used : %lu\n", pool_used
);
1043 seq_printf(m
, "pool_failed : %lu\n", pool_failed
);
1048 static int dpa_open(struct inode
*inode
, struct file
*filp
)
1050 return single_open(filp
, dpa_show
, NULL
);
1053 static const struct file_operations dpa_fops
= {
1056 .llseek
= seq_lseek
,
1057 .release
= single_release
,
1060 static int __init
debug_pagealloc_proc_init(void)
1064 de
= debugfs_create_file("debug_pagealloc", 0600, NULL
, NULL
,
1071 __initcall(debug_pagealloc_proc_init
);
1074 #ifdef CONFIG_HIBERNATION
1076 bool kernel_page_present(struct page
*page
)
1081 if (PageHighMem(page
))
1084 pte
= lookup_address((unsigned long)page_address(page
), &level
);
1085 return (pte_val(*pte
) & _PAGE_PRESENT
);
1088 #endif /* CONFIG_HIBERNATION */
1090 #endif /* CONFIG_DEBUG_PAGEALLOC */
1093 * The testcases use internal knowledge of the implementation that shouldn't
1094 * be exposed to the rest of the kernel. Include these directly here.
1096 #ifdef CONFIG_CPA_DEBUG
1097 #include "pageattr-test.c"