OMAP3: PM: CPUfreq support for OMAP3EVM board
[linux-ginger.git] / kernel / profile.c
bloba55d3a367ae86a95e3788e6162717188bb05ad90
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
31 struct profile_hit {
32 u32 pc, hits;
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
55 int profile_setup(char *str)
57 static char schedstr[] = "schedule";
58 static char sleepstr[] = "sleep";
59 static char kvmstr[] = "kvm";
60 int par;
62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
72 #else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 prof_on = SCHED_PROFILING;
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
94 } else if (get_option(&str, &par)) {
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
100 return 1;
102 __setup("profile=", profile_setup);
105 int __ref profile_init(void)
107 int buffer_bytes;
108 if (!prof_on)
109 return 0;
111 /* only text is profiled */
112 prof_len = (_etext - _stext) >> prof_shift;
113 buffer_bytes = prof_len*sizeof(atomic_t);
115 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116 return -ENOMEM;
118 cpumask_copy(prof_cpu_mask, cpu_possible_mask);
120 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
121 if (prof_buffer)
122 return 0;
124 prof_buffer = alloc_pages_exact(buffer_bytes,
125 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
126 if (prof_buffer)
127 return 0;
129 prof_buffer = vmalloc(buffer_bytes);
130 if (prof_buffer)
131 return 0;
133 free_cpumask_var(prof_cpu_mask);
134 return -ENOMEM;
137 /* Profile event notifications */
139 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
140 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
141 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
143 void profile_task_exit(struct task_struct *task)
145 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
148 int profile_handoff_task(struct task_struct *task)
150 int ret;
151 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
152 return (ret == NOTIFY_OK) ? 1 : 0;
155 void profile_munmap(unsigned long addr)
157 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
160 int task_handoff_register(struct notifier_block *n)
162 return atomic_notifier_chain_register(&task_free_notifier, n);
164 EXPORT_SYMBOL_GPL(task_handoff_register);
166 int task_handoff_unregister(struct notifier_block *n)
168 return atomic_notifier_chain_unregister(&task_free_notifier, n);
170 EXPORT_SYMBOL_GPL(task_handoff_unregister);
172 int profile_event_register(enum profile_type type, struct notifier_block *n)
174 int err = -EINVAL;
176 switch (type) {
177 case PROFILE_TASK_EXIT:
178 err = blocking_notifier_chain_register(
179 &task_exit_notifier, n);
180 break;
181 case PROFILE_MUNMAP:
182 err = blocking_notifier_chain_register(
183 &munmap_notifier, n);
184 break;
187 return err;
189 EXPORT_SYMBOL_GPL(profile_event_register);
191 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
193 int err = -EINVAL;
195 switch (type) {
196 case PROFILE_TASK_EXIT:
197 err = blocking_notifier_chain_unregister(
198 &task_exit_notifier, n);
199 break;
200 case PROFILE_MUNMAP:
201 err = blocking_notifier_chain_unregister(
202 &munmap_notifier, n);
203 break;
206 return err;
208 EXPORT_SYMBOL_GPL(profile_event_unregister);
210 int register_timer_hook(int (*hook)(struct pt_regs *))
212 if (timer_hook)
213 return -EBUSY;
214 timer_hook = hook;
215 return 0;
217 EXPORT_SYMBOL_GPL(register_timer_hook);
219 void unregister_timer_hook(int (*hook)(struct pt_regs *))
221 WARN_ON(hook != timer_hook);
222 timer_hook = NULL;
223 /* make sure all CPUs see the NULL hook */
224 synchronize_sched(); /* Allow ongoing interrupts to complete. */
226 EXPORT_SYMBOL_GPL(unregister_timer_hook);
229 #ifdef CONFIG_SMP
231 * Each cpu has a pair of open-addressed hashtables for pending
232 * profile hits. read_profile() IPI's all cpus to request them
233 * to flip buffers and flushes their contents to prof_buffer itself.
234 * Flip requests are serialized by the profile_flip_mutex. The sole
235 * use of having a second hashtable is for avoiding cacheline
236 * contention that would otherwise happen during flushes of pending
237 * profile hits required for the accuracy of reported profile hits
238 * and so resurrect the interrupt livelock issue.
240 * The open-addressed hashtables are indexed by profile buffer slot
241 * and hold the number of pending hits to that profile buffer slot on
242 * a cpu in an entry. When the hashtable overflows, all pending hits
243 * are accounted to their corresponding profile buffer slots with
244 * atomic_add() and the hashtable emptied. As numerous pending hits
245 * may be accounted to a profile buffer slot in a hashtable entry,
246 * this amortizes a number of atomic profile buffer increments likely
247 * to be far larger than the number of entries in the hashtable,
248 * particularly given that the number of distinct profile buffer
249 * positions to which hits are accounted during short intervals (e.g.
250 * several seconds) is usually very small. Exclusion from buffer
251 * flipping is provided by interrupt disablement (note that for
252 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
253 * process context).
254 * The hash function is meant to be lightweight as opposed to strong,
255 * and was vaguely inspired by ppc64 firmware-supported inverted
256 * pagetable hash functions, but uses a full hashtable full of finite
257 * collision chains, not just pairs of them.
259 * -- wli
261 static void __profile_flip_buffers(void *unused)
263 int cpu = smp_processor_id();
265 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
268 static void profile_flip_buffers(void)
270 int i, j, cpu;
272 mutex_lock(&profile_flip_mutex);
273 j = per_cpu(cpu_profile_flip, get_cpu());
274 put_cpu();
275 on_each_cpu(__profile_flip_buffers, NULL, 1);
276 for_each_online_cpu(cpu) {
277 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
278 for (i = 0; i < NR_PROFILE_HIT; ++i) {
279 if (!hits[i].hits) {
280 if (hits[i].pc)
281 hits[i].pc = 0;
282 continue;
284 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
285 hits[i].hits = hits[i].pc = 0;
288 mutex_unlock(&profile_flip_mutex);
291 static void profile_discard_flip_buffers(void)
293 int i, cpu;
295 mutex_lock(&profile_flip_mutex);
296 i = per_cpu(cpu_profile_flip, get_cpu());
297 put_cpu();
298 on_each_cpu(__profile_flip_buffers, NULL, 1);
299 for_each_online_cpu(cpu) {
300 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
301 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
303 mutex_unlock(&profile_flip_mutex);
306 void profile_hits(int type, void *__pc, unsigned int nr_hits)
308 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
309 int i, j, cpu;
310 struct profile_hit *hits;
312 if (prof_on != type || !prof_buffer)
313 return;
314 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
315 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
316 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
317 cpu = get_cpu();
318 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
319 if (!hits) {
320 put_cpu();
321 return;
324 * We buffer the global profiler buffer into a per-CPU
325 * queue and thus reduce the number of global (and possibly
326 * NUMA-alien) accesses. The write-queue is self-coalescing:
328 local_irq_save(flags);
329 do {
330 for (j = 0; j < PROFILE_GRPSZ; ++j) {
331 if (hits[i + j].pc == pc) {
332 hits[i + j].hits += nr_hits;
333 goto out;
334 } else if (!hits[i + j].hits) {
335 hits[i + j].pc = pc;
336 hits[i + j].hits = nr_hits;
337 goto out;
340 i = (i + secondary) & (NR_PROFILE_HIT - 1);
341 } while (i != primary);
344 * Add the current hit(s) and flush the write-queue out
345 * to the global buffer:
347 atomic_add(nr_hits, &prof_buffer[pc]);
348 for (i = 0; i < NR_PROFILE_HIT; ++i) {
349 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
350 hits[i].pc = hits[i].hits = 0;
352 out:
353 local_irq_restore(flags);
354 put_cpu();
357 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
358 unsigned long action, void *__cpu)
360 int node, cpu = (unsigned long)__cpu;
361 struct page *page;
363 switch (action) {
364 case CPU_UP_PREPARE:
365 case CPU_UP_PREPARE_FROZEN:
366 node = cpu_to_node(cpu);
367 per_cpu(cpu_profile_flip, cpu) = 0;
368 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
369 page = alloc_pages_exact_node(node,
370 GFP_KERNEL | __GFP_ZERO,
372 if (!page)
373 return NOTIFY_BAD;
374 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
376 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
377 page = alloc_pages_exact_node(node,
378 GFP_KERNEL | __GFP_ZERO,
380 if (!page)
381 goto out_free;
382 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
384 break;
385 out_free:
386 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
387 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
388 __free_page(page);
389 return NOTIFY_BAD;
390 case CPU_ONLINE:
391 case CPU_ONLINE_FROZEN:
392 if (prof_cpu_mask != NULL)
393 cpumask_set_cpu(cpu, prof_cpu_mask);
394 break;
395 case CPU_UP_CANCELED:
396 case CPU_UP_CANCELED_FROZEN:
397 case CPU_DEAD:
398 case CPU_DEAD_FROZEN:
399 if (prof_cpu_mask != NULL)
400 cpumask_clear_cpu(cpu, prof_cpu_mask);
401 if (per_cpu(cpu_profile_hits, cpu)[0]) {
402 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
403 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
404 __free_page(page);
406 if (per_cpu(cpu_profile_hits, cpu)[1]) {
407 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
408 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
409 __free_page(page);
411 break;
413 return NOTIFY_OK;
415 #else /* !CONFIG_SMP */
416 #define profile_flip_buffers() do { } while (0)
417 #define profile_discard_flip_buffers() do { } while (0)
418 #define profile_cpu_callback NULL
420 void profile_hits(int type, void *__pc, unsigned int nr_hits)
422 unsigned long pc;
424 if (prof_on != type || !prof_buffer)
425 return;
426 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
427 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
429 #endif /* !CONFIG_SMP */
430 EXPORT_SYMBOL_GPL(profile_hits);
432 void profile_tick(int type)
434 struct pt_regs *regs = get_irq_regs();
436 if (type == CPU_PROFILING && timer_hook)
437 timer_hook(regs);
438 if (!user_mode(regs) && prof_cpu_mask != NULL &&
439 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
440 profile_hit(type, (void *)profile_pc(regs));
443 #ifdef CONFIG_PROC_FS
444 #include <linux/proc_fs.h>
445 #include <linux/seq_file.h>
446 #include <asm/uaccess.h>
448 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
450 seq_cpumask(m, prof_cpu_mask);
451 seq_putc(m, '\n');
452 return 0;
455 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
457 return single_open(file, prof_cpu_mask_proc_show, NULL);
460 static ssize_t prof_cpu_mask_proc_write(struct file *file,
461 const char __user *buffer, size_t count, loff_t *pos)
463 cpumask_var_t new_value;
464 int err;
466 if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
467 return -ENOMEM;
469 err = cpumask_parse_user(buffer, count, new_value);
470 if (!err) {
471 cpumask_copy(prof_cpu_mask, new_value);
472 err = count;
474 free_cpumask_var(new_value);
475 return err;
478 static const struct file_operations prof_cpu_mask_proc_fops = {
479 .open = prof_cpu_mask_proc_open,
480 .read = seq_read,
481 .llseek = seq_lseek,
482 .release = single_release,
483 .write = prof_cpu_mask_proc_write,
486 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
488 /* create /proc/irq/prof_cpu_mask */
489 proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
493 * This function accesses profiling information. The returned data is
494 * binary: the sampling step and the actual contents of the profile
495 * buffer. Use of the program readprofile is recommended in order to
496 * get meaningful info out of these data.
498 static ssize_t
499 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
501 unsigned long p = *ppos;
502 ssize_t read;
503 char *pnt;
504 unsigned int sample_step = 1 << prof_shift;
506 profile_flip_buffers();
507 if (p >= (prof_len+1)*sizeof(unsigned int))
508 return 0;
509 if (count > (prof_len+1)*sizeof(unsigned int) - p)
510 count = (prof_len+1)*sizeof(unsigned int) - p;
511 read = 0;
513 while (p < sizeof(unsigned int) && count > 0) {
514 if (put_user(*((char *)(&sample_step)+p), buf))
515 return -EFAULT;
516 buf++; p++; count--; read++;
518 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
519 if (copy_to_user(buf, (void *)pnt, count))
520 return -EFAULT;
521 read += count;
522 *ppos += read;
523 return read;
527 * Writing to /proc/profile resets the counters
529 * Writing a 'profiling multiplier' value into it also re-sets the profiling
530 * interrupt frequency, on architectures that support this.
532 static ssize_t write_profile(struct file *file, const char __user *buf,
533 size_t count, loff_t *ppos)
535 #ifdef CONFIG_SMP
536 extern int setup_profiling_timer(unsigned int multiplier);
538 if (count == sizeof(int)) {
539 unsigned int multiplier;
541 if (copy_from_user(&multiplier, buf, sizeof(int)))
542 return -EFAULT;
544 if (setup_profiling_timer(multiplier))
545 return -EINVAL;
547 #endif
548 profile_discard_flip_buffers();
549 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
550 return count;
553 static const struct file_operations proc_profile_operations = {
554 .read = read_profile,
555 .write = write_profile,
558 #ifdef CONFIG_SMP
559 static void profile_nop(void *unused)
563 static int create_hash_tables(void)
565 int cpu;
567 for_each_online_cpu(cpu) {
568 int node = cpu_to_node(cpu);
569 struct page *page;
571 page = alloc_pages_exact_node(node,
572 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
574 if (!page)
575 goto out_cleanup;
576 per_cpu(cpu_profile_hits, cpu)[1]
577 = (struct profile_hit *)page_address(page);
578 page = alloc_pages_exact_node(node,
579 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
581 if (!page)
582 goto out_cleanup;
583 per_cpu(cpu_profile_hits, cpu)[0]
584 = (struct profile_hit *)page_address(page);
586 return 0;
587 out_cleanup:
588 prof_on = 0;
589 smp_mb();
590 on_each_cpu(profile_nop, NULL, 1);
591 for_each_online_cpu(cpu) {
592 struct page *page;
594 if (per_cpu(cpu_profile_hits, cpu)[0]) {
595 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
596 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
597 __free_page(page);
599 if (per_cpu(cpu_profile_hits, cpu)[1]) {
600 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
601 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
602 __free_page(page);
605 return -1;
607 #else
608 #define create_hash_tables() ({ 0; })
609 #endif
611 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
613 struct proc_dir_entry *entry;
615 if (!prof_on)
616 return 0;
617 if (create_hash_tables())
618 return -ENOMEM;
619 entry = proc_create("profile", S_IWUSR | S_IRUGO,
620 NULL, &proc_profile_operations);
621 if (!entry)
622 return 0;
623 entry->size = (1+prof_len) * sizeof(atomic_t);
624 hotcpu_notifier(profile_cpu_callback, 0);
625 return 0;
627 module_init(create_proc_profile);
628 #endif /* CONFIG_PROC_FS */