OMAP3: PM: CPUfreq support for OMAP3EVM board
[linux-ginger.git] / kernel / rcutree.c
blob705f02ac74337eea78dc861d6fc90c9fdcd63517
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
50 #include "rcutree.h"
52 /* Data structures. */
54 #define RCU_STATE_INITIALIZER(name) { \
55 .level = { &name.node[0] }, \
56 .levelcnt = { \
57 NUM_RCU_LVL_0, /* root of hierarchy. */ \
58 NUM_RCU_LVL_1, \
59 NUM_RCU_LVL_2, \
60 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
61 }, \
62 .signaled = RCU_SIGNAL_INIT, \
63 .gpnum = -300, \
64 .completed = -300, \
65 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
66 .orphan_cbs_list = NULL, \
67 .orphan_cbs_tail = &name.orphan_cbs_list, \
68 .orphan_qlen = 0, \
69 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
70 .n_force_qs = 0, \
71 .n_force_qs_ngp = 0, \
74 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
75 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
77 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
78 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
82 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
83 * permit this function to be invoked without holding the root rcu_node
84 * structure's ->lock, but of course results can be subject to change.
86 static int rcu_gp_in_progress(struct rcu_state *rsp)
88 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
92 * Note a quiescent state. Because we do not need to know
93 * how many quiescent states passed, just if there was at least
94 * one since the start of the grace period, this just sets a flag.
96 void rcu_sched_qs(int cpu)
98 struct rcu_data *rdp;
100 rdp = &per_cpu(rcu_sched_data, cpu);
101 rdp->passed_quiesc_completed = rdp->completed;
102 barrier();
103 rdp->passed_quiesc = 1;
104 rcu_preempt_note_context_switch(cpu);
107 void rcu_bh_qs(int cpu)
109 struct rcu_data *rdp;
111 rdp = &per_cpu(rcu_bh_data, cpu);
112 rdp->passed_quiesc_completed = rdp->completed;
113 barrier();
114 rdp->passed_quiesc = 1;
117 #ifdef CONFIG_NO_HZ
118 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
119 .dynticks_nesting = 1,
120 .dynticks = 1,
122 #endif /* #ifdef CONFIG_NO_HZ */
124 static int blimit = 10; /* Maximum callbacks per softirq. */
125 static int qhimark = 10000; /* If this many pending, ignore blimit. */
126 static int qlowmark = 100; /* Once only this many pending, use blimit. */
128 module_param(blimit, int, 0);
129 module_param(qhimark, int, 0);
130 module_param(qlowmark, int, 0);
132 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
133 static int rcu_pending(int cpu);
136 * Return the number of RCU-sched batches processed thus far for debug & stats.
138 long rcu_batches_completed_sched(void)
140 return rcu_sched_state.completed;
142 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
145 * Return the number of RCU BH batches processed thus far for debug & stats.
147 long rcu_batches_completed_bh(void)
149 return rcu_bh_state.completed;
151 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
154 * Does the CPU have callbacks ready to be invoked?
156 static int
157 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
159 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
163 * Does the current CPU require a yet-as-unscheduled grace period?
165 static int
166 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
168 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
172 * Return the root node of the specified rcu_state structure.
174 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
176 return &rsp->node[0];
179 #ifdef CONFIG_SMP
182 * If the specified CPU is offline, tell the caller that it is in
183 * a quiescent state. Otherwise, whack it with a reschedule IPI.
184 * Grace periods can end up waiting on an offline CPU when that
185 * CPU is in the process of coming online -- it will be added to the
186 * rcu_node bitmasks before it actually makes it online. The same thing
187 * can happen while a CPU is in the process of coming online. Because this
188 * race is quite rare, we check for it after detecting that the grace
189 * period has been delayed rather than checking each and every CPU
190 * each and every time we start a new grace period.
192 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
195 * If the CPU is offline, it is in a quiescent state. We can
196 * trust its state not to change because interrupts are disabled.
198 if (cpu_is_offline(rdp->cpu)) {
199 rdp->offline_fqs++;
200 return 1;
203 /* If preemptable RCU, no point in sending reschedule IPI. */
204 if (rdp->preemptable)
205 return 0;
207 /* The CPU is online, so send it a reschedule IPI. */
208 if (rdp->cpu != smp_processor_id())
209 smp_send_reschedule(rdp->cpu);
210 else
211 set_need_resched();
212 rdp->resched_ipi++;
213 return 0;
216 #endif /* #ifdef CONFIG_SMP */
218 #ifdef CONFIG_NO_HZ
221 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
223 * Enter nohz mode, in other words, -leave- the mode in which RCU
224 * read-side critical sections can occur. (Though RCU read-side
225 * critical sections can occur in irq handlers in nohz mode, a possibility
226 * handled by rcu_irq_enter() and rcu_irq_exit()).
228 void rcu_enter_nohz(void)
230 unsigned long flags;
231 struct rcu_dynticks *rdtp;
233 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
234 local_irq_save(flags);
235 rdtp = &__get_cpu_var(rcu_dynticks);
236 rdtp->dynticks++;
237 rdtp->dynticks_nesting--;
238 WARN_ON_ONCE(rdtp->dynticks & 0x1);
239 local_irq_restore(flags);
243 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
245 * Exit nohz mode, in other words, -enter- the mode in which RCU
246 * read-side critical sections normally occur.
248 void rcu_exit_nohz(void)
250 unsigned long flags;
251 struct rcu_dynticks *rdtp;
253 local_irq_save(flags);
254 rdtp = &__get_cpu_var(rcu_dynticks);
255 rdtp->dynticks++;
256 rdtp->dynticks_nesting++;
257 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
258 local_irq_restore(flags);
259 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
263 * rcu_nmi_enter - inform RCU of entry to NMI context
265 * If the CPU was idle with dynamic ticks active, and there is no
266 * irq handler running, this updates rdtp->dynticks_nmi to let the
267 * RCU grace-period handling know that the CPU is active.
269 void rcu_nmi_enter(void)
271 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
273 if (rdtp->dynticks & 0x1)
274 return;
275 rdtp->dynticks_nmi++;
276 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
277 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
281 * rcu_nmi_exit - inform RCU of exit from NMI context
283 * If the CPU was idle with dynamic ticks active, and there is no
284 * irq handler running, this updates rdtp->dynticks_nmi to let the
285 * RCU grace-period handling know that the CPU is no longer active.
287 void rcu_nmi_exit(void)
289 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
291 if (rdtp->dynticks & 0x1)
292 return;
293 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
294 rdtp->dynticks_nmi++;
295 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
299 * rcu_irq_enter - inform RCU of entry to hard irq context
301 * If the CPU was idle with dynamic ticks active, this updates the
302 * rdtp->dynticks to let the RCU handling know that the CPU is active.
304 void rcu_irq_enter(void)
306 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
308 if (rdtp->dynticks_nesting++)
309 return;
310 rdtp->dynticks++;
311 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
312 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
316 * rcu_irq_exit - inform RCU of exit from hard irq context
318 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
319 * to put let the RCU handling be aware that the CPU is going back to idle
320 * with no ticks.
322 void rcu_irq_exit(void)
324 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
326 if (--rdtp->dynticks_nesting)
327 return;
328 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
329 rdtp->dynticks++;
330 WARN_ON_ONCE(rdtp->dynticks & 0x1);
332 /* If the interrupt queued a callback, get out of dyntick mode. */
333 if (__get_cpu_var(rcu_sched_data).nxtlist ||
334 __get_cpu_var(rcu_bh_data).nxtlist)
335 set_need_resched();
339 * Record the specified "completed" value, which is later used to validate
340 * dynticks counter manipulations. Specify "rsp->completed - 1" to
341 * unconditionally invalidate any future dynticks manipulations (which is
342 * useful at the beginning of a grace period).
344 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
346 rsp->dynticks_completed = comp;
349 #ifdef CONFIG_SMP
352 * Recall the previously recorded value of the completion for dynticks.
354 static long dyntick_recall_completed(struct rcu_state *rsp)
356 return rsp->dynticks_completed;
360 * Snapshot the specified CPU's dynticks counter so that we can later
361 * credit them with an implicit quiescent state. Return 1 if this CPU
362 * is in dynticks idle mode, which is an extended quiescent state.
364 static int dyntick_save_progress_counter(struct rcu_data *rdp)
366 int ret;
367 int snap;
368 int snap_nmi;
370 snap = rdp->dynticks->dynticks;
371 snap_nmi = rdp->dynticks->dynticks_nmi;
372 smp_mb(); /* Order sampling of snap with end of grace period. */
373 rdp->dynticks_snap = snap;
374 rdp->dynticks_nmi_snap = snap_nmi;
375 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
376 if (ret)
377 rdp->dynticks_fqs++;
378 return ret;
382 * Return true if the specified CPU has passed through a quiescent
383 * state by virtue of being in or having passed through an dynticks
384 * idle state since the last call to dyntick_save_progress_counter()
385 * for this same CPU.
387 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
389 long curr;
390 long curr_nmi;
391 long snap;
392 long snap_nmi;
394 curr = rdp->dynticks->dynticks;
395 snap = rdp->dynticks_snap;
396 curr_nmi = rdp->dynticks->dynticks_nmi;
397 snap_nmi = rdp->dynticks_nmi_snap;
398 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
401 * If the CPU passed through or entered a dynticks idle phase with
402 * no active irq/NMI handlers, then we can safely pretend that the CPU
403 * already acknowledged the request to pass through a quiescent
404 * state. Either way, that CPU cannot possibly be in an RCU
405 * read-side critical section that started before the beginning
406 * of the current RCU grace period.
408 if ((curr != snap || (curr & 0x1) == 0) &&
409 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
410 rdp->dynticks_fqs++;
411 return 1;
414 /* Go check for the CPU being offline. */
415 return rcu_implicit_offline_qs(rdp);
418 #endif /* #ifdef CONFIG_SMP */
420 #else /* #ifdef CONFIG_NO_HZ */
422 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
426 #ifdef CONFIG_SMP
429 * If there are no dynticks, then the only way that a CPU can passively
430 * be in a quiescent state is to be offline. Unlike dynticks idle, which
431 * is a point in time during the prior (already finished) grace period,
432 * an offline CPU is always in a quiescent state, and thus can be
433 * unconditionally applied. So just return the current value of completed.
435 static long dyntick_recall_completed(struct rcu_state *rsp)
437 return rsp->completed;
440 static int dyntick_save_progress_counter(struct rcu_data *rdp)
442 return 0;
445 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
447 return rcu_implicit_offline_qs(rdp);
450 #endif /* #ifdef CONFIG_SMP */
452 #endif /* #else #ifdef CONFIG_NO_HZ */
454 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
456 static void record_gp_stall_check_time(struct rcu_state *rsp)
458 rsp->gp_start = jiffies;
459 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
462 static void print_other_cpu_stall(struct rcu_state *rsp)
464 int cpu;
465 long delta;
466 unsigned long flags;
467 struct rcu_node *rnp = rcu_get_root(rsp);
469 /* Only let one CPU complain about others per time interval. */
471 spin_lock_irqsave(&rnp->lock, flags);
472 delta = jiffies - rsp->jiffies_stall;
473 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
474 spin_unlock_irqrestore(&rnp->lock, flags);
475 return;
477 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
480 * Now rat on any tasks that got kicked up to the root rcu_node
481 * due to CPU offlining.
483 rcu_print_task_stall(rnp);
484 spin_unlock_irqrestore(&rnp->lock, flags);
486 /* OK, time to rat on our buddy... */
488 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
489 rcu_for_each_leaf_node(rsp, rnp) {
490 rcu_print_task_stall(rnp);
491 if (rnp->qsmask == 0)
492 continue;
493 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
494 if (rnp->qsmask & (1UL << cpu))
495 printk(" %d", rnp->grplo + cpu);
497 printk(" (detected by %d, t=%ld jiffies)\n",
498 smp_processor_id(), (long)(jiffies - rsp->gp_start));
499 trigger_all_cpu_backtrace();
501 force_quiescent_state(rsp, 0); /* Kick them all. */
504 static void print_cpu_stall(struct rcu_state *rsp)
506 unsigned long flags;
507 struct rcu_node *rnp = rcu_get_root(rsp);
509 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
510 smp_processor_id(), jiffies - rsp->gp_start);
511 trigger_all_cpu_backtrace();
513 spin_lock_irqsave(&rnp->lock, flags);
514 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
515 rsp->jiffies_stall =
516 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
517 spin_unlock_irqrestore(&rnp->lock, flags);
519 set_need_resched(); /* kick ourselves to get things going. */
522 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
524 long delta;
525 struct rcu_node *rnp;
527 delta = jiffies - rsp->jiffies_stall;
528 rnp = rdp->mynode;
529 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
531 /* We haven't checked in, so go dump stack. */
532 print_cpu_stall(rsp);
534 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
536 /* They had two time units to dump stack, so complain. */
537 print_other_cpu_stall(rsp);
541 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
543 static void record_gp_stall_check_time(struct rcu_state *rsp)
547 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
551 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
554 * Update CPU-local rcu_data state to record the newly noticed grace period.
555 * This is used both when we started the grace period and when we notice
556 * that someone else started the grace period.
558 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
560 rdp->qs_pending = 1;
561 rdp->passed_quiesc = 0;
562 rdp->gpnum = rsp->gpnum;
566 * Did someone else start a new RCU grace period start since we last
567 * checked? Update local state appropriately if so. Must be called
568 * on the CPU corresponding to rdp.
570 static int
571 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
573 unsigned long flags;
574 int ret = 0;
576 local_irq_save(flags);
577 if (rdp->gpnum != rsp->gpnum) {
578 note_new_gpnum(rsp, rdp);
579 ret = 1;
581 local_irq_restore(flags);
582 return ret;
586 * Start a new RCU grace period if warranted, re-initializing the hierarchy
587 * in preparation for detecting the next grace period. The caller must hold
588 * the root node's ->lock, which is released before return. Hard irqs must
589 * be disabled.
591 static void
592 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
593 __releases(rcu_get_root(rsp)->lock)
595 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
596 struct rcu_node *rnp = rcu_get_root(rsp);
598 if (!cpu_needs_another_gp(rsp, rdp)) {
599 spin_unlock_irqrestore(&rnp->lock, flags);
600 return;
603 /* Advance to a new grace period and initialize state. */
604 rsp->gpnum++;
605 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
606 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
607 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
608 record_gp_stall_check_time(rsp);
609 dyntick_record_completed(rsp, rsp->completed - 1);
610 note_new_gpnum(rsp, rdp);
613 * Because this CPU just now started the new grace period, we know
614 * that all of its callbacks will be covered by this upcoming grace
615 * period, even the ones that were registered arbitrarily recently.
616 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
618 * Other CPUs cannot be sure exactly when the grace period started.
619 * Therefore, their recently registered callbacks must pass through
620 * an additional RCU_NEXT_READY stage, so that they will be handled
621 * by the next RCU grace period.
623 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
624 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
626 /* Special-case the common single-level case. */
627 if (NUM_RCU_NODES == 1) {
628 rcu_preempt_check_blocked_tasks(rnp);
629 rnp->qsmask = rnp->qsmaskinit;
630 rnp->gpnum = rsp->gpnum;
631 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
632 spin_unlock_irqrestore(&rnp->lock, flags);
633 return;
636 spin_unlock(&rnp->lock); /* leave irqs disabled. */
639 /* Exclude any concurrent CPU-hotplug operations. */
640 spin_lock(&rsp->onofflock); /* irqs already disabled. */
643 * Set the quiescent-state-needed bits in all the rcu_node
644 * structures for all currently online CPUs in breadth-first
645 * order, starting from the root rcu_node structure. This
646 * operation relies on the layout of the hierarchy within the
647 * rsp->node[] array. Note that other CPUs will access only
648 * the leaves of the hierarchy, which still indicate that no
649 * grace period is in progress, at least until the corresponding
650 * leaf node has been initialized. In addition, we have excluded
651 * CPU-hotplug operations.
653 * Note that the grace period cannot complete until we finish
654 * the initialization process, as there will be at least one
655 * qsmask bit set in the root node until that time, namely the
656 * one corresponding to this CPU, due to the fact that we have
657 * irqs disabled.
659 rcu_for_each_node_breadth_first(rsp, rnp) {
660 spin_lock(&rnp->lock); /* irqs already disabled. */
661 rcu_preempt_check_blocked_tasks(rnp);
662 rnp->qsmask = rnp->qsmaskinit;
663 rnp->gpnum = rsp->gpnum;
664 spin_unlock(&rnp->lock); /* irqs already disabled. */
667 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
668 spin_unlock_irqrestore(&rsp->onofflock, flags);
672 * Advance this CPU's callbacks, but only if the current grace period
673 * has ended. This may be called only from the CPU to whom the rdp
674 * belongs.
676 static void
677 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
679 long completed_snap;
680 unsigned long flags;
682 local_irq_save(flags);
683 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
685 /* Did another grace period end? */
686 if (rdp->completed != completed_snap) {
688 /* Advance callbacks. No harm if list empty. */
689 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
690 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
691 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
693 /* Remember that we saw this grace-period completion. */
694 rdp->completed = completed_snap;
696 local_irq_restore(flags);
700 * Clean up after the prior grace period and let rcu_start_gp() start up
701 * the next grace period if one is needed. Note that the caller must
702 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
704 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
705 __releases(rcu_get_root(rsp)->lock)
707 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
708 rsp->completed = rsp->gpnum;
709 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
710 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
714 * Similar to cpu_quiet(), for which it is a helper function. Allows
715 * a group of CPUs to be quieted at one go, though all the CPUs in the
716 * group must be represented by the same leaf rcu_node structure.
717 * That structure's lock must be held upon entry, and it is released
718 * before return.
720 static void
721 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
722 unsigned long flags)
723 __releases(rnp->lock)
725 struct rcu_node *rnp_c;
727 /* Walk up the rcu_node hierarchy. */
728 for (;;) {
729 if (!(rnp->qsmask & mask)) {
731 /* Our bit has already been cleared, so done. */
732 spin_unlock_irqrestore(&rnp->lock, flags);
733 return;
735 rnp->qsmask &= ~mask;
736 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
738 /* Other bits still set at this level, so done. */
739 spin_unlock_irqrestore(&rnp->lock, flags);
740 return;
742 mask = rnp->grpmask;
743 if (rnp->parent == NULL) {
745 /* No more levels. Exit loop holding root lock. */
747 break;
749 spin_unlock_irqrestore(&rnp->lock, flags);
750 rnp_c = rnp;
751 rnp = rnp->parent;
752 spin_lock_irqsave(&rnp->lock, flags);
753 WARN_ON_ONCE(rnp_c->qsmask);
757 * Get here if we are the last CPU to pass through a quiescent
758 * state for this grace period. Invoke cpu_quiet_msk_finish()
759 * to clean up and start the next grace period if one is needed.
761 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
765 * Record a quiescent state for the specified CPU, which must either be
766 * the current CPU. The lastcomp argument is used to make sure we are
767 * still in the grace period of interest. We don't want to end the current
768 * grace period based on quiescent states detected in an earlier grace
769 * period!
771 static void
772 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
774 unsigned long flags;
775 unsigned long mask;
776 struct rcu_node *rnp;
778 rnp = rdp->mynode;
779 spin_lock_irqsave(&rnp->lock, flags);
780 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
783 * Someone beat us to it for this grace period, so leave.
784 * The race with GP start is resolved by the fact that we
785 * hold the leaf rcu_node lock, so that the per-CPU bits
786 * cannot yet be initialized -- so we would simply find our
787 * CPU's bit already cleared in cpu_quiet_msk() if this race
788 * occurred.
790 rdp->passed_quiesc = 0; /* try again later! */
791 spin_unlock_irqrestore(&rnp->lock, flags);
792 return;
794 mask = rdp->grpmask;
795 if ((rnp->qsmask & mask) == 0) {
796 spin_unlock_irqrestore(&rnp->lock, flags);
797 } else {
798 rdp->qs_pending = 0;
801 * This GP can't end until cpu checks in, so all of our
802 * callbacks can be processed during the next GP.
804 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
806 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
811 * Check to see if there is a new grace period of which this CPU
812 * is not yet aware, and if so, set up local rcu_data state for it.
813 * Otherwise, see if this CPU has just passed through its first
814 * quiescent state for this grace period, and record that fact if so.
816 static void
817 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
819 /* If there is now a new grace period, record and return. */
820 if (check_for_new_grace_period(rsp, rdp))
821 return;
824 * Does this CPU still need to do its part for current grace period?
825 * If no, return and let the other CPUs do their part as well.
827 if (!rdp->qs_pending)
828 return;
831 * Was there a quiescent state since the beginning of the grace
832 * period? If no, then exit and wait for the next call.
834 if (!rdp->passed_quiesc)
835 return;
837 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
838 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
841 #ifdef CONFIG_HOTPLUG_CPU
844 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
845 * specified flavor of RCU. The callbacks will be adopted by the next
846 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
847 * comes first. Because this is invoked from the CPU_DYING notifier,
848 * irqs are already disabled.
850 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
852 int i;
853 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
855 if (rdp->nxtlist == NULL)
856 return; /* irqs disabled, so comparison is stable. */
857 spin_lock(&rsp->onofflock); /* irqs already disabled. */
858 *rsp->orphan_cbs_tail = rdp->nxtlist;
859 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
860 rdp->nxtlist = NULL;
861 for (i = 0; i < RCU_NEXT_SIZE; i++)
862 rdp->nxttail[i] = &rdp->nxtlist;
863 rsp->orphan_qlen += rdp->qlen;
864 rdp->qlen = 0;
865 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
869 * Adopt previously orphaned RCU callbacks.
871 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
873 unsigned long flags;
874 struct rcu_data *rdp;
876 spin_lock_irqsave(&rsp->onofflock, flags);
877 rdp = rsp->rda[smp_processor_id()];
878 if (rsp->orphan_cbs_list == NULL) {
879 spin_unlock_irqrestore(&rsp->onofflock, flags);
880 return;
882 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
883 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
884 rdp->qlen += rsp->orphan_qlen;
885 rsp->orphan_cbs_list = NULL;
886 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
887 rsp->orphan_qlen = 0;
888 spin_unlock_irqrestore(&rsp->onofflock, flags);
892 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
893 * and move all callbacks from the outgoing CPU to the current one.
895 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
897 unsigned long flags;
898 long lastcomp;
899 unsigned long mask;
900 struct rcu_data *rdp = rsp->rda[cpu];
901 struct rcu_node *rnp;
903 /* Exclude any attempts to start a new grace period. */
904 spin_lock_irqsave(&rsp->onofflock, flags);
906 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
907 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
908 mask = rdp->grpmask; /* rnp->grplo is constant. */
909 do {
910 spin_lock(&rnp->lock); /* irqs already disabled. */
911 rnp->qsmaskinit &= ~mask;
912 if (rnp->qsmaskinit != 0) {
913 spin_unlock(&rnp->lock); /* irqs remain disabled. */
914 break;
916 rcu_preempt_offline_tasks(rsp, rnp, rdp);
917 mask = rnp->grpmask;
918 spin_unlock(&rnp->lock); /* irqs remain disabled. */
919 rnp = rnp->parent;
920 } while (rnp != NULL);
921 lastcomp = rsp->completed;
923 spin_unlock_irqrestore(&rsp->onofflock, flags);
925 rcu_adopt_orphan_cbs(rsp);
929 * Remove the specified CPU from the RCU hierarchy and move any pending
930 * callbacks that it might have to the current CPU. This code assumes
931 * that at least one CPU in the system will remain running at all times.
932 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
934 static void rcu_offline_cpu(int cpu)
936 __rcu_offline_cpu(cpu, &rcu_sched_state);
937 __rcu_offline_cpu(cpu, &rcu_bh_state);
938 rcu_preempt_offline_cpu(cpu);
941 #else /* #ifdef CONFIG_HOTPLUG_CPU */
943 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
947 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
951 static void rcu_offline_cpu(int cpu)
955 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
958 * Invoke any RCU callbacks that have made it to the end of their grace
959 * period. Thottle as specified by rdp->blimit.
961 static void rcu_do_batch(struct rcu_data *rdp)
963 unsigned long flags;
964 struct rcu_head *next, *list, **tail;
965 int count;
967 /* If no callbacks are ready, just return.*/
968 if (!cpu_has_callbacks_ready_to_invoke(rdp))
969 return;
972 * Extract the list of ready callbacks, disabling to prevent
973 * races with call_rcu() from interrupt handlers.
975 local_irq_save(flags);
976 list = rdp->nxtlist;
977 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
978 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
979 tail = rdp->nxttail[RCU_DONE_TAIL];
980 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
981 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
982 rdp->nxttail[count] = &rdp->nxtlist;
983 local_irq_restore(flags);
985 /* Invoke callbacks. */
986 count = 0;
987 while (list) {
988 next = list->next;
989 prefetch(next);
990 list->func(list);
991 list = next;
992 if (++count >= rdp->blimit)
993 break;
996 local_irq_save(flags);
998 /* Update count, and requeue any remaining callbacks. */
999 rdp->qlen -= count;
1000 if (list != NULL) {
1001 *tail = rdp->nxtlist;
1002 rdp->nxtlist = list;
1003 for (count = 0; count < RCU_NEXT_SIZE; count++)
1004 if (&rdp->nxtlist == rdp->nxttail[count])
1005 rdp->nxttail[count] = tail;
1006 else
1007 break;
1010 /* Reinstate batch limit if we have worked down the excess. */
1011 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1012 rdp->blimit = blimit;
1014 local_irq_restore(flags);
1016 /* Re-raise the RCU softirq if there are callbacks remaining. */
1017 if (cpu_has_callbacks_ready_to_invoke(rdp))
1018 raise_softirq(RCU_SOFTIRQ);
1022 * Check to see if this CPU is in a non-context-switch quiescent state
1023 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1024 * Also schedule the RCU softirq handler.
1026 * This function must be called with hardirqs disabled. It is normally
1027 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1028 * false, there is no point in invoking rcu_check_callbacks().
1030 void rcu_check_callbacks(int cpu, int user)
1032 if (!rcu_pending(cpu))
1033 return; /* if nothing for RCU to do. */
1034 if (user ||
1035 (idle_cpu(cpu) && rcu_scheduler_active &&
1036 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1039 * Get here if this CPU took its interrupt from user
1040 * mode or from the idle loop, and if this is not a
1041 * nested interrupt. In this case, the CPU is in
1042 * a quiescent state, so note it.
1044 * No memory barrier is required here because both
1045 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1046 * variables that other CPUs neither access nor modify,
1047 * at least not while the corresponding CPU is online.
1050 rcu_sched_qs(cpu);
1051 rcu_bh_qs(cpu);
1053 } else if (!in_softirq()) {
1056 * Get here if this CPU did not take its interrupt from
1057 * softirq, in other words, if it is not interrupting
1058 * a rcu_bh read-side critical section. This is an _bh
1059 * critical section, so note it.
1062 rcu_bh_qs(cpu);
1064 rcu_preempt_check_callbacks(cpu);
1065 raise_softirq(RCU_SOFTIRQ);
1068 #ifdef CONFIG_SMP
1071 * Scan the leaf rcu_node structures, processing dyntick state for any that
1072 * have not yet encountered a quiescent state, using the function specified.
1073 * Returns 1 if the current grace period ends while scanning (possibly
1074 * because we made it end).
1076 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1077 int (*f)(struct rcu_data *))
1079 unsigned long bit;
1080 int cpu;
1081 unsigned long flags;
1082 unsigned long mask;
1083 struct rcu_node *rnp;
1085 rcu_for_each_leaf_node(rsp, rnp) {
1086 mask = 0;
1087 spin_lock_irqsave(&rnp->lock, flags);
1088 if (rsp->completed != lastcomp) {
1089 spin_unlock_irqrestore(&rnp->lock, flags);
1090 return 1;
1092 if (rnp->qsmask == 0) {
1093 spin_unlock_irqrestore(&rnp->lock, flags);
1094 continue;
1096 cpu = rnp->grplo;
1097 bit = 1;
1098 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1099 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1100 mask |= bit;
1102 if (mask != 0 && rsp->completed == lastcomp) {
1104 /* cpu_quiet_msk() releases rnp->lock. */
1105 cpu_quiet_msk(mask, rsp, rnp, flags);
1106 continue;
1108 spin_unlock_irqrestore(&rnp->lock, flags);
1110 return 0;
1114 * Force quiescent states on reluctant CPUs, and also detect which
1115 * CPUs are in dyntick-idle mode.
1117 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1119 unsigned long flags;
1120 long lastcomp;
1121 struct rcu_node *rnp = rcu_get_root(rsp);
1122 u8 signaled;
1124 if (!rcu_gp_in_progress(rsp))
1125 return; /* No grace period in progress, nothing to force. */
1126 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1127 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1128 return; /* Someone else is already on the job. */
1130 if (relaxed &&
1131 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1132 goto unlock_ret; /* no emergency and done recently. */
1133 rsp->n_force_qs++;
1134 spin_lock(&rnp->lock);
1135 lastcomp = rsp->completed;
1136 signaled = rsp->signaled;
1137 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1138 if (lastcomp == rsp->gpnum) {
1139 rsp->n_force_qs_ngp++;
1140 spin_unlock(&rnp->lock);
1141 goto unlock_ret; /* no GP in progress, time updated. */
1143 spin_unlock(&rnp->lock);
1144 switch (signaled) {
1145 case RCU_GP_INIT:
1147 break; /* grace period still initializing, ignore. */
1149 case RCU_SAVE_DYNTICK:
1151 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1152 break; /* So gcc recognizes the dead code. */
1154 /* Record dyntick-idle state. */
1155 if (rcu_process_dyntick(rsp, lastcomp,
1156 dyntick_save_progress_counter))
1157 goto unlock_ret;
1159 /* Update state, record completion counter. */
1160 spin_lock(&rnp->lock);
1161 if (lastcomp == rsp->completed) {
1162 rsp->signaled = RCU_FORCE_QS;
1163 dyntick_record_completed(rsp, lastcomp);
1165 spin_unlock(&rnp->lock);
1166 break;
1168 case RCU_FORCE_QS:
1170 /* Check dyntick-idle state, send IPI to laggarts. */
1171 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1172 rcu_implicit_dynticks_qs))
1173 goto unlock_ret;
1175 /* Leave state in case more forcing is required. */
1177 break;
1179 unlock_ret:
1180 spin_unlock_irqrestore(&rsp->fqslock, flags);
1183 #else /* #ifdef CONFIG_SMP */
1185 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1187 set_need_resched();
1190 #endif /* #else #ifdef CONFIG_SMP */
1193 * This does the RCU processing work from softirq context for the
1194 * specified rcu_state and rcu_data structures. This may be called
1195 * only from the CPU to whom the rdp belongs.
1197 static void
1198 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1200 unsigned long flags;
1202 WARN_ON_ONCE(rdp->beenonline == 0);
1205 * If an RCU GP has gone long enough, go check for dyntick
1206 * idle CPUs and, if needed, send resched IPIs.
1208 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1209 force_quiescent_state(rsp, 1);
1212 * Advance callbacks in response to end of earlier grace
1213 * period that some other CPU ended.
1215 rcu_process_gp_end(rsp, rdp);
1217 /* Update RCU state based on any recent quiescent states. */
1218 rcu_check_quiescent_state(rsp, rdp);
1220 /* Does this CPU require a not-yet-started grace period? */
1221 if (cpu_needs_another_gp(rsp, rdp)) {
1222 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1223 rcu_start_gp(rsp, flags); /* releases above lock */
1226 /* If there are callbacks ready, invoke them. */
1227 rcu_do_batch(rdp);
1231 * Do softirq processing for the current CPU.
1233 static void rcu_process_callbacks(struct softirq_action *unused)
1236 * Memory references from any prior RCU read-side critical sections
1237 * executed by the interrupted code must be seen before any RCU
1238 * grace-period manipulations below.
1240 smp_mb(); /* See above block comment. */
1242 __rcu_process_callbacks(&rcu_sched_state,
1243 &__get_cpu_var(rcu_sched_data));
1244 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1245 rcu_preempt_process_callbacks();
1248 * Memory references from any later RCU read-side critical sections
1249 * executed by the interrupted code must be seen after any RCU
1250 * grace-period manipulations above.
1252 smp_mb(); /* See above block comment. */
1255 static void
1256 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1257 struct rcu_state *rsp)
1259 unsigned long flags;
1260 struct rcu_data *rdp;
1262 head->func = func;
1263 head->next = NULL;
1265 smp_mb(); /* Ensure RCU update seen before callback registry. */
1268 * Opportunistically note grace-period endings and beginnings.
1269 * Note that we might see a beginning right after we see an
1270 * end, but never vice versa, since this CPU has to pass through
1271 * a quiescent state betweentimes.
1273 local_irq_save(flags);
1274 rdp = rsp->rda[smp_processor_id()];
1275 rcu_process_gp_end(rsp, rdp);
1276 check_for_new_grace_period(rsp, rdp);
1278 /* Add the callback to our list. */
1279 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1280 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1282 /* Start a new grace period if one not already started. */
1283 if (!rcu_gp_in_progress(rsp)) {
1284 unsigned long nestflag;
1285 struct rcu_node *rnp_root = rcu_get_root(rsp);
1287 spin_lock_irqsave(&rnp_root->lock, nestflag);
1288 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1291 /* Force the grace period if too many callbacks or too long waiting. */
1292 if (unlikely(++rdp->qlen > qhimark)) {
1293 rdp->blimit = LONG_MAX;
1294 force_quiescent_state(rsp, 0);
1295 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1296 force_quiescent_state(rsp, 1);
1297 local_irq_restore(flags);
1301 * Queue an RCU-sched callback for invocation after a grace period.
1303 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1305 __call_rcu(head, func, &rcu_sched_state);
1307 EXPORT_SYMBOL_GPL(call_rcu_sched);
1310 * Queue an RCU for invocation after a quicker grace period.
1312 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1314 __call_rcu(head, func, &rcu_bh_state);
1316 EXPORT_SYMBOL_GPL(call_rcu_bh);
1319 * Check to see if there is any immediate RCU-related work to be done
1320 * by the current CPU, for the specified type of RCU, returning 1 if so.
1321 * The checks are in order of increasing expense: checks that can be
1322 * carried out against CPU-local state are performed first. However,
1323 * we must check for CPU stalls first, else we might not get a chance.
1325 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1327 rdp->n_rcu_pending++;
1329 /* Check for CPU stalls, if enabled. */
1330 check_cpu_stall(rsp, rdp);
1332 /* Is the RCU core waiting for a quiescent state from this CPU? */
1333 if (rdp->qs_pending) {
1334 rdp->n_rp_qs_pending++;
1335 return 1;
1338 /* Does this CPU have callbacks ready to invoke? */
1339 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1340 rdp->n_rp_cb_ready++;
1341 return 1;
1344 /* Has RCU gone idle with this CPU needing another grace period? */
1345 if (cpu_needs_another_gp(rsp, rdp)) {
1346 rdp->n_rp_cpu_needs_gp++;
1347 return 1;
1350 /* Has another RCU grace period completed? */
1351 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1352 rdp->n_rp_gp_completed++;
1353 return 1;
1356 /* Has a new RCU grace period started? */
1357 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1358 rdp->n_rp_gp_started++;
1359 return 1;
1362 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1363 if (rcu_gp_in_progress(rsp) &&
1364 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1365 rdp->n_rp_need_fqs++;
1366 return 1;
1369 /* nothing to do */
1370 rdp->n_rp_need_nothing++;
1371 return 0;
1375 * Check to see if there is any immediate RCU-related work to be done
1376 * by the current CPU, returning 1 if so. This function is part of the
1377 * RCU implementation; it is -not- an exported member of the RCU API.
1379 static int rcu_pending(int cpu)
1381 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1382 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1383 rcu_preempt_pending(cpu);
1387 * Check to see if any future RCU-related work will need to be done
1388 * by the current CPU, even if none need be done immediately, returning
1389 * 1 if so. This function is part of the RCU implementation; it is -not-
1390 * an exported member of the RCU API.
1392 int rcu_needs_cpu(int cpu)
1394 /* RCU callbacks either ready or pending? */
1395 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1396 per_cpu(rcu_bh_data, cpu).nxtlist ||
1397 rcu_preempt_needs_cpu(cpu);
1400 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1401 static atomic_t rcu_barrier_cpu_count;
1402 static DEFINE_MUTEX(rcu_barrier_mutex);
1403 static struct completion rcu_barrier_completion;
1405 static void rcu_barrier_callback(struct rcu_head *notused)
1407 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1408 complete(&rcu_barrier_completion);
1412 * Called with preemption disabled, and from cross-cpu IRQ context.
1414 static void rcu_barrier_func(void *type)
1416 int cpu = smp_processor_id();
1417 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1418 void (*call_rcu_func)(struct rcu_head *head,
1419 void (*func)(struct rcu_head *head));
1421 atomic_inc(&rcu_barrier_cpu_count);
1422 call_rcu_func = type;
1423 call_rcu_func(head, rcu_barrier_callback);
1427 * Orchestrate the specified type of RCU barrier, waiting for all
1428 * RCU callbacks of the specified type to complete.
1430 static void _rcu_barrier(struct rcu_state *rsp,
1431 void (*call_rcu_func)(struct rcu_head *head,
1432 void (*func)(struct rcu_head *head)))
1434 BUG_ON(in_interrupt());
1435 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1436 mutex_lock(&rcu_barrier_mutex);
1437 init_completion(&rcu_barrier_completion);
1439 * Initialize rcu_barrier_cpu_count to 1, then invoke
1440 * rcu_barrier_func() on each CPU, so that each CPU also has
1441 * incremented rcu_barrier_cpu_count. Only then is it safe to
1442 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1443 * might complete its grace period before all of the other CPUs
1444 * did their increment, causing this function to return too
1445 * early.
1447 atomic_set(&rcu_barrier_cpu_count, 1);
1448 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1449 rcu_adopt_orphan_cbs(rsp);
1450 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1451 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1452 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1453 complete(&rcu_barrier_completion);
1454 wait_for_completion(&rcu_barrier_completion);
1455 mutex_unlock(&rcu_barrier_mutex);
1459 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1461 void rcu_barrier_bh(void)
1463 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1465 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1468 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1470 void rcu_barrier_sched(void)
1472 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1474 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1477 * Do boot-time initialization of a CPU's per-CPU RCU data.
1479 static void __init
1480 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1482 unsigned long flags;
1483 int i;
1484 struct rcu_data *rdp = rsp->rda[cpu];
1485 struct rcu_node *rnp = rcu_get_root(rsp);
1487 /* Set up local state, ensuring consistent view of global state. */
1488 spin_lock_irqsave(&rnp->lock, flags);
1489 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1490 rdp->nxtlist = NULL;
1491 for (i = 0; i < RCU_NEXT_SIZE; i++)
1492 rdp->nxttail[i] = &rdp->nxtlist;
1493 rdp->qlen = 0;
1494 #ifdef CONFIG_NO_HZ
1495 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1496 #endif /* #ifdef CONFIG_NO_HZ */
1497 rdp->cpu = cpu;
1498 spin_unlock_irqrestore(&rnp->lock, flags);
1502 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1503 * offline event can be happening at a given time. Note also that we
1504 * can accept some slop in the rsp->completed access due to the fact
1505 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1507 static void __cpuinit
1508 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1510 unsigned long flags;
1511 long lastcomp;
1512 unsigned long mask;
1513 struct rcu_data *rdp = rsp->rda[cpu];
1514 struct rcu_node *rnp = rcu_get_root(rsp);
1516 /* Set up local state, ensuring consistent view of global state. */
1517 spin_lock_irqsave(&rnp->lock, flags);
1518 lastcomp = rsp->completed;
1519 rdp->completed = lastcomp;
1520 rdp->gpnum = lastcomp;
1521 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1522 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1523 rdp->beenonline = 1; /* We have now been online. */
1524 rdp->preemptable = preemptable;
1525 rdp->passed_quiesc_completed = lastcomp - 1;
1526 rdp->blimit = blimit;
1527 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1530 * A new grace period might start here. If so, we won't be part
1531 * of it, but that is OK, as we are currently in a quiescent state.
1534 /* Exclude any attempts to start a new GP on large systems. */
1535 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1537 /* Add CPU to rcu_node bitmasks. */
1538 rnp = rdp->mynode;
1539 mask = rdp->grpmask;
1540 do {
1541 /* Exclude any attempts to start a new GP on small systems. */
1542 spin_lock(&rnp->lock); /* irqs already disabled. */
1543 rnp->qsmaskinit |= mask;
1544 mask = rnp->grpmask;
1545 spin_unlock(&rnp->lock); /* irqs already disabled. */
1546 rnp = rnp->parent;
1547 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1549 spin_unlock_irqrestore(&rsp->onofflock, flags);
1552 static void __cpuinit rcu_online_cpu(int cpu)
1554 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1555 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1556 rcu_preempt_init_percpu_data(cpu);
1560 * Handle CPU online/offline notification events.
1562 int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1563 unsigned long action, void *hcpu)
1565 long cpu = (long)hcpu;
1567 switch (action) {
1568 case CPU_UP_PREPARE:
1569 case CPU_UP_PREPARE_FROZEN:
1570 rcu_online_cpu(cpu);
1571 break;
1572 case CPU_DYING:
1573 case CPU_DYING_FROZEN:
1575 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1576 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1577 * returns, all online cpus have queued rcu_barrier_func().
1578 * The dying CPU clears its cpu_online_mask bit and
1579 * moves all of its RCU callbacks to ->orphan_cbs_list
1580 * in the context of stop_machine(), so subsequent calls
1581 * to _rcu_barrier() will adopt these callbacks and only
1582 * then queue rcu_barrier_func() on all remaining CPUs.
1584 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1585 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1586 rcu_preempt_send_cbs_to_orphanage();
1587 break;
1588 case CPU_DEAD:
1589 case CPU_DEAD_FROZEN:
1590 case CPU_UP_CANCELED:
1591 case CPU_UP_CANCELED_FROZEN:
1592 rcu_offline_cpu(cpu);
1593 break;
1594 default:
1595 break;
1597 return NOTIFY_OK;
1601 * Compute the per-level fanout, either using the exact fanout specified
1602 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1604 #ifdef CONFIG_RCU_FANOUT_EXACT
1605 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1607 int i;
1609 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1610 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1612 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1613 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1615 int ccur;
1616 int cprv;
1617 int i;
1619 cprv = NR_CPUS;
1620 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1621 ccur = rsp->levelcnt[i];
1622 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1623 cprv = ccur;
1626 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1629 * Helper function for rcu_init() that initializes one rcu_state structure.
1631 static void __init rcu_init_one(struct rcu_state *rsp)
1633 int cpustride = 1;
1634 int i;
1635 int j;
1636 struct rcu_node *rnp;
1638 /* Initialize the level-tracking arrays. */
1640 for (i = 1; i < NUM_RCU_LVLS; i++)
1641 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1642 rcu_init_levelspread(rsp);
1644 /* Initialize the elements themselves, starting from the leaves. */
1646 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1647 cpustride *= rsp->levelspread[i];
1648 rnp = rsp->level[i];
1649 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1650 if (rnp != rcu_get_root(rsp))
1651 spin_lock_init(&rnp->lock);
1652 rnp->gpnum = 0;
1653 rnp->qsmask = 0;
1654 rnp->qsmaskinit = 0;
1655 rnp->grplo = j * cpustride;
1656 rnp->grphi = (j + 1) * cpustride - 1;
1657 if (rnp->grphi >= NR_CPUS)
1658 rnp->grphi = NR_CPUS - 1;
1659 if (i == 0) {
1660 rnp->grpnum = 0;
1661 rnp->grpmask = 0;
1662 rnp->parent = NULL;
1663 } else {
1664 rnp->grpnum = j % rsp->levelspread[i - 1];
1665 rnp->grpmask = 1UL << rnp->grpnum;
1666 rnp->parent = rsp->level[i - 1] +
1667 j / rsp->levelspread[i - 1];
1669 rnp->level = i;
1670 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1671 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1674 spin_lock_init(&rcu_get_root(rsp)->lock);
1678 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1679 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1680 * structure.
1682 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1683 do { \
1684 int i; \
1685 int j; \
1686 struct rcu_node *rnp; \
1688 rcu_init_one(rsp); \
1689 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1690 j = 0; \
1691 for_each_possible_cpu(i) { \
1692 if (i > rnp[j].grphi) \
1693 j++; \
1694 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1695 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1696 rcu_boot_init_percpu_data(i, rsp); \
1698 } while (0)
1700 void __init __rcu_init(void)
1702 rcu_bootup_announce();
1703 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1704 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1705 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1706 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1707 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1708 __rcu_init_preempt();
1709 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1712 #include "rcutree_plugin.h"