omap: Runtime detection of Si features
[linux-ginger.git] / sound / isa / sb / emu8000.c
blob96678d5d3834863fbfe440df54b8170cfa088095
1 /*
2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3 * and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
4 * Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
6 * Routines for control of EMU8000 chip
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/wait.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <sound/core.h>
29 #include <sound/emu8000.h>
30 #include <sound/emu8000_reg.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 #include <linux/init.h>
34 #include <sound/control.h>
35 #include <sound/initval.h>
38 * emu8000 register controls
42 * The following routines read and write registers on the emu8000. They
43 * should always be called via the EMU8000*READ/WRITE macros and never
44 * directly. The macros handle the port number and command word.
46 /* Write a word */
47 void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
49 unsigned long flags;
50 spin_lock_irqsave(&emu->reg_lock, flags);
51 if (reg != emu->last_reg) {
52 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
53 emu->last_reg = reg;
55 outw((unsigned short)val, port); /* Send data */
56 spin_unlock_irqrestore(&emu->reg_lock, flags);
59 /* Read a word */
60 unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
62 unsigned short res;
63 unsigned long flags;
64 spin_lock_irqsave(&emu->reg_lock, flags);
65 if (reg != emu->last_reg) {
66 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
67 emu->last_reg = reg;
69 res = inw(port); /* Read data */
70 spin_unlock_irqrestore(&emu->reg_lock, flags);
71 return res;
74 /* Write a double word */
75 void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
77 unsigned long flags;
78 spin_lock_irqsave(&emu->reg_lock, flags);
79 if (reg != emu->last_reg) {
80 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
81 emu->last_reg = reg;
83 outw((unsigned short)val, port); /* Send low word of data */
84 outw((unsigned short)(val>>16), port+2); /* Send high word of data */
85 spin_unlock_irqrestore(&emu->reg_lock, flags);
88 /* Read a double word */
89 unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
91 unsigned short low;
92 unsigned int res;
93 unsigned long flags;
94 spin_lock_irqsave(&emu->reg_lock, flags);
95 if (reg != emu->last_reg) {
96 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
97 emu->last_reg = reg;
99 low = inw(port); /* Read low word of data */
100 res = low + (inw(port+2) << 16);
101 spin_unlock_irqrestore(&emu->reg_lock, flags);
102 return res;
106 * Set up / close a channel to be used for DMA.
108 /*exported*/ void
109 snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
111 unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
112 mode &= EMU8000_RAM_MODE_MASK;
113 if (mode == EMU8000_RAM_CLOSE) {
114 EMU8000_CCCA_WRITE(emu, ch, 0);
115 EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
116 return;
118 EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
119 EMU8000_VTFT_WRITE(emu, ch, 0);
120 EMU8000_CVCF_WRITE(emu, ch, 0);
121 EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
122 EMU8000_CPF_WRITE(emu, ch, 0x40000000);
123 EMU8000_PSST_WRITE(emu, ch, 0);
124 EMU8000_CSL_WRITE(emu, ch, 0);
125 if (mode == EMU8000_RAM_WRITE) /* DMA write */
126 EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
127 else /* DMA read */
128 EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
133 static void __devinit
134 snd_emu8000_read_wait(struct snd_emu8000 *emu)
136 while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
137 schedule_timeout_interruptible(1);
138 if (signal_pending(current))
139 break;
145 static void __devinit
146 snd_emu8000_write_wait(struct snd_emu8000 *emu)
148 while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
149 schedule_timeout_interruptible(1);
150 if (signal_pending(current))
151 break;
156 * detect a card at the given port
158 static int __devinit
159 snd_emu8000_detect(struct snd_emu8000 *emu)
161 /* Initialise */
162 EMU8000_HWCF1_WRITE(emu, 0x0059);
163 EMU8000_HWCF2_WRITE(emu, 0x0020);
164 EMU8000_HWCF3_WRITE(emu, 0x0000);
165 /* Check for a recognisable emu8000 */
167 if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
168 return -ENODEV;
170 if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
171 return -ENODEV;
172 if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
173 return -ENODEV;
175 snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
176 emu->port1);
177 return 0;
182 * intiailize audio channels
184 static void __devinit
185 init_audio(struct snd_emu8000 *emu)
187 int ch;
189 /* turn off envelope engines */
190 for (ch = 0; ch < EMU8000_CHANNELS; ch++)
191 EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
193 /* reset all other parameters to zero */
194 for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
195 EMU8000_ENVVOL_WRITE(emu, ch, 0);
196 EMU8000_ENVVAL_WRITE(emu, ch, 0);
197 EMU8000_DCYSUS_WRITE(emu, ch, 0);
198 EMU8000_ATKHLDV_WRITE(emu, ch, 0);
199 EMU8000_LFO1VAL_WRITE(emu, ch, 0);
200 EMU8000_ATKHLD_WRITE(emu, ch, 0);
201 EMU8000_LFO2VAL_WRITE(emu, ch, 0);
202 EMU8000_IP_WRITE(emu, ch, 0);
203 EMU8000_IFATN_WRITE(emu, ch, 0);
204 EMU8000_PEFE_WRITE(emu, ch, 0);
205 EMU8000_FMMOD_WRITE(emu, ch, 0);
206 EMU8000_TREMFRQ_WRITE(emu, ch, 0);
207 EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
208 EMU8000_PTRX_WRITE(emu, ch, 0);
209 EMU8000_VTFT_WRITE(emu, ch, 0);
210 EMU8000_PSST_WRITE(emu, ch, 0);
211 EMU8000_CSL_WRITE(emu, ch, 0);
212 EMU8000_CCCA_WRITE(emu, ch, 0);
215 for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
216 EMU8000_CPF_WRITE(emu, ch, 0);
217 EMU8000_CVCF_WRITE(emu, ch, 0);
223 * initialize DMA address
225 static void __devinit
226 init_dma(struct snd_emu8000 *emu)
228 EMU8000_SMALR_WRITE(emu, 0);
229 EMU8000_SMARR_WRITE(emu, 0);
230 EMU8000_SMALW_WRITE(emu, 0);
231 EMU8000_SMARW_WRITE(emu, 0);
235 * initialization arrays; from ADIP
237 static unsigned short init1[128] /*__devinitdata*/ = {
238 0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330,
239 0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730,
240 0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30,
241 0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30,
243 0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330,
244 0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730,
245 0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30,
246 0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30,
248 0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330,
249 0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730,
250 0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30,
251 0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30,
253 0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330,
254 0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730,
255 0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30,
256 0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30,
259 static unsigned short init2[128] /*__devinitdata*/ = {
260 0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
261 0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
262 0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
263 0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
265 0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
266 0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
267 0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
268 0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
270 0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
271 0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
272 0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
273 0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
275 0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
276 0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
277 0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
278 0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
281 static unsigned short init3[128] /*__devinitdata*/ = {
282 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
283 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
284 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
285 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
287 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
288 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
289 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
290 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
292 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
293 0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
294 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
295 0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
297 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
298 0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
299 0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
300 0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
303 static unsigned short init4[128] /*__devinitdata*/ = {
304 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
305 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
306 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
307 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
309 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
310 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
311 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
312 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
314 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
315 0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
316 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
317 0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
319 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
320 0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
321 0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
322 0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
325 /* send an initialization array
326 * Taken from the oss driver, not obvious from the doc how this
327 * is meant to work
329 static void __devinit
330 send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
332 int i;
333 unsigned short *p;
335 p = data;
336 for (i = 0; i < size; i++, p++)
337 EMU8000_INIT1_WRITE(emu, i, *p);
338 for (i = 0; i < size; i++, p++)
339 EMU8000_INIT2_WRITE(emu, i, *p);
340 for (i = 0; i < size; i++, p++)
341 EMU8000_INIT3_WRITE(emu, i, *p);
342 for (i = 0; i < size; i++, p++)
343 EMU8000_INIT4_WRITE(emu, i, *p);
348 * Send initialization arrays to start up, this just follows the
349 * initialisation sequence in the adip.
351 static void __devinit
352 init_arrays(struct snd_emu8000 *emu)
354 send_array(emu, init1, ARRAY_SIZE(init1)/4);
356 msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
357 send_array(emu, init2, ARRAY_SIZE(init2)/4);
358 send_array(emu, init3, ARRAY_SIZE(init3)/4);
360 EMU8000_HWCF4_WRITE(emu, 0);
361 EMU8000_HWCF5_WRITE(emu, 0x83);
362 EMU8000_HWCF6_WRITE(emu, 0x8000);
364 send_array(emu, init4, ARRAY_SIZE(init4)/4);
368 #define UNIQUE_ID1 0xa5b9
369 #define UNIQUE_ID2 0x9d53
372 * Size the onboard memory.
373 * This is written so as not to need arbitary delays after the write. It
374 * seems that the only way to do this is to use the one channel and keep
375 * reallocating between read and write.
377 static void __devinit
378 size_dram(struct snd_emu8000 *emu)
380 int i, size;
382 if (emu->dram_checked)
383 return;
385 size = 0;
387 /* write out a magic number */
388 snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
389 snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
390 EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
391 EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
392 snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
394 while (size < EMU8000_MAX_DRAM) {
396 size += 512 * 1024; /* increment 512kbytes */
398 /* Write a unique data on the test address.
399 * if the address is out of range, the data is written on
400 * 0x200000(=EMU8000_DRAM_OFFSET). Then the id word is
401 * changed by this data.
403 /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
404 EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
405 EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
406 snd_emu8000_write_wait(emu);
409 * read the data on the just written DRAM address
410 * if not the same then we have reached the end of ram.
412 /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
413 EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
414 /*snd_emu8000_read_wait(emu);*/
415 EMU8000_SMLD_READ(emu); /* discard stale data */
416 if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
417 break; /* we must have wrapped around */
419 snd_emu8000_read_wait(emu);
422 * If it is the same it could be that the address just
423 * wraps back to the beginning; so check to see if the
424 * initial value has been overwritten.
426 EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
427 EMU8000_SMLD_READ(emu); /* discard stale data */
428 if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
429 break; /* we must have wrapped around */
430 snd_emu8000_read_wait(emu);
433 /* wait until FULL bit in SMAxW register is false */
434 for (i = 0; i < 10000; i++) {
435 if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
436 break;
437 schedule_timeout_interruptible(1);
438 if (signal_pending(current))
439 break;
441 snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
442 snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
444 snd_printdd("EMU8000 [0x%lx]: %d Kb on-board memory detected\n",
445 emu->port1, size/1024);
447 emu->mem_size = size;
448 emu->dram_checked = 1;
453 * Initiailise the FM section. You have to do this to use sample RAM
454 * and therefore lose 2 voices.
456 /*exported*/ void
457 snd_emu8000_init_fm(struct snd_emu8000 *emu)
459 unsigned long flags;
461 /* Initialize the last two channels for DRAM refresh and producing
462 the reverb and chorus effects for Yamaha OPL-3 synthesizer */
464 /* 31: FM left channel, 0xffffe0-0xffffe8 */
465 EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
466 EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
467 EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
468 EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
469 EMU8000_CPF_WRITE(emu, 30, 0);
470 EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
472 /* 32: FM right channel, 0xfffff0-0xfffff8 */
473 EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
474 EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
475 EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
476 EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
477 EMU8000_CPF_WRITE(emu, 31, 0x8000);
478 EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
480 snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
482 spin_lock_irqsave(&emu->reg_lock, flags);
483 while (!(inw(EMU8000_PTR(emu)) & 0x1000))
485 while ((inw(EMU8000_PTR(emu)) & 0x1000))
487 spin_unlock_irqrestore(&emu->reg_lock, flags);
488 snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
489 /* this is really odd part.. */
490 outb(0x3C, EMU8000_PTR(emu));
491 outb(0, EMU8000_DATA1(emu));
493 /* skew volume & cutoff */
494 EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
495 EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
500 * The main initialization routine.
502 static void __devinit
503 snd_emu8000_init_hw(struct snd_emu8000 *emu)
505 int i;
507 emu->last_reg = 0xffff; /* reset the last register index */
509 /* initialize hardware configuration */
510 EMU8000_HWCF1_WRITE(emu, 0x0059);
511 EMU8000_HWCF2_WRITE(emu, 0x0020);
513 /* disable audio; this seems to reduce a clicking noise a bit.. */
514 EMU8000_HWCF3_WRITE(emu, 0);
516 /* initialize audio channels */
517 init_audio(emu);
519 /* initialize DMA */
520 init_dma(emu);
522 /* initialize init arrays */
523 init_arrays(emu);
526 * Initialize the FM section of the AWE32, this is needed
527 * for DRAM refresh as well
529 snd_emu8000_init_fm(emu);
531 /* terminate all voices */
532 for (i = 0; i < EMU8000_DRAM_VOICES; i++)
533 EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
535 /* check DRAM memory size */
536 size_dram(emu);
538 /* enable audio */
539 EMU8000_HWCF3_WRITE(emu, 0x4);
541 /* set equzlier, chorus and reverb modes */
542 snd_emu8000_update_equalizer(emu);
543 snd_emu8000_update_chorus_mode(emu);
544 snd_emu8000_update_reverb_mode(emu);
548 /*----------------------------------------------------------------
549 * Bass/Treble Equalizer
550 *----------------------------------------------------------------*/
552 static unsigned short bass_parm[12][3] = {
553 {0xD26A, 0xD36A, 0x0000}, /* -12 dB */
554 {0xD25B, 0xD35B, 0x0000}, /* -8 */
555 {0xD24C, 0xD34C, 0x0000}, /* -6 */
556 {0xD23D, 0xD33D, 0x0000}, /* -4 */
557 {0xD21F, 0xD31F, 0x0000}, /* -2 */
558 {0xC208, 0xC308, 0x0001}, /* 0 (HW default) */
559 {0xC219, 0xC319, 0x0001}, /* +2 */
560 {0xC22A, 0xC32A, 0x0001}, /* +4 */
561 {0xC24C, 0xC34C, 0x0001}, /* +6 */
562 {0xC26E, 0xC36E, 0x0001}, /* +8 */
563 {0xC248, 0xC384, 0x0002}, /* +10 */
564 {0xC26A, 0xC36A, 0x0002}, /* +12 dB */
567 static unsigned short treble_parm[12][9] = {
568 {0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
569 {0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
570 {0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
571 {0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
572 {0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
573 {0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
574 {0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
575 {0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
576 {0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
577 {0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
578 {0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
579 {0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002} /* +12 dB */
584 * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
586 /*exported*/ void
587 snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
589 unsigned short w;
590 int bass = emu->bass_level;
591 int treble = emu->treble_level;
593 if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
594 return;
595 EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
596 EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
597 EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
598 EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
599 EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
600 EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
601 EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
602 EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
603 EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
604 EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
605 w = bass_parm[bass][2] + treble_parm[treble][8];
606 EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
607 EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
611 /*----------------------------------------------------------------
612 * Chorus mode control
613 *----------------------------------------------------------------*/
616 * chorus mode parameters
618 #define SNDRV_EMU8000_CHORUS_1 0
619 #define SNDRV_EMU8000_CHORUS_2 1
620 #define SNDRV_EMU8000_CHORUS_3 2
621 #define SNDRV_EMU8000_CHORUS_4 3
622 #define SNDRV_EMU8000_CHORUS_FEEDBACK 4
623 #define SNDRV_EMU8000_CHORUS_FLANGER 5
624 #define SNDRV_EMU8000_CHORUS_SHORTDELAY 6
625 #define SNDRV_EMU8000_CHORUS_SHORTDELAY2 7
626 #define SNDRV_EMU8000_CHORUS_PREDEFINED 8
627 /* user can define chorus modes up to 32 */
628 #define SNDRV_EMU8000_CHORUS_NUMBERS 32
630 struct soundfont_chorus_fx {
631 unsigned short feedback; /* feedback level (0xE600-0xE6FF) */
632 unsigned short delay_offset; /* delay (0-0x0DA3) [1/44100 sec] */
633 unsigned short lfo_depth; /* LFO depth (0xBC00-0xBCFF) */
634 unsigned int delay; /* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
635 unsigned int lfo_freq; /* LFO freq LFO freq (0-0xFFFFFFFF) */
638 /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
639 static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
640 static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
641 {0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
642 {0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
643 {0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
644 {0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
645 {0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
646 {0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
647 {0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
648 {0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
651 /*exported*/ int
652 snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
654 struct soundfont_chorus_fx rec;
655 if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
656 snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
657 return -EINVAL;
659 if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
660 return -EFAULT;
661 chorus_parm[mode] = rec;
662 chorus_defined[mode] = 1;
663 return 0;
666 /*exported*/ void
667 snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
669 int effect = emu->chorus_mode;
670 if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
671 (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
672 return;
673 EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
674 EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
675 EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
676 EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
677 EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
678 EMU8000_HWCF6_WRITE(emu, 0x8000);
679 EMU8000_HWCF7_WRITE(emu, 0x0000);
682 /*----------------------------------------------------------------
683 * Reverb mode control
684 *----------------------------------------------------------------*/
687 * reverb mode parameters
689 #define SNDRV_EMU8000_REVERB_ROOM1 0
690 #define SNDRV_EMU8000_REVERB_ROOM2 1
691 #define SNDRV_EMU8000_REVERB_ROOM3 2
692 #define SNDRV_EMU8000_REVERB_HALL1 3
693 #define SNDRV_EMU8000_REVERB_HALL2 4
694 #define SNDRV_EMU8000_REVERB_PLATE 5
695 #define SNDRV_EMU8000_REVERB_DELAY 6
696 #define SNDRV_EMU8000_REVERB_PANNINGDELAY 7
697 #define SNDRV_EMU8000_REVERB_PREDEFINED 8
698 /* user can define reverb modes up to 32 */
699 #define SNDRV_EMU8000_REVERB_NUMBERS 32
701 struct soundfont_reverb_fx {
702 unsigned short parms[28];
705 /* reverb mode settings; write the following 28 data of 16 bit length
706 * on the corresponding ports in the reverb_cmds array
708 static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
709 static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
710 {{ /* room 1 */
711 0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
712 0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
713 0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
714 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
716 {{ /* room 2 */
717 0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
718 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
719 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
720 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
722 {{ /* room 3 */
723 0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
724 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
725 0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
726 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
728 {{ /* hall 1 */
729 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
730 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
731 0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
732 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
734 {{ /* hall 2 */
735 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
736 0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
737 0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
738 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
740 {{ /* plate */
741 0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
742 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
743 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
744 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
746 {{ /* delay */
747 0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
748 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
749 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
750 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
752 {{ /* panning delay */
753 0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
754 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
755 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
756 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
760 enum { DATA1, DATA2 };
761 #define AWE_INIT1(c) EMU8000_CMD(2,c), DATA1
762 #define AWE_INIT2(c) EMU8000_CMD(2,c), DATA2
763 #define AWE_INIT3(c) EMU8000_CMD(3,c), DATA1
764 #define AWE_INIT4(c) EMU8000_CMD(3,c), DATA2
766 static struct reverb_cmd_pair {
767 unsigned short cmd, port;
768 } reverb_cmds[28] = {
769 {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
770 {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
771 {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
772 {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
773 {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
774 {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
775 {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
778 /*exported*/ int
779 snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
781 struct soundfont_reverb_fx rec;
783 if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
784 snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
785 return -EINVAL;
787 if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
788 return -EFAULT;
789 reverb_parm[mode] = rec;
790 reverb_defined[mode] = 1;
791 return 0;
794 /*exported*/ void
795 snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
797 int effect = emu->reverb_mode;
798 int i;
800 if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
801 (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
802 return;
803 for (i = 0; i < 28; i++) {
804 int port;
805 if (reverb_cmds[i].port == DATA1)
806 port = EMU8000_DATA1(emu);
807 else
808 port = EMU8000_DATA2(emu);
809 snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
814 /*----------------------------------------------------------------
815 * mixer interface
816 *----------------------------------------------------------------*/
819 * bass/treble
821 static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
823 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
824 uinfo->count = 1;
825 uinfo->value.integer.min = 0;
826 uinfo->value.integer.max = 11;
827 return 0;
830 static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
832 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
834 ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
835 return 0;
838 static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
840 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
841 unsigned long flags;
842 int change;
843 unsigned short val1;
845 val1 = ucontrol->value.integer.value[0] % 12;
846 spin_lock_irqsave(&emu->control_lock, flags);
847 if (kcontrol->private_value) {
848 change = val1 != emu->treble_level;
849 emu->treble_level = val1;
850 } else {
851 change = val1 != emu->bass_level;
852 emu->bass_level = val1;
854 spin_unlock_irqrestore(&emu->control_lock, flags);
855 snd_emu8000_update_equalizer(emu);
856 return change;
859 static struct snd_kcontrol_new mixer_bass_control =
861 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
862 .name = "Synth Tone Control - Bass",
863 .info = mixer_bass_treble_info,
864 .get = mixer_bass_treble_get,
865 .put = mixer_bass_treble_put,
866 .private_value = 0,
869 static struct snd_kcontrol_new mixer_treble_control =
871 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
872 .name = "Synth Tone Control - Treble",
873 .info = mixer_bass_treble_info,
874 .get = mixer_bass_treble_get,
875 .put = mixer_bass_treble_put,
876 .private_value = 1,
880 * chorus/reverb mode
882 static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
884 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
885 uinfo->count = 1;
886 uinfo->value.integer.min = 0;
887 uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
888 return 0;
891 static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
893 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
895 ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
896 return 0;
899 static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
901 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
902 unsigned long flags;
903 int change;
904 unsigned short val1;
906 spin_lock_irqsave(&emu->control_lock, flags);
907 if (kcontrol->private_value) {
908 val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
909 change = val1 != emu->chorus_mode;
910 emu->chorus_mode = val1;
911 } else {
912 val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
913 change = val1 != emu->reverb_mode;
914 emu->reverb_mode = val1;
916 spin_unlock_irqrestore(&emu->control_lock, flags);
917 if (change) {
918 if (kcontrol->private_value)
919 snd_emu8000_update_chorus_mode(emu);
920 else
921 snd_emu8000_update_reverb_mode(emu);
923 return change;
926 static struct snd_kcontrol_new mixer_chorus_mode_control =
928 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
929 .name = "Chorus Mode",
930 .info = mixer_chorus_reverb_info,
931 .get = mixer_chorus_reverb_get,
932 .put = mixer_chorus_reverb_put,
933 .private_value = 1,
936 static struct snd_kcontrol_new mixer_reverb_mode_control =
938 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
939 .name = "Reverb Mode",
940 .info = mixer_chorus_reverb_info,
941 .get = mixer_chorus_reverb_get,
942 .put = mixer_chorus_reverb_put,
943 .private_value = 0,
947 * FM OPL3 chorus/reverb depth
949 static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
951 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
952 uinfo->count = 1;
953 uinfo->value.integer.min = 0;
954 uinfo->value.integer.max = 255;
955 return 0;
958 static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
960 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
962 ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
963 return 0;
966 static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
968 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
969 unsigned long flags;
970 int change;
971 unsigned short val1;
973 val1 = ucontrol->value.integer.value[0] % 256;
974 spin_lock_irqsave(&emu->control_lock, flags);
975 if (kcontrol->private_value) {
976 change = val1 != emu->fm_chorus_depth;
977 emu->fm_chorus_depth = val1;
978 } else {
979 change = val1 != emu->fm_reverb_depth;
980 emu->fm_reverb_depth = val1;
982 spin_unlock_irqrestore(&emu->control_lock, flags);
983 if (change)
984 snd_emu8000_init_fm(emu);
985 return change;
988 static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
990 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
991 .name = "FM Chorus Depth",
992 .info = mixer_fm_depth_info,
993 .get = mixer_fm_depth_get,
994 .put = mixer_fm_depth_put,
995 .private_value = 1,
998 static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
1000 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1001 .name = "FM Reverb Depth",
1002 .info = mixer_fm_depth_info,
1003 .get = mixer_fm_depth_get,
1004 .put = mixer_fm_depth_put,
1005 .private_value = 0,
1009 static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
1010 &mixer_bass_control,
1011 &mixer_treble_control,
1012 &mixer_chorus_mode_control,
1013 &mixer_reverb_mode_control,
1014 &mixer_fm_chorus_depth_control,
1015 &mixer_fm_reverb_depth_control,
1019 * create and attach mixer elements for WaveTable treble/bass controls
1021 static int __devinit
1022 snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
1024 int i, err = 0;
1026 if (snd_BUG_ON(!emu || !card))
1027 return -EINVAL;
1029 spin_lock_init(&emu->control_lock);
1031 memset(emu->controls, 0, sizeof(emu->controls));
1032 for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1033 if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
1034 goto __error;
1036 return 0;
1038 __error:
1039 for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1040 down_write(&card->controls_rwsem);
1041 if (emu->controls[i])
1042 snd_ctl_remove(card, emu->controls[i]);
1043 up_write(&card->controls_rwsem);
1045 return err;
1050 * free resources
1052 static int snd_emu8000_free(struct snd_emu8000 *hw)
1054 release_and_free_resource(hw->res_port1);
1055 release_and_free_resource(hw->res_port2);
1056 release_and_free_resource(hw->res_port3);
1057 kfree(hw);
1058 return 0;
1063 static int snd_emu8000_dev_free(struct snd_device *device)
1065 struct snd_emu8000 *hw = device->device_data;
1066 return snd_emu8000_free(hw);
1070 * initialize and register emu8000 synth device.
1072 int __devinit
1073 snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
1074 struct snd_seq_device **awe_ret)
1076 struct snd_seq_device *awe;
1077 struct snd_emu8000 *hw;
1078 int err;
1079 static struct snd_device_ops ops = {
1080 .dev_free = snd_emu8000_dev_free,
1083 if (awe_ret)
1084 *awe_ret = NULL;
1086 if (seq_ports <= 0)
1087 return 0;
1089 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
1090 if (hw == NULL)
1091 return -ENOMEM;
1092 spin_lock_init(&hw->reg_lock);
1093 hw->index = index;
1094 hw->port1 = port;
1095 hw->port2 = port + 0x400;
1096 hw->port3 = port + 0x800;
1097 if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
1098 !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
1099 !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
1100 snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
1101 snd_emu8000_free(hw);
1102 return -EBUSY;
1104 hw->mem_size = 0;
1105 hw->card = card;
1106 hw->seq_ports = seq_ports;
1107 hw->bass_level = 5;
1108 hw->treble_level = 9;
1109 hw->chorus_mode = 2;
1110 hw->reverb_mode = 4;
1111 hw->fm_chorus_depth = 0;
1112 hw->fm_reverb_depth = 0;
1114 if (snd_emu8000_detect(hw) < 0) {
1115 snd_emu8000_free(hw);
1116 return -ENODEV;
1119 snd_emu8000_init_hw(hw);
1120 if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
1121 snd_emu8000_free(hw);
1122 return err;
1125 if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
1126 snd_emu8000_free(hw);
1127 return err;
1129 #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
1130 if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
1131 sizeof(struct snd_emu8000*), &awe) >= 0) {
1132 strcpy(awe->name, "EMU-8000");
1133 *(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
1135 #else
1136 awe = NULL;
1137 #endif
1138 if (awe_ret)
1139 *awe_ret = awe;
1141 return 0;
1146 * exported stuff
1149 EXPORT_SYMBOL(snd_emu8000_poke);
1150 EXPORT_SYMBOL(snd_emu8000_peek);
1151 EXPORT_SYMBOL(snd_emu8000_poke_dw);
1152 EXPORT_SYMBOL(snd_emu8000_peek_dw);
1153 EXPORT_SYMBOL(snd_emu8000_dma_chan);
1154 EXPORT_SYMBOL(snd_emu8000_init_fm);
1155 EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
1156 EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
1157 EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
1158 EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
1159 EXPORT_SYMBOL(snd_emu8000_update_equalizer);