[PATCH] delete from_swap_cache BUG_ONs
[linux-ginger.git] / net / ipv4 / tcp_input.c
blob1afb080bdf0cca2956808c26830aaa0b006af0ac
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_moderate_rcvbuf = 1;
93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
99 #define FLAG_ECE 0x40 /* ECE in this ACK */
100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 /* Adapt the MSS value used to make delayed ack decision to the
115 * real world.
117 static inline void tcp_measure_rcv_mss(struct sock *sk,
118 const struct sk_buff *skb)
120 struct inet_connection_sock *icsk = inet_csk(sk);
121 const unsigned int lss = icsk->icsk_ack.last_seg_size;
122 unsigned int len;
124 icsk->icsk_ack.last_seg_size = 0;
126 /* skb->len may jitter because of SACKs, even if peer
127 * sends good full-sized frames.
129 len = skb->len;
130 if (len >= icsk->icsk_ack.rcv_mss) {
131 icsk->icsk_ack.rcv_mss = len;
132 } else {
133 /* Otherwise, we make more careful check taking into account,
134 * that SACKs block is variable.
136 * "len" is invariant segment length, including TCP header.
138 len += skb->data - skb->h.raw;
139 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140 /* If PSH is not set, packet should be
141 * full sized, provided peer TCP is not badly broken.
142 * This observation (if it is correct 8)) allows
143 * to handle super-low mtu links fairly.
145 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147 /* Subtract also invariant (if peer is RFC compliant),
148 * tcp header plus fixed timestamp option length.
149 * Resulting "len" is MSS free of SACK jitter.
151 len -= tcp_sk(sk)->tcp_header_len;
152 icsk->icsk_ack.last_seg_size = len;
153 if (len == lss) {
154 icsk->icsk_ack.rcv_mss = len;
155 return;
158 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 static void tcp_incr_quickack(struct sock *sk)
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167 if (quickacks==0)
168 quickacks=2;
169 if (quickacks > icsk->icsk_ack.quick)
170 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
173 void tcp_enter_quickack_mode(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 tcp_incr_quickack(sk);
177 icsk->icsk_ack.pingpong = 0;
178 icsk->icsk_ack.ato = TCP_ATO_MIN;
181 /* Send ACKs quickly, if "quick" count is not exhausted
182 * and the session is not interactive.
185 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 const struct inet_connection_sock *icsk = inet_csk(sk);
188 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
191 /* Buffer size and advertised window tuning.
193 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
196 static void tcp_fixup_sndbuf(struct sock *sk)
198 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199 sizeof(struct sk_buff);
201 if (sk->sk_sndbuf < 3 * sndmem)
202 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207 * All tcp_full_space() is split to two parts: "network" buffer, allocated
208 * forward and advertised in receiver window (tp->rcv_wnd) and
209 * "application buffer", required to isolate scheduling/application
210 * latencies from network.
211 * window_clamp is maximal advertised window. It can be less than
212 * tcp_full_space(), in this case tcp_full_space() - window_clamp
213 * is reserved for "application" buffer. The less window_clamp is
214 * the smoother our behaviour from viewpoint of network, but the lower
215 * throughput and the higher sensitivity of the connection to losses. 8)
217 * rcv_ssthresh is more strict window_clamp used at "slow start"
218 * phase to predict further behaviour of this connection.
219 * It is used for two goals:
220 * - to enforce header prediction at sender, even when application
221 * requires some significant "application buffer". It is check #1.
222 * - to prevent pruning of receive queue because of misprediction
223 * of receiver window. Check #2.
225 * The scheme does not work when sender sends good segments opening
226 * window and then starts to feed us spagetti. But it should work
227 * in common situations. Otherwise, we have to rely on queue collapsing.
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232 const struct sk_buff *skb)
234 /* Optimize this! */
235 int truesize = tcp_win_from_space(skb->truesize)/2;
236 int window = tcp_full_space(sk)/2;
238 while (tp->rcv_ssthresh <= window) {
239 if (truesize <= skb->len)
240 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242 truesize >>= 1;
243 window >>= 1;
245 return 0;
248 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249 struct sk_buff *skb)
251 /* Check #1 */
252 if (tp->rcv_ssthresh < tp->window_clamp &&
253 (int)tp->rcv_ssthresh < tcp_space(sk) &&
254 !tcp_memory_pressure) {
255 int incr;
257 /* Check #2. Increase window, if skb with such overhead
258 * will fit to rcvbuf in future.
260 if (tcp_win_from_space(skb->truesize) <= skb->len)
261 incr = 2*tp->advmss;
262 else
263 incr = __tcp_grow_window(sk, tp, skb);
265 if (incr) {
266 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
267 inet_csk(sk)->icsk_ack.quick |= 1;
272 /* 3. Tuning rcvbuf, when connection enters established state. */
274 static void tcp_fixup_rcvbuf(struct sock *sk)
276 struct tcp_sock *tp = tcp_sk(sk);
277 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279 /* Try to select rcvbuf so that 4 mss-sized segments
280 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 while (tcp_win_from_space(rcvmem) < tp->advmss)
284 rcvmem += 128;
285 if (sk->sk_rcvbuf < 4 * rcvmem)
286 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
289 /* 4. Try to fixup all. It is made iimediately after connection enters
290 * established state.
292 static void tcp_init_buffer_space(struct sock *sk)
294 struct tcp_sock *tp = tcp_sk(sk);
295 int maxwin;
297 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298 tcp_fixup_rcvbuf(sk);
299 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300 tcp_fixup_sndbuf(sk);
302 tp->rcvq_space.space = tp->rcv_wnd;
304 maxwin = tcp_full_space(sk);
306 if (tp->window_clamp >= maxwin) {
307 tp->window_clamp = maxwin;
309 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310 tp->window_clamp = max(maxwin -
311 (maxwin >> sysctl_tcp_app_win),
312 4 * tp->advmss);
315 /* Force reservation of one segment. */
316 if (sysctl_tcp_app_win &&
317 tp->window_clamp > 2 * tp->advmss &&
318 tp->window_clamp + tp->advmss > maxwin)
319 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322 tp->snd_cwnd_stamp = tcp_time_stamp;
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 struct inet_connection_sock *icsk = inet_csk(sk);
329 struct sk_buff *skb;
330 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
331 int ofo_win = 0;
333 icsk->icsk_ack.quick = 0;
335 skb_queue_walk(&tp->out_of_order_queue, skb) {
336 ofo_win += skb->len;
339 /* If overcommit is due to out of order segments,
340 * do not clamp window. Try to expand rcvbuf instead.
342 if (ofo_win) {
343 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
344 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
345 !tcp_memory_pressure &&
346 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
347 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
348 sysctl_tcp_rmem[2]);
350 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
351 app_win += ofo_win;
352 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
353 app_win >>= 1;
354 if (app_win > icsk->icsk_ack.rcv_mss)
355 app_win -= icsk->icsk_ack.rcv_mss;
356 app_win = max(app_win, 2U*tp->advmss);
358 if (!ofo_win)
359 tp->window_clamp = min(tp->window_clamp, app_win);
360 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
364 /* Receiver "autotuning" code.
366 * The algorithm for RTT estimation w/o timestamps is based on
367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
370 * More detail on this code can be found at
371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372 * though this reference is out of date. A new paper
373 * is pending.
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
377 u32 new_sample = tp->rcv_rtt_est.rtt;
378 long m = sample;
380 if (m == 0)
381 m = 1;
383 if (new_sample != 0) {
384 /* If we sample in larger samples in the non-timestamp
385 * case, we could grossly overestimate the RTT especially
386 * with chatty applications or bulk transfer apps which
387 * are stalled on filesystem I/O.
389 * Also, since we are only going for a minimum in the
390 * non-timestamp case, we do not smoothe things out
391 * else with timestamps disabled convergance takes too
392 * long.
394 if (!win_dep) {
395 m -= (new_sample >> 3);
396 new_sample += m;
397 } else if (m < new_sample)
398 new_sample = m << 3;
399 } else {
400 /* No previous mesaure. */
401 new_sample = m << 3;
404 if (tp->rcv_rtt_est.rtt != new_sample)
405 tp->rcv_rtt_est.rtt = new_sample;
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
410 if (tp->rcv_rtt_est.time == 0)
411 goto new_measure;
412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 return;
414 tcp_rcv_rtt_update(tp,
415 jiffies - tp->rcv_rtt_est.time,
418 new_measure:
419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 tp->rcv_rtt_est.time = tcp_time_stamp;
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
425 struct tcp_sock *tp = tcp_sk(sk);
426 if (tp->rx_opt.rcv_tsecr &&
427 (TCP_SKB_CB(skb)->end_seq -
428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
433 * This function should be called every time data is copied to user space.
434 * It calculates the appropriate TCP receive buffer space.
436 void tcp_rcv_space_adjust(struct sock *sk)
438 struct tcp_sock *tp = tcp_sk(sk);
439 int time;
440 int space;
442 if (tp->rcvq_space.time == 0)
443 goto new_measure;
445 time = tcp_time_stamp - tp->rcvq_space.time;
446 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 tp->rcv_rtt_est.rtt == 0)
448 return;
450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
452 space = max(tp->rcvq_space.space, space);
454 if (tp->rcvq_space.space != space) {
455 int rcvmem;
457 tp->rcvq_space.space = space;
459 if (sysctl_tcp_moderate_rcvbuf) {
460 int new_clamp = space;
462 /* Receive space grows, normalize in order to
463 * take into account packet headers and sk_buff
464 * structure overhead.
466 space /= tp->advmss;
467 if (!space)
468 space = 1;
469 rcvmem = (tp->advmss + MAX_TCP_HEADER +
470 16 + sizeof(struct sk_buff));
471 while (tcp_win_from_space(rcvmem) < tp->advmss)
472 rcvmem += 128;
473 space *= rcvmem;
474 space = min(space, sysctl_tcp_rmem[2]);
475 if (space > sk->sk_rcvbuf) {
476 sk->sk_rcvbuf = space;
478 /* Make the window clamp follow along. */
479 tp->window_clamp = new_clamp;
484 new_measure:
485 tp->rcvq_space.seq = tp->copied_seq;
486 tp->rcvq_space.time = tcp_time_stamp;
489 /* There is something which you must keep in mind when you analyze the
490 * behavior of the tp->ato delayed ack timeout interval. When a
491 * connection starts up, we want to ack as quickly as possible. The
492 * problem is that "good" TCP's do slow start at the beginning of data
493 * transmission. The means that until we send the first few ACK's the
494 * sender will sit on his end and only queue most of his data, because
495 * he can only send snd_cwnd unacked packets at any given time. For
496 * each ACK we send, he increments snd_cwnd and transmits more of his
497 * queue. -DaveM
499 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
501 struct inet_connection_sock *icsk = inet_csk(sk);
502 u32 now;
504 inet_csk_schedule_ack(sk);
506 tcp_measure_rcv_mss(sk, skb);
508 tcp_rcv_rtt_measure(tp);
510 now = tcp_time_stamp;
512 if (!icsk->icsk_ack.ato) {
513 /* The _first_ data packet received, initialize
514 * delayed ACK engine.
516 tcp_incr_quickack(sk);
517 icsk->icsk_ack.ato = TCP_ATO_MIN;
518 } else {
519 int m = now - icsk->icsk_ack.lrcvtime;
521 if (m <= TCP_ATO_MIN/2) {
522 /* The fastest case is the first. */
523 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
524 } else if (m < icsk->icsk_ack.ato) {
525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
526 if (icsk->icsk_ack.ato > icsk->icsk_rto)
527 icsk->icsk_ack.ato = icsk->icsk_rto;
528 } else if (m > icsk->icsk_rto) {
529 /* Too long gap. Apparently sender falled to
530 * restart window, so that we send ACKs quickly.
532 tcp_incr_quickack(sk);
533 sk_stream_mem_reclaim(sk);
536 icsk->icsk_ack.lrcvtime = now;
538 TCP_ECN_check_ce(tp, skb);
540 if (skb->len >= 128)
541 tcp_grow_window(sk, tp, skb);
544 /* Called to compute a smoothed rtt estimate. The data fed to this
545 * routine either comes from timestamps, or from segments that were
546 * known _not_ to have been retransmitted [see Karn/Partridge
547 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
548 * piece by Van Jacobson.
549 * NOTE: the next three routines used to be one big routine.
550 * To save cycles in the RFC 1323 implementation it was better to break
551 * it up into three procedures. -- erics
553 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt, u32 *usrtt)
555 struct tcp_sock *tp = tcp_sk(sk);
556 const struct inet_connection_sock *icsk = inet_csk(sk);
557 long m = mrtt; /* RTT */
559 /* The following amusing code comes from Jacobson's
560 * article in SIGCOMM '88. Note that rtt and mdev
561 * are scaled versions of rtt and mean deviation.
562 * This is designed to be as fast as possible
563 * m stands for "measurement".
565 * On a 1990 paper the rto value is changed to:
566 * RTO = rtt + 4 * mdev
568 * Funny. This algorithm seems to be very broken.
569 * These formulae increase RTO, when it should be decreased, increase
570 * too slowly, when it should be incresed fastly, decrease too fastly
571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 * does not matter how to _calculate_ it. Seems, it was trap
573 * that VJ failed to avoid. 8)
575 if(m == 0)
576 m = 1;
577 if (tp->srtt != 0) {
578 m -= (tp->srtt >> 3); /* m is now error in rtt est */
579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
580 if (m < 0) {
581 m = -m; /* m is now abs(error) */
582 m -= (tp->mdev >> 2); /* similar update on mdev */
583 /* This is similar to one of Eifel findings.
584 * Eifel blocks mdev updates when rtt decreases.
585 * This solution is a bit different: we use finer gain
586 * for mdev in this case (alpha*beta).
587 * Like Eifel it also prevents growth of rto,
588 * but also it limits too fast rto decreases,
589 * happening in pure Eifel.
591 if (m > 0)
592 m >>= 3;
593 } else {
594 m -= (tp->mdev >> 2); /* similar update on mdev */
596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
597 if (tp->mdev > tp->mdev_max) {
598 tp->mdev_max = tp->mdev;
599 if (tp->mdev_max > tp->rttvar)
600 tp->rttvar = tp->mdev_max;
602 if (after(tp->snd_una, tp->rtt_seq)) {
603 if (tp->mdev_max < tp->rttvar)
604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 tp->rtt_seq = tp->snd_nxt;
606 tp->mdev_max = TCP_RTO_MIN;
608 } else {
609 /* no previous measure. */
610 tp->srtt = m<<3; /* take the measured time to be rtt */
611 tp->mdev = m<<1; /* make sure rto = 3*rtt */
612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 tp->rtt_seq = tp->snd_nxt;
616 if (icsk->icsk_ca_ops->rtt_sample)
617 icsk->icsk_ca_ops->rtt_sample(sk, *usrtt);
620 /* Calculate rto without backoff. This is the second half of Van Jacobson's
621 * routine referred to above.
623 static inline void tcp_set_rto(struct sock *sk)
625 const struct tcp_sock *tp = tcp_sk(sk);
626 /* Old crap is replaced with new one. 8)
628 * More seriously:
629 * 1. If rtt variance happened to be less 50msec, it is hallucination.
630 * It cannot be less due to utterly erratic ACK generation made
631 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
632 * to do with delayed acks, because at cwnd>2 true delack timeout
633 * is invisible. Actually, Linux-2.4 also generates erratic
634 * ACKs in some curcumstances.
636 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
638 /* 2. Fixups made earlier cannot be right.
639 * If we do not estimate RTO correctly without them,
640 * all the algo is pure shit and should be replaced
641 * with correct one. It is exaclty, which we pretend to do.
645 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
646 * guarantees that rto is higher.
648 static inline void tcp_bound_rto(struct sock *sk)
650 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
651 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
654 /* Save metrics learned by this TCP session.
655 This function is called only, when TCP finishes successfully
656 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
658 void tcp_update_metrics(struct sock *sk)
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct dst_entry *dst = __sk_dst_get(sk);
663 if (sysctl_tcp_nometrics_save)
664 return;
666 dst_confirm(dst);
668 if (dst && (dst->flags&DST_HOST)) {
669 const struct inet_connection_sock *icsk = inet_csk(sk);
670 int m;
672 if (icsk->icsk_backoff || !tp->srtt) {
673 /* This session failed to estimate rtt. Why?
674 * Probably, no packets returned in time.
675 * Reset our results.
677 if (!(dst_metric_locked(dst, RTAX_RTT)))
678 dst->metrics[RTAX_RTT-1] = 0;
679 return;
682 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
684 /* If newly calculated rtt larger than stored one,
685 * store new one. Otherwise, use EWMA. Remember,
686 * rtt overestimation is always better than underestimation.
688 if (!(dst_metric_locked(dst, RTAX_RTT))) {
689 if (m <= 0)
690 dst->metrics[RTAX_RTT-1] = tp->srtt;
691 else
692 dst->metrics[RTAX_RTT-1] -= (m>>3);
695 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
696 if (m < 0)
697 m = -m;
699 /* Scale deviation to rttvar fixed point */
700 m >>= 1;
701 if (m < tp->mdev)
702 m = tp->mdev;
704 if (m >= dst_metric(dst, RTAX_RTTVAR))
705 dst->metrics[RTAX_RTTVAR-1] = m;
706 else
707 dst->metrics[RTAX_RTTVAR-1] -=
708 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
711 if (tp->snd_ssthresh >= 0xFFFF) {
712 /* Slow start still did not finish. */
713 if (dst_metric(dst, RTAX_SSTHRESH) &&
714 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
715 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
716 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
717 if (!dst_metric_locked(dst, RTAX_CWND) &&
718 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
719 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
720 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
721 icsk->icsk_ca_state == TCP_CA_Open) {
722 /* Cong. avoidance phase, cwnd is reliable. */
723 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
724 dst->metrics[RTAX_SSTHRESH-1] =
725 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
726 if (!dst_metric_locked(dst, RTAX_CWND))
727 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
728 } else {
729 /* Else slow start did not finish, cwnd is non-sense,
730 ssthresh may be also invalid.
732 if (!dst_metric_locked(dst, RTAX_CWND))
733 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
734 if (dst->metrics[RTAX_SSTHRESH-1] &&
735 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
736 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
737 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
740 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
741 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
742 tp->reordering != sysctl_tcp_reordering)
743 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
748 /* Numbers are taken from RFC2414. */
749 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
753 if (!cwnd) {
754 if (tp->mss_cache > 1460)
755 cwnd = 2;
756 else
757 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
759 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
762 /* Initialize metrics on socket. */
764 static void tcp_init_metrics(struct sock *sk)
766 struct tcp_sock *tp = tcp_sk(sk);
767 struct dst_entry *dst = __sk_dst_get(sk);
769 if (dst == NULL)
770 goto reset;
772 dst_confirm(dst);
774 if (dst_metric_locked(dst, RTAX_CWND))
775 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
776 if (dst_metric(dst, RTAX_SSTHRESH)) {
777 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
778 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
779 tp->snd_ssthresh = tp->snd_cwnd_clamp;
781 if (dst_metric(dst, RTAX_REORDERING) &&
782 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
783 tp->rx_opt.sack_ok &= ~2;
784 tp->reordering = dst_metric(dst, RTAX_REORDERING);
787 if (dst_metric(dst, RTAX_RTT) == 0)
788 goto reset;
790 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
791 goto reset;
793 /* Initial rtt is determined from SYN,SYN-ACK.
794 * The segment is small and rtt may appear much
795 * less than real one. Use per-dst memory
796 * to make it more realistic.
798 * A bit of theory. RTT is time passed after "normal" sized packet
799 * is sent until it is ACKed. In normal curcumstances sending small
800 * packets force peer to delay ACKs and calculation is correct too.
801 * The algorithm is adaptive and, provided we follow specs, it
802 * NEVER underestimate RTT. BUT! If peer tries to make some clever
803 * tricks sort of "quick acks" for time long enough to decrease RTT
804 * to low value, and then abruptly stops to do it and starts to delay
805 * ACKs, wait for troubles.
807 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
808 tp->srtt = dst_metric(dst, RTAX_RTT);
809 tp->rtt_seq = tp->snd_nxt;
811 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
812 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
813 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
815 tcp_set_rto(sk);
816 tcp_bound_rto(sk);
817 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
818 goto reset;
819 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
820 tp->snd_cwnd_stamp = tcp_time_stamp;
821 return;
823 reset:
824 /* Play conservative. If timestamps are not
825 * supported, TCP will fail to recalculate correct
826 * rtt, if initial rto is too small. FORGET ALL AND RESET!
828 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
829 tp->srtt = 0;
830 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
831 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
835 static void tcp_update_reordering(struct sock *sk, const int metric,
836 const int ts)
838 struct tcp_sock *tp = tcp_sk(sk);
839 if (metric > tp->reordering) {
840 tp->reordering = min(TCP_MAX_REORDERING, metric);
842 /* This exciting event is worth to be remembered. 8) */
843 if (ts)
844 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
845 else if (IsReno(tp))
846 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
847 else if (IsFack(tp))
848 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
849 else
850 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
851 #if FASTRETRANS_DEBUG > 1
852 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 /* Disable FACK yet. */
860 tp->rx_opt.sack_ok &= ~2;
864 /* This procedure tags the retransmission queue when SACKs arrive.
866 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
867 * Packets in queue with these bits set are counted in variables
868 * sacked_out, retrans_out and lost_out, correspondingly.
870 * Valid combinations are:
871 * Tag InFlight Description
872 * 0 1 - orig segment is in flight.
873 * S 0 - nothing flies, orig reached receiver.
874 * L 0 - nothing flies, orig lost by net.
875 * R 2 - both orig and retransmit are in flight.
876 * L|R 1 - orig is lost, retransmit is in flight.
877 * S|R 1 - orig reached receiver, retrans is still in flight.
878 * (L|S|R is logically valid, it could occur when L|R is sacked,
879 * but it is equivalent to plain S and code short-curcuits it to S.
880 * L|S is logically invalid, it would mean -1 packet in flight 8))
882 * These 6 states form finite state machine, controlled by the following events:
883 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
884 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
885 * 3. Loss detection event of one of three flavors:
886 * A. Scoreboard estimator decided the packet is lost.
887 * A'. Reno "three dupacks" marks head of queue lost.
888 * A''. Its FACK modfication, head until snd.fack is lost.
889 * B. SACK arrives sacking data transmitted after never retransmitted
890 * hole was sent out.
891 * C. SACK arrives sacking SND.NXT at the moment, when the
892 * segment was retransmitted.
893 * 4. D-SACK added new rule: D-SACK changes any tag to S.
895 * It is pleasant to note, that state diagram turns out to be commutative,
896 * so that we are allowed not to be bothered by order of our actions,
897 * when multiple events arrive simultaneously. (see the function below).
899 * Reordering detection.
900 * --------------------
901 * Reordering metric is maximal distance, which a packet can be displaced
902 * in packet stream. With SACKs we can estimate it:
904 * 1. SACK fills old hole and the corresponding segment was not
905 * ever retransmitted -> reordering. Alas, we cannot use it
906 * when segment was retransmitted.
907 * 2. The last flaw is solved with D-SACK. D-SACK arrives
908 * for retransmitted and already SACKed segment -> reordering..
909 * Both of these heuristics are not used in Loss state, when we cannot
910 * account for retransmits accurately.
912 static int
913 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
915 const struct inet_connection_sock *icsk = inet_csk(sk);
916 struct tcp_sock *tp = tcp_sk(sk);
917 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
918 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
919 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
920 int reord = tp->packets_out;
921 int prior_fackets;
922 u32 lost_retrans = 0;
923 int flag = 0;
924 int i;
926 /* So, SACKs for already sent large segments will be lost.
927 * Not good, but alternative is to resegment the queue. */
928 if (sk->sk_route_caps & NETIF_F_TSO) {
929 sk->sk_route_caps &= ~NETIF_F_TSO;
930 sock_set_flag(sk, SOCK_NO_LARGESEND);
931 tp->mss_cache = tp->mss_cache;
934 if (!tp->sacked_out)
935 tp->fackets_out = 0;
936 prior_fackets = tp->fackets_out;
938 for (i=0; i<num_sacks; i++, sp++) {
939 struct sk_buff *skb;
940 __u32 start_seq = ntohl(sp->start_seq);
941 __u32 end_seq = ntohl(sp->end_seq);
942 int fack_count = 0;
943 int dup_sack = 0;
945 /* Check for D-SACK. */
946 if (i == 0) {
947 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
949 if (before(start_seq, ack)) {
950 dup_sack = 1;
951 tp->rx_opt.sack_ok |= 4;
952 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
953 } else if (num_sacks > 1 &&
954 !after(end_seq, ntohl(sp[1].end_seq)) &&
955 !before(start_seq, ntohl(sp[1].start_seq))) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
961 /* D-SACK for already forgotten data...
962 * Do dumb counting. */
963 if (dup_sack &&
964 !after(end_seq, prior_snd_una) &&
965 after(end_seq, tp->undo_marker))
966 tp->undo_retrans--;
968 /* Eliminate too old ACKs, but take into
969 * account more or less fresh ones, they can
970 * contain valid SACK info.
972 if (before(ack, prior_snd_una - tp->max_window))
973 return 0;
976 /* Event "B" in the comment above. */
977 if (after(end_seq, tp->high_seq))
978 flag |= FLAG_DATA_LOST;
980 sk_stream_for_retrans_queue(skb, sk) {
981 u8 sacked = TCP_SKB_CB(skb)->sacked;
982 int in_sack;
984 /* The retransmission queue is always in order, so
985 * we can short-circuit the walk early.
987 if(!before(TCP_SKB_CB(skb)->seq, end_seq))
988 break;
990 fack_count += tcp_skb_pcount(skb);
992 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
993 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
995 /* Account D-SACK for retransmitted packet. */
996 if ((dup_sack && in_sack) &&
997 (sacked & TCPCB_RETRANS) &&
998 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
999 tp->undo_retrans--;
1001 /* The frame is ACKed. */
1002 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1003 if (sacked&TCPCB_RETRANS) {
1004 if ((dup_sack && in_sack) &&
1005 (sacked&TCPCB_SACKED_ACKED))
1006 reord = min(fack_count, reord);
1007 } else {
1008 /* If it was in a hole, we detected reordering. */
1009 if (fack_count < prior_fackets &&
1010 !(sacked&TCPCB_SACKED_ACKED))
1011 reord = min(fack_count, reord);
1014 /* Nothing to do; acked frame is about to be dropped. */
1015 continue;
1018 if ((sacked&TCPCB_SACKED_RETRANS) &&
1019 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1020 (!lost_retrans || after(end_seq, lost_retrans)))
1021 lost_retrans = end_seq;
1023 if (!in_sack)
1024 continue;
1026 if (!(sacked&TCPCB_SACKED_ACKED)) {
1027 if (sacked & TCPCB_SACKED_RETRANS) {
1028 /* If the segment is not tagged as lost,
1029 * we do not clear RETRANS, believing
1030 * that retransmission is still in flight.
1032 if (sacked & TCPCB_LOST) {
1033 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1034 tp->lost_out -= tcp_skb_pcount(skb);
1035 tp->retrans_out -= tcp_skb_pcount(skb);
1037 } else {
1038 /* New sack for not retransmitted frame,
1039 * which was in hole. It is reordering.
1041 if (!(sacked & TCPCB_RETRANS) &&
1042 fack_count < prior_fackets)
1043 reord = min(fack_count, reord);
1045 if (sacked & TCPCB_LOST) {
1046 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1047 tp->lost_out -= tcp_skb_pcount(skb);
1051 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1052 flag |= FLAG_DATA_SACKED;
1053 tp->sacked_out += tcp_skb_pcount(skb);
1055 if (fack_count > tp->fackets_out)
1056 tp->fackets_out = fack_count;
1057 } else {
1058 if (dup_sack && (sacked&TCPCB_RETRANS))
1059 reord = min(fack_count, reord);
1062 /* D-SACK. We can detect redundant retransmission
1063 * in S|R and plain R frames and clear it.
1064 * undo_retrans is decreased above, L|R frames
1065 * are accounted above as well.
1067 if (dup_sack &&
1068 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1069 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1070 tp->retrans_out -= tcp_skb_pcount(skb);
1075 /* Check for lost retransmit. This superb idea is
1076 * borrowed from "ratehalving". Event "C".
1077 * Later note: FACK people cheated me again 8),
1078 * we have to account for reordering! Ugly,
1079 * but should help.
1081 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1082 struct sk_buff *skb;
1084 sk_stream_for_retrans_queue(skb, sk) {
1085 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1086 break;
1087 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1088 continue;
1089 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1090 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1091 (IsFack(tp) ||
1092 !before(lost_retrans,
1093 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1094 tp->mss_cache))) {
1095 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1096 tp->retrans_out -= tcp_skb_pcount(skb);
1098 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1099 tp->lost_out += tcp_skb_pcount(skb);
1100 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1101 flag |= FLAG_DATA_SACKED;
1102 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1108 tp->left_out = tp->sacked_out + tp->lost_out;
1110 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1111 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1113 #if FASTRETRANS_DEBUG > 0
1114 BUG_TRAP((int)tp->sacked_out >= 0);
1115 BUG_TRAP((int)tp->lost_out >= 0);
1116 BUG_TRAP((int)tp->retrans_out >= 0);
1117 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1118 #endif
1119 return flag;
1122 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1123 * segments to see from the next ACKs whether any data was really missing.
1124 * If the RTO was spurious, new ACKs should arrive.
1126 void tcp_enter_frto(struct sock *sk)
1128 const struct inet_connection_sock *icsk = inet_csk(sk);
1129 struct tcp_sock *tp = tcp_sk(sk);
1130 struct sk_buff *skb;
1132 tp->frto_counter = 1;
1134 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1135 tp->snd_una == tp->high_seq ||
1136 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1137 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1138 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1139 tcp_ca_event(sk, CA_EVENT_FRTO);
1142 /* Have to clear retransmission markers here to keep the bookkeeping
1143 * in shape, even though we are not yet in Loss state.
1144 * If something was really lost, it is eventually caught up
1145 * in tcp_enter_frto_loss.
1147 tp->retrans_out = 0;
1148 tp->undo_marker = tp->snd_una;
1149 tp->undo_retrans = 0;
1151 sk_stream_for_retrans_queue(skb, sk) {
1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1154 tcp_sync_left_out(tp);
1156 tcp_set_ca_state(sk, TCP_CA_Open);
1157 tp->frto_highmark = tp->snd_nxt;
1160 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1161 * which indicates that we should follow the traditional RTO recovery,
1162 * i.e. mark everything lost and do go-back-N retransmission.
1164 static void tcp_enter_frto_loss(struct sock *sk)
1166 struct tcp_sock *tp = tcp_sk(sk);
1167 struct sk_buff *skb;
1168 int cnt = 0;
1170 tp->sacked_out = 0;
1171 tp->lost_out = 0;
1172 tp->fackets_out = 0;
1174 sk_stream_for_retrans_queue(skb, sk) {
1175 cnt += tcp_skb_pcount(skb);
1176 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1177 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1179 /* Do not mark those segments lost that were
1180 * forward transmitted after RTO
1182 if (!after(TCP_SKB_CB(skb)->end_seq,
1183 tp->frto_highmark)) {
1184 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1185 tp->lost_out += tcp_skb_pcount(skb);
1187 } else {
1188 tp->sacked_out += tcp_skb_pcount(skb);
1189 tp->fackets_out = cnt;
1192 tcp_sync_left_out(tp);
1194 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1195 tp->snd_cwnd_cnt = 0;
1196 tp->snd_cwnd_stamp = tcp_time_stamp;
1197 tp->undo_marker = 0;
1198 tp->frto_counter = 0;
1200 tp->reordering = min_t(unsigned int, tp->reordering,
1201 sysctl_tcp_reordering);
1202 tcp_set_ca_state(sk, TCP_CA_Loss);
1203 tp->high_seq = tp->frto_highmark;
1204 TCP_ECN_queue_cwr(tp);
1207 void tcp_clear_retrans(struct tcp_sock *tp)
1209 tp->left_out = 0;
1210 tp->retrans_out = 0;
1212 tp->fackets_out = 0;
1213 tp->sacked_out = 0;
1214 tp->lost_out = 0;
1216 tp->undo_marker = 0;
1217 tp->undo_retrans = 0;
1220 /* Enter Loss state. If "how" is not zero, forget all SACK information
1221 * and reset tags completely, otherwise preserve SACKs. If receiver
1222 * dropped its ofo queue, we will know this due to reneging detection.
1224 void tcp_enter_loss(struct sock *sk, int how)
1226 const struct inet_connection_sock *icsk = inet_csk(sk);
1227 struct tcp_sock *tp = tcp_sk(sk);
1228 struct sk_buff *skb;
1229 int cnt = 0;
1231 /* Reduce ssthresh if it has not yet been made inside this window. */
1232 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1233 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1234 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1235 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1236 tcp_ca_event(sk, CA_EVENT_LOSS);
1238 tp->snd_cwnd = 1;
1239 tp->snd_cwnd_cnt = 0;
1240 tp->snd_cwnd_stamp = tcp_time_stamp;
1242 tcp_clear_retrans(tp);
1244 /* Push undo marker, if it was plain RTO and nothing
1245 * was retransmitted. */
1246 if (!how)
1247 tp->undo_marker = tp->snd_una;
1249 sk_stream_for_retrans_queue(skb, sk) {
1250 cnt += tcp_skb_pcount(skb);
1251 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1252 tp->undo_marker = 0;
1253 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1254 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1255 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1256 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1257 tp->lost_out += tcp_skb_pcount(skb);
1258 } else {
1259 tp->sacked_out += tcp_skb_pcount(skb);
1260 tp->fackets_out = cnt;
1263 tcp_sync_left_out(tp);
1265 tp->reordering = min_t(unsigned int, tp->reordering,
1266 sysctl_tcp_reordering);
1267 tcp_set_ca_state(sk, TCP_CA_Loss);
1268 tp->high_seq = tp->snd_nxt;
1269 TCP_ECN_queue_cwr(tp);
1272 static int tcp_check_sack_reneging(struct sock *sk)
1274 struct sk_buff *skb;
1276 /* If ACK arrived pointing to a remembered SACK,
1277 * it means that our remembered SACKs do not reflect
1278 * real state of receiver i.e.
1279 * receiver _host_ is heavily congested (or buggy).
1280 * Do processing similar to RTO timeout.
1282 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1283 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1284 struct inet_connection_sock *icsk = inet_csk(sk);
1285 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1287 tcp_enter_loss(sk, 1);
1288 icsk->icsk_retransmits++;
1289 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1290 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1291 icsk->icsk_rto, TCP_RTO_MAX);
1292 return 1;
1294 return 0;
1297 static inline int tcp_fackets_out(struct tcp_sock *tp)
1299 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1304 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1307 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1309 return tp->packets_out &&
1310 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1313 /* Linux NewReno/SACK/FACK/ECN state machine.
1314 * --------------------------------------
1316 * "Open" Normal state, no dubious events, fast path.
1317 * "Disorder" In all the respects it is "Open",
1318 * but requires a bit more attention. It is entered when
1319 * we see some SACKs or dupacks. It is split of "Open"
1320 * mainly to move some processing from fast path to slow one.
1321 * "CWR" CWND was reduced due to some Congestion Notification event.
1322 * It can be ECN, ICMP source quench, local device congestion.
1323 * "Recovery" CWND was reduced, we are fast-retransmitting.
1324 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1326 * tcp_fastretrans_alert() is entered:
1327 * - each incoming ACK, if state is not "Open"
1328 * - when arrived ACK is unusual, namely:
1329 * * SACK
1330 * * Duplicate ACK.
1331 * * ECN ECE.
1333 * Counting packets in flight is pretty simple.
1335 * in_flight = packets_out - left_out + retrans_out
1337 * packets_out is SND.NXT-SND.UNA counted in packets.
1339 * retrans_out is number of retransmitted segments.
1341 * left_out is number of segments left network, but not ACKed yet.
1343 * left_out = sacked_out + lost_out
1345 * sacked_out: Packets, which arrived to receiver out of order
1346 * and hence not ACKed. With SACKs this number is simply
1347 * amount of SACKed data. Even without SACKs
1348 * it is easy to give pretty reliable estimate of this number,
1349 * counting duplicate ACKs.
1351 * lost_out: Packets lost by network. TCP has no explicit
1352 * "loss notification" feedback from network (for now).
1353 * It means that this number can be only _guessed_.
1354 * Actually, it is the heuristics to predict lossage that
1355 * distinguishes different algorithms.
1357 * F.e. after RTO, when all the queue is considered as lost,
1358 * lost_out = packets_out and in_flight = retrans_out.
1360 * Essentially, we have now two algorithms counting
1361 * lost packets.
1363 * FACK: It is the simplest heuristics. As soon as we decided
1364 * that something is lost, we decide that _all_ not SACKed
1365 * packets until the most forward SACK are lost. I.e.
1366 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1367 * It is absolutely correct estimate, if network does not reorder
1368 * packets. And it loses any connection to reality when reordering
1369 * takes place. We use FACK by default until reordering
1370 * is suspected on the path to this destination.
1372 * NewReno: when Recovery is entered, we assume that one segment
1373 * is lost (classic Reno). While we are in Recovery and
1374 * a partial ACK arrives, we assume that one more packet
1375 * is lost (NewReno). This heuristics are the same in NewReno
1376 * and SACK.
1378 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1379 * deflation etc. CWND is real congestion window, never inflated, changes
1380 * only according to classic VJ rules.
1382 * Really tricky (and requiring careful tuning) part of algorithm
1383 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1384 * The first determines the moment _when_ we should reduce CWND and,
1385 * hence, slow down forward transmission. In fact, it determines the moment
1386 * when we decide that hole is caused by loss, rather than by a reorder.
1388 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1389 * holes, caused by lost packets.
1391 * And the most logically complicated part of algorithm is undo
1392 * heuristics. We detect false retransmits due to both too early
1393 * fast retransmit (reordering) and underestimated RTO, analyzing
1394 * timestamps and D-SACKs. When we detect that some segments were
1395 * retransmitted by mistake and CWND reduction was wrong, we undo
1396 * window reduction and abort recovery phase. This logic is hidden
1397 * inside several functions named tcp_try_undo_<something>.
1400 /* This function decides, when we should leave Disordered state
1401 * and enter Recovery phase, reducing congestion window.
1403 * Main question: may we further continue forward transmission
1404 * with the same cwnd?
1406 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1408 __u32 packets_out;
1410 /* Trick#1: The loss is proven. */
1411 if (tp->lost_out)
1412 return 1;
1414 /* Not-A-Trick#2 : Classic rule... */
1415 if (tcp_fackets_out(tp) > tp->reordering)
1416 return 1;
1418 /* Trick#3 : when we use RFC2988 timer restart, fast
1419 * retransmit can be triggered by timeout of queue head.
1421 if (tcp_head_timedout(sk, tp))
1422 return 1;
1424 /* Trick#4: It is still not OK... But will it be useful to delay
1425 * recovery more?
1427 packets_out = tp->packets_out;
1428 if (packets_out <= tp->reordering &&
1429 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1430 !tcp_may_send_now(sk, tp)) {
1431 /* We have nothing to send. This connection is limited
1432 * either by receiver window or by application.
1434 return 1;
1437 return 0;
1440 /* If we receive more dupacks than we expected counting segments
1441 * in assumption of absent reordering, interpret this as reordering.
1442 * The only another reason could be bug in receiver TCP.
1444 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1446 struct tcp_sock *tp = tcp_sk(sk);
1447 u32 holes;
1449 holes = max(tp->lost_out, 1U);
1450 holes = min(holes, tp->packets_out);
1452 if ((tp->sacked_out + holes) > tp->packets_out) {
1453 tp->sacked_out = tp->packets_out - holes;
1454 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1458 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1460 static void tcp_add_reno_sack(struct sock *sk)
1462 struct tcp_sock *tp = tcp_sk(sk);
1463 tp->sacked_out++;
1464 tcp_check_reno_reordering(sk, 0);
1465 tcp_sync_left_out(tp);
1468 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1470 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1472 if (acked > 0) {
1473 /* One ACK acked hole. The rest eat duplicate ACKs. */
1474 if (acked-1 >= tp->sacked_out)
1475 tp->sacked_out = 0;
1476 else
1477 tp->sacked_out -= acked-1;
1479 tcp_check_reno_reordering(sk, acked);
1480 tcp_sync_left_out(tp);
1483 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1485 tp->sacked_out = 0;
1486 tp->left_out = tp->lost_out;
1489 /* Mark head of queue up as lost. */
1490 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1491 int packets, u32 high_seq)
1493 struct sk_buff *skb;
1494 int cnt = packets;
1496 BUG_TRAP(cnt <= tp->packets_out);
1498 sk_stream_for_retrans_queue(skb, sk) {
1499 cnt -= tcp_skb_pcount(skb);
1500 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1501 break;
1502 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1503 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1504 tp->lost_out += tcp_skb_pcount(skb);
1507 tcp_sync_left_out(tp);
1510 /* Account newly detected lost packet(s) */
1512 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1514 if (IsFack(tp)) {
1515 int lost = tp->fackets_out - tp->reordering;
1516 if (lost <= 0)
1517 lost = 1;
1518 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1519 } else {
1520 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1523 /* New heuristics: it is possible only after we switched
1524 * to restart timer each time when something is ACKed.
1525 * Hence, we can detect timed out packets during fast
1526 * retransmit without falling to slow start.
1528 if (tcp_head_timedout(sk, tp)) {
1529 struct sk_buff *skb;
1531 sk_stream_for_retrans_queue(skb, sk) {
1532 if (tcp_skb_timedout(sk, skb) &&
1533 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1534 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1535 tp->lost_out += tcp_skb_pcount(skb);
1538 tcp_sync_left_out(tp);
1542 /* CWND moderation, preventing bursts due to too big ACKs
1543 * in dubious situations.
1545 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1547 tp->snd_cwnd = min(tp->snd_cwnd,
1548 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1549 tp->snd_cwnd_stamp = tcp_time_stamp;
1552 /* Decrease cwnd each second ack. */
1553 static void tcp_cwnd_down(struct sock *sk)
1555 const struct inet_connection_sock *icsk = inet_csk(sk);
1556 struct tcp_sock *tp = tcp_sk(sk);
1557 int decr = tp->snd_cwnd_cnt + 1;
1559 tp->snd_cwnd_cnt = decr&1;
1560 decr >>= 1;
1562 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1563 tp->snd_cwnd -= decr;
1565 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1566 tp->snd_cwnd_stamp = tcp_time_stamp;
1569 /* Nothing was retransmitted or returned timestamp is less
1570 * than timestamp of the first retransmission.
1572 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1574 return !tp->retrans_stamp ||
1575 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1576 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1579 /* Undo procedures. */
1581 #if FASTRETRANS_DEBUG > 1
1582 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1584 struct inet_sock *inet = inet_sk(sk);
1585 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1586 msg,
1587 NIPQUAD(inet->daddr), ntohs(inet->dport),
1588 tp->snd_cwnd, tp->left_out,
1589 tp->snd_ssthresh, tp->prior_ssthresh,
1590 tp->packets_out);
1592 #else
1593 #define DBGUNDO(x...) do { } while (0)
1594 #endif
1596 static void tcp_undo_cwr(struct sock *sk, const int undo)
1598 struct tcp_sock *tp = tcp_sk(sk);
1600 if (tp->prior_ssthresh) {
1601 const struct inet_connection_sock *icsk = inet_csk(sk);
1603 if (icsk->icsk_ca_ops->undo_cwnd)
1604 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1605 else
1606 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1608 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1609 tp->snd_ssthresh = tp->prior_ssthresh;
1610 TCP_ECN_withdraw_cwr(tp);
1612 } else {
1613 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1615 tcp_moderate_cwnd(tp);
1616 tp->snd_cwnd_stamp = tcp_time_stamp;
1619 static inline int tcp_may_undo(struct tcp_sock *tp)
1621 return tp->undo_marker &&
1622 (!tp->undo_retrans || tcp_packet_delayed(tp));
1625 /* People celebrate: "We love our President!" */
1626 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1628 if (tcp_may_undo(tp)) {
1629 /* Happy end! We did not retransmit anything
1630 * or our original transmission succeeded.
1632 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1633 tcp_undo_cwr(sk, 1);
1634 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1635 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1636 else
1637 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1638 tp->undo_marker = 0;
1640 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1641 /* Hold old state until something *above* high_seq
1642 * is ACKed. For Reno it is MUST to prevent false
1643 * fast retransmits (RFC2582). SACK TCP is safe. */
1644 tcp_moderate_cwnd(tp);
1645 return 1;
1647 tcp_set_ca_state(sk, TCP_CA_Open);
1648 return 0;
1651 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1652 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1654 if (tp->undo_marker && !tp->undo_retrans) {
1655 DBGUNDO(sk, tp, "D-SACK");
1656 tcp_undo_cwr(sk, 1);
1657 tp->undo_marker = 0;
1658 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1662 /* Undo during fast recovery after partial ACK. */
1664 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1665 int acked)
1667 /* Partial ACK arrived. Force Hoe's retransmit. */
1668 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1670 if (tcp_may_undo(tp)) {
1671 /* Plain luck! Hole if filled with delayed
1672 * packet, rather than with a retransmit.
1674 if (tp->retrans_out == 0)
1675 tp->retrans_stamp = 0;
1677 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1679 DBGUNDO(sk, tp, "Hoe");
1680 tcp_undo_cwr(sk, 0);
1681 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1683 /* So... Do not make Hoe's retransmit yet.
1684 * If the first packet was delayed, the rest
1685 * ones are most probably delayed as well.
1687 failed = 0;
1689 return failed;
1692 /* Undo during loss recovery after partial ACK. */
1693 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1695 if (tcp_may_undo(tp)) {
1696 struct sk_buff *skb;
1697 sk_stream_for_retrans_queue(skb, sk) {
1698 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1700 DBGUNDO(sk, tp, "partial loss");
1701 tp->lost_out = 0;
1702 tp->left_out = tp->sacked_out;
1703 tcp_undo_cwr(sk, 1);
1704 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1705 inet_csk(sk)->icsk_retransmits = 0;
1706 tp->undo_marker = 0;
1707 if (!IsReno(tp))
1708 tcp_set_ca_state(sk, TCP_CA_Open);
1709 return 1;
1711 return 0;
1714 static inline void tcp_complete_cwr(struct sock *sk)
1716 struct tcp_sock *tp = tcp_sk(sk);
1717 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1718 tp->snd_cwnd_stamp = tcp_time_stamp;
1719 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1722 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1724 tp->left_out = tp->sacked_out;
1726 if (tp->retrans_out == 0)
1727 tp->retrans_stamp = 0;
1729 if (flag&FLAG_ECE)
1730 tcp_enter_cwr(sk);
1732 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1733 int state = TCP_CA_Open;
1735 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1736 state = TCP_CA_Disorder;
1738 if (inet_csk(sk)->icsk_ca_state != state) {
1739 tcp_set_ca_state(sk, state);
1740 tp->high_seq = tp->snd_nxt;
1742 tcp_moderate_cwnd(tp);
1743 } else {
1744 tcp_cwnd_down(sk);
1748 /* Process an event, which can update packets-in-flight not trivially.
1749 * Main goal of this function is to calculate new estimate for left_out,
1750 * taking into account both packets sitting in receiver's buffer and
1751 * packets lost by network.
1753 * Besides that it does CWND reduction, when packet loss is detected
1754 * and changes state of machine.
1756 * It does _not_ decide what to send, it is made in function
1757 * tcp_xmit_retransmit_queue().
1759 static void
1760 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1761 int prior_packets, int flag)
1763 struct inet_connection_sock *icsk = inet_csk(sk);
1764 struct tcp_sock *tp = tcp_sk(sk);
1765 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1767 /* Some technical things:
1768 * 1. Reno does not count dupacks (sacked_out) automatically. */
1769 if (!tp->packets_out)
1770 tp->sacked_out = 0;
1771 /* 2. SACK counts snd_fack in packets inaccurately. */
1772 if (tp->sacked_out == 0)
1773 tp->fackets_out = 0;
1775 /* Now state machine starts.
1776 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1777 if (flag&FLAG_ECE)
1778 tp->prior_ssthresh = 0;
1780 /* B. In all the states check for reneging SACKs. */
1781 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1782 return;
1784 /* C. Process data loss notification, provided it is valid. */
1785 if ((flag&FLAG_DATA_LOST) &&
1786 before(tp->snd_una, tp->high_seq) &&
1787 icsk->icsk_ca_state != TCP_CA_Open &&
1788 tp->fackets_out > tp->reordering) {
1789 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1790 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1793 /* D. Synchronize left_out to current state. */
1794 tcp_sync_left_out(tp);
1796 /* E. Check state exit conditions. State can be terminated
1797 * when high_seq is ACKed. */
1798 if (icsk->icsk_ca_state == TCP_CA_Open) {
1799 if (!sysctl_tcp_frto)
1800 BUG_TRAP(tp->retrans_out == 0);
1801 tp->retrans_stamp = 0;
1802 } else if (!before(tp->snd_una, tp->high_seq)) {
1803 switch (icsk->icsk_ca_state) {
1804 case TCP_CA_Loss:
1805 icsk->icsk_retransmits = 0;
1806 if (tcp_try_undo_recovery(sk, tp))
1807 return;
1808 break;
1810 case TCP_CA_CWR:
1811 /* CWR is to be held something *above* high_seq
1812 * is ACKed for CWR bit to reach receiver. */
1813 if (tp->snd_una != tp->high_seq) {
1814 tcp_complete_cwr(sk);
1815 tcp_set_ca_state(sk, TCP_CA_Open);
1817 break;
1819 case TCP_CA_Disorder:
1820 tcp_try_undo_dsack(sk, tp);
1821 if (!tp->undo_marker ||
1822 /* For SACK case do not Open to allow to undo
1823 * catching for all duplicate ACKs. */
1824 IsReno(tp) || tp->snd_una != tp->high_seq) {
1825 tp->undo_marker = 0;
1826 tcp_set_ca_state(sk, TCP_CA_Open);
1828 break;
1830 case TCP_CA_Recovery:
1831 if (IsReno(tp))
1832 tcp_reset_reno_sack(tp);
1833 if (tcp_try_undo_recovery(sk, tp))
1834 return;
1835 tcp_complete_cwr(sk);
1836 break;
1840 /* F. Process state. */
1841 switch (icsk->icsk_ca_state) {
1842 case TCP_CA_Recovery:
1843 if (prior_snd_una == tp->snd_una) {
1844 if (IsReno(tp) && is_dupack)
1845 tcp_add_reno_sack(sk);
1846 } else {
1847 int acked = prior_packets - tp->packets_out;
1848 if (IsReno(tp))
1849 tcp_remove_reno_sacks(sk, tp, acked);
1850 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1852 break;
1853 case TCP_CA_Loss:
1854 if (flag&FLAG_DATA_ACKED)
1855 icsk->icsk_retransmits = 0;
1856 if (!tcp_try_undo_loss(sk, tp)) {
1857 tcp_moderate_cwnd(tp);
1858 tcp_xmit_retransmit_queue(sk);
1859 return;
1861 if (icsk->icsk_ca_state != TCP_CA_Open)
1862 return;
1863 /* Loss is undone; fall through to processing in Open state. */
1864 default:
1865 if (IsReno(tp)) {
1866 if (tp->snd_una != prior_snd_una)
1867 tcp_reset_reno_sack(tp);
1868 if (is_dupack)
1869 tcp_add_reno_sack(sk);
1872 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1873 tcp_try_undo_dsack(sk, tp);
1875 if (!tcp_time_to_recover(sk, tp)) {
1876 tcp_try_to_open(sk, tp, flag);
1877 return;
1880 /* Otherwise enter Recovery state */
1882 if (IsReno(tp))
1883 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1884 else
1885 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1887 tp->high_seq = tp->snd_nxt;
1888 tp->prior_ssthresh = 0;
1889 tp->undo_marker = tp->snd_una;
1890 tp->undo_retrans = tp->retrans_out;
1892 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1893 if (!(flag&FLAG_ECE))
1894 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896 TCP_ECN_queue_cwr(tp);
1899 tp->snd_cwnd_cnt = 0;
1900 tcp_set_ca_state(sk, TCP_CA_Recovery);
1903 if (is_dupack || tcp_head_timedout(sk, tp))
1904 tcp_update_scoreboard(sk, tp);
1905 tcp_cwnd_down(sk);
1906 tcp_xmit_retransmit_queue(sk);
1909 /* Read draft-ietf-tcplw-high-performance before mucking
1910 * with this code. (Superceeds RFC1323)
1912 static void tcp_ack_saw_tstamp(struct sock *sk, u32 *usrtt, int flag)
1914 /* RTTM Rule: A TSecr value received in a segment is used to
1915 * update the averaged RTT measurement only if the segment
1916 * acknowledges some new data, i.e., only if it advances the
1917 * left edge of the send window.
1919 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1920 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1922 * Changed: reset backoff as soon as we see the first valid sample.
1923 * If we do not, we get strongly overstimated rto. With timestamps
1924 * samples are accepted even from very old segments: f.e., when rtt=1
1925 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1926 * answer arrives rto becomes 120 seconds! If at least one of segments
1927 * in window is lost... Voila. --ANK (010210)
1929 struct tcp_sock *tp = tcp_sk(sk);
1930 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1931 tcp_rtt_estimator(sk, seq_rtt, usrtt);
1932 tcp_set_rto(sk);
1933 inet_csk(sk)->icsk_backoff = 0;
1934 tcp_bound_rto(sk);
1937 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, u32 *usrtt, int flag)
1939 /* We don't have a timestamp. Can only use
1940 * packets that are not retransmitted to determine
1941 * rtt estimates. Also, we must not reset the
1942 * backoff for rto until we get a non-retransmitted
1943 * packet. This allows us to deal with a situation
1944 * where the network delay has increased suddenly.
1945 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1948 if (flag & FLAG_RETRANS_DATA_ACKED)
1949 return;
1951 tcp_rtt_estimator(sk, seq_rtt, usrtt);
1952 tcp_set_rto(sk);
1953 inet_csk(sk)->icsk_backoff = 0;
1954 tcp_bound_rto(sk);
1957 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1958 const s32 seq_rtt, u32 *usrtt)
1960 const struct tcp_sock *tp = tcp_sk(sk);
1961 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1962 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1963 tcp_ack_saw_tstamp(sk, usrtt, flag);
1964 else if (seq_rtt >= 0)
1965 tcp_ack_no_tstamp(sk, seq_rtt, usrtt, flag);
1968 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
1969 u32 in_flight, int good)
1971 const struct inet_connection_sock *icsk = inet_csk(sk);
1972 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
1973 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1976 /* Restart timer after forward progress on connection.
1977 * RFC2988 recommends to restart timer to now+rto.
1980 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1982 if (!tp->packets_out) {
1983 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1984 } else {
1985 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1989 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1990 __u32 now, __s32 *seq_rtt)
1992 struct tcp_sock *tp = tcp_sk(sk);
1993 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1994 __u32 seq = tp->snd_una;
1995 __u32 packets_acked;
1996 int acked = 0;
1998 /* If we get here, the whole TSO packet has not been
1999 * acked.
2001 BUG_ON(!after(scb->end_seq, seq));
2003 packets_acked = tcp_skb_pcount(skb);
2004 if (tcp_trim_head(sk, skb, seq - scb->seq))
2005 return 0;
2006 packets_acked -= tcp_skb_pcount(skb);
2008 if (packets_acked) {
2009 __u8 sacked = scb->sacked;
2011 acked |= FLAG_DATA_ACKED;
2012 if (sacked) {
2013 if (sacked & TCPCB_RETRANS) {
2014 if (sacked & TCPCB_SACKED_RETRANS)
2015 tp->retrans_out -= packets_acked;
2016 acked |= FLAG_RETRANS_DATA_ACKED;
2017 *seq_rtt = -1;
2018 } else if (*seq_rtt < 0)
2019 *seq_rtt = now - scb->when;
2020 if (sacked & TCPCB_SACKED_ACKED)
2021 tp->sacked_out -= packets_acked;
2022 if (sacked & TCPCB_LOST)
2023 tp->lost_out -= packets_acked;
2024 if (sacked & TCPCB_URG) {
2025 if (tp->urg_mode &&
2026 !before(seq, tp->snd_up))
2027 tp->urg_mode = 0;
2029 } else if (*seq_rtt < 0)
2030 *seq_rtt = now - scb->when;
2032 if (tp->fackets_out) {
2033 __u32 dval = min(tp->fackets_out, packets_acked);
2034 tp->fackets_out -= dval;
2036 tp->packets_out -= packets_acked;
2038 BUG_ON(tcp_skb_pcount(skb) == 0);
2039 BUG_ON(!before(scb->seq, scb->end_seq));
2042 return acked;
2046 /* Remove acknowledged frames from the retransmission queue. */
2047 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2049 struct tcp_sock *tp = tcp_sk(sk);
2050 struct sk_buff *skb;
2051 __u32 now = tcp_time_stamp;
2052 int acked = 0;
2053 __s32 seq_rtt = -1;
2054 struct timeval usnow;
2055 u32 pkts_acked = 0;
2057 if (seq_usrtt)
2058 do_gettimeofday(&usnow);
2060 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2061 skb != sk->sk_send_head) {
2062 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2063 __u8 sacked = scb->sacked;
2065 /* If our packet is before the ack sequence we can
2066 * discard it as it's confirmed to have arrived at
2067 * the other end.
2069 if (after(scb->end_seq, tp->snd_una)) {
2070 if (tcp_skb_pcount(skb) > 1 &&
2071 after(tp->snd_una, scb->seq))
2072 acked |= tcp_tso_acked(sk, skb,
2073 now, &seq_rtt);
2074 break;
2077 /* Initial outgoing SYN's get put onto the write_queue
2078 * just like anything else we transmit. It is not
2079 * true data, and if we misinform our callers that
2080 * this ACK acks real data, we will erroneously exit
2081 * connection startup slow start one packet too
2082 * quickly. This is severely frowned upon behavior.
2084 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2085 acked |= FLAG_DATA_ACKED;
2086 ++pkts_acked;
2087 } else {
2088 acked |= FLAG_SYN_ACKED;
2089 tp->retrans_stamp = 0;
2092 if (sacked) {
2093 if (sacked & TCPCB_RETRANS) {
2094 if(sacked & TCPCB_SACKED_RETRANS)
2095 tp->retrans_out -= tcp_skb_pcount(skb);
2096 acked |= FLAG_RETRANS_DATA_ACKED;
2097 seq_rtt = -1;
2098 } else if (seq_rtt < 0)
2099 seq_rtt = now - scb->when;
2100 if (seq_usrtt) {
2101 struct timeval tv;
2103 skb_get_timestamp(skb, &tv);
2104 *seq_usrtt = (usnow.tv_sec - tv.tv_sec) * 1000000
2105 + (usnow.tv_usec - tv.tv_usec);
2108 if (sacked & TCPCB_SACKED_ACKED)
2109 tp->sacked_out -= tcp_skb_pcount(skb);
2110 if (sacked & TCPCB_LOST)
2111 tp->lost_out -= tcp_skb_pcount(skb);
2112 if (sacked & TCPCB_URG) {
2113 if (tp->urg_mode &&
2114 !before(scb->end_seq, tp->snd_up))
2115 tp->urg_mode = 0;
2117 } else if (seq_rtt < 0)
2118 seq_rtt = now - scb->when;
2119 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2120 tcp_packets_out_dec(tp, skb);
2121 __skb_unlink(skb, &sk->sk_write_queue);
2122 sk_stream_free_skb(sk, skb);
2125 if (acked&FLAG_ACKED) {
2126 const struct inet_connection_sock *icsk = inet_csk(sk);
2127 tcp_ack_update_rtt(sk, acked, seq_rtt, seq_usrtt);
2128 tcp_ack_packets_out(sk, tp);
2130 if (icsk->icsk_ca_ops->pkts_acked)
2131 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2134 #if FASTRETRANS_DEBUG > 0
2135 BUG_TRAP((int)tp->sacked_out >= 0);
2136 BUG_TRAP((int)tp->lost_out >= 0);
2137 BUG_TRAP((int)tp->retrans_out >= 0);
2138 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2139 const struct inet_connection_sock *icsk = inet_csk(sk);
2140 if (tp->lost_out) {
2141 printk(KERN_DEBUG "Leak l=%u %d\n",
2142 tp->lost_out, icsk->icsk_ca_state);
2143 tp->lost_out = 0;
2145 if (tp->sacked_out) {
2146 printk(KERN_DEBUG "Leak s=%u %d\n",
2147 tp->sacked_out, icsk->icsk_ca_state);
2148 tp->sacked_out = 0;
2150 if (tp->retrans_out) {
2151 printk(KERN_DEBUG "Leak r=%u %d\n",
2152 tp->retrans_out, icsk->icsk_ca_state);
2153 tp->retrans_out = 0;
2156 #endif
2157 *seq_rtt_p = seq_rtt;
2158 return acked;
2161 static void tcp_ack_probe(struct sock *sk)
2163 const struct tcp_sock *tp = tcp_sk(sk);
2164 struct inet_connection_sock *icsk = inet_csk(sk);
2166 /* Was it a usable window open? */
2168 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2169 tp->snd_una + tp->snd_wnd)) {
2170 icsk->icsk_backoff = 0;
2171 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2172 /* Socket must be waked up by subsequent tcp_data_snd_check().
2173 * This function is not for random using!
2175 } else {
2176 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2177 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2178 TCP_RTO_MAX);
2182 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2184 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2185 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2188 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2190 const struct tcp_sock *tp = tcp_sk(sk);
2191 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2192 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2195 /* Check that window update is acceptable.
2196 * The function assumes that snd_una<=ack<=snd_next.
2198 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2199 const u32 ack_seq, const u32 nwin)
2201 return (after(ack, tp->snd_una) ||
2202 after(ack_seq, tp->snd_wl1) ||
2203 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2206 /* Update our send window.
2208 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2209 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2211 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2212 struct sk_buff *skb, u32 ack, u32 ack_seq)
2214 int flag = 0;
2215 u32 nwin = ntohs(skb->h.th->window);
2217 if (likely(!skb->h.th->syn))
2218 nwin <<= tp->rx_opt.snd_wscale;
2220 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2221 flag |= FLAG_WIN_UPDATE;
2222 tcp_update_wl(tp, ack, ack_seq);
2224 if (tp->snd_wnd != nwin) {
2225 tp->snd_wnd = nwin;
2227 /* Note, it is the only place, where
2228 * fast path is recovered for sending TCP.
2230 tcp_fast_path_check(sk, tp);
2232 if (nwin > tp->max_window) {
2233 tp->max_window = nwin;
2234 tcp_sync_mss(sk, tp->pmtu_cookie);
2239 tp->snd_una = ack;
2241 return flag;
2244 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2246 struct tcp_sock *tp = tcp_sk(sk);
2248 tcp_sync_left_out(tp);
2250 if (tp->snd_una == prior_snd_una ||
2251 !before(tp->snd_una, tp->frto_highmark)) {
2252 /* RTO was caused by loss, start retransmitting in
2253 * go-back-N slow start
2255 tcp_enter_frto_loss(sk);
2256 return;
2259 if (tp->frto_counter == 1) {
2260 /* First ACK after RTO advances the window: allow two new
2261 * segments out.
2263 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2264 } else {
2265 /* Also the second ACK after RTO advances the window.
2266 * The RTO was likely spurious. Reduce cwnd and continue
2267 * in congestion avoidance
2269 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2270 tcp_moderate_cwnd(tp);
2273 /* F-RTO affects on two new ACKs following RTO.
2274 * At latest on third ACK the TCP behavor is back to normal.
2276 tp->frto_counter = (tp->frto_counter + 1) % 3;
2279 /* This routine deals with incoming acks, but not outgoing ones. */
2280 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2282 struct inet_connection_sock *icsk = inet_csk(sk);
2283 struct tcp_sock *tp = tcp_sk(sk);
2284 u32 prior_snd_una = tp->snd_una;
2285 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2286 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2287 u32 prior_in_flight;
2288 s32 seq_rtt;
2289 s32 seq_usrtt = 0;
2290 int prior_packets;
2292 /* If the ack is newer than sent or older than previous acks
2293 * then we can probably ignore it.
2295 if (after(ack, tp->snd_nxt))
2296 goto uninteresting_ack;
2298 if (before(ack, prior_snd_una))
2299 goto old_ack;
2301 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2302 /* Window is constant, pure forward advance.
2303 * No more checks are required.
2304 * Note, we use the fact that SND.UNA>=SND.WL2.
2306 tcp_update_wl(tp, ack, ack_seq);
2307 tp->snd_una = ack;
2308 flag |= FLAG_WIN_UPDATE;
2310 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2312 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2313 } else {
2314 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2315 flag |= FLAG_DATA;
2316 else
2317 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2319 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2321 if (TCP_SKB_CB(skb)->sacked)
2322 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2324 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2325 flag |= FLAG_ECE;
2327 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2330 /* We passed data and got it acked, remove any soft error
2331 * log. Something worked...
2333 sk->sk_err_soft = 0;
2334 tp->rcv_tstamp = tcp_time_stamp;
2335 prior_packets = tp->packets_out;
2336 if (!prior_packets)
2337 goto no_queue;
2339 prior_in_flight = tcp_packets_in_flight(tp);
2341 /* See if we can take anything off of the retransmit queue. */
2342 flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2343 icsk->icsk_ca_ops->rtt_sample ? &seq_usrtt : NULL);
2345 if (tp->frto_counter)
2346 tcp_process_frto(sk, prior_snd_una);
2348 if (tcp_ack_is_dubious(sk, flag)) {
2349 /* Advanve CWND, if state allows this. */
2350 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2351 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2352 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2353 } else {
2354 if ((flag & FLAG_DATA_ACKED))
2355 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2358 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2359 dst_confirm(sk->sk_dst_cache);
2361 return 1;
2363 no_queue:
2364 icsk->icsk_probes_out = 0;
2366 /* If this ack opens up a zero window, clear backoff. It was
2367 * being used to time the probes, and is probably far higher than
2368 * it needs to be for normal retransmission.
2370 if (sk->sk_send_head)
2371 tcp_ack_probe(sk);
2372 return 1;
2374 old_ack:
2375 if (TCP_SKB_CB(skb)->sacked)
2376 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2378 uninteresting_ack:
2379 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2380 return 0;
2384 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2385 * But, this can also be called on packets in the established flow when
2386 * the fast version below fails.
2388 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2390 unsigned char *ptr;
2391 struct tcphdr *th = skb->h.th;
2392 int length=(th->doff*4)-sizeof(struct tcphdr);
2394 ptr = (unsigned char *)(th + 1);
2395 opt_rx->saw_tstamp = 0;
2397 while(length>0) {
2398 int opcode=*ptr++;
2399 int opsize;
2401 switch (opcode) {
2402 case TCPOPT_EOL:
2403 return;
2404 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2405 length--;
2406 continue;
2407 default:
2408 opsize=*ptr++;
2409 if (opsize < 2) /* "silly options" */
2410 return;
2411 if (opsize > length)
2412 return; /* don't parse partial options */
2413 switch(opcode) {
2414 case TCPOPT_MSS:
2415 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2416 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2417 if (in_mss) {
2418 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2419 in_mss = opt_rx->user_mss;
2420 opt_rx->mss_clamp = in_mss;
2423 break;
2424 case TCPOPT_WINDOW:
2425 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2426 if (sysctl_tcp_window_scaling) {
2427 __u8 snd_wscale = *(__u8 *) ptr;
2428 opt_rx->wscale_ok = 1;
2429 if (snd_wscale > 14) {
2430 if(net_ratelimit())
2431 printk(KERN_INFO "tcp_parse_options: Illegal window "
2432 "scaling value %d >14 received.\n",
2433 snd_wscale);
2434 snd_wscale = 14;
2436 opt_rx->snd_wscale = snd_wscale;
2438 break;
2439 case TCPOPT_TIMESTAMP:
2440 if(opsize==TCPOLEN_TIMESTAMP) {
2441 if ((estab && opt_rx->tstamp_ok) ||
2442 (!estab && sysctl_tcp_timestamps)) {
2443 opt_rx->saw_tstamp = 1;
2444 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2445 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2448 break;
2449 case TCPOPT_SACK_PERM:
2450 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2451 if (sysctl_tcp_sack) {
2452 opt_rx->sack_ok = 1;
2453 tcp_sack_reset(opt_rx);
2456 break;
2458 case TCPOPT_SACK:
2459 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2460 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2461 opt_rx->sack_ok) {
2462 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2465 ptr+=opsize-2;
2466 length-=opsize;
2471 /* Fast parse options. This hopes to only see timestamps.
2472 * If it is wrong it falls back on tcp_parse_options().
2474 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2475 struct tcp_sock *tp)
2477 if (th->doff == sizeof(struct tcphdr)>>2) {
2478 tp->rx_opt.saw_tstamp = 0;
2479 return 0;
2480 } else if (tp->rx_opt.tstamp_ok &&
2481 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2482 __u32 *ptr = (__u32 *)(th + 1);
2483 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2484 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2485 tp->rx_opt.saw_tstamp = 1;
2486 ++ptr;
2487 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2488 ++ptr;
2489 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2490 return 1;
2493 tcp_parse_options(skb, &tp->rx_opt, 1);
2494 return 1;
2497 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2499 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2500 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2503 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2505 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2506 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2507 * extra check below makes sure this can only happen
2508 * for pure ACK frames. -DaveM
2510 * Not only, also it occurs for expired timestamps.
2513 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2514 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2515 tcp_store_ts_recent(tp);
2519 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2521 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2522 * it can pass through stack. So, the following predicate verifies that
2523 * this segment is not used for anything but congestion avoidance or
2524 * fast retransmit. Moreover, we even are able to eliminate most of such
2525 * second order effects, if we apply some small "replay" window (~RTO)
2526 * to timestamp space.
2528 * All these measures still do not guarantee that we reject wrapped ACKs
2529 * on networks with high bandwidth, when sequence space is recycled fastly,
2530 * but it guarantees that such events will be very rare and do not affect
2531 * connection seriously. This doesn't look nice, but alas, PAWS is really
2532 * buggy extension.
2534 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2535 * states that events when retransmit arrives after original data are rare.
2536 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2537 * the biggest problem on large power networks even with minor reordering.
2538 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2539 * up to bandwidth of 18Gigabit/sec. 8) ]
2542 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 struct tcphdr *th = skb->h.th;
2546 u32 seq = TCP_SKB_CB(skb)->seq;
2547 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2549 return (/* 1. Pure ACK with correct sequence number. */
2550 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2552 /* 2. ... and duplicate ACK. */
2553 ack == tp->snd_una &&
2555 /* 3. ... and does not update window. */
2556 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2558 /* 4. ... and sits in replay window. */
2559 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2562 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2564 const struct tcp_sock *tp = tcp_sk(sk);
2565 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2566 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2567 !tcp_disordered_ack(sk, skb));
2570 /* Check segment sequence number for validity.
2572 * Segment controls are considered valid, if the segment
2573 * fits to the window after truncation to the window. Acceptability
2574 * of data (and SYN, FIN, of course) is checked separately.
2575 * See tcp_data_queue(), for example.
2577 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2578 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2579 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2580 * (borrowed from freebsd)
2583 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2585 return !before(end_seq, tp->rcv_wup) &&
2586 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2589 /* When we get a reset we do this. */
2590 static void tcp_reset(struct sock *sk)
2592 /* We want the right error as BSD sees it (and indeed as we do). */
2593 switch (sk->sk_state) {
2594 case TCP_SYN_SENT:
2595 sk->sk_err = ECONNREFUSED;
2596 break;
2597 case TCP_CLOSE_WAIT:
2598 sk->sk_err = EPIPE;
2599 break;
2600 case TCP_CLOSE:
2601 return;
2602 default:
2603 sk->sk_err = ECONNRESET;
2606 if (!sock_flag(sk, SOCK_DEAD))
2607 sk->sk_error_report(sk);
2609 tcp_done(sk);
2613 * Process the FIN bit. This now behaves as it is supposed to work
2614 * and the FIN takes effect when it is validly part of sequence
2615 * space. Not before when we get holes.
2617 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2618 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2619 * TIME-WAIT)
2621 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2622 * close and we go into CLOSING (and later onto TIME-WAIT)
2624 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2626 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2628 struct tcp_sock *tp = tcp_sk(sk);
2630 inet_csk_schedule_ack(sk);
2632 sk->sk_shutdown |= RCV_SHUTDOWN;
2633 sock_set_flag(sk, SOCK_DONE);
2635 switch (sk->sk_state) {
2636 case TCP_SYN_RECV:
2637 case TCP_ESTABLISHED:
2638 /* Move to CLOSE_WAIT */
2639 tcp_set_state(sk, TCP_CLOSE_WAIT);
2640 inet_csk(sk)->icsk_ack.pingpong = 1;
2641 break;
2643 case TCP_CLOSE_WAIT:
2644 case TCP_CLOSING:
2645 /* Received a retransmission of the FIN, do
2646 * nothing.
2648 break;
2649 case TCP_LAST_ACK:
2650 /* RFC793: Remain in the LAST-ACK state. */
2651 break;
2653 case TCP_FIN_WAIT1:
2654 /* This case occurs when a simultaneous close
2655 * happens, we must ack the received FIN and
2656 * enter the CLOSING state.
2658 tcp_send_ack(sk);
2659 tcp_set_state(sk, TCP_CLOSING);
2660 break;
2661 case TCP_FIN_WAIT2:
2662 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2663 tcp_send_ack(sk);
2664 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2665 break;
2666 default:
2667 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2668 * cases we should never reach this piece of code.
2670 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2671 __FUNCTION__, sk->sk_state);
2672 break;
2675 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2676 * Probably, we should reset in this case. For now drop them.
2678 __skb_queue_purge(&tp->out_of_order_queue);
2679 if (tp->rx_opt.sack_ok)
2680 tcp_sack_reset(&tp->rx_opt);
2681 sk_stream_mem_reclaim(sk);
2683 if (!sock_flag(sk, SOCK_DEAD)) {
2684 sk->sk_state_change(sk);
2686 /* Do not send POLL_HUP for half duplex close. */
2687 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2688 sk->sk_state == TCP_CLOSE)
2689 sk_wake_async(sk, 1, POLL_HUP);
2690 else
2691 sk_wake_async(sk, 1, POLL_IN);
2695 static __inline__ int
2696 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2698 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2699 if (before(seq, sp->start_seq))
2700 sp->start_seq = seq;
2701 if (after(end_seq, sp->end_seq))
2702 sp->end_seq = end_seq;
2703 return 1;
2705 return 0;
2708 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2710 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2711 if (before(seq, tp->rcv_nxt))
2712 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2713 else
2714 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2716 tp->rx_opt.dsack = 1;
2717 tp->duplicate_sack[0].start_seq = seq;
2718 tp->duplicate_sack[0].end_seq = end_seq;
2719 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2723 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2725 if (!tp->rx_opt.dsack)
2726 tcp_dsack_set(tp, seq, end_seq);
2727 else
2728 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2731 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2733 struct tcp_sock *tp = tcp_sk(sk);
2735 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2736 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2737 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2738 tcp_enter_quickack_mode(sk);
2740 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2741 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2743 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2744 end_seq = tp->rcv_nxt;
2745 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2749 tcp_send_ack(sk);
2752 /* These routines update the SACK block as out-of-order packets arrive or
2753 * in-order packets close up the sequence space.
2755 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2757 int this_sack;
2758 struct tcp_sack_block *sp = &tp->selective_acks[0];
2759 struct tcp_sack_block *swalk = sp+1;
2761 /* See if the recent change to the first SACK eats into
2762 * or hits the sequence space of other SACK blocks, if so coalesce.
2764 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2765 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2766 int i;
2768 /* Zap SWALK, by moving every further SACK up by one slot.
2769 * Decrease num_sacks.
2771 tp->rx_opt.num_sacks--;
2772 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2773 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2774 sp[i] = sp[i+1];
2775 continue;
2777 this_sack++, swalk++;
2781 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2783 __u32 tmp;
2785 tmp = sack1->start_seq;
2786 sack1->start_seq = sack2->start_seq;
2787 sack2->start_seq = tmp;
2789 tmp = sack1->end_seq;
2790 sack1->end_seq = sack2->end_seq;
2791 sack2->end_seq = tmp;
2794 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2796 struct tcp_sock *tp = tcp_sk(sk);
2797 struct tcp_sack_block *sp = &tp->selective_acks[0];
2798 int cur_sacks = tp->rx_opt.num_sacks;
2799 int this_sack;
2801 if (!cur_sacks)
2802 goto new_sack;
2804 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2805 if (tcp_sack_extend(sp, seq, end_seq)) {
2806 /* Rotate this_sack to the first one. */
2807 for (; this_sack>0; this_sack--, sp--)
2808 tcp_sack_swap(sp, sp-1);
2809 if (cur_sacks > 1)
2810 tcp_sack_maybe_coalesce(tp);
2811 return;
2815 /* Could not find an adjacent existing SACK, build a new one,
2816 * put it at the front, and shift everyone else down. We
2817 * always know there is at least one SACK present already here.
2819 * If the sack array is full, forget about the last one.
2821 if (this_sack >= 4) {
2822 this_sack--;
2823 tp->rx_opt.num_sacks--;
2824 sp--;
2826 for(; this_sack > 0; this_sack--, sp--)
2827 *sp = *(sp-1);
2829 new_sack:
2830 /* Build the new head SACK, and we're done. */
2831 sp->start_seq = seq;
2832 sp->end_seq = end_seq;
2833 tp->rx_opt.num_sacks++;
2834 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2837 /* RCV.NXT advances, some SACKs should be eaten. */
2839 static void tcp_sack_remove(struct tcp_sock *tp)
2841 struct tcp_sack_block *sp = &tp->selective_acks[0];
2842 int num_sacks = tp->rx_opt.num_sacks;
2843 int this_sack;
2845 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2846 if (skb_queue_empty(&tp->out_of_order_queue)) {
2847 tp->rx_opt.num_sacks = 0;
2848 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2849 return;
2852 for(this_sack = 0; this_sack < num_sacks; ) {
2853 /* Check if the start of the sack is covered by RCV.NXT. */
2854 if (!before(tp->rcv_nxt, sp->start_seq)) {
2855 int i;
2857 /* RCV.NXT must cover all the block! */
2858 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2860 /* Zap this SACK, by moving forward any other SACKS. */
2861 for (i=this_sack+1; i < num_sacks; i++)
2862 tp->selective_acks[i-1] = tp->selective_acks[i];
2863 num_sacks--;
2864 continue;
2866 this_sack++;
2867 sp++;
2869 if (num_sacks != tp->rx_opt.num_sacks) {
2870 tp->rx_opt.num_sacks = num_sacks;
2871 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2875 /* This one checks to see if we can put data from the
2876 * out_of_order queue into the receive_queue.
2878 static void tcp_ofo_queue(struct sock *sk)
2880 struct tcp_sock *tp = tcp_sk(sk);
2881 __u32 dsack_high = tp->rcv_nxt;
2882 struct sk_buff *skb;
2884 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2885 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2886 break;
2888 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2889 __u32 dsack = dsack_high;
2890 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2891 dsack_high = TCP_SKB_CB(skb)->end_seq;
2892 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2895 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2896 SOCK_DEBUG(sk, "ofo packet was already received \n");
2897 __skb_unlink(skb, &tp->out_of_order_queue);
2898 __kfree_skb(skb);
2899 continue;
2901 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2902 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2903 TCP_SKB_CB(skb)->end_seq);
2905 __skb_unlink(skb, &tp->out_of_order_queue);
2906 __skb_queue_tail(&sk->sk_receive_queue, skb);
2907 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2908 if(skb->h.th->fin)
2909 tcp_fin(skb, sk, skb->h.th);
2913 static int tcp_prune_queue(struct sock *sk);
2915 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2917 struct tcphdr *th = skb->h.th;
2918 struct tcp_sock *tp = tcp_sk(sk);
2919 int eaten = -1;
2921 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2922 goto drop;
2924 __skb_pull(skb, th->doff*4);
2926 TCP_ECN_accept_cwr(tp, skb);
2928 if (tp->rx_opt.dsack) {
2929 tp->rx_opt.dsack = 0;
2930 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2931 4 - tp->rx_opt.tstamp_ok);
2934 /* Queue data for delivery to the user.
2935 * Packets in sequence go to the receive queue.
2936 * Out of sequence packets to the out_of_order_queue.
2938 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2939 if (tcp_receive_window(tp) == 0)
2940 goto out_of_window;
2942 /* Ok. In sequence. In window. */
2943 if (tp->ucopy.task == current &&
2944 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2945 sock_owned_by_user(sk) && !tp->urg_data) {
2946 int chunk = min_t(unsigned int, skb->len,
2947 tp->ucopy.len);
2949 __set_current_state(TASK_RUNNING);
2951 local_bh_enable();
2952 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2953 tp->ucopy.len -= chunk;
2954 tp->copied_seq += chunk;
2955 eaten = (chunk == skb->len && !th->fin);
2956 tcp_rcv_space_adjust(sk);
2958 local_bh_disable();
2961 if (eaten <= 0) {
2962 queue_and_out:
2963 if (eaten < 0 &&
2964 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2965 !sk_stream_rmem_schedule(sk, skb))) {
2966 if (tcp_prune_queue(sk) < 0 ||
2967 !sk_stream_rmem_schedule(sk, skb))
2968 goto drop;
2970 sk_stream_set_owner_r(skb, sk);
2971 __skb_queue_tail(&sk->sk_receive_queue, skb);
2973 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2974 if(skb->len)
2975 tcp_event_data_recv(sk, tp, skb);
2976 if(th->fin)
2977 tcp_fin(skb, sk, th);
2979 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2980 tcp_ofo_queue(sk);
2982 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2983 * gap in queue is filled.
2985 if (skb_queue_empty(&tp->out_of_order_queue))
2986 inet_csk(sk)->icsk_ack.pingpong = 0;
2989 if (tp->rx_opt.num_sacks)
2990 tcp_sack_remove(tp);
2992 tcp_fast_path_check(sk, tp);
2994 if (eaten > 0)
2995 __kfree_skb(skb);
2996 else if (!sock_flag(sk, SOCK_DEAD))
2997 sk->sk_data_ready(sk, 0);
2998 return;
3001 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3002 /* A retransmit, 2nd most common case. Force an immediate ack. */
3003 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3004 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3006 out_of_window:
3007 tcp_enter_quickack_mode(sk);
3008 inet_csk_schedule_ack(sk);
3009 drop:
3010 __kfree_skb(skb);
3011 return;
3014 /* Out of window. F.e. zero window probe. */
3015 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3016 goto out_of_window;
3018 tcp_enter_quickack_mode(sk);
3020 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3021 /* Partial packet, seq < rcv_next < end_seq */
3022 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3023 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3024 TCP_SKB_CB(skb)->end_seq);
3026 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3028 /* If window is closed, drop tail of packet. But after
3029 * remembering D-SACK for its head made in previous line.
3031 if (!tcp_receive_window(tp))
3032 goto out_of_window;
3033 goto queue_and_out;
3036 TCP_ECN_check_ce(tp, skb);
3038 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3039 !sk_stream_rmem_schedule(sk, skb)) {
3040 if (tcp_prune_queue(sk) < 0 ||
3041 !sk_stream_rmem_schedule(sk, skb))
3042 goto drop;
3045 /* Disable header prediction. */
3046 tp->pred_flags = 0;
3047 inet_csk_schedule_ack(sk);
3049 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3050 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3052 sk_stream_set_owner_r(skb, sk);
3054 if (!skb_peek(&tp->out_of_order_queue)) {
3055 /* Initial out of order segment, build 1 SACK. */
3056 if (tp->rx_opt.sack_ok) {
3057 tp->rx_opt.num_sacks = 1;
3058 tp->rx_opt.dsack = 0;
3059 tp->rx_opt.eff_sacks = 1;
3060 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3061 tp->selective_acks[0].end_seq =
3062 TCP_SKB_CB(skb)->end_seq;
3064 __skb_queue_head(&tp->out_of_order_queue,skb);
3065 } else {
3066 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3067 u32 seq = TCP_SKB_CB(skb)->seq;
3068 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3070 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3071 __skb_append(skb1, skb, &tp->out_of_order_queue);
3073 if (!tp->rx_opt.num_sacks ||
3074 tp->selective_acks[0].end_seq != seq)
3075 goto add_sack;
3077 /* Common case: data arrive in order after hole. */
3078 tp->selective_acks[0].end_seq = end_seq;
3079 return;
3082 /* Find place to insert this segment. */
3083 do {
3084 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3085 break;
3086 } while ((skb1 = skb1->prev) !=
3087 (struct sk_buff*)&tp->out_of_order_queue);
3089 /* Do skb overlap to previous one? */
3090 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3091 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3092 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3093 /* All the bits are present. Drop. */
3094 __kfree_skb(skb);
3095 tcp_dsack_set(tp, seq, end_seq);
3096 goto add_sack;
3098 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3099 /* Partial overlap. */
3100 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3101 } else {
3102 skb1 = skb1->prev;
3105 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3107 /* And clean segments covered by new one as whole. */
3108 while ((skb1 = skb->next) !=
3109 (struct sk_buff*)&tp->out_of_order_queue &&
3110 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3111 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3112 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3113 break;
3115 __skb_unlink(skb1, &tp->out_of_order_queue);
3116 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3117 __kfree_skb(skb1);
3120 add_sack:
3121 if (tp->rx_opt.sack_ok)
3122 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3126 /* Collapse contiguous sequence of skbs head..tail with
3127 * sequence numbers start..end.
3128 * Segments with FIN/SYN are not collapsed (only because this
3129 * simplifies code)
3131 static void
3132 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3133 struct sk_buff *head, struct sk_buff *tail,
3134 u32 start, u32 end)
3136 struct sk_buff *skb;
3138 /* First, check that queue is collapsable and find
3139 * the point where collapsing can be useful. */
3140 for (skb = head; skb != tail; ) {
3141 /* No new bits? It is possible on ofo queue. */
3142 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3143 struct sk_buff *next = skb->next;
3144 __skb_unlink(skb, list);
3145 __kfree_skb(skb);
3146 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3147 skb = next;
3148 continue;
3151 /* The first skb to collapse is:
3152 * - not SYN/FIN and
3153 * - bloated or contains data before "start" or
3154 * overlaps to the next one.
3156 if (!skb->h.th->syn && !skb->h.th->fin &&
3157 (tcp_win_from_space(skb->truesize) > skb->len ||
3158 before(TCP_SKB_CB(skb)->seq, start) ||
3159 (skb->next != tail &&
3160 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3161 break;
3163 /* Decided to skip this, advance start seq. */
3164 start = TCP_SKB_CB(skb)->end_seq;
3165 skb = skb->next;
3167 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3168 return;
3170 while (before(start, end)) {
3171 struct sk_buff *nskb;
3172 int header = skb_headroom(skb);
3173 int copy = SKB_MAX_ORDER(header, 0);
3175 /* Too big header? This can happen with IPv6. */
3176 if (copy < 0)
3177 return;
3178 if (end-start < copy)
3179 copy = end-start;
3180 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3181 if (!nskb)
3182 return;
3183 skb_reserve(nskb, header);
3184 memcpy(nskb->head, skb->head, header);
3185 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3186 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3187 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3188 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3189 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3190 __skb_insert(nskb, skb->prev, skb, list);
3191 sk_stream_set_owner_r(nskb, sk);
3193 /* Copy data, releasing collapsed skbs. */
3194 while (copy > 0) {
3195 int offset = start - TCP_SKB_CB(skb)->seq;
3196 int size = TCP_SKB_CB(skb)->end_seq - start;
3198 if (offset < 0) BUG();
3199 if (size > 0) {
3200 size = min(copy, size);
3201 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3202 BUG();
3203 TCP_SKB_CB(nskb)->end_seq += size;
3204 copy -= size;
3205 start += size;
3207 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3208 struct sk_buff *next = skb->next;
3209 __skb_unlink(skb, list);
3210 __kfree_skb(skb);
3211 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3212 skb = next;
3213 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3214 return;
3220 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3221 * and tcp_collapse() them until all the queue is collapsed.
3223 static void tcp_collapse_ofo_queue(struct sock *sk)
3225 struct tcp_sock *tp = tcp_sk(sk);
3226 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3227 struct sk_buff *head;
3228 u32 start, end;
3230 if (skb == NULL)
3231 return;
3233 start = TCP_SKB_CB(skb)->seq;
3234 end = TCP_SKB_CB(skb)->end_seq;
3235 head = skb;
3237 for (;;) {
3238 skb = skb->next;
3240 /* Segment is terminated when we see gap or when
3241 * we are at the end of all the queue. */
3242 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3243 after(TCP_SKB_CB(skb)->seq, end) ||
3244 before(TCP_SKB_CB(skb)->end_seq, start)) {
3245 tcp_collapse(sk, &tp->out_of_order_queue,
3246 head, skb, start, end);
3247 head = skb;
3248 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3249 break;
3250 /* Start new segment */
3251 start = TCP_SKB_CB(skb)->seq;
3252 end = TCP_SKB_CB(skb)->end_seq;
3253 } else {
3254 if (before(TCP_SKB_CB(skb)->seq, start))
3255 start = TCP_SKB_CB(skb)->seq;
3256 if (after(TCP_SKB_CB(skb)->end_seq, end))
3257 end = TCP_SKB_CB(skb)->end_seq;
3262 /* Reduce allocated memory if we can, trying to get
3263 * the socket within its memory limits again.
3265 * Return less than zero if we should start dropping frames
3266 * until the socket owning process reads some of the data
3267 * to stabilize the situation.
3269 static int tcp_prune_queue(struct sock *sk)
3271 struct tcp_sock *tp = tcp_sk(sk);
3273 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3275 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3277 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3278 tcp_clamp_window(sk, tp);
3279 else if (tcp_memory_pressure)
3280 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3282 tcp_collapse_ofo_queue(sk);
3283 tcp_collapse(sk, &sk->sk_receive_queue,
3284 sk->sk_receive_queue.next,
3285 (struct sk_buff*)&sk->sk_receive_queue,
3286 tp->copied_seq, tp->rcv_nxt);
3287 sk_stream_mem_reclaim(sk);
3289 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3290 return 0;
3292 /* Collapsing did not help, destructive actions follow.
3293 * This must not ever occur. */
3295 /* First, purge the out_of_order queue. */
3296 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3297 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3298 __skb_queue_purge(&tp->out_of_order_queue);
3300 /* Reset SACK state. A conforming SACK implementation will
3301 * do the same at a timeout based retransmit. When a connection
3302 * is in a sad state like this, we care only about integrity
3303 * of the connection not performance.
3305 if (tp->rx_opt.sack_ok)
3306 tcp_sack_reset(&tp->rx_opt);
3307 sk_stream_mem_reclaim(sk);
3310 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3311 return 0;
3313 /* If we are really being abused, tell the caller to silently
3314 * drop receive data on the floor. It will get retransmitted
3315 * and hopefully then we'll have sufficient space.
3317 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3319 /* Massive buffer overcommit. */
3320 tp->pred_flags = 0;
3321 return -1;
3325 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3326 * As additional protections, we do not touch cwnd in retransmission phases,
3327 * and if application hit its sndbuf limit recently.
3329 void tcp_cwnd_application_limited(struct sock *sk)
3331 struct tcp_sock *tp = tcp_sk(sk);
3333 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3334 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3335 /* Limited by application or receiver window. */
3336 u32 win_used = max(tp->snd_cwnd_used, 2U);
3337 if (win_used < tp->snd_cwnd) {
3338 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3339 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3341 tp->snd_cwnd_used = 0;
3343 tp->snd_cwnd_stamp = tcp_time_stamp;
3346 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3348 /* If the user specified a specific send buffer setting, do
3349 * not modify it.
3351 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3352 return 0;
3354 /* If we are under global TCP memory pressure, do not expand. */
3355 if (tcp_memory_pressure)
3356 return 0;
3358 /* If we are under soft global TCP memory pressure, do not expand. */
3359 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3360 return 0;
3362 /* If we filled the congestion window, do not expand. */
3363 if (tp->packets_out >= tp->snd_cwnd)
3364 return 0;
3366 return 1;
3369 /* When incoming ACK allowed to free some skb from write_queue,
3370 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3371 * on the exit from tcp input handler.
3373 * PROBLEM: sndbuf expansion does not work well with largesend.
3375 static void tcp_new_space(struct sock *sk)
3377 struct tcp_sock *tp = tcp_sk(sk);
3379 if (tcp_should_expand_sndbuf(sk, tp)) {
3380 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3381 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3382 demanded = max_t(unsigned int, tp->snd_cwnd,
3383 tp->reordering + 1);
3384 sndmem *= 2*demanded;
3385 if (sndmem > sk->sk_sndbuf)
3386 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3387 tp->snd_cwnd_stamp = tcp_time_stamp;
3390 sk->sk_write_space(sk);
3393 static inline void tcp_check_space(struct sock *sk)
3395 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3396 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3397 if (sk->sk_socket &&
3398 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3399 tcp_new_space(sk);
3403 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3405 tcp_push_pending_frames(sk, tp);
3406 tcp_check_space(sk);
3410 * Check if sending an ack is needed.
3412 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3414 struct tcp_sock *tp = tcp_sk(sk);
3416 /* More than one full frame received... */
3417 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3418 /* ... and right edge of window advances far enough.
3419 * (tcp_recvmsg() will send ACK otherwise). Or...
3421 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3422 /* We ACK each frame or... */
3423 tcp_in_quickack_mode(sk) ||
3424 /* We have out of order data. */
3425 (ofo_possible &&
3426 skb_peek(&tp->out_of_order_queue))) {
3427 /* Then ack it now */
3428 tcp_send_ack(sk);
3429 } else {
3430 /* Else, send delayed ack. */
3431 tcp_send_delayed_ack(sk);
3435 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3437 if (!inet_csk_ack_scheduled(sk)) {
3438 /* We sent a data segment already. */
3439 return;
3441 __tcp_ack_snd_check(sk, 1);
3445 * This routine is only called when we have urgent data
3446 * signalled. Its the 'slow' part of tcp_urg. It could be
3447 * moved inline now as tcp_urg is only called from one
3448 * place. We handle URGent data wrong. We have to - as
3449 * BSD still doesn't use the correction from RFC961.
3450 * For 1003.1g we should support a new option TCP_STDURG to permit
3451 * either form (or just set the sysctl tcp_stdurg).
3454 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3456 struct tcp_sock *tp = tcp_sk(sk);
3457 u32 ptr = ntohs(th->urg_ptr);
3459 if (ptr && !sysctl_tcp_stdurg)
3460 ptr--;
3461 ptr += ntohl(th->seq);
3463 /* Ignore urgent data that we've already seen and read. */
3464 if (after(tp->copied_seq, ptr))
3465 return;
3467 /* Do not replay urg ptr.
3469 * NOTE: interesting situation not covered by specs.
3470 * Misbehaving sender may send urg ptr, pointing to segment,
3471 * which we already have in ofo queue. We are not able to fetch
3472 * such data and will stay in TCP_URG_NOTYET until will be eaten
3473 * by recvmsg(). Seems, we are not obliged to handle such wicked
3474 * situations. But it is worth to think about possibility of some
3475 * DoSes using some hypothetical application level deadlock.
3477 if (before(ptr, tp->rcv_nxt))
3478 return;
3480 /* Do we already have a newer (or duplicate) urgent pointer? */
3481 if (tp->urg_data && !after(ptr, tp->urg_seq))
3482 return;
3484 /* Tell the world about our new urgent pointer. */
3485 sk_send_sigurg(sk);
3487 /* We may be adding urgent data when the last byte read was
3488 * urgent. To do this requires some care. We cannot just ignore
3489 * tp->copied_seq since we would read the last urgent byte again
3490 * as data, nor can we alter copied_seq until this data arrives
3491 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3493 * NOTE. Double Dutch. Rendering to plain English: author of comment
3494 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3495 * and expect that both A and B disappear from stream. This is _wrong_.
3496 * Though this happens in BSD with high probability, this is occasional.
3497 * Any application relying on this is buggy. Note also, that fix "works"
3498 * only in this artificial test. Insert some normal data between A and B and we will
3499 * decline of BSD again. Verdict: it is better to remove to trap
3500 * buggy users.
3502 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3503 !sock_flag(sk, SOCK_URGINLINE) &&
3504 tp->copied_seq != tp->rcv_nxt) {
3505 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3506 tp->copied_seq++;
3507 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3508 __skb_unlink(skb, &sk->sk_receive_queue);
3509 __kfree_skb(skb);
3513 tp->urg_data = TCP_URG_NOTYET;
3514 tp->urg_seq = ptr;
3516 /* Disable header prediction. */
3517 tp->pred_flags = 0;
3520 /* This is the 'fast' part of urgent handling. */
3521 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3523 struct tcp_sock *tp = tcp_sk(sk);
3525 /* Check if we get a new urgent pointer - normally not. */
3526 if (th->urg)
3527 tcp_check_urg(sk,th);
3529 /* Do we wait for any urgent data? - normally not... */
3530 if (tp->urg_data == TCP_URG_NOTYET) {
3531 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3532 th->syn;
3534 /* Is the urgent pointer pointing into this packet? */
3535 if (ptr < skb->len) {
3536 u8 tmp;
3537 if (skb_copy_bits(skb, ptr, &tmp, 1))
3538 BUG();
3539 tp->urg_data = TCP_URG_VALID | tmp;
3540 if (!sock_flag(sk, SOCK_DEAD))
3541 sk->sk_data_ready(sk, 0);
3546 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3548 struct tcp_sock *tp = tcp_sk(sk);
3549 int chunk = skb->len - hlen;
3550 int err;
3552 local_bh_enable();
3553 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3554 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3555 else
3556 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3557 tp->ucopy.iov);
3559 if (!err) {
3560 tp->ucopy.len -= chunk;
3561 tp->copied_seq += chunk;
3562 tcp_rcv_space_adjust(sk);
3565 local_bh_disable();
3566 return err;
3569 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3571 int result;
3573 if (sock_owned_by_user(sk)) {
3574 local_bh_enable();
3575 result = __tcp_checksum_complete(skb);
3576 local_bh_disable();
3577 } else {
3578 result = __tcp_checksum_complete(skb);
3580 return result;
3583 static __inline__ int
3584 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3586 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3587 __tcp_checksum_complete_user(sk, skb);
3591 * TCP receive function for the ESTABLISHED state.
3593 * It is split into a fast path and a slow path. The fast path is
3594 * disabled when:
3595 * - A zero window was announced from us - zero window probing
3596 * is only handled properly in the slow path.
3597 * - Out of order segments arrived.
3598 * - Urgent data is expected.
3599 * - There is no buffer space left
3600 * - Unexpected TCP flags/window values/header lengths are received
3601 * (detected by checking the TCP header against pred_flags)
3602 * - Data is sent in both directions. Fast path only supports pure senders
3603 * or pure receivers (this means either the sequence number or the ack
3604 * value must stay constant)
3605 * - Unexpected TCP option.
3607 * When these conditions are not satisfied it drops into a standard
3608 * receive procedure patterned after RFC793 to handle all cases.
3609 * The first three cases are guaranteed by proper pred_flags setting,
3610 * the rest is checked inline. Fast processing is turned on in
3611 * tcp_data_queue when everything is OK.
3613 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3614 struct tcphdr *th, unsigned len)
3616 struct tcp_sock *tp = tcp_sk(sk);
3619 * Header prediction.
3620 * The code loosely follows the one in the famous
3621 * "30 instruction TCP receive" Van Jacobson mail.
3623 * Van's trick is to deposit buffers into socket queue
3624 * on a device interrupt, to call tcp_recv function
3625 * on the receive process context and checksum and copy
3626 * the buffer to user space. smart...
3628 * Our current scheme is not silly either but we take the
3629 * extra cost of the net_bh soft interrupt processing...
3630 * We do checksum and copy also but from device to kernel.
3633 tp->rx_opt.saw_tstamp = 0;
3635 /* pred_flags is 0xS?10 << 16 + snd_wnd
3636 * if header_predition is to be made
3637 * 'S' will always be tp->tcp_header_len >> 2
3638 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3639 * turn it off (when there are holes in the receive
3640 * space for instance)
3641 * PSH flag is ignored.
3644 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3645 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3646 int tcp_header_len = tp->tcp_header_len;
3648 /* Timestamp header prediction: tcp_header_len
3649 * is automatically equal to th->doff*4 due to pred_flags
3650 * match.
3653 /* Check timestamp */
3654 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3655 __u32 *ptr = (__u32 *)(th + 1);
3657 /* No? Slow path! */
3658 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3659 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3660 goto slow_path;
3662 tp->rx_opt.saw_tstamp = 1;
3663 ++ptr;
3664 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3665 ++ptr;
3666 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3668 /* If PAWS failed, check it more carefully in slow path */
3669 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3670 goto slow_path;
3672 /* DO NOT update ts_recent here, if checksum fails
3673 * and timestamp was corrupted part, it will result
3674 * in a hung connection since we will drop all
3675 * future packets due to the PAWS test.
3679 if (len <= tcp_header_len) {
3680 /* Bulk data transfer: sender */
3681 if (len == tcp_header_len) {
3682 /* Predicted packet is in window by definition.
3683 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3684 * Hence, check seq<=rcv_wup reduces to:
3686 if (tcp_header_len ==
3687 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3688 tp->rcv_nxt == tp->rcv_wup)
3689 tcp_store_ts_recent(tp);
3691 tcp_rcv_rtt_measure_ts(sk, skb);
3693 /* We know that such packets are checksummed
3694 * on entry.
3696 tcp_ack(sk, skb, 0);
3697 __kfree_skb(skb);
3698 tcp_data_snd_check(sk, tp);
3699 return 0;
3700 } else { /* Header too small */
3701 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3702 goto discard;
3704 } else {
3705 int eaten = 0;
3707 if (tp->ucopy.task == current &&
3708 tp->copied_seq == tp->rcv_nxt &&
3709 len - tcp_header_len <= tp->ucopy.len &&
3710 sock_owned_by_user(sk)) {
3711 __set_current_state(TASK_RUNNING);
3713 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3714 /* Predicted packet is in window by definition.
3715 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3716 * Hence, check seq<=rcv_wup reduces to:
3718 if (tcp_header_len ==
3719 (sizeof(struct tcphdr) +
3720 TCPOLEN_TSTAMP_ALIGNED) &&
3721 tp->rcv_nxt == tp->rcv_wup)
3722 tcp_store_ts_recent(tp);
3724 tcp_rcv_rtt_measure_ts(sk, skb);
3726 __skb_pull(skb, tcp_header_len);
3727 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3728 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3729 eaten = 1;
3732 if (!eaten) {
3733 if (tcp_checksum_complete_user(sk, skb))
3734 goto csum_error;
3736 /* Predicted packet is in window by definition.
3737 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3738 * Hence, check seq<=rcv_wup reduces to:
3740 if (tcp_header_len ==
3741 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3742 tp->rcv_nxt == tp->rcv_wup)
3743 tcp_store_ts_recent(tp);
3745 tcp_rcv_rtt_measure_ts(sk, skb);
3747 if ((int)skb->truesize > sk->sk_forward_alloc)
3748 goto step5;
3750 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3752 /* Bulk data transfer: receiver */
3753 __skb_pull(skb,tcp_header_len);
3754 __skb_queue_tail(&sk->sk_receive_queue, skb);
3755 sk_stream_set_owner_r(skb, sk);
3756 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3759 tcp_event_data_recv(sk, tp, skb);
3761 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3762 /* Well, only one small jumplet in fast path... */
3763 tcp_ack(sk, skb, FLAG_DATA);
3764 tcp_data_snd_check(sk, tp);
3765 if (!inet_csk_ack_scheduled(sk))
3766 goto no_ack;
3769 __tcp_ack_snd_check(sk, 0);
3770 no_ack:
3771 if (eaten)
3772 __kfree_skb(skb);
3773 else
3774 sk->sk_data_ready(sk, 0);
3775 return 0;
3779 slow_path:
3780 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3781 goto csum_error;
3784 * RFC1323: H1. Apply PAWS check first.
3786 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3787 tcp_paws_discard(sk, skb)) {
3788 if (!th->rst) {
3789 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3790 tcp_send_dupack(sk, skb);
3791 goto discard;
3793 /* Resets are accepted even if PAWS failed.
3795 ts_recent update must be made after we are sure
3796 that the packet is in window.
3801 * Standard slow path.
3804 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3805 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3806 * (RST) segments are validated by checking their SEQ-fields."
3807 * And page 69: "If an incoming segment is not acceptable,
3808 * an acknowledgment should be sent in reply (unless the RST bit
3809 * is set, if so drop the segment and return)".
3811 if (!th->rst)
3812 tcp_send_dupack(sk, skb);
3813 goto discard;
3816 if(th->rst) {
3817 tcp_reset(sk);
3818 goto discard;
3821 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3823 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3824 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3825 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3826 tcp_reset(sk);
3827 return 1;
3830 step5:
3831 if(th->ack)
3832 tcp_ack(sk, skb, FLAG_SLOWPATH);
3834 tcp_rcv_rtt_measure_ts(sk, skb);
3836 /* Process urgent data. */
3837 tcp_urg(sk, skb, th);
3839 /* step 7: process the segment text */
3840 tcp_data_queue(sk, skb);
3842 tcp_data_snd_check(sk, tp);
3843 tcp_ack_snd_check(sk);
3844 return 0;
3846 csum_error:
3847 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3849 discard:
3850 __kfree_skb(skb);
3851 return 0;
3854 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3855 struct tcphdr *th, unsigned len)
3857 struct tcp_sock *tp = tcp_sk(sk);
3858 int saved_clamp = tp->rx_opt.mss_clamp;
3860 tcp_parse_options(skb, &tp->rx_opt, 0);
3862 if (th->ack) {
3863 struct inet_connection_sock *icsk;
3864 /* rfc793:
3865 * "If the state is SYN-SENT then
3866 * first check the ACK bit
3867 * If the ACK bit is set
3868 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3869 * a reset (unless the RST bit is set, if so drop
3870 * the segment and return)"
3872 * We do not send data with SYN, so that RFC-correct
3873 * test reduces to:
3875 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3876 goto reset_and_undo;
3878 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3879 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3880 tcp_time_stamp)) {
3881 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3882 goto reset_and_undo;
3885 /* Now ACK is acceptable.
3887 * "If the RST bit is set
3888 * If the ACK was acceptable then signal the user "error:
3889 * connection reset", drop the segment, enter CLOSED state,
3890 * delete TCB, and return."
3893 if (th->rst) {
3894 tcp_reset(sk);
3895 goto discard;
3898 /* rfc793:
3899 * "fifth, if neither of the SYN or RST bits is set then
3900 * drop the segment and return."
3902 * See note below!
3903 * --ANK(990513)
3905 if (!th->syn)
3906 goto discard_and_undo;
3908 /* rfc793:
3909 * "If the SYN bit is on ...
3910 * are acceptable then ...
3911 * (our SYN has been ACKed), change the connection
3912 * state to ESTABLISHED..."
3915 TCP_ECN_rcv_synack(tp, th);
3916 if (tp->ecn_flags&TCP_ECN_OK)
3917 sock_set_flag(sk, SOCK_NO_LARGESEND);
3919 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3920 tcp_ack(sk, skb, FLAG_SLOWPATH);
3922 /* Ok.. it's good. Set up sequence numbers and
3923 * move to established.
3925 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3926 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3928 /* RFC1323: The window in SYN & SYN/ACK segments is
3929 * never scaled.
3931 tp->snd_wnd = ntohs(th->window);
3932 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3934 if (!tp->rx_opt.wscale_ok) {
3935 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3936 tp->window_clamp = min(tp->window_clamp, 65535U);
3939 if (tp->rx_opt.saw_tstamp) {
3940 tp->rx_opt.tstamp_ok = 1;
3941 tp->tcp_header_len =
3942 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3943 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3944 tcp_store_ts_recent(tp);
3945 } else {
3946 tp->tcp_header_len = sizeof(struct tcphdr);
3949 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3950 tp->rx_opt.sack_ok |= 2;
3952 tcp_sync_mss(sk, tp->pmtu_cookie);
3953 tcp_initialize_rcv_mss(sk);
3955 /* Remember, tcp_poll() does not lock socket!
3956 * Change state from SYN-SENT only after copied_seq
3957 * is initialized. */
3958 tp->copied_seq = tp->rcv_nxt;
3959 mb();
3960 tcp_set_state(sk, TCP_ESTABLISHED);
3962 /* Make sure socket is routed, for correct metrics. */
3963 tp->af_specific->rebuild_header(sk);
3965 tcp_init_metrics(sk);
3967 tcp_init_congestion_control(sk);
3969 /* Prevent spurious tcp_cwnd_restart() on first data
3970 * packet.
3972 tp->lsndtime = tcp_time_stamp;
3974 tcp_init_buffer_space(sk);
3976 if (sock_flag(sk, SOCK_KEEPOPEN))
3977 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3979 if (!tp->rx_opt.snd_wscale)
3980 __tcp_fast_path_on(tp, tp->snd_wnd);
3981 else
3982 tp->pred_flags = 0;
3984 if (!sock_flag(sk, SOCK_DEAD)) {
3985 sk->sk_state_change(sk);
3986 sk_wake_async(sk, 0, POLL_OUT);
3989 icsk = inet_csk(sk);
3991 if (sk->sk_write_pending ||
3992 icsk->icsk_accept_queue.rskq_defer_accept ||
3993 icsk->icsk_ack.pingpong) {
3994 /* Save one ACK. Data will be ready after
3995 * several ticks, if write_pending is set.
3997 * It may be deleted, but with this feature tcpdumps
3998 * look so _wonderfully_ clever, that I was not able
3999 * to stand against the temptation 8) --ANK
4001 inet_csk_schedule_ack(sk);
4002 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4003 icsk->icsk_ack.ato = TCP_ATO_MIN;
4004 tcp_incr_quickack(sk);
4005 tcp_enter_quickack_mode(sk);
4006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4007 TCP_DELACK_MAX, TCP_RTO_MAX);
4009 discard:
4010 __kfree_skb(skb);
4011 return 0;
4012 } else {
4013 tcp_send_ack(sk);
4015 return -1;
4018 /* No ACK in the segment */
4020 if (th->rst) {
4021 /* rfc793:
4022 * "If the RST bit is set
4024 * Otherwise (no ACK) drop the segment and return."
4027 goto discard_and_undo;
4030 /* PAWS check. */
4031 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4032 goto discard_and_undo;
4034 if (th->syn) {
4035 /* We see SYN without ACK. It is attempt of
4036 * simultaneous connect with crossed SYNs.
4037 * Particularly, it can be connect to self.
4039 tcp_set_state(sk, TCP_SYN_RECV);
4041 if (tp->rx_opt.saw_tstamp) {
4042 tp->rx_opt.tstamp_ok = 1;
4043 tcp_store_ts_recent(tp);
4044 tp->tcp_header_len =
4045 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4046 } else {
4047 tp->tcp_header_len = sizeof(struct tcphdr);
4050 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4051 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4053 /* RFC1323: The window in SYN & SYN/ACK segments is
4054 * never scaled.
4056 tp->snd_wnd = ntohs(th->window);
4057 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4058 tp->max_window = tp->snd_wnd;
4060 TCP_ECN_rcv_syn(tp, th);
4061 if (tp->ecn_flags&TCP_ECN_OK)
4062 sock_set_flag(sk, SOCK_NO_LARGESEND);
4064 tcp_sync_mss(sk, tp->pmtu_cookie);
4065 tcp_initialize_rcv_mss(sk);
4068 tcp_send_synack(sk);
4069 #if 0
4070 /* Note, we could accept data and URG from this segment.
4071 * There are no obstacles to make this.
4073 * However, if we ignore data in ACKless segments sometimes,
4074 * we have no reasons to accept it sometimes.
4075 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4076 * is not flawless. So, discard packet for sanity.
4077 * Uncomment this return to process the data.
4079 return -1;
4080 #else
4081 goto discard;
4082 #endif
4084 /* "fifth, if neither of the SYN or RST bits is set then
4085 * drop the segment and return."
4088 discard_and_undo:
4089 tcp_clear_options(&tp->rx_opt);
4090 tp->rx_opt.mss_clamp = saved_clamp;
4091 goto discard;
4093 reset_and_undo:
4094 tcp_clear_options(&tp->rx_opt);
4095 tp->rx_opt.mss_clamp = saved_clamp;
4096 return 1;
4101 * This function implements the receiving procedure of RFC 793 for
4102 * all states except ESTABLISHED and TIME_WAIT.
4103 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4104 * address independent.
4107 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4108 struct tcphdr *th, unsigned len)
4110 struct tcp_sock *tp = tcp_sk(sk);
4111 int queued = 0;
4113 tp->rx_opt.saw_tstamp = 0;
4115 switch (sk->sk_state) {
4116 case TCP_CLOSE:
4117 goto discard;
4119 case TCP_LISTEN:
4120 if(th->ack)
4121 return 1;
4123 if(th->rst)
4124 goto discard;
4126 if(th->syn) {
4127 if(tp->af_specific->conn_request(sk, skb) < 0)
4128 return 1;
4130 /* Now we have several options: In theory there is
4131 * nothing else in the frame. KA9Q has an option to
4132 * send data with the syn, BSD accepts data with the
4133 * syn up to the [to be] advertised window and
4134 * Solaris 2.1 gives you a protocol error. For now
4135 * we just ignore it, that fits the spec precisely
4136 * and avoids incompatibilities. It would be nice in
4137 * future to drop through and process the data.
4139 * Now that TTCP is starting to be used we ought to
4140 * queue this data.
4141 * But, this leaves one open to an easy denial of
4142 * service attack, and SYN cookies can't defend
4143 * against this problem. So, we drop the data
4144 * in the interest of security over speed.
4146 goto discard;
4148 goto discard;
4150 case TCP_SYN_SENT:
4151 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4152 if (queued >= 0)
4153 return queued;
4155 /* Do step6 onward by hand. */
4156 tcp_urg(sk, skb, th);
4157 __kfree_skb(skb);
4158 tcp_data_snd_check(sk, tp);
4159 return 0;
4162 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4163 tcp_paws_discard(sk, skb)) {
4164 if (!th->rst) {
4165 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4166 tcp_send_dupack(sk, skb);
4167 goto discard;
4169 /* Reset is accepted even if it did not pass PAWS. */
4172 /* step 1: check sequence number */
4173 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4174 if (!th->rst)
4175 tcp_send_dupack(sk, skb);
4176 goto discard;
4179 /* step 2: check RST bit */
4180 if(th->rst) {
4181 tcp_reset(sk);
4182 goto discard;
4185 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4187 /* step 3: check security and precedence [ignored] */
4189 /* step 4:
4191 * Check for a SYN in window.
4193 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4194 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4195 tcp_reset(sk);
4196 return 1;
4199 /* step 5: check the ACK field */
4200 if (th->ack) {
4201 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4203 switch(sk->sk_state) {
4204 case TCP_SYN_RECV:
4205 if (acceptable) {
4206 tp->copied_seq = tp->rcv_nxt;
4207 mb();
4208 tcp_set_state(sk, TCP_ESTABLISHED);
4209 sk->sk_state_change(sk);
4211 /* Note, that this wakeup is only for marginal
4212 * crossed SYN case. Passively open sockets
4213 * are not waked up, because sk->sk_sleep ==
4214 * NULL and sk->sk_socket == NULL.
4216 if (sk->sk_socket) {
4217 sk_wake_async(sk,0,POLL_OUT);
4220 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4221 tp->snd_wnd = ntohs(th->window) <<
4222 tp->rx_opt.snd_wscale;
4223 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4224 TCP_SKB_CB(skb)->seq);
4226 /* tcp_ack considers this ACK as duplicate
4227 * and does not calculate rtt.
4228 * Fix it at least with timestamps.
4230 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4231 !tp->srtt)
4232 tcp_ack_saw_tstamp(sk, NULL, 0);
4234 if (tp->rx_opt.tstamp_ok)
4235 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4237 /* Make sure socket is routed, for
4238 * correct metrics.
4240 tp->af_specific->rebuild_header(sk);
4242 tcp_init_metrics(sk);
4244 tcp_init_congestion_control(sk);
4246 /* Prevent spurious tcp_cwnd_restart() on
4247 * first data packet.
4249 tp->lsndtime = tcp_time_stamp;
4251 tcp_initialize_rcv_mss(sk);
4252 tcp_init_buffer_space(sk);
4253 tcp_fast_path_on(tp);
4254 } else {
4255 return 1;
4257 break;
4259 case TCP_FIN_WAIT1:
4260 if (tp->snd_una == tp->write_seq) {
4261 tcp_set_state(sk, TCP_FIN_WAIT2);
4262 sk->sk_shutdown |= SEND_SHUTDOWN;
4263 dst_confirm(sk->sk_dst_cache);
4265 if (!sock_flag(sk, SOCK_DEAD))
4266 /* Wake up lingering close() */
4267 sk->sk_state_change(sk);
4268 else {
4269 int tmo;
4271 if (tp->linger2 < 0 ||
4272 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4274 tcp_done(sk);
4275 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4276 return 1;
4279 tmo = tcp_fin_time(sk);
4280 if (tmo > TCP_TIMEWAIT_LEN) {
4281 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4282 } else if (th->fin || sock_owned_by_user(sk)) {
4283 /* Bad case. We could lose such FIN otherwise.
4284 * It is not a big problem, but it looks confusing
4285 * and not so rare event. We still can lose it now,
4286 * if it spins in bh_lock_sock(), but it is really
4287 * marginal case.
4289 inet_csk_reset_keepalive_timer(sk, tmo);
4290 } else {
4291 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4292 goto discard;
4296 break;
4298 case TCP_CLOSING:
4299 if (tp->snd_una == tp->write_seq) {
4300 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4301 goto discard;
4303 break;
4305 case TCP_LAST_ACK:
4306 if (tp->snd_una == tp->write_seq) {
4307 tcp_update_metrics(sk);
4308 tcp_done(sk);
4309 goto discard;
4311 break;
4313 } else
4314 goto discard;
4316 /* step 6: check the URG bit */
4317 tcp_urg(sk, skb, th);
4319 /* step 7: process the segment text */
4320 switch (sk->sk_state) {
4321 case TCP_CLOSE_WAIT:
4322 case TCP_CLOSING:
4323 case TCP_LAST_ACK:
4324 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4325 break;
4326 case TCP_FIN_WAIT1:
4327 case TCP_FIN_WAIT2:
4328 /* RFC 793 says to queue data in these states,
4329 * RFC 1122 says we MUST send a reset.
4330 * BSD 4.4 also does reset.
4332 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4333 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4334 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4335 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4336 tcp_reset(sk);
4337 return 1;
4340 /* Fall through */
4341 case TCP_ESTABLISHED:
4342 tcp_data_queue(sk, skb);
4343 queued = 1;
4344 break;
4347 /* tcp_data could move socket to TIME-WAIT */
4348 if (sk->sk_state != TCP_CLOSE) {
4349 tcp_data_snd_check(sk, tp);
4350 tcp_ack_snd_check(sk);
4353 if (!queued) {
4354 discard:
4355 __kfree_skb(skb);
4357 return 0;
4360 EXPORT_SYMBOL(sysctl_tcp_ecn);
4361 EXPORT_SYMBOL(sysctl_tcp_reordering);
4362 EXPORT_SYMBOL(tcp_parse_options);
4363 EXPORT_SYMBOL(tcp_rcv_established);
4364 EXPORT_SYMBOL(tcp_rcv_state_process);