2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
44 #include <asm/system.h>
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
53 #define DESCRIPTOR_OUTPUT_MORE 0
54 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
55 #define DESCRIPTOR_INPUT_MORE (2 << 12)
56 #define DESCRIPTOR_INPUT_LAST (3 << 12)
57 #define DESCRIPTOR_STATUS (1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
59 #define DESCRIPTOR_PING (1 << 7)
60 #define DESCRIPTOR_YY (1 << 6)
61 #define DESCRIPTOR_NO_IRQ (0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
65 #define DESCRIPTOR_WAIT (3 << 0)
71 __le32 branch_address
;
73 __le16 transfer_status
;
74 } __attribute__((aligned(16)));
76 struct db_descriptor
{
79 __le16 second_req_count
;
80 __le16 first_req_count
;
81 __le32 branch_address
;
82 __le16 second_res_count
;
83 __le16 first_res_count
;
88 } __attribute__((aligned(16)));
90 #define CONTROL_SET(regs) (regs)
91 #define CONTROL_CLEAR(regs) ((regs) + 4)
92 #define COMMAND_PTR(regs) ((regs) + 12)
93 #define CONTEXT_MATCH(regs) ((regs) + 16)
96 struct descriptor descriptor
;
97 struct ar_buffer
*next
;
102 struct fw_ohci
*ohci
;
103 struct ar_buffer
*current_buffer
;
104 struct ar_buffer
*last_buffer
;
107 struct tasklet_struct tasklet
;
112 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
113 struct descriptor
*d
,
114 struct descriptor
*last
);
117 * A buffer that contains a block of DMA-able coherent memory used for
118 * storing a portion of a DMA descriptor program.
120 struct descriptor_buffer
{
121 struct list_head list
;
122 dma_addr_t buffer_bus
;
125 struct descriptor buffer
[0];
129 struct fw_ohci
*ohci
;
131 int total_allocation
;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
138 struct list_head buffer_list
;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer
*buffer_tail
;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor
*last
;
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor
*prev
;
158 descriptor_callback_t callback
;
160 struct tasklet_struct tasklet
;
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
171 struct fw_iso_context base
;
172 struct context context
;
175 size_t header_length
;
178 #define CONFIG_ROM_SIZE 1024
183 __iomem
char *registers
;
184 dma_addr_t self_id_bus
;
186 struct tasklet_struct bus_reset_tasklet
;
189 int request_generation
; /* for timestamping incoming requests */
190 atomic_t bus_seconds
;
194 bool bus_reset_packet_quirk
;
197 * Spinlock for accessing fw_ohci data. Never call out of
198 * this driver with this lock held.
201 u32 self_id_buffer
[512];
203 /* Config rom buffers */
205 dma_addr_t config_rom_bus
;
206 __be32
*next_config_rom
;
207 dma_addr_t next_config_rom_bus
;
210 struct ar_context ar_request_ctx
;
211 struct ar_context ar_response_ctx
;
212 struct context at_request_ctx
;
213 struct context at_response_ctx
;
216 struct iso_context
*it_context_list
;
217 u64 ir_context_channels
;
219 struct iso_context
*ir_context_list
;
222 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
224 return container_of(card
, struct fw_ohci
, card
);
227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
228 #define IR_CONTEXT_BUFFER_FILL 0x80000000
229 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
231 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
232 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
234 #define CONTEXT_RUN 0x8000
235 #define CONTEXT_WAKE 0x1000
236 #define CONTEXT_DEAD 0x0800
237 #define CONTEXT_ACTIVE 0x0400
239 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
240 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
241 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
243 #define OHCI1394_REGISTER_SIZE 0x800
244 #define OHCI_LOOP_COUNT 500
245 #define OHCI1394_PCI_HCI_Control 0x40
246 #define SELF_ID_BUF_SIZE 0x800
247 #define OHCI_TCODE_PHY_PACKET 0x0e
248 #define OHCI_VERSION_1_1 0x010010
250 static char ohci_driver_name
[] = KBUILD_MODNAME
;
252 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
254 #define OHCI_PARAM_DEBUG_AT_AR 1
255 #define OHCI_PARAM_DEBUG_SELFIDS 2
256 #define OHCI_PARAM_DEBUG_IRQS 4
257 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
259 static int param_debug
;
260 module_param_named(debug
, param_debug
, int, 0644);
261 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
262 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
263 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
264 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
265 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
266 ", or a combination, or all = -1)");
268 static void log_irqs(u32 evt
)
270 if (likely(!(param_debug
&
271 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
274 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
275 !(evt
& OHCI1394_busReset
))
278 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
279 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
280 evt
& OHCI1394_RQPkt
? " AR_req" : "",
281 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
282 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
283 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
284 evt
& OHCI1394_isochRx
? " IR" : "",
285 evt
& OHCI1394_isochTx
? " IT" : "",
286 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
287 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
288 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
289 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
290 evt
& OHCI1394_busReset
? " busReset" : "",
291 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
292 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
293 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
294 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
295 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
296 OHCI1394_regAccessFail
| OHCI1394_busReset
)
300 static const char *speed
[] = {
301 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
303 static const char *power
[] = {
304 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
305 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
307 static const char port
[] = { '.', '-', 'p', 'c', };
309 static char _p(u32
*s
, int shift
)
311 return port
[*s
>> shift
& 3];
314 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
316 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
319 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
320 self_id_count
, generation
, node_id
);
322 for (; self_id_count
--; ++s
)
323 if ((*s
& 1 << 23) == 0)
324 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
325 "%s gc=%d %s %s%s%s\n",
326 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
327 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
328 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
329 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
331 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
333 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
334 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
337 static const char *evts
[] = {
338 [0x00] = "evt_no_status", [0x01] = "-reserved-",
339 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
340 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
341 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
342 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
343 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
344 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
345 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
346 [0x10] = "-reserved-", [0x11] = "ack_complete",
347 [0x12] = "ack_pending ", [0x13] = "-reserved-",
348 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
349 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
350 [0x18] = "-reserved-", [0x19] = "-reserved-",
351 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
352 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
353 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
354 [0x20] = "pending/cancelled",
356 static const char *tcodes
[] = {
357 [0x0] = "QW req", [0x1] = "BW req",
358 [0x2] = "W resp", [0x3] = "-reserved-",
359 [0x4] = "QR req", [0x5] = "BR req",
360 [0x6] = "QR resp", [0x7] = "BR resp",
361 [0x8] = "cycle start", [0x9] = "Lk req",
362 [0xa] = "async stream packet", [0xb] = "Lk resp",
363 [0xc] = "-reserved-", [0xd] = "-reserved-",
364 [0xe] = "link internal", [0xf] = "-reserved-",
366 static const char *phys
[] = {
367 [0x0] = "phy config packet", [0x1] = "link-on packet",
368 [0x2] = "self-id packet", [0x3] = "-reserved-",
371 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
373 int tcode
= header
[0] >> 4 & 0xf;
376 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
379 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
382 if (evt
== OHCI1394_evt_bus_reset
) {
383 fw_notify("A%c evt_bus_reset, generation %d\n",
384 dir
, (header
[2] >> 16) & 0xff);
388 if (header
[0] == ~header
[1]) {
389 fw_notify("A%c %s, %s, %08x\n",
390 dir
, evts
[evt
], phys
[header
[0] >> 30 & 0x3], header
[0]);
395 case 0x0: case 0x6: case 0x8:
396 snprintf(specific
, sizeof(specific
), " = %08x",
397 be32_to_cpu((__force __be32
)header
[3]));
399 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
400 snprintf(specific
, sizeof(specific
), " %x,%x",
401 header
[3] >> 16, header
[3] & 0xffff);
409 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
411 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
412 fw_notify("A%c spd %x tl %02x, "
415 dir
, speed
, header
[0] >> 10 & 0x3f,
416 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
417 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
420 fw_notify("A%c spd %x tl %02x, "
423 dir
, speed
, header
[0] >> 10 & 0x3f,
424 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
425 tcodes
[tcode
], specific
);
431 #define log_irqs(evt)
432 #define log_selfids(node_id, generation, self_id_count, sid)
433 #define log_ar_at_event(dir, speed, header, evt)
435 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
437 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
439 writel(data
, ohci
->registers
+ offset
);
442 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
444 return readl(ohci
->registers
+ offset
);
447 static inline void flush_writes(const struct fw_ohci
*ohci
)
449 /* Do a dummy read to flush writes. */
450 reg_read(ohci
, OHCI1394_Version
);
453 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
454 int clear_bits
, int set_bits
)
456 struct fw_ohci
*ohci
= fw_ohci(card
);
459 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
462 val
= reg_read(ohci
, OHCI1394_PhyControl
);
463 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
464 fw_error("failed to set phy reg bits.\n");
468 old
= OHCI1394_PhyControl_ReadData(val
);
469 old
= (old
& ~clear_bits
) | set_bits
;
470 reg_write(ohci
, OHCI1394_PhyControl
,
471 OHCI1394_PhyControl_Write(addr
, old
));
476 static int ar_context_add_page(struct ar_context
*ctx
)
478 struct device
*dev
= ctx
->ohci
->card
.device
;
479 struct ar_buffer
*ab
;
480 dma_addr_t
uninitialized_var(ab_bus
);
483 ab
= dma_alloc_coherent(dev
, PAGE_SIZE
, &ab_bus
, GFP_ATOMIC
);
488 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
489 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
491 DESCRIPTOR_BRANCH_ALWAYS
);
492 offset
= offsetof(struct ar_buffer
, data
);
493 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
494 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
495 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
496 ab
->descriptor
.branch_address
= 0;
498 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
499 ctx
->last_buffer
->next
= ab
;
500 ctx
->last_buffer
= ab
;
502 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
503 flush_writes(ctx
->ohci
);
508 static void ar_context_release(struct ar_context
*ctx
)
510 struct ar_buffer
*ab
, *ab_next
;
514 for (ab
= ctx
->current_buffer
; ab
; ab
= ab_next
) {
516 offset
= offsetof(struct ar_buffer
, data
);
517 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
518 dma_free_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
523 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
524 #define cond_le32_to_cpu(v) \
525 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
527 #define cond_le32_to_cpu(v) le32_to_cpu(v)
530 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
532 struct fw_ohci
*ohci
= ctx
->ohci
;
534 u32 status
, length
, tcode
;
537 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
538 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
539 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
541 tcode
= (p
.header
[0] >> 4) & 0x0f;
543 case TCODE_WRITE_QUADLET_REQUEST
:
544 case TCODE_READ_QUADLET_RESPONSE
:
545 p
.header
[3] = (__force __u32
) buffer
[3];
546 p
.header_length
= 16;
547 p
.payload_length
= 0;
550 case TCODE_READ_BLOCK_REQUEST
:
551 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
552 p
.header_length
= 16;
553 p
.payload_length
= 0;
556 case TCODE_WRITE_BLOCK_REQUEST
:
557 case TCODE_READ_BLOCK_RESPONSE
:
558 case TCODE_LOCK_REQUEST
:
559 case TCODE_LOCK_RESPONSE
:
560 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
561 p
.header_length
= 16;
562 p
.payload_length
= p
.header
[3] >> 16;
565 case TCODE_WRITE_RESPONSE
:
566 case TCODE_READ_QUADLET_REQUEST
:
567 case OHCI_TCODE_PHY_PACKET
:
568 p
.header_length
= 12;
569 p
.payload_length
= 0;
573 /* FIXME: Stop context, discard everything, and restart? */
575 p
.payload_length
= 0;
578 p
.payload
= (void *) buffer
+ p
.header_length
;
580 /* FIXME: What to do about evt_* errors? */
581 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
582 status
= cond_le32_to_cpu(buffer
[length
]);
583 evt
= (status
>> 16) & 0x1f;
586 p
.speed
= (status
>> 21) & 0x7;
587 p
.timestamp
= status
& 0xffff;
588 p
.generation
= ohci
->request_generation
;
590 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
593 * The OHCI bus reset handler synthesizes a phy packet with
594 * the new generation number when a bus reset happens (see
595 * section 8.4.2.3). This helps us determine when a request
596 * was received and make sure we send the response in the same
597 * generation. We only need this for requests; for responses
598 * we use the unique tlabel for finding the matching
601 * Alas some chips sometimes emit bus reset packets with a
602 * wrong generation. We set the correct generation for these
603 * at a slightly incorrect time (in bus_reset_tasklet).
605 if (evt
== OHCI1394_evt_bus_reset
) {
606 if (!ohci
->bus_reset_packet_quirk
)
607 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
608 } else if (ctx
== &ohci
->ar_request_ctx
) {
609 fw_core_handle_request(&ohci
->card
, &p
);
611 fw_core_handle_response(&ohci
->card
, &p
);
614 return buffer
+ length
+ 1;
617 static void ar_context_tasklet(unsigned long data
)
619 struct ar_context
*ctx
= (struct ar_context
*)data
;
620 struct fw_ohci
*ohci
= ctx
->ohci
;
621 struct ar_buffer
*ab
;
622 struct descriptor
*d
;
625 ab
= ctx
->current_buffer
;
628 if (d
->res_count
== 0) {
629 size_t size
, rest
, offset
;
630 dma_addr_t start_bus
;
634 * This descriptor is finished and we may have a
635 * packet split across this and the next buffer. We
636 * reuse the page for reassembling the split packet.
639 offset
= offsetof(struct ar_buffer
, data
);
641 start_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
645 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
646 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
647 memmove(buffer
, ctx
->pointer
, size
);
648 memcpy(buffer
+ size
, ab
->data
, rest
);
649 ctx
->current_buffer
= ab
;
650 ctx
->pointer
= (void *) ab
->data
+ rest
;
651 end
= buffer
+ size
+ rest
;
654 buffer
= handle_ar_packet(ctx
, buffer
);
656 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
658 ar_context_add_page(ctx
);
660 buffer
= ctx
->pointer
;
662 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
665 buffer
= handle_ar_packet(ctx
, buffer
);
669 static int ar_context_init(struct ar_context
*ctx
,
670 struct fw_ohci
*ohci
, u32 regs
)
676 ctx
->last_buffer
= &ab
;
677 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
679 ar_context_add_page(ctx
);
680 ar_context_add_page(ctx
);
681 ctx
->current_buffer
= ab
.next
;
682 ctx
->pointer
= ctx
->current_buffer
->data
;
687 static void ar_context_run(struct ar_context
*ctx
)
689 struct ar_buffer
*ab
= ctx
->current_buffer
;
693 offset
= offsetof(struct ar_buffer
, data
);
694 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
696 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
697 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
698 flush_writes(ctx
->ohci
);
701 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
705 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
706 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
708 /* figure out which descriptor the branch address goes in */
709 if (z
== 2 && (b
== 3 || key
== 2))
715 static void context_tasklet(unsigned long data
)
717 struct context
*ctx
= (struct context
*) data
;
718 struct descriptor
*d
, *last
;
721 struct descriptor_buffer
*desc
;
723 desc
= list_entry(ctx
->buffer_list
.next
,
724 struct descriptor_buffer
, list
);
726 while (last
->branch_address
!= 0) {
727 struct descriptor_buffer
*old_desc
= desc
;
728 address
= le32_to_cpu(last
->branch_address
);
732 /* If the branch address points to a buffer outside of the
733 * current buffer, advance to the next buffer. */
734 if (address
< desc
->buffer_bus
||
735 address
>= desc
->buffer_bus
+ desc
->used
)
736 desc
= list_entry(desc
->list
.next
,
737 struct descriptor_buffer
, list
);
738 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
739 last
= find_branch_descriptor(d
, z
);
741 if (!ctx
->callback(ctx
, d
, last
))
744 if (old_desc
!= desc
) {
745 /* If we've advanced to the next buffer, move the
746 * previous buffer to the free list. */
749 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
750 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
751 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
758 * Allocate a new buffer and add it to the list of free buffers for this
759 * context. Must be called with ohci->lock held.
761 static int context_add_buffer(struct context
*ctx
)
763 struct descriptor_buffer
*desc
;
764 dma_addr_t
uninitialized_var(bus_addr
);
768 * 16MB of descriptors should be far more than enough for any DMA
769 * program. This will catch run-away userspace or DoS attacks.
771 if (ctx
->total_allocation
>= 16*1024*1024)
774 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
775 &bus_addr
, GFP_ATOMIC
);
779 offset
= (void *)&desc
->buffer
- (void *)desc
;
780 desc
->buffer_size
= PAGE_SIZE
- offset
;
781 desc
->buffer_bus
= bus_addr
+ offset
;
784 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
785 ctx
->total_allocation
+= PAGE_SIZE
;
790 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
791 u32 regs
, descriptor_callback_t callback
)
795 ctx
->total_allocation
= 0;
797 INIT_LIST_HEAD(&ctx
->buffer_list
);
798 if (context_add_buffer(ctx
) < 0)
801 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
802 struct descriptor_buffer
, list
);
804 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
805 ctx
->callback
= callback
;
808 * We put a dummy descriptor in the buffer that has a NULL
809 * branch address and looks like it's been sent. That way we
810 * have a descriptor to append DMA programs to.
812 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
813 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
814 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
815 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
816 ctx
->last
= ctx
->buffer_tail
->buffer
;
817 ctx
->prev
= ctx
->buffer_tail
->buffer
;
822 static void context_release(struct context
*ctx
)
824 struct fw_card
*card
= &ctx
->ohci
->card
;
825 struct descriptor_buffer
*desc
, *tmp
;
827 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
828 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
830 ((void *)&desc
->buffer
- (void *)desc
));
833 /* Must be called with ohci->lock held */
834 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
835 int z
, dma_addr_t
*d_bus
)
837 struct descriptor
*d
= NULL
;
838 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
840 if (z
* sizeof(*d
) > desc
->buffer_size
)
843 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
844 /* No room for the descriptor in this buffer, so advance to the
847 if (desc
->list
.next
== &ctx
->buffer_list
) {
848 /* If there is no free buffer next in the list,
850 if (context_add_buffer(ctx
) < 0)
853 desc
= list_entry(desc
->list
.next
,
854 struct descriptor_buffer
, list
);
855 ctx
->buffer_tail
= desc
;
858 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
859 memset(d
, 0, z
* sizeof(*d
));
860 *d_bus
= desc
->buffer_bus
+ desc
->used
;
865 static void context_run(struct context
*ctx
, u32 extra
)
867 struct fw_ohci
*ohci
= ctx
->ohci
;
869 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
870 le32_to_cpu(ctx
->last
->branch_address
));
871 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
872 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
876 static void context_append(struct context
*ctx
,
877 struct descriptor
*d
, int z
, int extra
)
880 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
882 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
884 desc
->used
+= (z
+ extra
) * sizeof(*d
);
885 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
886 ctx
->prev
= find_branch_descriptor(d
, z
);
888 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
889 flush_writes(ctx
->ohci
);
892 static void context_stop(struct context
*ctx
)
897 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
898 flush_writes(ctx
->ohci
);
900 for (i
= 0; i
< 10; i
++) {
901 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
902 if ((reg
& CONTEXT_ACTIVE
) == 0)
907 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
911 struct fw_packet
*packet
;
915 * This function apppends a packet to the DMA queue for transmission.
916 * Must always be called with the ochi->lock held to ensure proper
917 * generation handling and locking around packet queue manipulation.
919 static int at_context_queue_packet(struct context
*ctx
,
920 struct fw_packet
*packet
)
922 struct fw_ohci
*ohci
= ctx
->ohci
;
923 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
924 struct driver_data
*driver_data
;
925 struct descriptor
*d
, *last
;
930 d
= context_get_descriptors(ctx
, 4, &d_bus
);
932 packet
->ack
= RCODE_SEND_ERROR
;
936 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
937 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
940 * The DMA format for asyncronous link packets is different
941 * from the IEEE1394 layout, so shift the fields around
942 * accordingly. If header_length is 8, it's a PHY packet, to
943 * which we need to prepend an extra quadlet.
946 header
= (__le32
*) &d
[1];
947 switch (packet
->header_length
) {
950 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
951 (packet
->speed
<< 16));
952 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
953 (packet
->header
[0] & 0xffff0000));
954 header
[2] = cpu_to_le32(packet
->header
[2]);
956 tcode
= (packet
->header
[0] >> 4) & 0x0f;
957 if (TCODE_IS_BLOCK_PACKET(tcode
))
958 header
[3] = cpu_to_le32(packet
->header
[3]);
960 header
[3] = (__force __le32
) packet
->header
[3];
962 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
966 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
967 (packet
->speed
<< 16));
968 header
[1] = cpu_to_le32(packet
->header
[0]);
969 header
[2] = cpu_to_le32(packet
->header
[1]);
970 d
[0].req_count
= cpu_to_le16(12);
974 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
975 (packet
->speed
<< 16));
976 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
977 d
[0].req_count
= cpu_to_le16(8);
982 packet
->ack
= RCODE_SEND_ERROR
;
986 driver_data
= (struct driver_data
*) &d
[3];
987 driver_data
->packet
= packet
;
988 packet
->driver_data
= driver_data
;
990 if (packet
->payload_length
> 0) {
992 dma_map_single(ohci
->card
.device
, packet
->payload
,
993 packet
->payload_length
, DMA_TO_DEVICE
);
994 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
995 packet
->ack
= RCODE_SEND_ERROR
;
998 packet
->payload_bus
= payload_bus
;
1000 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1001 d
[2].data_address
= cpu_to_le32(payload_bus
);
1009 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1010 DESCRIPTOR_IRQ_ALWAYS
|
1011 DESCRIPTOR_BRANCH_ALWAYS
);
1014 * If the controller and packet generations don't match, we need to
1015 * bail out and try again. If IntEvent.busReset is set, the AT context
1016 * is halted, so appending to the context and trying to run it is
1017 * futile. Most controllers do the right thing and just flush the AT
1018 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1019 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1020 * up stalling out. So we just bail out in software and try again
1021 * later, and everyone is happy.
1022 * FIXME: Document how the locking works.
1024 if (ohci
->generation
!= packet
->generation
||
1025 reg_read(ohci
, OHCI1394_IntEventSet
) & OHCI1394_busReset
) {
1026 if (packet
->payload_length
> 0)
1027 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1028 packet
->payload_length
, DMA_TO_DEVICE
);
1029 packet
->ack
= RCODE_GENERATION
;
1033 context_append(ctx
, d
, z
, 4 - z
);
1035 /* If the context isn't already running, start it up. */
1036 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1037 if ((reg
& CONTEXT_RUN
) == 0)
1038 context_run(ctx
, 0);
1043 static int handle_at_packet(struct context
*context
,
1044 struct descriptor
*d
,
1045 struct descriptor
*last
)
1047 struct driver_data
*driver_data
;
1048 struct fw_packet
*packet
;
1049 struct fw_ohci
*ohci
= context
->ohci
;
1052 if (last
->transfer_status
== 0)
1053 /* This descriptor isn't done yet, stop iteration. */
1056 driver_data
= (struct driver_data
*) &d
[3];
1057 packet
= driver_data
->packet
;
1059 /* This packet was cancelled, just continue. */
1062 if (packet
->payload_bus
)
1063 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1064 packet
->payload_length
, DMA_TO_DEVICE
);
1066 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1067 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1069 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1072 case OHCI1394_evt_timeout
:
1073 /* Async response transmit timed out. */
1074 packet
->ack
= RCODE_CANCELLED
;
1077 case OHCI1394_evt_flushed
:
1079 * The packet was flushed should give same error as
1080 * when we try to use a stale generation count.
1082 packet
->ack
= RCODE_GENERATION
;
1085 case OHCI1394_evt_missing_ack
:
1087 * Using a valid (current) generation count, but the
1088 * node is not on the bus or not sending acks.
1090 packet
->ack
= RCODE_NO_ACK
;
1093 case ACK_COMPLETE
+ 0x10:
1094 case ACK_PENDING
+ 0x10:
1095 case ACK_BUSY_X
+ 0x10:
1096 case ACK_BUSY_A
+ 0x10:
1097 case ACK_BUSY_B
+ 0x10:
1098 case ACK_DATA_ERROR
+ 0x10:
1099 case ACK_TYPE_ERROR
+ 0x10:
1100 packet
->ack
= evt
- 0x10;
1104 packet
->ack
= RCODE_SEND_ERROR
;
1108 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1113 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1114 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1115 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1116 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1117 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1119 static void handle_local_rom(struct fw_ohci
*ohci
,
1120 struct fw_packet
*packet
, u32 csr
)
1122 struct fw_packet response
;
1123 int tcode
, length
, i
;
1125 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1126 if (TCODE_IS_BLOCK_PACKET(tcode
))
1127 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1131 i
= csr
- CSR_CONFIG_ROM
;
1132 if (i
+ length
> CONFIG_ROM_SIZE
) {
1133 fw_fill_response(&response
, packet
->header
,
1134 RCODE_ADDRESS_ERROR
, NULL
, 0);
1135 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1136 fw_fill_response(&response
, packet
->header
,
1137 RCODE_TYPE_ERROR
, NULL
, 0);
1139 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1140 (void *) ohci
->config_rom
+ i
, length
);
1143 fw_core_handle_response(&ohci
->card
, &response
);
1146 static void handle_local_lock(struct fw_ohci
*ohci
,
1147 struct fw_packet
*packet
, u32 csr
)
1149 struct fw_packet response
;
1150 int tcode
, length
, ext_tcode
, sel
;
1151 __be32
*payload
, lock_old
;
1152 u32 lock_arg
, lock_data
;
1154 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1155 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1156 payload
= packet
->payload
;
1157 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1159 if (tcode
== TCODE_LOCK_REQUEST
&&
1160 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1161 lock_arg
= be32_to_cpu(payload
[0]);
1162 lock_data
= be32_to_cpu(payload
[1]);
1163 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1167 fw_fill_response(&response
, packet
->header
,
1168 RCODE_TYPE_ERROR
, NULL
, 0);
1172 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1173 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1174 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1175 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1177 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
1178 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
1180 fw_notify("swap not done yet\n");
1182 fw_fill_response(&response
, packet
->header
,
1183 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
1185 fw_core_handle_response(&ohci
->card
, &response
);
1188 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1193 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1194 packet
->ack
= ACK_PENDING
;
1195 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1199 ((unsigned long long)
1200 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1202 csr
= offset
- CSR_REGISTER_BASE
;
1204 /* Handle config rom reads. */
1205 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1206 handle_local_rom(ctx
->ohci
, packet
, csr
);
1208 case CSR_BUS_MANAGER_ID
:
1209 case CSR_BANDWIDTH_AVAILABLE
:
1210 case CSR_CHANNELS_AVAILABLE_HI
:
1211 case CSR_CHANNELS_AVAILABLE_LO
:
1212 handle_local_lock(ctx
->ohci
, packet
, csr
);
1215 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1216 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1218 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1222 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1223 packet
->ack
= ACK_COMPLETE
;
1224 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1228 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1230 unsigned long flags
;
1233 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1235 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1236 ctx
->ohci
->generation
== packet
->generation
) {
1237 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1238 handle_local_request(ctx
, packet
);
1242 ret
= at_context_queue_packet(ctx
, packet
);
1243 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1246 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1250 static void bus_reset_tasklet(unsigned long data
)
1252 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1253 int self_id_count
, i
, j
, reg
;
1254 int generation
, new_generation
;
1255 unsigned long flags
;
1256 void *free_rom
= NULL
;
1257 dma_addr_t free_rom_bus
= 0;
1259 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1260 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1261 fw_notify("node ID not valid, new bus reset in progress\n");
1264 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1265 fw_notify("malconfigured bus\n");
1268 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1269 OHCI1394_NodeID_nodeNumber
);
1271 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1272 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1273 fw_notify("inconsistent self IDs\n");
1277 * The count in the SelfIDCount register is the number of
1278 * bytes in the self ID receive buffer. Since we also receive
1279 * the inverted quadlets and a header quadlet, we shift one
1280 * bit extra to get the actual number of self IDs.
1282 self_id_count
= (reg
>> 3) & 0xff;
1283 if (self_id_count
== 0 || self_id_count
> 252) {
1284 fw_notify("inconsistent self IDs\n");
1287 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1290 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1291 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1292 fw_notify("inconsistent self IDs\n");
1295 ohci
->self_id_buffer
[j
] =
1296 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1301 * Check the consistency of the self IDs we just read. The
1302 * problem we face is that a new bus reset can start while we
1303 * read out the self IDs from the DMA buffer. If this happens,
1304 * the DMA buffer will be overwritten with new self IDs and we
1305 * will read out inconsistent data. The OHCI specification
1306 * (section 11.2) recommends a technique similar to
1307 * linux/seqlock.h, where we remember the generation of the
1308 * self IDs in the buffer before reading them out and compare
1309 * it to the current generation after reading them out. If
1310 * the two generations match we know we have a consistent set
1314 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1315 if (new_generation
!= generation
) {
1316 fw_notify("recursive bus reset detected, "
1317 "discarding self ids\n");
1321 /* FIXME: Document how the locking works. */
1322 spin_lock_irqsave(&ohci
->lock
, flags
);
1324 ohci
->generation
= generation
;
1325 context_stop(&ohci
->at_request_ctx
);
1326 context_stop(&ohci
->at_response_ctx
);
1327 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1329 if (ohci
->bus_reset_packet_quirk
)
1330 ohci
->request_generation
= generation
;
1333 * This next bit is unrelated to the AT context stuff but we
1334 * have to do it under the spinlock also. If a new config rom
1335 * was set up before this reset, the old one is now no longer
1336 * in use and we can free it. Update the config rom pointers
1337 * to point to the current config rom and clear the
1338 * next_config_rom pointer so a new udpate can take place.
1341 if (ohci
->next_config_rom
!= NULL
) {
1342 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1343 free_rom
= ohci
->config_rom
;
1344 free_rom_bus
= ohci
->config_rom_bus
;
1346 ohci
->config_rom
= ohci
->next_config_rom
;
1347 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1348 ohci
->next_config_rom
= NULL
;
1351 * Restore config_rom image and manually update
1352 * config_rom registers. Writing the header quadlet
1353 * will indicate that the config rom is ready, so we
1356 reg_write(ohci
, OHCI1394_BusOptions
,
1357 be32_to_cpu(ohci
->config_rom
[2]));
1358 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1359 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1362 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1363 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1364 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1367 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1370 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1371 free_rom
, free_rom_bus
);
1373 log_selfids(ohci
->node_id
, generation
,
1374 self_id_count
, ohci
->self_id_buffer
);
1376 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1377 self_id_count
, ohci
->self_id_buffer
);
1380 static irqreturn_t
irq_handler(int irq
, void *data
)
1382 struct fw_ohci
*ohci
= data
;
1383 u32 event
, iso_event
, cycle_time
;
1386 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1388 if (!event
|| !~event
)
1391 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1392 reg_write(ohci
, OHCI1394_IntEventClear
, event
& ~OHCI1394_busReset
);
1395 if (event
& OHCI1394_selfIDComplete
)
1396 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1398 if (event
& OHCI1394_RQPkt
)
1399 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1401 if (event
& OHCI1394_RSPkt
)
1402 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1404 if (event
& OHCI1394_reqTxComplete
)
1405 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1407 if (event
& OHCI1394_respTxComplete
)
1408 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1410 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1411 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1414 i
= ffs(iso_event
) - 1;
1415 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1416 iso_event
&= ~(1 << i
);
1419 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1420 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1423 i
= ffs(iso_event
) - 1;
1424 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1425 iso_event
&= ~(1 << i
);
1428 if (unlikely(event
& OHCI1394_regAccessFail
))
1429 fw_error("Register access failure - "
1430 "please notify linux1394-devel@lists.sf.net\n");
1432 if (unlikely(event
& OHCI1394_postedWriteErr
))
1433 fw_error("PCI posted write error\n");
1435 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1436 if (printk_ratelimit())
1437 fw_notify("isochronous cycle too long\n");
1438 reg_write(ohci
, OHCI1394_LinkControlSet
,
1439 OHCI1394_LinkControl_cycleMaster
);
1442 if (event
& OHCI1394_cycle64Seconds
) {
1443 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1444 if ((cycle_time
& 0x80000000) == 0)
1445 atomic_inc(&ohci
->bus_seconds
);
1451 static int software_reset(struct fw_ohci
*ohci
)
1455 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1457 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1458 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1459 OHCI1394_HCControl_softReset
) == 0)
1467 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1469 struct fw_ohci
*ohci
= fw_ohci(card
);
1470 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1474 if (software_reset(ohci
)) {
1475 fw_error("Failed to reset ohci card.\n");
1480 * Now enable LPS, which we need in order to start accessing
1481 * most of the registers. In fact, on some cards (ALI M5251),
1482 * accessing registers in the SClk domain without LPS enabled
1483 * will lock up the machine. Wait 50msec to make sure we have
1484 * full link enabled. However, with some cards (well, at least
1485 * a JMicron PCIe card), we have to try again sometimes.
1487 reg_write(ohci
, OHCI1394_HCControlSet
,
1488 OHCI1394_HCControl_LPS
|
1489 OHCI1394_HCControl_postedWriteEnable
);
1492 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
1494 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
1495 OHCI1394_HCControl_LPS
;
1499 fw_error("Failed to set Link Power Status\n");
1503 reg_write(ohci
, OHCI1394_HCControlClear
,
1504 OHCI1394_HCControl_noByteSwapData
);
1506 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1507 reg_write(ohci
, OHCI1394_LinkControlClear
,
1508 OHCI1394_LinkControl_rcvPhyPkt
);
1509 reg_write(ohci
, OHCI1394_LinkControlSet
,
1510 OHCI1394_LinkControl_rcvSelfID
|
1511 OHCI1394_LinkControl_cycleTimerEnable
|
1512 OHCI1394_LinkControl_cycleMaster
);
1514 reg_write(ohci
, OHCI1394_ATRetries
,
1515 OHCI1394_MAX_AT_REQ_RETRIES
|
1516 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1517 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1519 ar_context_run(&ohci
->ar_request_ctx
);
1520 ar_context_run(&ohci
->ar_response_ctx
);
1522 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1523 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1524 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1525 reg_write(ohci
, OHCI1394_IntMaskSet
,
1526 OHCI1394_selfIDComplete
|
1527 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1528 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1529 OHCI1394_isochRx
| OHCI1394_isochTx
|
1530 OHCI1394_postedWriteErr
| OHCI1394_cycleTooLong
|
1531 OHCI1394_cycle64Seconds
| OHCI1394_regAccessFail
|
1532 OHCI1394_masterIntEnable
);
1533 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
1534 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_busReset
);
1536 /* Activate link_on bit and contender bit in our self ID packets.*/
1537 if (ohci_update_phy_reg(card
, 4, 0,
1538 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1542 * When the link is not yet enabled, the atomic config rom
1543 * update mechanism described below in ohci_set_config_rom()
1544 * is not active. We have to update ConfigRomHeader and
1545 * BusOptions manually, and the write to ConfigROMmap takes
1546 * effect immediately. We tie this to the enabling of the
1547 * link, so we have a valid config rom before enabling - the
1548 * OHCI requires that ConfigROMhdr and BusOptions have valid
1549 * values before enabling.
1551 * However, when the ConfigROMmap is written, some controllers
1552 * always read back quadlets 0 and 2 from the config rom to
1553 * the ConfigRomHeader and BusOptions registers on bus reset.
1554 * They shouldn't do that in this initial case where the link
1555 * isn't enabled. This means we have to use the same
1556 * workaround here, setting the bus header to 0 and then write
1557 * the right values in the bus reset tasklet.
1561 ohci
->next_config_rom
=
1562 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1563 &ohci
->next_config_rom_bus
,
1565 if (ohci
->next_config_rom
== NULL
)
1568 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1569 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1572 * In the suspend case, config_rom is NULL, which
1573 * means that we just reuse the old config rom.
1575 ohci
->next_config_rom
= ohci
->config_rom
;
1576 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1579 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1580 ohci
->next_config_rom
[0] = 0;
1581 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1582 reg_write(ohci
, OHCI1394_BusOptions
,
1583 be32_to_cpu(ohci
->next_config_rom
[2]));
1584 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1586 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1588 if (request_irq(dev
->irq
, irq_handler
,
1589 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1590 fw_error("Failed to allocate shared interrupt %d.\n",
1592 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1593 ohci
->config_rom
, ohci
->config_rom_bus
);
1597 reg_write(ohci
, OHCI1394_HCControlSet
,
1598 OHCI1394_HCControl_linkEnable
|
1599 OHCI1394_HCControl_BIBimageValid
);
1603 * We are ready to go, initiate bus reset to finish the
1607 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1612 static int ohci_set_config_rom(struct fw_card
*card
,
1613 u32
*config_rom
, size_t length
)
1615 struct fw_ohci
*ohci
;
1616 unsigned long flags
;
1618 __be32
*next_config_rom
;
1619 dma_addr_t
uninitialized_var(next_config_rom_bus
);
1621 ohci
= fw_ohci(card
);
1624 * When the OHCI controller is enabled, the config rom update
1625 * mechanism is a bit tricky, but easy enough to use. See
1626 * section 5.5.6 in the OHCI specification.
1628 * The OHCI controller caches the new config rom address in a
1629 * shadow register (ConfigROMmapNext) and needs a bus reset
1630 * for the changes to take place. When the bus reset is
1631 * detected, the controller loads the new values for the
1632 * ConfigRomHeader and BusOptions registers from the specified
1633 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1634 * shadow register. All automatically and atomically.
1636 * Now, there's a twist to this story. The automatic load of
1637 * ConfigRomHeader and BusOptions doesn't honor the
1638 * noByteSwapData bit, so with a be32 config rom, the
1639 * controller will load be32 values in to these registers
1640 * during the atomic update, even on litte endian
1641 * architectures. The workaround we use is to put a 0 in the
1642 * header quadlet; 0 is endian agnostic and means that the
1643 * config rom isn't ready yet. In the bus reset tasklet we
1644 * then set up the real values for the two registers.
1646 * We use ohci->lock to avoid racing with the code that sets
1647 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1651 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1652 &next_config_rom_bus
, GFP_KERNEL
);
1653 if (next_config_rom
== NULL
)
1656 spin_lock_irqsave(&ohci
->lock
, flags
);
1658 if (ohci
->next_config_rom
== NULL
) {
1659 ohci
->next_config_rom
= next_config_rom
;
1660 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1662 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1663 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1666 ohci
->next_header
= config_rom
[0];
1667 ohci
->next_config_rom
[0] = 0;
1669 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1670 ohci
->next_config_rom_bus
);
1674 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1677 * Now initiate a bus reset to have the changes take
1678 * effect. We clean up the old config rom memory and DMA
1679 * mappings in the bus reset tasklet, since the OHCI
1680 * controller could need to access it before the bus reset
1684 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1686 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1687 next_config_rom
, next_config_rom_bus
);
1692 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1694 struct fw_ohci
*ohci
= fw_ohci(card
);
1696 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1699 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1701 struct fw_ohci
*ohci
= fw_ohci(card
);
1703 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1706 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1708 struct fw_ohci
*ohci
= fw_ohci(card
);
1709 struct context
*ctx
= &ohci
->at_request_ctx
;
1710 struct driver_data
*driver_data
= packet
->driver_data
;
1713 tasklet_disable(&ctx
->tasklet
);
1715 if (packet
->ack
!= 0)
1718 if (packet
->payload_bus
)
1719 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1720 packet
->payload_length
, DMA_TO_DEVICE
);
1722 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
1723 driver_data
->packet
= NULL
;
1724 packet
->ack
= RCODE_CANCELLED
;
1725 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1728 tasklet_enable(&ctx
->tasklet
);
1733 static int ohci_enable_phys_dma(struct fw_card
*card
,
1734 int node_id
, int generation
)
1736 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1739 struct fw_ohci
*ohci
= fw_ohci(card
);
1740 unsigned long flags
;
1744 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1745 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1748 spin_lock_irqsave(&ohci
->lock
, flags
);
1750 if (ohci
->generation
!= generation
) {
1756 * Note, if the node ID contains a non-local bus ID, physical DMA is
1757 * enabled for _all_ nodes on remote buses.
1760 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1762 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1764 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1768 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1771 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1774 static u64
ohci_get_bus_time(struct fw_card
*card
)
1776 struct fw_ohci
*ohci
= fw_ohci(card
);
1780 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1781 bus_time
= ((u64
)atomic_read(&ohci
->bus_seconds
) << 32) | cycle_time
;
1786 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
1788 int i
= ctx
->header_length
;
1790 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
1794 * The iso header is byteswapped to little endian by
1795 * the controller, but the remaining header quadlets
1796 * are big endian. We want to present all the headers
1797 * as big endian, so we have to swap the first quadlet.
1799 if (ctx
->base
.header_size
> 0)
1800 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1801 if (ctx
->base
.header_size
> 4)
1802 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
1803 if (ctx
->base
.header_size
> 8)
1804 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
1805 ctx
->header_length
+= ctx
->base
.header_size
;
1808 static int handle_ir_dualbuffer_packet(struct context
*context
,
1809 struct descriptor
*d
,
1810 struct descriptor
*last
)
1812 struct iso_context
*ctx
=
1813 container_of(context
, struct iso_context
, context
);
1814 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1816 size_t header_length
;
1819 if (db
->first_res_count
!= 0 && db
->second_res_count
!= 0) {
1820 if (ctx
->excess_bytes
<= le16_to_cpu(db
->second_req_count
)) {
1821 /* This descriptor isn't done yet, stop iteration. */
1824 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
);
1827 header_length
= le16_to_cpu(db
->first_req_count
) -
1828 le16_to_cpu(db
->first_res_count
);
1831 end
= p
+ header_length
;
1833 copy_iso_headers(ctx
, p
);
1834 ctx
->excess_bytes
+=
1835 (le32_to_cpu(*(__le32
*)(p
+ 4)) >> 16) & 0xffff;
1836 p
+= max(ctx
->base
.header_size
, (size_t)8);
1839 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
) -
1840 le16_to_cpu(db
->second_res_count
);
1842 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1843 ir_header
= (__le32
*) (db
+ 1);
1844 ctx
->base
.callback(&ctx
->base
,
1845 le32_to_cpu(ir_header
[0]) & 0xffff,
1846 ctx
->header_length
, ctx
->header
,
1847 ctx
->base
.callback_data
);
1848 ctx
->header_length
= 0;
1854 static int handle_ir_packet_per_buffer(struct context
*context
,
1855 struct descriptor
*d
,
1856 struct descriptor
*last
)
1858 struct iso_context
*ctx
=
1859 container_of(context
, struct iso_context
, context
);
1860 struct descriptor
*pd
;
1864 for (pd
= d
; pd
<= last
; pd
++) {
1865 if (pd
->transfer_status
)
1869 /* Descriptor(s) not done yet, stop iteration */
1873 copy_iso_headers(ctx
, p
);
1875 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1876 ir_header
= (__le32
*) p
;
1877 ctx
->base
.callback(&ctx
->base
,
1878 le32_to_cpu(ir_header
[0]) & 0xffff,
1879 ctx
->header_length
, ctx
->header
,
1880 ctx
->base
.callback_data
);
1881 ctx
->header_length
= 0;
1887 static int handle_it_packet(struct context
*context
,
1888 struct descriptor
*d
,
1889 struct descriptor
*last
)
1891 struct iso_context
*ctx
=
1892 container_of(context
, struct iso_context
, context
);
1894 if (last
->transfer_status
== 0)
1895 /* This descriptor isn't done yet, stop iteration. */
1898 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1899 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1900 0, NULL
, ctx
->base
.callback_data
);
1905 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
1906 int type
, int channel
, size_t header_size
)
1908 struct fw_ohci
*ohci
= fw_ohci(card
);
1909 struct iso_context
*ctx
, *list
;
1910 descriptor_callback_t callback
;
1911 u64
*channels
, dont_care
= ~0ULL;
1913 unsigned long flags
;
1914 int index
, ret
= -ENOMEM
;
1916 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1917 channels
= &dont_care
;
1918 mask
= &ohci
->it_context_mask
;
1919 list
= ohci
->it_context_list
;
1920 callback
= handle_it_packet
;
1922 channels
= &ohci
->ir_context_channels
;
1923 mask
= &ohci
->ir_context_mask
;
1924 list
= ohci
->ir_context_list
;
1925 if (ohci
->use_dualbuffer
)
1926 callback
= handle_ir_dualbuffer_packet
;
1928 callback
= handle_ir_packet_per_buffer
;
1931 spin_lock_irqsave(&ohci
->lock
, flags
);
1932 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
1934 *channels
&= ~(1ULL << channel
);
1935 *mask
&= ~(1 << index
);
1937 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1940 return ERR_PTR(-EBUSY
);
1942 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1943 regs
= OHCI1394_IsoXmitContextBase(index
);
1945 regs
= OHCI1394_IsoRcvContextBase(index
);
1948 memset(ctx
, 0, sizeof(*ctx
));
1949 ctx
->header_length
= 0;
1950 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1951 if (ctx
->header
== NULL
)
1954 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
1956 goto out_with_header
;
1961 free_page((unsigned long)ctx
->header
);
1963 spin_lock_irqsave(&ohci
->lock
, flags
);
1964 *mask
|= 1 << index
;
1965 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1967 return ERR_PTR(ret
);
1970 static int ohci_start_iso(struct fw_iso_context
*base
,
1971 s32 cycle
, u32 sync
, u32 tags
)
1973 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1974 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1978 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1979 index
= ctx
- ohci
->it_context_list
;
1982 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1983 (cycle
& 0x7fff) << 16;
1985 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1986 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1987 context_run(&ctx
->context
, match
);
1989 index
= ctx
- ohci
->ir_context_list
;
1990 control
= IR_CONTEXT_ISOCH_HEADER
;
1991 if (ohci
->use_dualbuffer
)
1992 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
1993 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1995 match
|= (cycle
& 0x07fff) << 12;
1996 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1999 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
2000 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2001 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2002 context_run(&ctx
->context
, control
);
2008 static int ohci_stop_iso(struct fw_iso_context
*base
)
2010 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2011 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2014 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2015 index
= ctx
- ohci
->it_context_list
;
2016 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2018 index
= ctx
- ohci
->ir_context_list
;
2019 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2022 context_stop(&ctx
->context
);
2027 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2029 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2030 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2031 unsigned long flags
;
2034 ohci_stop_iso(base
);
2035 context_release(&ctx
->context
);
2036 free_page((unsigned long)ctx
->header
);
2038 spin_lock_irqsave(&ohci
->lock
, flags
);
2040 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2041 index
= ctx
- ohci
->it_context_list
;
2042 ohci
->it_context_mask
|= 1 << index
;
2044 index
= ctx
- ohci
->ir_context_list
;
2045 ohci
->ir_context_mask
|= 1 << index
;
2046 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2049 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2052 static int ohci_queue_iso_transmit(struct fw_iso_context
*base
,
2053 struct fw_iso_packet
*packet
,
2054 struct fw_iso_buffer
*buffer
,
2055 unsigned long payload
)
2057 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2058 struct descriptor
*d
, *last
, *pd
;
2059 struct fw_iso_packet
*p
;
2061 dma_addr_t d_bus
, page_bus
;
2062 u32 z
, header_z
, payload_z
, irq
;
2063 u32 payload_index
, payload_end_index
, next_page_index
;
2064 int page
, end_page
, i
, length
, offset
;
2067 * FIXME: Cycle lost behavior should be configurable: lose
2068 * packet, retransmit or terminate..
2072 payload_index
= payload
;
2078 if (p
->header_length
> 0)
2081 /* Determine the first page the payload isn't contained in. */
2082 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2083 if (p
->payload_length
> 0)
2084 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2090 /* Get header size in number of descriptors. */
2091 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2093 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2098 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2099 d
[0].req_count
= cpu_to_le16(8);
2101 header
= (__le32
*) &d
[1];
2102 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2103 IT_HEADER_TAG(p
->tag
) |
2104 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2105 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2106 IT_HEADER_SPEED(ctx
->base
.speed
));
2108 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2109 p
->payload_length
));
2112 if (p
->header_length
> 0) {
2113 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2114 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2115 memcpy(&d
[z
], p
->header
, p
->header_length
);
2118 pd
= d
+ z
- payload_z
;
2119 payload_end_index
= payload_index
+ p
->payload_length
;
2120 for (i
= 0; i
< payload_z
; i
++) {
2121 page
= payload_index
>> PAGE_SHIFT
;
2122 offset
= payload_index
& ~PAGE_MASK
;
2123 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2125 min(next_page_index
, payload_end_index
) - payload_index
;
2126 pd
[i
].req_count
= cpu_to_le16(length
);
2128 page_bus
= page_private(buffer
->pages
[page
]);
2129 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2131 payload_index
+= length
;
2135 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2137 irq
= DESCRIPTOR_NO_IRQ
;
2139 last
= z
== 2 ? d
: d
+ z
- 1;
2140 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2142 DESCRIPTOR_BRANCH_ALWAYS
|
2145 context_append(&ctx
->context
, d
, z
, header_z
);
2150 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
2151 struct fw_iso_packet
*packet
,
2152 struct fw_iso_buffer
*buffer
,
2153 unsigned long payload
)
2155 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2156 struct db_descriptor
*db
= NULL
;
2157 struct descriptor
*d
;
2158 struct fw_iso_packet
*p
;
2159 dma_addr_t d_bus
, page_bus
;
2160 u32 z
, header_z
, length
, rest
;
2161 int page
, offset
, packet_count
, header_size
;
2164 * FIXME: Cycle lost behavior should be configurable: lose
2165 * packet, retransmit or terminate..
2172 * The OHCI controller puts the isochronous header and trailer in the
2173 * buffer, so we need at least 8 bytes.
2175 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2176 header_size
= packet_count
* max(ctx
->base
.header_size
, (size_t)8);
2178 /* Get header size in number of descriptors. */
2179 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2180 page
= payload
>> PAGE_SHIFT
;
2181 offset
= payload
& ~PAGE_MASK
;
2182 rest
= p
->payload_length
;
2184 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2186 d
= context_get_descriptors(&ctx
->context
,
2187 z
+ header_z
, &d_bus
);
2191 db
= (struct db_descriptor
*) d
;
2192 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2193 DESCRIPTOR_BRANCH_ALWAYS
);
2195 cpu_to_le16(max(ctx
->base
.header_size
, (size_t)8));
2196 if (p
->skip
&& rest
== p
->payload_length
) {
2197 db
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2198 db
->first_req_count
= db
->first_size
;
2200 db
->first_req_count
= cpu_to_le16(header_size
);
2202 db
->first_res_count
= db
->first_req_count
;
2203 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
2205 if (p
->skip
&& rest
== p
->payload_length
)
2207 else if (offset
+ rest
< PAGE_SIZE
)
2210 length
= PAGE_SIZE
- offset
;
2212 db
->second_req_count
= cpu_to_le16(length
);
2213 db
->second_res_count
= db
->second_req_count
;
2214 page_bus
= page_private(buffer
->pages
[page
]);
2215 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
2217 if (p
->interrupt
&& length
== rest
)
2218 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2220 context_append(&ctx
->context
, d
, z
, header_z
);
2221 offset
= (offset
+ length
) & ~PAGE_MASK
;
2230 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
2231 struct fw_iso_packet
*packet
,
2232 struct fw_iso_buffer
*buffer
,
2233 unsigned long payload
)
2235 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2236 struct descriptor
*d
= NULL
, *pd
= NULL
;
2237 struct fw_iso_packet
*p
= packet
;
2238 dma_addr_t d_bus
, page_bus
;
2239 u32 z
, header_z
, rest
;
2241 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
2244 * The OHCI controller puts the isochronous header and trailer in the
2245 * buffer, so we need at least 8 bytes.
2247 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2248 header_size
= max(ctx
->base
.header_size
, (size_t)8);
2250 /* Get header size in number of descriptors. */
2251 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2252 page
= payload
>> PAGE_SHIFT
;
2253 offset
= payload
& ~PAGE_MASK
;
2254 payload_per_buffer
= p
->payload_length
/ packet_count
;
2256 for (i
= 0; i
< packet_count
; i
++) {
2257 /* d points to the header descriptor */
2258 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
2259 d
= context_get_descriptors(&ctx
->context
,
2260 z
+ header_z
, &d_bus
);
2264 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2265 DESCRIPTOR_INPUT_MORE
);
2266 if (p
->skip
&& i
== 0)
2267 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2268 d
->req_count
= cpu_to_le16(header_size
);
2269 d
->res_count
= d
->req_count
;
2270 d
->transfer_status
= 0;
2271 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
2273 rest
= payload_per_buffer
;
2274 for (j
= 1; j
< z
; j
++) {
2276 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2277 DESCRIPTOR_INPUT_MORE
);
2279 if (offset
+ rest
< PAGE_SIZE
)
2282 length
= PAGE_SIZE
- offset
;
2283 pd
->req_count
= cpu_to_le16(length
);
2284 pd
->res_count
= pd
->req_count
;
2285 pd
->transfer_status
= 0;
2287 page_bus
= page_private(buffer
->pages
[page
]);
2288 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
2290 offset
= (offset
+ length
) & ~PAGE_MASK
;
2295 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2296 DESCRIPTOR_INPUT_LAST
|
2297 DESCRIPTOR_BRANCH_ALWAYS
);
2298 if (p
->interrupt
&& i
== packet_count
- 1)
2299 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2301 context_append(&ctx
->context
, d
, z
, header_z
);
2307 static int ohci_queue_iso(struct fw_iso_context
*base
,
2308 struct fw_iso_packet
*packet
,
2309 struct fw_iso_buffer
*buffer
,
2310 unsigned long payload
)
2312 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2313 unsigned long flags
;
2316 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2317 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
2318 ret
= ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
2319 else if (ctx
->context
.ohci
->use_dualbuffer
)
2320 ret
= ohci_queue_iso_receive_dualbuffer(base
, packet
,
2323 ret
= ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
2325 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2330 static const struct fw_card_driver ohci_driver
= {
2331 .enable
= ohci_enable
,
2332 .update_phy_reg
= ohci_update_phy_reg
,
2333 .set_config_rom
= ohci_set_config_rom
,
2334 .send_request
= ohci_send_request
,
2335 .send_response
= ohci_send_response
,
2336 .cancel_packet
= ohci_cancel_packet
,
2337 .enable_phys_dma
= ohci_enable_phys_dma
,
2338 .get_bus_time
= ohci_get_bus_time
,
2340 .allocate_iso_context
= ohci_allocate_iso_context
,
2341 .free_iso_context
= ohci_free_iso_context
,
2342 .queue_iso
= ohci_queue_iso
,
2343 .start_iso
= ohci_start_iso
,
2344 .stop_iso
= ohci_stop_iso
,
2347 #ifdef CONFIG_PPC_PMAC
2348 static void ohci_pmac_on(struct pci_dev
*dev
)
2350 if (machine_is(powermac
)) {
2351 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2354 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
2355 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2360 static void ohci_pmac_off(struct pci_dev
*dev
)
2362 if (machine_is(powermac
)) {
2363 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2366 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2367 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
2372 #define ohci_pmac_on(dev)
2373 #define ohci_pmac_off(dev)
2374 #endif /* CONFIG_PPC_PMAC */
2376 #define PCI_VENDOR_ID_AGERE PCI_VENDOR_ID_ATT
2377 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
2379 static int __devinit
pci_probe(struct pci_dev
*dev
,
2380 const struct pci_device_id
*ent
)
2382 struct fw_ohci
*ohci
;
2383 u32 bus_options
, max_receive
, link_speed
, version
;
2388 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2394 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2398 err
= pci_enable_device(dev
);
2400 fw_error("Failed to enable OHCI hardware\n");
2404 pci_set_master(dev
);
2405 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2406 pci_set_drvdata(dev
, ohci
);
2408 spin_lock_init(&ohci
->lock
);
2410 tasklet_init(&ohci
->bus_reset_tasklet
,
2411 bus_reset_tasklet
, (unsigned long)ohci
);
2413 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2415 fw_error("MMIO resource unavailable\n");
2419 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2420 if (ohci
->registers
== NULL
) {
2421 fw_error("Failed to remap registers\n");
2426 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2427 ohci
->use_dualbuffer
= version
>= OHCI_VERSION_1_1
;
2429 /* dual-buffer mode is broken if more than one IR context is active */
2430 if (dev
->vendor
== PCI_VENDOR_ID_AGERE
&&
2431 dev
->device
== PCI_DEVICE_ID_AGERE_FW643
)
2432 ohci
->use_dualbuffer
= false;
2434 /* dual-buffer mode is broken */
2435 if (dev
->vendor
== PCI_VENDOR_ID_RICOH
&&
2436 dev
->device
== PCI_DEVICE_ID_RICOH_R5C832
)
2437 ohci
->use_dualbuffer
= false;
2439 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2440 #if !defined(CONFIG_X86_32)
2441 /* dual-buffer mode is broken with descriptor addresses above 2G */
2442 if (dev
->vendor
== PCI_VENDOR_ID_TI
&&
2443 dev
->device
== PCI_DEVICE_ID_TI_TSB43AB22
)
2444 ohci
->use_dualbuffer
= false;
2447 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2448 ohci
->old_uninorth
= dev
->vendor
== PCI_VENDOR_ID_APPLE
&&
2449 dev
->device
== PCI_DEVICE_ID_APPLE_UNI_N_FW
;
2451 ohci
->bus_reset_packet_quirk
= dev
->vendor
== PCI_VENDOR_ID_TI
;
2453 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2454 OHCI1394_AsReqRcvContextControlSet
);
2456 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2457 OHCI1394_AsRspRcvContextControlSet
);
2459 context_init(&ohci
->at_request_ctx
, ohci
,
2460 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2462 context_init(&ohci
->at_response_ctx
, ohci
,
2463 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2465 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2466 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2467 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2468 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2469 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2471 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2472 ohci
->ir_context_channels
= ~0ULL;
2473 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2474 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2475 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2476 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2478 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2483 /* self-id dma buffer allocation */
2484 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2488 if (ohci
->self_id_cpu
== NULL
) {
2493 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2494 max_receive
= (bus_options
>> 12) & 0xf;
2495 link_speed
= bus_options
& 0x7;
2496 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2497 reg_read(ohci
, OHCI1394_GUIDLo
);
2499 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2503 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2504 dev_name(&dev
->dev
), version
>> 16, version
& 0xff);
2509 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2510 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2512 kfree(ohci
->ir_context_list
);
2513 kfree(ohci
->it_context_list
);
2514 context_release(&ohci
->at_response_ctx
);
2515 context_release(&ohci
->at_request_ctx
);
2516 ar_context_release(&ohci
->ar_response_ctx
);
2517 ar_context_release(&ohci
->ar_request_ctx
);
2518 pci_iounmap(dev
, ohci
->registers
);
2520 pci_release_region(dev
, 0);
2522 pci_disable_device(dev
);
2528 fw_error("Out of memory\n");
2533 static void pci_remove(struct pci_dev
*dev
)
2535 struct fw_ohci
*ohci
;
2537 ohci
= pci_get_drvdata(dev
);
2538 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2540 fw_core_remove_card(&ohci
->card
);
2543 * FIXME: Fail all pending packets here, now that the upper
2544 * layers can't queue any more.
2547 software_reset(ohci
);
2548 free_irq(dev
->irq
, ohci
);
2550 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
2551 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2552 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
2553 if (ohci
->config_rom
)
2554 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2555 ohci
->config_rom
, ohci
->config_rom_bus
);
2556 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2557 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2558 ar_context_release(&ohci
->ar_request_ctx
);
2559 ar_context_release(&ohci
->ar_response_ctx
);
2560 context_release(&ohci
->at_request_ctx
);
2561 context_release(&ohci
->at_response_ctx
);
2562 kfree(ohci
->it_context_list
);
2563 kfree(ohci
->ir_context_list
);
2564 pci_iounmap(dev
, ohci
->registers
);
2565 pci_release_region(dev
, 0);
2566 pci_disable_device(dev
);
2570 fw_notify("Removed fw-ohci device.\n");
2574 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
2576 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2579 software_reset(ohci
);
2580 free_irq(dev
->irq
, ohci
);
2581 err
= pci_save_state(dev
);
2583 fw_error("pci_save_state failed\n");
2586 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
2588 fw_error("pci_set_power_state failed with %d\n", err
);
2594 static int pci_resume(struct pci_dev
*dev
)
2596 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2600 pci_set_power_state(dev
, PCI_D0
);
2601 pci_restore_state(dev
);
2602 err
= pci_enable_device(dev
);
2604 fw_error("pci_enable_device failed\n");
2608 return ohci_enable(&ohci
->card
, NULL
, 0);
2612 static struct pci_device_id pci_table
[] = {
2613 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2617 MODULE_DEVICE_TABLE(pci
, pci_table
);
2619 static struct pci_driver fw_ohci_pci_driver
= {
2620 .name
= ohci_driver_name
,
2621 .id_table
= pci_table
,
2623 .remove
= pci_remove
,
2625 .resume
= pci_resume
,
2626 .suspend
= pci_suspend
,
2630 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2631 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2632 MODULE_LICENSE("GPL");
2634 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2635 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2636 MODULE_ALIAS("ohci1394");
2639 static int __init
fw_ohci_init(void)
2641 return pci_register_driver(&fw_ohci_pci_driver
);
2644 static void __exit
fw_ohci_cleanup(void)
2646 pci_unregister_driver(&fw_ohci_pci_driver
);
2649 module_init(fw_ohci_init
);
2650 module_exit(fw_ohci_cleanup
);