2 * VMI specific paravirt-ops implementation
4 * Copyright (C) 2005, VMware, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 * Send feedback to zach@vmware.com
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/bootmem.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
33 #include <asm/fixmap.h>
34 #include <asm/apicdef.h>
36 #include <asm/processor.h>
37 #include <asm/timer.h>
38 #include <asm/vmi_time.h>
39 #include <asm/kmap_types.h>
40 #include <asm/setup.h>
42 /* Convenient for calling VMI functions indirectly in the ROM */
43 typedef u32
__attribute__((regparm(1))) (VROMFUNC
)(void);
44 typedef u64
__attribute__((regparm(2))) (VROMLONGFUNC
)(int);
46 #define call_vrom_func(rom,func) \
47 (((VROMFUNC *)(rom->func))())
49 #define call_vrom_long_func(rom,func,arg) \
50 (((VROMLONGFUNC *)(rom->func)) (arg))
52 static struct vrom_header
*vmi_rom
;
53 static int disable_pge
;
54 static int disable_pse
;
55 static int disable_sep
;
56 static int disable_tsc
;
57 static int disable_mtrr
;
58 static int disable_noidle
;
59 static int disable_vmi_timer
;
61 /* Cached VMI operations */
63 void (*cpuid
)(void /* non-c */);
64 void (*_set_ldt
)(u32 selector
);
65 void (*set_tr
)(u32 selector
);
66 void (*write_idt_entry
)(struct desc_struct
*, int, u32
, u32
);
67 void (*write_gdt_entry
)(struct desc_struct
*, int, u32
, u32
);
68 void (*write_ldt_entry
)(struct desc_struct
*, int, u32
, u32
);
69 void (*set_kernel_stack
)(u32 selector
, u32 sp0
);
70 void (*allocate_page
)(u32
, u32
, u32
, u32
, u32
);
71 void (*release_page
)(u32
, u32
);
72 void (*set_pte
)(pte_t
, pte_t
*, unsigned);
73 void (*update_pte
)(pte_t
*, unsigned);
74 void (*set_linear_mapping
)(int, void *, u32
, u32
);
75 void (*_flush_tlb
)(int);
76 void (*set_initial_ap_state
)(int, int);
78 void (*set_lazy_mode
)(int mode
);
81 /* Cached VMI operations */
82 struct vmi_timer_ops vmi_timer_ops
;
85 * VMI patching routines.
87 #define MNEM_CALL 0xe8
91 #define IRQ_PATCH_INT_MASK 0
92 #define IRQ_PATCH_DISABLE 5
94 static inline void patch_offset(void *insnbuf
,
95 unsigned long ip
, unsigned long dest
)
97 *(unsigned long *)(insnbuf
+1) = dest
-ip
-5;
100 static unsigned patch_internal(int call
, unsigned len
, void *insnbuf
,
104 struct vmi_relocation_info
*const rel
= (struct vmi_relocation_info
*)&reloc
;
105 reloc
= call_vrom_long_func(vmi_rom
, get_reloc
, call
);
107 case VMI_RELOCATION_CALL_REL
:
109 *(char *)insnbuf
= MNEM_CALL
;
110 patch_offset(insnbuf
, ip
, (unsigned long)rel
->eip
);
113 case VMI_RELOCATION_JUMP_REL
:
115 *(char *)insnbuf
= MNEM_JMP
;
116 patch_offset(insnbuf
, ip
, (unsigned long)rel
->eip
);
119 case VMI_RELOCATION_NOP
:
120 /* obliterate the whole thing */
123 case VMI_RELOCATION_NONE
:
124 /* leave native code in place */
134 * Apply patch if appropriate, return length of new instruction
135 * sequence. The callee does nop padding for us.
137 static unsigned vmi_patch(u8 type
, u16 clobbers
, void *insns
,
138 unsigned long ip
, unsigned len
)
141 case PARAVIRT_PATCH(pv_irq_ops
.irq_disable
):
142 return patch_internal(VMI_CALL_DisableInterrupts
, len
,
144 case PARAVIRT_PATCH(pv_irq_ops
.irq_enable
):
145 return patch_internal(VMI_CALL_EnableInterrupts
, len
,
147 case PARAVIRT_PATCH(pv_irq_ops
.restore_fl
):
148 return patch_internal(VMI_CALL_SetInterruptMask
, len
,
150 case PARAVIRT_PATCH(pv_irq_ops
.save_fl
):
151 return patch_internal(VMI_CALL_GetInterruptMask
, len
,
153 case PARAVIRT_PATCH(pv_cpu_ops
.iret
):
154 return patch_internal(VMI_CALL_IRET
, len
, insns
, ip
);
155 case PARAVIRT_PATCH(pv_cpu_ops
.irq_enable_sysexit
):
156 return patch_internal(VMI_CALL_SYSEXIT
, len
, insns
, ip
);
163 /* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
164 static void vmi_cpuid(unsigned int *ax
, unsigned int *bx
,
165 unsigned int *cx
, unsigned int *dx
)
170 asm volatile ("call *%6"
175 : "0" (*ax
), "2" (*cx
), "r" (vmi_ops
.cpuid
));
178 *dx
&= ~X86_FEATURE_PSE
;
180 *dx
&= ~X86_FEATURE_PGE
;
182 *dx
&= ~X86_FEATURE_SEP
;
184 *dx
&= ~X86_FEATURE_TSC
;
186 *dx
&= ~X86_FEATURE_MTRR
;
190 static inline void vmi_maybe_load_tls(struct desc_struct
*gdt
, int nr
, struct desc_struct
*new)
192 if (gdt
[nr
].a
!= new->a
|| gdt
[nr
].b
!= new->b
)
193 write_gdt_entry(gdt
, nr
, new, 0);
196 static void vmi_load_tls(struct thread_struct
*t
, unsigned int cpu
)
198 struct desc_struct
*gdt
= get_cpu_gdt_table(cpu
);
199 vmi_maybe_load_tls(gdt
, GDT_ENTRY_TLS_MIN
+ 0, &t
->tls_array
[0]);
200 vmi_maybe_load_tls(gdt
, GDT_ENTRY_TLS_MIN
+ 1, &t
->tls_array
[1]);
201 vmi_maybe_load_tls(gdt
, GDT_ENTRY_TLS_MIN
+ 2, &t
->tls_array
[2]);
204 static void vmi_set_ldt(const void *addr
, unsigned entries
)
206 unsigned cpu
= smp_processor_id();
207 struct desc_struct desc
;
209 pack_descriptor(&desc
, (unsigned long)addr
,
210 entries
* sizeof(struct desc_struct
) - 1,
212 write_gdt_entry(get_cpu_gdt_table(cpu
), GDT_ENTRY_LDT
, &desc
, DESC_LDT
);
213 vmi_ops
._set_ldt(entries
? GDT_ENTRY_LDT
*sizeof(struct desc_struct
) : 0);
216 static void vmi_set_tr(void)
218 vmi_ops
.set_tr(GDT_ENTRY_TSS
*sizeof(struct desc_struct
));
221 static void vmi_write_idt_entry(gate_desc
*dt
, int entry
, const gate_desc
*g
)
223 u32
*idt_entry
= (u32
*)g
;
224 vmi_ops
.write_idt_entry(dt
, entry
, idt_entry
[0], idt_entry
[1]);
227 static void vmi_write_gdt_entry(struct desc_struct
*dt
, int entry
,
228 const void *desc
, int type
)
230 u32
*gdt_entry
= (u32
*)desc
;
231 vmi_ops
.write_gdt_entry(dt
, entry
, gdt_entry
[0], gdt_entry
[1]);
234 static void vmi_write_ldt_entry(struct desc_struct
*dt
, int entry
,
237 u32
*ldt_entry
= (u32
*)desc
;
238 vmi_ops
.write_ldt_entry(dt
, entry
, ldt_entry
[0], ldt_entry
[1]);
241 static void vmi_load_sp0(struct tss_struct
*tss
,
242 struct thread_struct
*thread
)
244 tss
->x86_tss
.sp0
= thread
->sp0
;
246 /* This can only happen when SEP is enabled, no need to test "SEP"arately */
247 if (unlikely(tss
->x86_tss
.ss1
!= thread
->sysenter_cs
)) {
248 tss
->x86_tss
.ss1
= thread
->sysenter_cs
;
249 wrmsr(MSR_IA32_SYSENTER_CS
, thread
->sysenter_cs
, 0);
251 vmi_ops
.set_kernel_stack(__KERNEL_DS
, tss
->x86_tss
.sp0
);
254 static void vmi_flush_tlb_user(void)
256 vmi_ops
._flush_tlb(VMI_FLUSH_TLB
);
259 static void vmi_flush_tlb_kernel(void)
261 vmi_ops
._flush_tlb(VMI_FLUSH_TLB
| VMI_FLUSH_GLOBAL
);
264 /* Stub to do nothing at all; used for delays and unimplemented calls */
265 static void vmi_nop(void)
269 #ifdef CONFIG_HIGHPTE
270 static void *vmi_kmap_atomic_pte(struct page
*page
, enum km_type type
)
272 void *va
= kmap_atomic(page
, type
);
275 * Internally, the VMI ROM must map virtual addresses to physical
276 * addresses for processing MMU updates. By the time MMU updates
277 * are issued, this information is typically already lost.
278 * Fortunately, the VMI provides a cache of mapping slots for active
281 * We use slot zero for the linear mapping of physical memory, and
282 * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
284 * args: SLOT VA COUNT PFN
286 BUG_ON(type
!= KM_PTE0
&& type
!= KM_PTE1
);
287 vmi_ops
.set_linear_mapping((type
- KM_PTE0
)+1, va
, 1, page_to_pfn(page
));
293 static void vmi_allocate_pte(struct mm_struct
*mm
, unsigned long pfn
)
295 vmi_ops
.allocate_page(pfn
, VMI_PAGE_L1
, 0, 0, 0);
298 static void vmi_allocate_pmd(struct mm_struct
*mm
, unsigned long pfn
)
301 * This call comes in very early, before mem_map is setup.
302 * It is called only for swapper_pg_dir, which already has
305 vmi_ops
.allocate_page(pfn
, VMI_PAGE_L2
, 0, 0, 0);
308 static void vmi_allocate_pmd_clone(unsigned long pfn
, unsigned long clonepfn
, unsigned long start
, unsigned long count
)
310 vmi_ops
.allocate_page(pfn
, VMI_PAGE_L2
| VMI_PAGE_CLONE
, clonepfn
, start
, count
);
313 static void vmi_release_pte(unsigned long pfn
)
315 vmi_ops
.release_page(pfn
, VMI_PAGE_L1
);
318 static void vmi_release_pmd(unsigned long pfn
)
320 vmi_ops
.release_page(pfn
, VMI_PAGE_L2
);
324 * We use the pgd_free hook for releasing the pgd page:
326 static void vmi_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
328 unsigned long pfn
= __pa(pgd
) >> PAGE_SHIFT
;
330 vmi_ops
.release_page(pfn
, VMI_PAGE_L2
);
334 * Helper macros for MMU update flags. We can defer updates until a flush
335 * or page invalidation only if the update is to the current address space
336 * (otherwise, there is no flush). We must check against init_mm, since
337 * this could be a kernel update, which usually passes init_mm, although
338 * sometimes this check can be skipped if we know the particular function
339 * is only called on user mode PTEs. We could change the kernel to pass
340 * current->active_mm here, but in particular, I was unsure if changing
341 * mm/highmem.c to do this would still be correct on other architectures.
343 #define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \
344 (!mustbeuser && (mm) == &init_mm))
345 #define vmi_flags_addr(mm, addr, level, user) \
346 ((level) | (is_current_as(mm, user) ? \
347 (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
348 #define vmi_flags_addr_defer(mm, addr, level, user) \
349 ((level) | (is_current_as(mm, user) ? \
350 (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
352 static void vmi_update_pte(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
354 vmi_ops
.update_pte(ptep
, vmi_flags_addr(mm
, addr
, VMI_PAGE_PT
, 0));
357 static void vmi_update_pte_defer(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
359 vmi_ops
.update_pte(ptep
, vmi_flags_addr_defer(mm
, addr
, VMI_PAGE_PT
, 0));
362 static void vmi_set_pte(pte_t
*ptep
, pte_t pte
)
364 /* XXX because of set_pmd_pte, this can be called on PT or PD layers */
365 vmi_ops
.set_pte(pte
, ptep
, VMI_PAGE_PT
);
368 static void vmi_set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
, pte_t pte
)
370 vmi_ops
.set_pte(pte
, ptep
, vmi_flags_addr(mm
, addr
, VMI_PAGE_PT
, 0));
373 static void vmi_set_pmd(pmd_t
*pmdp
, pmd_t pmdval
)
375 #ifdef CONFIG_X86_PAE
376 const pte_t pte
= { .pte
= pmdval
.pmd
};
378 const pte_t pte
= { pmdval
.pud
.pgd
.pgd
};
380 vmi_ops
.set_pte(pte
, (pte_t
*)pmdp
, VMI_PAGE_PD
);
383 #ifdef CONFIG_X86_PAE
385 static void vmi_set_pte_atomic(pte_t
*ptep
, pte_t pteval
)
388 * XXX This is called from set_pmd_pte, but at both PT
389 * and PD layers so the VMI_PAGE_PT flag is wrong. But
390 * it is only called for large page mapping changes,
391 * the Xen backend, doesn't support large pages, and the
392 * ESX backend doesn't depend on the flag.
394 set_64bit((unsigned long long *)ptep
,pte_val(pteval
));
395 vmi_ops
.update_pte(ptep
, VMI_PAGE_PT
);
398 static void vmi_set_pud(pud_t
*pudp
, pud_t pudval
)
401 const pte_t pte
= { .pte
= pudval
.pgd
.pgd
};
402 vmi_ops
.set_pte(pte
, (pte_t
*)pudp
, VMI_PAGE_PDP
);
405 static void vmi_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
407 const pte_t pte
= { .pte
= 0 };
408 vmi_ops
.set_pte(pte
, ptep
, vmi_flags_addr(mm
, addr
, VMI_PAGE_PT
, 0));
411 static void vmi_pmd_clear(pmd_t
*pmd
)
413 const pte_t pte
= { .pte
= 0 };
414 vmi_ops
.set_pte(pte
, (pte_t
*)pmd
, VMI_PAGE_PD
);
419 static void __devinit
420 vmi_startup_ipi_hook(int phys_apicid
, unsigned long start_eip
,
421 unsigned long start_esp
)
423 struct vmi_ap_state ap
;
425 /* Default everything to zero. This is fine for most GPRs. */
426 memset(&ap
, 0, sizeof(struct vmi_ap_state
));
428 ap
.gdtr_limit
= GDT_SIZE
- 1;
429 ap
.gdtr_base
= (unsigned long) get_cpu_gdt_table(phys_apicid
);
431 ap
.idtr_limit
= IDT_ENTRIES
* 8 - 1;
432 ap
.idtr_base
= (unsigned long) idt_table
;
437 ap
.eip
= (unsigned long) start_eip
;
439 ap
.esp
= (unsigned long) start_esp
;
443 ap
.fs
= __KERNEL_PERCPU
;
448 #ifdef CONFIG_X86_PAE
449 /* efer should match BSP efer. */
452 rdmsr(MSR_EFER
, l
, h
);
453 ap
.efer
= (unsigned long long) h
<< 32 | l
;
457 ap
.cr3
= __pa(swapper_pg_dir
);
458 /* Protected mode, paging, AM, WP, NE, MP. */
460 ap
.cr4
= mmu_cr4_features
;
461 vmi_ops
.set_initial_ap_state((u32
)&ap
, phys_apicid
);
465 static void vmi_enter_lazy_cpu(void)
467 paravirt_enter_lazy_cpu();
468 vmi_ops
.set_lazy_mode(2);
471 static void vmi_enter_lazy_mmu(void)
473 paravirt_enter_lazy_mmu();
474 vmi_ops
.set_lazy_mode(1);
477 static void vmi_leave_lazy(void)
479 paravirt_leave_lazy(paravirt_get_lazy_mode());
480 vmi_ops
.set_lazy_mode(0);
483 static inline int __init
check_vmi_rom(struct vrom_header
*rom
)
485 struct pci_header
*pci
;
486 struct pnp_header
*pnp
;
487 const char *manufacturer
= "UNKNOWN";
488 const char *product
= "UNKNOWN";
489 const char *license
= "unspecified";
491 if (rom
->rom_signature
!= 0xaa55)
493 if (rom
->vrom_signature
!= VMI_SIGNATURE
)
495 if (rom
->api_version_maj
!= VMI_API_REV_MAJOR
||
496 rom
->api_version_min
+1 < VMI_API_REV_MINOR
+1) {
497 printk(KERN_WARNING
"VMI: Found mismatched rom version %d.%d\n",
498 rom
->api_version_maj
,
499 rom
->api_version_min
);
504 * Relying on the VMI_SIGNATURE field is not 100% safe, so check
505 * the PCI header and device type to make sure this is really a
508 if (!rom
->pci_header_offs
) {
509 printk(KERN_WARNING
"VMI: ROM does not contain PCI header.\n");
513 pci
= (struct pci_header
*)((char *)rom
+rom
->pci_header_offs
);
514 if (pci
->vendorID
!= PCI_VENDOR_ID_VMWARE
||
515 pci
->deviceID
!= PCI_DEVICE_ID_VMWARE_VMI
) {
516 /* Allow it to run... anyways, but warn */
517 printk(KERN_WARNING
"VMI: ROM from unknown manufacturer\n");
520 if (rom
->pnp_header_offs
) {
521 pnp
= (struct pnp_header
*)((char *)rom
+rom
->pnp_header_offs
);
522 if (pnp
->manufacturer_offset
)
523 manufacturer
= (const char *)rom
+pnp
->manufacturer_offset
;
524 if (pnp
->product_offset
)
525 product
= (const char *)rom
+pnp
->product_offset
;
528 if (rom
->license_offs
)
529 license
= (char *)rom
+rom
->license_offs
;
531 printk(KERN_INFO
"VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
532 manufacturer
, product
,
533 rom
->api_version_maj
, rom
->api_version_min
,
534 pci
->rom_version_maj
, pci
->rom_version_min
);
536 /* Don't allow BSD/MIT here for now because we don't want to end up
537 with any binary only shim layers */
538 if (strcmp(license
, "GPL") && strcmp(license
, "GPL v2")) {
539 printk(KERN_WARNING
"VMI: Non GPL license `%s' found for ROM. Not used.\n",
548 * Probe for the VMI option ROM
550 static inline int __init
probe_vmi_rom(void)
554 /* VMI ROM is in option ROM area, check signature */
555 for (base
= 0xC0000; base
< 0xE0000; base
+= 2048) {
556 struct vrom_header
*romstart
;
557 romstart
= (struct vrom_header
*)isa_bus_to_virt(base
);
558 if (check_vmi_rom(romstart
)) {
567 * VMI setup common to all processors
569 void vmi_bringup(void)
571 /* We must establish the lowmem mapping for MMU ops to work */
572 if (vmi_ops
.set_linear_mapping
)
573 vmi_ops
.set_linear_mapping(0, (void *)__PAGE_OFFSET
, MAXMEM_PFN
, 0);
577 * Return a pointer to a VMI function or NULL if unimplemented
579 static void *vmi_get_function(int vmicall
)
582 const struct vmi_relocation_info
*rel
= (struct vmi_relocation_info
*)&reloc
;
583 reloc
= call_vrom_long_func(vmi_rom
, get_reloc
, vmicall
);
584 BUG_ON(rel
->type
== VMI_RELOCATION_JUMP_REL
);
585 if (rel
->type
== VMI_RELOCATION_CALL_REL
)
586 return (void *)rel
->eip
;
592 * Helper macro for making the VMI paravirt-ops fill code readable.
593 * For unimplemented operations, fall back to default, unless nop
594 * is returned by the ROM.
596 #define para_fill(opname, vmicall) \
598 reloc = call_vrom_long_func(vmi_rom, get_reloc, \
599 VMI_CALL_##vmicall); \
600 if (rel->type == VMI_RELOCATION_CALL_REL) \
601 opname = (void *)rel->eip; \
602 else if (rel->type == VMI_RELOCATION_NOP) \
603 opname = (void *)vmi_nop; \
604 else if (rel->type != VMI_RELOCATION_NONE) \
605 printk(KERN_WARNING "VMI: Unknown relocation " \
606 "type %d for " #vmicall"\n",\
611 * Helper macro for making the VMI paravirt-ops fill code readable.
612 * For cached operations which do not match the VMI ROM ABI and must
613 * go through a tranlation stub. Ignore NOPs, since it is not clear
614 * a NOP * VMI function corresponds to a NOP paravirt-op when the
615 * functions are not in 1-1 correspondence.
617 #define para_wrap(opname, wrapper, cache, vmicall) \
619 reloc = call_vrom_long_func(vmi_rom, get_reloc, \
620 VMI_CALL_##vmicall); \
621 BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \
622 if (rel->type == VMI_RELOCATION_CALL_REL) { \
624 vmi_ops.cache = (void *)rel->eip; \
629 * Activate the VMI interface and switch into paravirtualized mode
631 static inline int __init
activate_vmi(void)
635 const struct vmi_relocation_info
*rel
= (struct vmi_relocation_info
*)&reloc
;
637 if (call_vrom_func(vmi_rom
, vmi_init
) != 0) {
638 printk(KERN_ERR
"VMI ROM failed to initialize!");
641 savesegment(cs
, kernel_cs
);
643 pv_info
.paravirt_enabled
= 1;
644 pv_info
.kernel_rpl
= kernel_cs
& SEGMENT_RPL_MASK
;
645 pv_info
.name
= "vmi";
647 pv_init_ops
.patch
= vmi_patch
;
650 * Many of these operations are ABI compatible with VMI.
651 * This means we can fill in the paravirt-ops with direct
652 * pointers into the VMI ROM. If the calling convention for
653 * these operations changes, this code needs to be updated.
656 * CPUID paravirt-op uses pointers, not the native ISA
657 * halt has no VMI equivalent; all VMI halts are "safe"
658 * no MSR support yet - just trap and emulate. VMI uses the
659 * same ABI as the native ISA, but Linux wants exceptions
660 * from bogus MSR read / write handled
661 * rdpmc is not yet used in Linux
664 /* CPUID is special, so very special it gets wrapped like a present */
665 para_wrap(pv_cpu_ops
.cpuid
, vmi_cpuid
, cpuid
, CPUID
);
667 para_fill(pv_cpu_ops
.clts
, CLTS
);
668 para_fill(pv_cpu_ops
.get_debugreg
, GetDR
);
669 para_fill(pv_cpu_ops
.set_debugreg
, SetDR
);
670 para_fill(pv_cpu_ops
.read_cr0
, GetCR0
);
671 para_fill(pv_mmu_ops
.read_cr2
, GetCR2
);
672 para_fill(pv_mmu_ops
.read_cr3
, GetCR3
);
673 para_fill(pv_cpu_ops
.read_cr4
, GetCR4
);
674 para_fill(pv_cpu_ops
.write_cr0
, SetCR0
);
675 para_fill(pv_mmu_ops
.write_cr2
, SetCR2
);
676 para_fill(pv_mmu_ops
.write_cr3
, SetCR3
);
677 para_fill(pv_cpu_ops
.write_cr4
, SetCR4
);
679 para_fill(pv_irq_ops
.save_fl
.func
, GetInterruptMask
);
680 para_fill(pv_irq_ops
.restore_fl
.func
, SetInterruptMask
);
681 para_fill(pv_irq_ops
.irq_disable
.func
, DisableInterrupts
);
682 para_fill(pv_irq_ops
.irq_enable
.func
, EnableInterrupts
);
684 para_fill(pv_cpu_ops
.wbinvd
, WBINVD
);
685 para_fill(pv_cpu_ops
.read_tsc
, RDTSC
);
687 /* The following we emulate with trap and emulate for now */
688 /* paravirt_ops.read_msr = vmi_rdmsr */
689 /* paravirt_ops.write_msr = vmi_wrmsr */
690 /* paravirt_ops.rdpmc = vmi_rdpmc */
692 /* TR interface doesn't pass TR value, wrap */
693 para_wrap(pv_cpu_ops
.load_tr_desc
, vmi_set_tr
, set_tr
, SetTR
);
695 /* LDT is special, too */
696 para_wrap(pv_cpu_ops
.set_ldt
, vmi_set_ldt
, _set_ldt
, SetLDT
);
698 para_fill(pv_cpu_ops
.load_gdt
, SetGDT
);
699 para_fill(pv_cpu_ops
.load_idt
, SetIDT
);
700 para_fill(pv_cpu_ops
.store_gdt
, GetGDT
);
701 para_fill(pv_cpu_ops
.store_idt
, GetIDT
);
702 para_fill(pv_cpu_ops
.store_tr
, GetTR
);
703 pv_cpu_ops
.load_tls
= vmi_load_tls
;
704 para_wrap(pv_cpu_ops
.write_ldt_entry
, vmi_write_ldt_entry
,
705 write_ldt_entry
, WriteLDTEntry
);
706 para_wrap(pv_cpu_ops
.write_gdt_entry
, vmi_write_gdt_entry
,
707 write_gdt_entry
, WriteGDTEntry
);
708 para_wrap(pv_cpu_ops
.write_idt_entry
, vmi_write_idt_entry
,
709 write_idt_entry
, WriteIDTEntry
);
710 para_wrap(pv_cpu_ops
.load_sp0
, vmi_load_sp0
, set_kernel_stack
, UpdateKernelStack
);
711 para_fill(pv_cpu_ops
.set_iopl_mask
, SetIOPLMask
);
712 para_fill(pv_cpu_ops
.io_delay
, IODelay
);
714 para_wrap(pv_cpu_ops
.lazy_mode
.enter
, vmi_enter_lazy_cpu
,
715 set_lazy_mode
, SetLazyMode
);
716 para_wrap(pv_cpu_ops
.lazy_mode
.leave
, vmi_leave_lazy
,
717 set_lazy_mode
, SetLazyMode
);
719 para_wrap(pv_mmu_ops
.lazy_mode
.enter
, vmi_enter_lazy_mmu
,
720 set_lazy_mode
, SetLazyMode
);
721 para_wrap(pv_mmu_ops
.lazy_mode
.leave
, vmi_leave_lazy
,
722 set_lazy_mode
, SetLazyMode
);
724 /* user and kernel flush are just handled with different flags to FlushTLB */
725 para_wrap(pv_mmu_ops
.flush_tlb_user
, vmi_flush_tlb_user
, _flush_tlb
, FlushTLB
);
726 para_wrap(pv_mmu_ops
.flush_tlb_kernel
, vmi_flush_tlb_kernel
, _flush_tlb
, FlushTLB
);
727 para_fill(pv_mmu_ops
.flush_tlb_single
, InvalPage
);
730 * Until a standard flag format can be agreed on, we need to
731 * implement these as wrappers in Linux. Get the VMI ROM
732 * function pointers for the two backend calls.
734 #ifdef CONFIG_X86_PAE
735 vmi_ops
.set_pte
= vmi_get_function(VMI_CALL_SetPxELong
);
736 vmi_ops
.update_pte
= vmi_get_function(VMI_CALL_UpdatePxELong
);
738 vmi_ops
.set_pte
= vmi_get_function(VMI_CALL_SetPxE
);
739 vmi_ops
.update_pte
= vmi_get_function(VMI_CALL_UpdatePxE
);
742 if (vmi_ops
.set_pte
) {
743 pv_mmu_ops
.set_pte
= vmi_set_pte
;
744 pv_mmu_ops
.set_pte_at
= vmi_set_pte_at
;
745 pv_mmu_ops
.set_pmd
= vmi_set_pmd
;
746 #ifdef CONFIG_X86_PAE
747 pv_mmu_ops
.set_pte_atomic
= vmi_set_pte_atomic
;
748 pv_mmu_ops
.set_pud
= vmi_set_pud
;
749 pv_mmu_ops
.pte_clear
= vmi_pte_clear
;
750 pv_mmu_ops
.pmd_clear
= vmi_pmd_clear
;
754 if (vmi_ops
.update_pte
) {
755 pv_mmu_ops
.pte_update
= vmi_update_pte
;
756 pv_mmu_ops
.pte_update_defer
= vmi_update_pte_defer
;
759 vmi_ops
.allocate_page
= vmi_get_function(VMI_CALL_AllocatePage
);
760 if (vmi_ops
.allocate_page
) {
761 pv_mmu_ops
.alloc_pte
= vmi_allocate_pte
;
762 pv_mmu_ops
.alloc_pmd
= vmi_allocate_pmd
;
763 pv_mmu_ops
.alloc_pmd_clone
= vmi_allocate_pmd_clone
;
766 vmi_ops
.release_page
= vmi_get_function(VMI_CALL_ReleasePage
);
767 if (vmi_ops
.release_page
) {
768 pv_mmu_ops
.release_pte
= vmi_release_pte
;
769 pv_mmu_ops
.release_pmd
= vmi_release_pmd
;
770 pv_mmu_ops
.pgd_free
= vmi_pgd_free
;
773 /* Set linear is needed in all cases */
774 vmi_ops
.set_linear_mapping
= vmi_get_function(VMI_CALL_SetLinearMapping
);
775 #ifdef CONFIG_HIGHPTE
776 if (vmi_ops
.set_linear_mapping
)
777 pv_mmu_ops
.kmap_atomic_pte
= vmi_kmap_atomic_pte
;
781 * These MUST always be patched. Don't support indirect jumps
782 * through these operations, as the VMI interface may use either
783 * a jump or a call to get to these operations, depending on
784 * the backend. They are performance critical anyway, so requiring
785 * a patch is not a big problem.
787 pv_cpu_ops
.irq_enable_sysexit
= (void *)0xfeedbab0;
788 pv_cpu_ops
.iret
= (void *)0xbadbab0;
791 para_wrap(pv_apic_ops
.startup_ipi_hook
, vmi_startup_ipi_hook
, set_initial_ap_state
, SetInitialAPState
);
794 #ifdef CONFIG_X86_LOCAL_APIC
795 para_fill(apic
->read
, APICRead
);
796 para_fill(apic
->write
, APICWrite
);
800 * Check for VMI timer functionality by probing for a cycle frequency method
802 reloc
= call_vrom_long_func(vmi_rom
, get_reloc
, VMI_CALL_GetCycleFrequency
);
803 if (!disable_vmi_timer
&& rel
->type
!= VMI_RELOCATION_NONE
) {
804 vmi_timer_ops
.get_cycle_frequency
= (void *)rel
->eip
;
805 vmi_timer_ops
.get_cycle_counter
=
806 vmi_get_function(VMI_CALL_GetCycleCounter
);
807 vmi_timer_ops
.get_wallclock
=
808 vmi_get_function(VMI_CALL_GetWallclockTime
);
809 vmi_timer_ops
.wallclock_updated
=
810 vmi_get_function(VMI_CALL_WallclockUpdated
);
811 vmi_timer_ops
.set_alarm
= vmi_get_function(VMI_CALL_SetAlarm
);
812 vmi_timer_ops
.cancel_alarm
=
813 vmi_get_function(VMI_CALL_CancelAlarm
);
814 pv_time_ops
.time_init
= vmi_time_init
;
815 pv_time_ops
.get_wallclock
= vmi_get_wallclock
;
816 pv_time_ops
.set_wallclock
= vmi_set_wallclock
;
817 #ifdef CONFIG_X86_LOCAL_APIC
818 pv_apic_ops
.setup_boot_clock
= vmi_time_bsp_init
;
819 pv_apic_ops
.setup_secondary_clock
= vmi_time_ap_init
;
821 pv_time_ops
.sched_clock
= vmi_sched_clock
;
822 pv_time_ops
.get_tsc_khz
= vmi_tsc_khz
;
824 /* We have true wallclock functions; disable CMOS clock sync */
825 no_sync_cmos_clock
= 1;
828 disable_vmi_timer
= 1;
831 para_fill(pv_irq_ops
.safe_halt
, Halt
);
834 * Alternative instruction rewriting doesn't happen soon enough
835 * to convert VMI_IRET to a call instead of a jump; so we have
836 * to do this before IRQs get reenabled. Fortunately, it is
839 apply_paravirt(__parainstructions
, __parainstructions_end
);
848 void __init
vmi_init(void)
853 check_vmi_rom(vmi_rom
);
855 /* In case probing for or validating the ROM failed, basil */
859 reserve_top_address(-vmi_rom
->virtual_top
);
861 #ifdef CONFIG_X86_IO_APIC
862 /* This is virtual hardware; timer routing is wired correctly */
867 void __init
vmi_activate(void)
874 local_irq_save(flags
);
876 local_irq_restore(flags
& X86_EFLAGS_IF
);
879 static int __init
parse_vmi(char *arg
)
884 if (!strcmp(arg
, "disable_pge")) {
885 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_PGE
);
887 } else if (!strcmp(arg
, "disable_pse")) {
888 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_PSE
);
890 } else if (!strcmp(arg
, "disable_sep")) {
891 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_SEP
);
893 } else if (!strcmp(arg
, "disable_tsc")) {
894 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_TSC
);
896 } else if (!strcmp(arg
, "disable_mtrr")) {
897 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_MTRR
);
899 } else if (!strcmp(arg
, "disable_timer")) {
900 disable_vmi_timer
= 1;
902 } else if (!strcmp(arg
, "disable_noidle"))
907 early_param("vmi", parse_vmi
);