2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 int sysctl_tcp_ecn __read_mostly
;
82 int sysctl_tcp_dsack __read_mostly
= 1;
83 int sysctl_tcp_app_win __read_mostly
= 31;
84 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
86 int sysctl_tcp_stdurg __read_mostly
;
87 int sysctl_tcp_rfc1337 __read_mostly
;
88 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
89 int sysctl_tcp_frto __read_mostly
= 2;
90 int sysctl_tcp_frto_response __read_mostly
;
91 int sysctl_tcp_nometrics_save __read_mostly
;
93 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
94 int sysctl_tcp_abc __read_mostly
;
96 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
97 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
98 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
99 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
100 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
101 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
102 #define FLAG_ECE 0x40 /* ECE in this ACK */
103 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
104 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
111 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 /* Adapt the MSS value used to make delayed ack decision to the
123 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
125 struct inet_connection_sock
*icsk
= inet_csk(sk
);
126 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
129 icsk
->icsk_ack
.last_seg_size
= 0;
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
134 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
135 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
136 icsk
->icsk_ack
.rcv_mss
= len
;
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
141 * "len" is invariant segment length, including TCP header.
143 len
+= skb
->data
- skb_transport_header(skb
);
144 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
150 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
151 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
156 len
-= tcp_sk(sk
)->tcp_header_len
;
157 icsk
->icsk_ack
.last_seg_size
= len
;
159 icsk
->icsk_ack
.rcv_mss
= len
;
163 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
164 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
165 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
169 static void tcp_incr_quickack(struct sock
*sk
)
171 struct inet_connection_sock
*icsk
= inet_csk(sk
);
172 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
176 if (quickacks
> icsk
->icsk_ack
.quick
)
177 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
180 void tcp_enter_quickack_mode(struct sock
*sk
)
182 struct inet_connection_sock
*icsk
= inet_csk(sk
);
183 tcp_incr_quickack(sk
);
184 icsk
->icsk_ack
.pingpong
= 0;
185 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
192 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
194 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
195 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
198 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
200 if (tp
->ecn_flags
& TCP_ECN_OK
)
201 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
204 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
206 if (tcp_hdr(skb
)->cwr
)
207 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
210 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
212 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
215 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
217 if (tp
->ecn_flags
& TCP_ECN_OK
) {
218 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
219 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
220 /* Funny extension: if ECT is not set on a segment,
221 * it is surely retransmit. It is not in ECN RFC,
222 * but Linux follows this rule. */
223 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
224 tcp_enter_quickack_mode((struct sock
*)tp
);
228 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
230 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
231 tp
->ecn_flags
&= ~TCP_ECN_OK
;
234 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
236 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
237 tp
->ecn_flags
&= ~TCP_ECN_OK
;
240 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
242 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
247 /* Buffer size and advertised window tuning.
249 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252 static void tcp_fixup_sndbuf(struct sock
*sk
)
254 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
255 sizeof(struct sk_buff
);
257 if (sk
->sk_sndbuf
< 3 * sndmem
)
258 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
261 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 * All tcp_full_space() is split to two parts: "network" buffer, allocated
264 * forward and advertised in receiver window (tp->rcv_wnd) and
265 * "application buffer", required to isolate scheduling/application
266 * latencies from network.
267 * window_clamp is maximal advertised window. It can be less than
268 * tcp_full_space(), in this case tcp_full_space() - window_clamp
269 * is reserved for "application" buffer. The less window_clamp is
270 * the smoother our behaviour from viewpoint of network, but the lower
271 * throughput and the higher sensitivity of the connection to losses. 8)
273 * rcv_ssthresh is more strict window_clamp used at "slow start"
274 * phase to predict further behaviour of this connection.
275 * It is used for two goals:
276 * - to enforce header prediction at sender, even when application
277 * requires some significant "application buffer". It is check #1.
278 * - to prevent pruning of receive queue because of misprediction
279 * of receiver window. Check #2.
281 * The scheme does not work when sender sends good segments opening
282 * window and then starts to feed us spaghetti. But it should work
283 * in common situations. Otherwise, we have to rely on queue collapsing.
286 /* Slow part of check#2. */
287 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
289 struct tcp_sock
*tp
= tcp_sk(sk
);
291 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
292 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
294 while (tp
->rcv_ssthresh
<= window
) {
295 if (truesize
<= skb
->len
)
296 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
304 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
306 struct tcp_sock
*tp
= tcp_sk(sk
);
309 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
310 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
311 !tcp_memory_pressure
) {
314 /* Check #2. Increase window, if skb with such overhead
315 * will fit to rcvbuf in future.
317 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
318 incr
= 2 * tp
->advmss
;
320 incr
= __tcp_grow_window(sk
, skb
);
323 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
325 inet_csk(sk
)->icsk_ack
.quick
|= 1;
330 /* 3. Tuning rcvbuf, when connection enters established state. */
332 static void tcp_fixup_rcvbuf(struct sock
*sk
)
334 struct tcp_sock
*tp
= tcp_sk(sk
);
335 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
337 /* Try to select rcvbuf so that 4 mss-sized segments
338 * will fit to window and corresponding skbs will fit to our rcvbuf.
339 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
343 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
344 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
347 /* 4. Try to fixup all. It is made immediately after connection enters
350 static void tcp_init_buffer_space(struct sock
*sk
)
352 struct tcp_sock
*tp
= tcp_sk(sk
);
355 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
356 tcp_fixup_rcvbuf(sk
);
357 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
358 tcp_fixup_sndbuf(sk
);
360 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
362 maxwin
= tcp_full_space(sk
);
364 if (tp
->window_clamp
>= maxwin
) {
365 tp
->window_clamp
= maxwin
;
367 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
368 tp
->window_clamp
= max(maxwin
-
369 (maxwin
>> sysctl_tcp_app_win
),
373 /* Force reservation of one segment. */
374 if (sysctl_tcp_app_win
&&
375 tp
->window_clamp
> 2 * tp
->advmss
&&
376 tp
->window_clamp
+ tp
->advmss
> maxwin
)
377 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
379 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
380 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
383 /* 5. Recalculate window clamp after socket hit its memory bounds. */
384 static void tcp_clamp_window(struct sock
*sk
)
386 struct tcp_sock
*tp
= tcp_sk(sk
);
387 struct inet_connection_sock
*icsk
= inet_csk(sk
);
389 icsk
->icsk_ack
.quick
= 0;
391 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
392 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
393 !tcp_memory_pressure
&&
394 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
395 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
398 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
399 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
402 /* Initialize RCV_MSS value.
403 * RCV_MSS is an our guess about MSS used by the peer.
404 * We haven't any direct information about the MSS.
405 * It's better to underestimate the RCV_MSS rather than overestimate.
406 * Overestimations make us ACKing less frequently than needed.
407 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409 void tcp_initialize_rcv_mss(struct sock
*sk
)
411 struct tcp_sock
*tp
= tcp_sk(sk
);
412 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
414 hint
= min(hint
, tp
->rcv_wnd
/ 2);
415 hint
= min(hint
, TCP_MIN_RCVMSS
);
416 hint
= max(hint
, TCP_MIN_MSS
);
418 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
421 /* Receiver "autotuning" code.
423 * The algorithm for RTT estimation w/o timestamps is based on
424 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
425 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427 * More detail on this code can be found at
428 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
429 * though this reference is out of date. A new paper
432 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
434 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
440 if (new_sample
!= 0) {
441 /* If we sample in larger samples in the non-timestamp
442 * case, we could grossly overestimate the RTT especially
443 * with chatty applications or bulk transfer apps which
444 * are stalled on filesystem I/O.
446 * Also, since we are only going for a minimum in the
447 * non-timestamp case, we do not smooth things out
448 * else with timestamps disabled convergence takes too
452 m
-= (new_sample
>> 3);
454 } else if (m
< new_sample
)
457 /* No previous measure. */
461 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
462 tp
->rcv_rtt_est
.rtt
= new_sample
;
465 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
467 if (tp
->rcv_rtt_est
.time
== 0)
469 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
471 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
474 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
475 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
478 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
479 const struct sk_buff
*skb
)
481 struct tcp_sock
*tp
= tcp_sk(sk
);
482 if (tp
->rx_opt
.rcv_tsecr
&&
483 (TCP_SKB_CB(skb
)->end_seq
-
484 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
485 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
489 * This function should be called every time data is copied to user space.
490 * It calculates the appropriate TCP receive buffer space.
492 void tcp_rcv_space_adjust(struct sock
*sk
)
494 struct tcp_sock
*tp
= tcp_sk(sk
);
498 if (tp
->rcvq_space
.time
== 0)
501 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
502 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
505 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
507 space
= max(tp
->rcvq_space
.space
, space
);
509 if (tp
->rcvq_space
.space
!= space
) {
512 tp
->rcvq_space
.space
= space
;
514 if (sysctl_tcp_moderate_rcvbuf
&&
515 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
516 int new_clamp
= space
;
518 /* Receive space grows, normalize in order to
519 * take into account packet headers and sk_buff
520 * structure overhead.
525 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
526 16 + sizeof(struct sk_buff
));
527 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
530 space
= min(space
, sysctl_tcp_rmem
[2]);
531 if (space
> sk
->sk_rcvbuf
) {
532 sk
->sk_rcvbuf
= space
;
534 /* Make the window clamp follow along. */
535 tp
->window_clamp
= new_clamp
;
541 tp
->rcvq_space
.seq
= tp
->copied_seq
;
542 tp
->rcvq_space
.time
= tcp_time_stamp
;
545 /* There is something which you must keep in mind when you analyze the
546 * behavior of the tp->ato delayed ack timeout interval. When a
547 * connection starts up, we want to ack as quickly as possible. The
548 * problem is that "good" TCP's do slow start at the beginning of data
549 * transmission. The means that until we send the first few ACK's the
550 * sender will sit on his end and only queue most of his data, because
551 * he can only send snd_cwnd unacked packets at any given time. For
552 * each ACK we send, he increments snd_cwnd and transmits more of his
555 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
557 struct tcp_sock
*tp
= tcp_sk(sk
);
558 struct inet_connection_sock
*icsk
= inet_csk(sk
);
561 inet_csk_schedule_ack(sk
);
563 tcp_measure_rcv_mss(sk
, skb
);
565 tcp_rcv_rtt_measure(tp
);
567 now
= tcp_time_stamp
;
569 if (!icsk
->icsk_ack
.ato
) {
570 /* The _first_ data packet received, initialize
571 * delayed ACK engine.
573 tcp_incr_quickack(sk
);
574 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
576 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
578 if (m
<= TCP_ATO_MIN
/ 2) {
579 /* The fastest case is the first. */
580 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
581 } else if (m
< icsk
->icsk_ack
.ato
) {
582 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
583 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
584 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
585 } else if (m
> icsk
->icsk_rto
) {
586 /* Too long gap. Apparently sender failed to
587 * restart window, so that we send ACKs quickly.
589 tcp_incr_quickack(sk
);
593 icsk
->icsk_ack
.lrcvtime
= now
;
595 TCP_ECN_check_ce(tp
, skb
);
598 tcp_grow_window(sk
, skb
);
601 static u32
tcp_rto_min(struct sock
*sk
)
603 struct dst_entry
*dst
= __sk_dst_get(sk
);
604 u32 rto_min
= TCP_RTO_MIN
;
606 if (dst
&& dst_metric_locked(dst
, RTAX_RTO_MIN
))
607 rto_min
= dst_metric(dst
, RTAX_RTO_MIN
);
611 /* Called to compute a smoothed rtt estimate. The data fed to this
612 * routine either comes from timestamps, or from segments that were
613 * known _not_ to have been retransmitted [see Karn/Partridge
614 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615 * piece by Van Jacobson.
616 * NOTE: the next three routines used to be one big routine.
617 * To save cycles in the RFC 1323 implementation it was better to break
618 * it up into three procedures. -- erics
620 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
622 struct tcp_sock
*tp
= tcp_sk(sk
);
623 long m
= mrtt
; /* RTT */
625 /* The following amusing code comes from Jacobson's
626 * article in SIGCOMM '88. Note that rtt and mdev
627 * are scaled versions of rtt and mean deviation.
628 * This is designed to be as fast as possible
629 * m stands for "measurement".
631 * On a 1990 paper the rto value is changed to:
632 * RTO = rtt + 4 * mdev
634 * Funny. This algorithm seems to be very broken.
635 * These formulae increase RTO, when it should be decreased, increase
636 * too slowly, when it should be increased quickly, decrease too quickly
637 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638 * does not matter how to _calculate_ it. Seems, it was trap
639 * that VJ failed to avoid. 8)
644 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
645 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
647 m
= -m
; /* m is now abs(error) */
648 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
649 /* This is similar to one of Eifel findings.
650 * Eifel blocks mdev updates when rtt decreases.
651 * This solution is a bit different: we use finer gain
652 * for mdev in this case (alpha*beta).
653 * Like Eifel it also prevents growth of rto,
654 * but also it limits too fast rto decreases,
655 * happening in pure Eifel.
660 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
662 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
663 if (tp
->mdev
> tp
->mdev_max
) {
664 tp
->mdev_max
= tp
->mdev
;
665 if (tp
->mdev_max
> tp
->rttvar
)
666 tp
->rttvar
= tp
->mdev_max
;
668 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
669 if (tp
->mdev_max
< tp
->rttvar
)
670 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
671 tp
->rtt_seq
= tp
->snd_nxt
;
672 tp
->mdev_max
= tcp_rto_min(sk
);
675 /* no previous measure. */
676 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
677 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
678 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
679 tp
->rtt_seq
= tp
->snd_nxt
;
683 /* Calculate rto without backoff. This is the second half of Van Jacobson's
684 * routine referred to above.
686 static inline void tcp_set_rto(struct sock
*sk
)
688 const struct tcp_sock
*tp
= tcp_sk(sk
);
689 /* Old crap is replaced with new one. 8)
692 * 1. If rtt variance happened to be less 50msec, it is hallucination.
693 * It cannot be less due to utterly erratic ACK generation made
694 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695 * to do with delayed acks, because at cwnd>2 true delack timeout
696 * is invisible. Actually, Linux-2.4 also generates erratic
697 * ACKs in some circumstances.
699 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
701 /* 2. Fixups made earlier cannot be right.
702 * If we do not estimate RTO correctly without them,
703 * all the algo is pure shit and should be replaced
704 * with correct one. It is exactly, which we pretend to do.
708 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
709 * guarantees that rto is higher.
711 static inline void tcp_bound_rto(struct sock
*sk
)
713 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
714 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
717 /* Save metrics learned by this TCP session.
718 This function is called only, when TCP finishes successfully
719 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721 void tcp_update_metrics(struct sock
*sk
)
723 struct tcp_sock
*tp
= tcp_sk(sk
);
724 struct dst_entry
*dst
= __sk_dst_get(sk
);
726 if (sysctl_tcp_nometrics_save
)
731 if (dst
&& (dst
->flags
& DST_HOST
)) {
732 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
735 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
736 /* This session failed to estimate rtt. Why?
737 * Probably, no packets returned in time.
740 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
741 dst
->metrics
[RTAX_RTT
- 1] = 0;
745 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
751 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
753 dst
->metrics
[RTAX_RTT
- 1] = tp
->srtt
;
755 dst
->metrics
[RTAX_RTT
- 1] -= (m
>> 3);
758 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
762 /* Scale deviation to rttvar fixed point */
767 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
768 dst
->metrics
[RTAX_RTTVAR
- 1] = m
;
770 dst
->metrics
[RTAX_RTTVAR
-1] -=
771 (dst_metric(dst
, RTAX_RTTVAR
) - m
)>>2;
774 if (tp
->snd_ssthresh
>= 0xFFFF) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
777 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
778 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
779 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
780 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
781 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
782 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
783 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
784 icsk
->icsk_ca_state
== TCP_CA_Open
) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
787 dst
->metrics
[RTAX_SSTHRESH
-1] =
788 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
789 if (!dst_metric_locked(dst
, RTAX_CWND
))
790 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
795 if (!dst_metric_locked(dst
, RTAX_CWND
))
796 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
797 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
798 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
799 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
800 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
803 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
804 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
805 tp
->reordering
!= sysctl_tcp_reordering
)
806 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
811 /* Numbers are taken from RFC3390.
813 * John Heffner states:
815 * The RFC specifies a window of no more than 4380 bytes
816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
817 * is a bit misleading because they use a clamp at 4380 bytes
818 * rather than use a multiplier in the relevant range.
820 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
822 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
825 if (tp
->mss_cache
> 1460)
828 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
830 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
836 struct tcp_sock
*tp
= tcp_sk(sk
);
837 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
839 tp
->prior_ssthresh
= 0;
841 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
844 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
845 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
846 tcp_packets_in_flight(tp
) + 1U);
847 tp
->snd_cwnd_cnt
= 0;
848 tp
->high_seq
= tp
->snd_nxt
;
849 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
850 TCP_ECN_queue_cwr(tp
);
852 tcp_set_ca_state(sk
, TCP_CA_CWR
);
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
860 static void tcp_disable_fack(struct tcp_sock
*tp
)
862 /* RFC3517 uses different metric in lost marker => reset on change */
864 tp
->lost_skb_hint
= NULL
;
865 tp
->rx_opt
.sack_ok
&= ~2;
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock
*tp
)
871 tp
->rx_opt
.sack_ok
|= 4;
874 /* Initialize metrics on socket. */
876 static void tcp_init_metrics(struct sock
*sk
)
878 struct tcp_sock
*tp
= tcp_sk(sk
);
879 struct dst_entry
*dst
= __sk_dst_get(sk
);
886 if (dst_metric_locked(dst
, RTAX_CWND
))
887 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
888 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
889 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
890 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
891 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
893 if (dst_metric(dst
, RTAX_REORDERING
) &&
894 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
895 tcp_disable_fack(tp
);
896 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
899 if (dst_metric(dst
, RTAX_RTT
) == 0)
902 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
919 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
920 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
921 tp
->rtt_seq
= tp
->snd_nxt
;
923 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
924 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
925 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
929 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
931 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
932 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
936 /* Play conservative. If timestamps are not
937 * supported, TCP will fail to recalculate correct
938 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
942 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
943 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
947 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
950 struct tcp_sock
*tp
= tcp_sk(sk
);
951 if (metric
> tp
->reordering
) {
952 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
954 /* This exciting event is worth to be remembered. 8) */
956 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
957 else if (tcp_is_reno(tp
))
958 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
959 else if (tcp_is_fack(tp
))
960 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
962 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
963 #if FASTRETRANS_DEBUG > 1
964 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
965 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
969 tp
->undo_marker
? tp
->undo_retrans
: 0);
971 tcp_disable_fack(tp
);
975 /* This procedure tags the retransmission queue when SACKs arrive.
977 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978 * Packets in queue with these bits set are counted in variables
979 * sacked_out, retrans_out and lost_out, correspondingly.
981 * Valid combinations are:
982 * Tag InFlight Description
983 * 0 1 - orig segment is in flight.
984 * S 0 - nothing flies, orig reached receiver.
985 * L 0 - nothing flies, orig lost by net.
986 * R 2 - both orig and retransmit are in flight.
987 * L|R 1 - orig is lost, retransmit is in flight.
988 * S|R 1 - orig reached receiver, retrans is still in flight.
989 * (L|S|R is logically valid, it could occur when L|R is sacked,
990 * but it is equivalent to plain S and code short-curcuits it to S.
991 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 * These 6 states form finite state machine, controlled by the following events:
994 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996 * 3. Loss detection event of one of three flavors:
997 * A. Scoreboard estimator decided the packet is lost.
998 * A'. Reno "three dupacks" marks head of queue lost.
999 * A''. Its FACK modfication, head until snd.fack is lost.
1000 * B. SACK arrives sacking data transmitted after never retransmitted
1001 * hole was sent out.
1002 * C. SACK arrives sacking SND.NXT at the moment, when the
1003 * segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 * ever retransmitted -> reordering. Alas, we cannot use it
1017 * when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 * for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1023 * SACK block validation.
1024 * ----------------------
1026 * SACK block range validation checks that the received SACK block fits to
1027 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028 * Note that SND.UNA is not included to the range though being valid because
1029 * it means that the receiver is rather inconsistent with itself reporting
1030 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031 * perfectly valid, however, in light of RFC2018 which explicitly states
1032 * that "SACK block MUST reflect the newest segment. Even if the newest
1033 * segment is going to be discarded ...", not that it looks very clever
1034 * in case of head skb. Due to potentional receiver driven attacks, we
1035 * choose to avoid immediate execution of a walk in write queue due to
1036 * reneging and defer head skb's loss recovery to standard loss recovery
1037 * procedure that will eventually trigger (nothing forbids us doing this).
1039 * Implements also blockage to start_seq wrap-around. Problem lies in the
1040 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041 * there's no guarantee that it will be before snd_nxt (n). The problem
1042 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1045 * <- outs wnd -> <- wrapzone ->
1046 * u e n u_w e_w s n_w
1048 * |<------------+------+----- TCP seqno space --------------+---------->|
1049 * ...-- <2^31 ->| |<--------...
1050 * ...---- >2^31 ------>| |<--------...
1052 * Current code wouldn't be vulnerable but it's better still to discard such
1053 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 * With D-SACK the lower bound is extended to cover sequence space below
1059 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060 * again, D-SACK block must not to go across snd_una (for the same reason as
1061 * for the normal SACK blocks, explained above). But there all simplicity
1062 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063 * fully below undo_marker they do not affect behavior in anyway and can
1064 * therefore be safely ignored. In rare cases (which are more or less
1065 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066 * fragmentation and packet reordering past skb's retransmission. To consider
1067 * them correctly, the acceptable range must be extended even more though
1068 * the exact amount is rather hard to quantify. However, tp->max_window can
1069 * be used as an exaggerated estimate.
1071 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1072 u32 start_seq
, u32 end_seq
)
1074 /* Too far in future, or reversed (interpretation is ambiguous) */
1075 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1078 /* Nasty start_seq wrap-around check (see comments above) */
1079 if (!before(start_seq
, tp
->snd_nxt
))
1082 /* In outstanding window? ...This is valid exit for D-SACKs too.
1083 * start_seq == snd_una is non-sensical (see comments above)
1085 if (after(start_seq
, tp
->snd_una
))
1088 if (!is_dsack
|| !tp
->undo_marker
)
1091 /* ...Then it's D-SACK, and must reside below snd_una completely */
1092 if (!after(end_seq
, tp
->snd_una
))
1095 if (!before(start_seq
, tp
->undo_marker
))
1099 if (!after(end_seq
, tp
->undo_marker
))
1102 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1103 * start_seq < undo_marker and end_seq >= undo_marker.
1105 return !before(start_seq
, end_seq
- tp
->max_window
);
1108 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1109 * Event "C". Later note: FACK people cheated me again 8), we have to account
1110 * for reordering! Ugly, but should help.
1112 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1113 * less than what is now known to be received by the other end (derived from
1114 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1115 * retransmitted skbs to avoid some costly processing per ACKs.
1117 static void tcp_mark_lost_retrans(struct sock
*sk
)
1119 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1120 struct tcp_sock
*tp
= tcp_sk(sk
);
1121 struct sk_buff
*skb
;
1123 u32 new_low_seq
= tp
->snd_nxt
;
1124 u32 received_upto
= tcp_highest_sack_seq(tp
);
1126 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1127 !after(received_upto
, tp
->lost_retrans_low
) ||
1128 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1131 tcp_for_write_queue(skb
, sk
) {
1132 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1134 if (skb
== tcp_send_head(sk
))
1136 if (cnt
== tp
->retrans_out
)
1138 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1141 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1144 if (after(received_upto
, ack_seq
) &&
1146 !before(received_upto
,
1147 ack_seq
+ tp
->reordering
* tp
->mss_cache
))) {
1148 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1149 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1151 /* clear lost hint */
1152 tp
->retransmit_skb_hint
= NULL
;
1154 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1155 tp
->lost_out
+= tcp_skb_pcount(skb
);
1156 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1158 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1160 if (before(ack_seq
, new_low_seq
))
1161 new_low_seq
= ack_seq
;
1162 cnt
+= tcp_skb_pcount(skb
);
1166 if (tp
->retrans_out
)
1167 tp
->lost_retrans_low
= new_low_seq
;
1170 static int tcp_check_dsack(struct tcp_sock
*tp
, struct sk_buff
*ack_skb
,
1171 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1174 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1175 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1178 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1181 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
1182 } else if (num_sacks
> 1) {
1183 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1184 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1186 if (!after(end_seq_0
, end_seq_1
) &&
1187 !before(start_seq_0
, start_seq_1
)) {
1190 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
1194 /* D-SACK for already forgotten data... Do dumb counting. */
1196 !after(end_seq_0
, prior_snd_una
) &&
1197 after(end_seq_0
, tp
->undo_marker
))
1203 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1204 * the incoming SACK may not exactly match but we can find smaller MSS
1205 * aligned portion of it that matches. Therefore we might need to fragment
1206 * which may fail and creates some hassle (caller must handle error case
1209 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1210 u32 start_seq
, u32 end_seq
)
1213 unsigned int pkt_len
;
1215 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1216 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1218 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1219 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1221 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1224 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1226 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1227 err
= tcp_fragment(sk
, skb
, pkt_len
, skb_shinfo(skb
)->gso_size
);
1235 static int tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1236 int *reord
, int dup_sack
, int fack_count
)
1238 struct tcp_sock
*tp
= tcp_sk(sk
);
1239 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1242 /* Account D-SACK for retransmitted packet. */
1243 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1244 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1246 if (sacked
& TCPCB_SACKED_ACKED
)
1247 *reord
= min(fack_count
, *reord
);
1250 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1251 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1254 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1255 if (sacked
& TCPCB_SACKED_RETRANS
) {
1256 /* If the segment is not tagged as lost,
1257 * we do not clear RETRANS, believing
1258 * that retransmission is still in flight.
1260 if (sacked
& TCPCB_LOST
) {
1261 TCP_SKB_CB(skb
)->sacked
&=
1262 ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1263 tp
->lost_out
-= tcp_skb_pcount(skb
);
1264 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1266 /* clear lost hint */
1267 tp
->retransmit_skb_hint
= NULL
;
1270 if (!(sacked
& TCPCB_RETRANS
)) {
1271 /* New sack for not retransmitted frame,
1272 * which was in hole. It is reordering.
1274 if (before(TCP_SKB_CB(skb
)->seq
,
1275 tcp_highest_sack_seq(tp
)))
1276 *reord
= min(fack_count
, *reord
);
1278 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1279 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1280 flag
|= FLAG_ONLY_ORIG_SACKED
;
1283 if (sacked
& TCPCB_LOST
) {
1284 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1285 tp
->lost_out
-= tcp_skb_pcount(skb
);
1287 /* clear lost hint */
1288 tp
->retransmit_skb_hint
= NULL
;
1292 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1293 flag
|= FLAG_DATA_SACKED
;
1294 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1296 fack_count
+= tcp_skb_pcount(skb
);
1298 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1299 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1300 before(TCP_SKB_CB(skb
)->seq
,
1301 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1302 tp
->lost_cnt_hint
+= tcp_skb_pcount(skb
);
1304 if (fack_count
> tp
->fackets_out
)
1305 tp
->fackets_out
= fack_count
;
1307 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
1308 tcp_advance_highest_sack(sk
, skb
);
1311 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1312 * frames and clear it. undo_retrans is decreased above, L|R frames
1313 * are accounted above as well.
1315 if (dup_sack
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)) {
1316 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1317 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1318 tp
->retransmit_skb_hint
= NULL
;
1324 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1325 struct tcp_sack_block
*next_dup
,
1326 u32 start_seq
, u32 end_seq
,
1327 int dup_sack_in
, int *fack_count
,
1328 int *reord
, int *flag
)
1330 tcp_for_write_queue_from(skb
, sk
) {
1332 int dup_sack
= dup_sack_in
;
1334 if (skb
== tcp_send_head(sk
))
1337 /* queue is in-order => we can short-circuit the walk early */
1338 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1341 if ((next_dup
!= NULL
) &&
1342 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1343 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1344 next_dup
->start_seq
,
1351 in_sack
= tcp_match_skb_to_sack(sk
, skb
, start_seq
,
1353 if (unlikely(in_sack
< 0))
1357 *flag
|= tcp_sacktag_one(skb
, sk
, reord
, dup_sack
,
1360 *fack_count
+= tcp_skb_pcount(skb
);
1365 /* Avoid all extra work that is being done by sacktag while walking in
1368 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1369 u32 skip_to_seq
, int *fack_count
)
1371 tcp_for_write_queue_from(skb
, sk
) {
1372 if (skb
== tcp_send_head(sk
))
1375 if (!before(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1378 *fack_count
+= tcp_skb_pcount(skb
);
1383 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1385 struct tcp_sack_block
*next_dup
,
1387 int *fack_count
, int *reord
,
1390 if (next_dup
== NULL
)
1393 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1394 skb
= tcp_sacktag_skip(skb
, sk
, next_dup
->start_seq
, fack_count
);
1395 tcp_sacktag_walk(skb
, sk
, NULL
,
1396 next_dup
->start_seq
, next_dup
->end_seq
,
1397 1, fack_count
, reord
, flag
);
1403 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1405 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1409 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1412 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1413 struct tcp_sock
*tp
= tcp_sk(sk
);
1414 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1415 TCP_SKB_CB(ack_skb
)->sacked
);
1416 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1417 struct tcp_sack_block sp
[4];
1418 struct tcp_sack_block
*cache
;
1419 struct sk_buff
*skb
;
1420 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3;
1422 int reord
= tp
->packets_out
;
1424 int found_dup_sack
= 0;
1427 int first_sack_index
;
1429 if (!tp
->sacked_out
) {
1430 if (WARN_ON(tp
->fackets_out
))
1431 tp
->fackets_out
= 0;
1432 tcp_highest_sack_reset(sk
);
1435 found_dup_sack
= tcp_check_dsack(tp
, ack_skb
, sp_wire
,
1436 num_sacks
, prior_snd_una
);
1438 flag
|= FLAG_DSACKING_ACK
;
1440 /* Eliminate too old ACKs, but take into
1441 * account more or less fresh ones, they can
1442 * contain valid SACK info.
1444 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1447 if (!tp
->packets_out
)
1451 first_sack_index
= 0;
1452 for (i
= 0; i
< num_sacks
; i
++) {
1453 int dup_sack
= !i
&& found_dup_sack
;
1455 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1456 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1458 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1459 sp
[used_sacks
].start_seq
,
1460 sp
[used_sacks
].end_seq
)) {
1462 if (!tp
->undo_marker
)
1463 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO
);
1465 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD
);
1467 /* Don't count olds caused by ACK reordering */
1468 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1469 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1471 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD
);
1474 first_sack_index
= -1;
1478 /* Ignore very old stuff early */
1479 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1485 /* order SACK blocks to allow in order walk of the retrans queue */
1486 for (i
= used_sacks
- 1; i
> 0; i
--) {
1487 for (j
= 0; j
< i
; j
++) {
1488 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1489 struct tcp_sack_block tmp
;
1495 /* Track where the first SACK block goes to */
1496 if (j
== first_sack_index
)
1497 first_sack_index
= j
+ 1;
1502 skb
= tcp_write_queue_head(sk
);
1506 if (!tp
->sacked_out
) {
1507 /* It's already past, so skip checking against it */
1508 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1510 cache
= tp
->recv_sack_cache
;
1511 /* Skip empty blocks in at head of the cache */
1512 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1517 while (i
< used_sacks
) {
1518 u32 start_seq
= sp
[i
].start_seq
;
1519 u32 end_seq
= sp
[i
].end_seq
;
1520 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1521 struct tcp_sack_block
*next_dup
= NULL
;
1523 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1524 next_dup
= &sp
[i
+ 1];
1526 /* Event "B" in the comment above. */
1527 if (after(end_seq
, tp
->high_seq
))
1528 flag
|= FLAG_DATA_LOST
;
1530 /* Skip too early cached blocks */
1531 while (tcp_sack_cache_ok(tp
, cache
) &&
1532 !before(start_seq
, cache
->end_seq
))
1535 /* Can skip some work by looking recv_sack_cache? */
1536 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1537 after(end_seq
, cache
->start_seq
)) {
1540 if (before(start_seq
, cache
->start_seq
)) {
1541 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
,
1543 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1546 dup_sack
, &fack_count
,
1550 /* Rest of the block already fully processed? */
1551 if (!after(end_seq
, cache
->end_seq
))
1554 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1556 &fack_count
, &reord
,
1559 /* ...tail remains todo... */
1560 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1561 /* ...but better entrypoint exists! */
1562 skb
= tcp_highest_sack(sk
);
1565 fack_count
= tp
->fackets_out
;
1570 skb
= tcp_sacktag_skip(skb
, sk
, cache
->end_seq
,
1572 /* Check overlap against next cached too (past this one already) */
1577 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1578 skb
= tcp_highest_sack(sk
);
1581 fack_count
= tp
->fackets_out
;
1583 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
, &fack_count
);
1586 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, start_seq
, end_seq
,
1587 dup_sack
, &fack_count
, &reord
, &flag
);
1590 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1591 * due to in-order walk
1593 if (after(end_seq
, tp
->frto_highmark
))
1594 flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1599 /* Clear the head of the cache sack blocks so we can skip it next time */
1600 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1601 tp
->recv_sack_cache
[i
].start_seq
= 0;
1602 tp
->recv_sack_cache
[i
].end_seq
= 0;
1604 for (j
= 0; j
< used_sacks
; j
++)
1605 tp
->recv_sack_cache
[i
++] = sp
[j
];
1607 tcp_mark_lost_retrans(sk
);
1609 tcp_verify_left_out(tp
);
1611 if ((reord
< tp
->fackets_out
) &&
1612 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1613 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1614 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
1618 #if FASTRETRANS_DEBUG > 0
1619 BUG_TRAP((int)tp
->sacked_out
>= 0);
1620 BUG_TRAP((int)tp
->lost_out
>= 0);
1621 BUG_TRAP((int)tp
->retrans_out
>= 0);
1622 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1627 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1628 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1630 int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1634 holes
= max(tp
->lost_out
, 1U);
1635 holes
= min(holes
, tp
->packets_out
);
1637 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1638 tp
->sacked_out
= tp
->packets_out
- holes
;
1644 /* If we receive more dupacks than we expected counting segments
1645 * in assumption of absent reordering, interpret this as reordering.
1646 * The only another reason could be bug in receiver TCP.
1648 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1650 struct tcp_sock
*tp
= tcp_sk(sk
);
1651 if (tcp_limit_reno_sacked(tp
))
1652 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1655 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1657 static void tcp_add_reno_sack(struct sock
*sk
)
1659 struct tcp_sock
*tp
= tcp_sk(sk
);
1661 tcp_check_reno_reordering(sk
, 0);
1662 tcp_verify_left_out(tp
);
1665 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1667 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1669 struct tcp_sock
*tp
= tcp_sk(sk
);
1672 /* One ACK acked hole. The rest eat duplicate ACKs. */
1673 if (acked
- 1 >= tp
->sacked_out
)
1676 tp
->sacked_out
-= acked
- 1;
1678 tcp_check_reno_reordering(sk
, acked
);
1679 tcp_verify_left_out(tp
);
1682 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1687 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1689 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1692 /* F-RTO can only be used if TCP has never retransmitted anything other than
1693 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1695 int tcp_use_frto(struct sock
*sk
)
1697 const struct tcp_sock
*tp
= tcp_sk(sk
);
1698 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1699 struct sk_buff
*skb
;
1701 if (!sysctl_tcp_frto
)
1704 /* MTU probe and F-RTO won't really play nicely along currently */
1705 if (icsk
->icsk_mtup
.probe_size
)
1708 if (tcp_is_sackfrto(tp
))
1711 /* Avoid expensive walking of rexmit queue if possible */
1712 if (tp
->retrans_out
> 1)
1715 skb
= tcp_write_queue_head(sk
);
1716 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
1717 tcp_for_write_queue_from(skb
, sk
) {
1718 if (skb
== tcp_send_head(sk
))
1720 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1722 /* Short-circuit when first non-SACKed skb has been checked */
1723 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1729 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1730 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1731 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1732 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1733 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1734 * bits are handled if the Loss state is really to be entered (in
1735 * tcp_enter_frto_loss).
1737 * Do like tcp_enter_loss() would; when RTO expires the second time it
1739 * "Reduce ssthresh if it has not yet been made inside this window."
1741 void tcp_enter_frto(struct sock
*sk
)
1743 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1744 struct tcp_sock
*tp
= tcp_sk(sk
);
1745 struct sk_buff
*skb
;
1747 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
1748 tp
->snd_una
== tp
->high_seq
||
1749 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
1750 !icsk
->icsk_retransmits
)) {
1751 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1752 /* Our state is too optimistic in ssthresh() call because cwnd
1753 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1754 * recovery has not yet completed. Pattern would be this: RTO,
1755 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1757 * RFC4138 should be more specific on what to do, even though
1758 * RTO is quite unlikely to occur after the first Cumulative ACK
1759 * due to back-off and complexity of triggering events ...
1761 if (tp
->frto_counter
) {
1763 stored_cwnd
= tp
->snd_cwnd
;
1765 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1766 tp
->snd_cwnd
= stored_cwnd
;
1768 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1770 /* ... in theory, cong.control module could do "any tricks" in
1771 * ssthresh(), which means that ca_state, lost bits and lost_out
1772 * counter would have to be faked before the call occurs. We
1773 * consider that too expensive, unlikely and hacky, so modules
1774 * using these in ssthresh() must deal these incompatibility
1775 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1777 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1780 tp
->undo_marker
= tp
->snd_una
;
1781 tp
->undo_retrans
= 0;
1783 skb
= tcp_write_queue_head(sk
);
1784 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1785 tp
->undo_marker
= 0;
1786 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1787 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1788 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1790 tcp_verify_left_out(tp
);
1792 /* Too bad if TCP was application limited */
1793 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
1795 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1796 * The last condition is necessary at least in tp->frto_counter case.
1798 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
1799 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
1800 after(tp
->high_seq
, tp
->snd_una
)) {
1801 tp
->frto_highmark
= tp
->high_seq
;
1803 tp
->frto_highmark
= tp
->snd_nxt
;
1805 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
1806 tp
->high_seq
= tp
->snd_nxt
;
1807 tp
->frto_counter
= 1;
1810 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1811 * which indicates that we should follow the traditional RTO recovery,
1812 * i.e. mark everything lost and do go-back-N retransmission.
1814 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
1816 struct tcp_sock
*tp
= tcp_sk(sk
);
1817 struct sk_buff
*skb
;
1820 tp
->retrans_out
= 0;
1821 if (tcp_is_reno(tp
))
1822 tcp_reset_reno_sack(tp
);
1824 tcp_for_write_queue(skb
, sk
) {
1825 if (skb
== tcp_send_head(sk
))
1828 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1830 * Count the retransmission made on RTO correctly (only when
1831 * waiting for the first ACK and did not get it)...
1833 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
1834 /* For some reason this R-bit might get cleared? */
1835 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1836 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1837 /* ...enter this if branch just for the first segment */
1838 flag
|= FLAG_DATA_ACKED
;
1840 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1841 tp
->undo_marker
= 0;
1842 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1845 /* Marking forward transmissions that were made after RTO lost
1846 * can cause unnecessary retransmissions in some scenarios,
1847 * SACK blocks will mitigate that in some but not in all cases.
1848 * We used to not mark them but it was causing break-ups with
1849 * receivers that do only in-order receival.
1851 * TODO: we could detect presence of such receiver and select
1852 * different behavior per flow.
1854 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1855 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1856 tp
->lost_out
+= tcp_skb_pcount(skb
);
1859 tcp_verify_left_out(tp
);
1861 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
1862 tp
->snd_cwnd_cnt
= 0;
1863 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1864 tp
->frto_counter
= 0;
1865 tp
->bytes_acked
= 0;
1867 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1868 sysctl_tcp_reordering
);
1869 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1870 tp
->high_seq
= tp
->snd_nxt
;
1871 TCP_ECN_queue_cwr(tp
);
1873 tcp_clear_retrans_hints_partial(tp
);
1876 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
1878 tp
->retrans_out
= 0;
1881 tp
->undo_marker
= 0;
1882 tp
->undo_retrans
= 0;
1885 void tcp_clear_retrans(struct tcp_sock
*tp
)
1887 tcp_clear_retrans_partial(tp
);
1889 tp
->fackets_out
= 0;
1893 /* Enter Loss state. If "how" is not zero, forget all SACK information
1894 * and reset tags completely, otherwise preserve SACKs. If receiver
1895 * dropped its ofo queue, we will know this due to reneging detection.
1897 void tcp_enter_loss(struct sock
*sk
, int how
)
1899 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1900 struct tcp_sock
*tp
= tcp_sk(sk
);
1901 struct sk_buff
*skb
;
1903 /* Reduce ssthresh if it has not yet been made inside this window. */
1904 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1905 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1906 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1907 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1908 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1911 tp
->snd_cwnd_cnt
= 0;
1912 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1914 tp
->bytes_acked
= 0;
1915 tcp_clear_retrans_partial(tp
);
1917 if (tcp_is_reno(tp
))
1918 tcp_reset_reno_sack(tp
);
1921 /* Push undo marker, if it was plain RTO and nothing
1922 * was retransmitted. */
1923 tp
->undo_marker
= tp
->snd_una
;
1924 tcp_clear_retrans_hints_partial(tp
);
1927 tp
->fackets_out
= 0;
1928 tcp_clear_all_retrans_hints(tp
);
1931 tcp_for_write_queue(skb
, sk
) {
1932 if (skb
== tcp_send_head(sk
))
1935 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1936 tp
->undo_marker
= 0;
1937 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1938 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1939 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1940 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1941 tp
->lost_out
+= tcp_skb_pcount(skb
);
1944 tcp_verify_left_out(tp
);
1946 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1947 sysctl_tcp_reordering
);
1948 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1949 tp
->high_seq
= tp
->snd_nxt
;
1950 TCP_ECN_queue_cwr(tp
);
1951 /* Abort F-RTO algorithm if one is in progress */
1952 tp
->frto_counter
= 0;
1955 /* If ACK arrived pointing to a remembered SACK, it means that our
1956 * remembered SACKs do not reflect real state of receiver i.e.
1957 * receiver _host_ is heavily congested (or buggy).
1959 * Do processing similar to RTO timeout.
1961 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1963 if (flag
& FLAG_SACK_RENEGING
) {
1964 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1965 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1967 tcp_enter_loss(sk
, 1);
1968 icsk
->icsk_retransmits
++;
1969 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
1970 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1971 icsk
->icsk_rto
, TCP_RTO_MAX
);
1977 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
1979 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
1982 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1983 * counter when SACK is enabled (without SACK, sacked_out is used for
1986 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1987 * segments up to the highest received SACK block so far and holes in
1990 * With reordering, holes may still be in flight, so RFC3517 recovery
1991 * uses pure sacked_out (total number of SACKed segments) even though
1992 * it violates the RFC that uses duplicate ACKs, often these are equal
1993 * but when e.g. out-of-window ACKs or packet duplication occurs,
1994 * they differ. Since neither occurs due to loss, TCP should really
1997 static inline int tcp_dupack_heurestics(struct tcp_sock
*tp
)
1999 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2002 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2004 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2007 static inline int tcp_head_timedout(struct sock
*sk
)
2009 struct tcp_sock
*tp
= tcp_sk(sk
);
2011 return tp
->packets_out
&&
2012 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016 * --------------------------------------
2018 * "Open" Normal state, no dubious events, fast path.
2019 * "Disorder" In all the respects it is "Open",
2020 * but requires a bit more attention. It is entered when
2021 * we see some SACKs or dupacks. It is split of "Open"
2022 * mainly to move some processing from fast path to slow one.
2023 * "CWR" CWND was reduced due to some Congestion Notification event.
2024 * It can be ECN, ICMP source quench, local device congestion.
2025 * "Recovery" CWND was reduced, we are fast-retransmitting.
2026 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2028 * tcp_fastretrans_alert() is entered:
2029 * - each incoming ACK, if state is not "Open"
2030 * - when arrived ACK is unusual, namely:
2035 * Counting packets in flight is pretty simple.
2037 * in_flight = packets_out - left_out + retrans_out
2039 * packets_out is SND.NXT-SND.UNA counted in packets.
2041 * retrans_out is number of retransmitted segments.
2043 * left_out is number of segments left network, but not ACKed yet.
2045 * left_out = sacked_out + lost_out
2047 * sacked_out: Packets, which arrived to receiver out of order
2048 * and hence not ACKed. With SACKs this number is simply
2049 * amount of SACKed data. Even without SACKs
2050 * it is easy to give pretty reliable estimate of this number,
2051 * counting duplicate ACKs.
2053 * lost_out: Packets lost by network. TCP has no explicit
2054 * "loss notification" feedback from network (for now).
2055 * It means that this number can be only _guessed_.
2056 * Actually, it is the heuristics to predict lossage that
2057 * distinguishes different algorithms.
2059 * F.e. after RTO, when all the queue is considered as lost,
2060 * lost_out = packets_out and in_flight = retrans_out.
2062 * Essentially, we have now two algorithms counting
2065 * FACK: It is the simplest heuristics. As soon as we decided
2066 * that something is lost, we decide that _all_ not SACKed
2067 * packets until the most forward SACK are lost. I.e.
2068 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069 * It is absolutely correct estimate, if network does not reorder
2070 * packets. And it loses any connection to reality when reordering
2071 * takes place. We use FACK by default until reordering
2072 * is suspected on the path to this destination.
2074 * NewReno: when Recovery is entered, we assume that one segment
2075 * is lost (classic Reno). While we are in Recovery and
2076 * a partial ACK arrives, we assume that one more packet
2077 * is lost (NewReno). This heuristics are the same in NewReno
2080 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2081 * deflation etc. CWND is real congestion window, never inflated, changes
2082 * only according to classic VJ rules.
2084 * Really tricky (and requiring careful tuning) part of algorithm
2085 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086 * The first determines the moment _when_ we should reduce CWND and,
2087 * hence, slow down forward transmission. In fact, it determines the moment
2088 * when we decide that hole is caused by loss, rather than by a reorder.
2090 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091 * holes, caused by lost packets.
2093 * And the most logically complicated part of algorithm is undo
2094 * heuristics. We detect false retransmits due to both too early
2095 * fast retransmit (reordering) and underestimated RTO, analyzing
2096 * timestamps and D-SACKs. When we detect that some segments were
2097 * retransmitted by mistake and CWND reduction was wrong, we undo
2098 * window reduction and abort recovery phase. This logic is hidden
2099 * inside several functions named tcp_try_undo_<something>.
2102 /* This function decides, when we should leave Disordered state
2103 * and enter Recovery phase, reducing congestion window.
2105 * Main question: may we further continue forward transmission
2106 * with the same cwnd?
2108 static int tcp_time_to_recover(struct sock
*sk
)
2110 struct tcp_sock
*tp
= tcp_sk(sk
);
2113 /* Do not perform any recovery during F-RTO algorithm */
2114 if (tp
->frto_counter
)
2117 /* Trick#1: The loss is proven. */
2121 /* Not-A-Trick#2 : Classic rule... */
2122 if (tcp_dupack_heurestics(tp
) > tp
->reordering
)
2125 /* Trick#3 : when we use RFC2988 timer restart, fast
2126 * retransmit can be triggered by timeout of queue head.
2128 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2131 /* Trick#4: It is still not OK... But will it be useful to delay
2134 packets_out
= tp
->packets_out
;
2135 if (packets_out
<= tp
->reordering
&&
2136 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2137 !tcp_may_send_now(sk
)) {
2138 /* We have nothing to send. This connection is limited
2139 * either by receiver window or by application.
2147 /* RFC: This is from the original, I doubt that this is necessary at all:
2148 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2149 * retransmitted past LOST markings in the first place? I'm not fully sure
2150 * about undo and end of connection cases, which can cause R without L?
2152 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
2154 if ((tp
->retransmit_skb_hint
!= NULL
) &&
2155 before(TCP_SKB_CB(skb
)->seq
,
2156 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
2157 tp
->retransmit_skb_hint
= NULL
;
2160 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2161 * is against sacked "cnt", otherwise it's against facked "cnt"
2163 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2165 struct tcp_sock
*tp
= tcp_sk(sk
);
2166 struct sk_buff
*skb
;
2171 BUG_TRAP(packets
<= tp
->packets_out
);
2172 if (tp
->lost_skb_hint
) {
2173 skb
= tp
->lost_skb_hint
;
2174 cnt
= tp
->lost_cnt_hint
;
2176 skb
= tcp_write_queue_head(sk
);
2180 tcp_for_write_queue_from(skb
, sk
) {
2181 if (skb
== tcp_send_head(sk
))
2183 /* TODO: do this better */
2184 /* this is not the most efficient way to do this... */
2185 tp
->lost_skb_hint
= skb
;
2186 tp
->lost_cnt_hint
= cnt
;
2188 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2192 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2193 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2194 cnt
+= tcp_skb_pcount(skb
);
2196 if (cnt
> packets
) {
2197 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2200 mss
= skb_shinfo(skb
)->gso_size
;
2201 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2207 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_SACKED_ACKED
|TCPCB_LOST
))) {
2208 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2209 tp
->lost_out
+= tcp_skb_pcount(skb
);
2210 tcp_verify_retransmit_hint(tp
, skb
);
2213 tcp_verify_left_out(tp
);
2216 /* Account newly detected lost packet(s) */
2218 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2220 struct tcp_sock
*tp
= tcp_sk(sk
);
2222 if (tcp_is_reno(tp
)) {
2223 tcp_mark_head_lost(sk
, 1);
2224 } else if (tcp_is_fack(tp
)) {
2225 int lost
= tp
->fackets_out
- tp
->reordering
;
2228 tcp_mark_head_lost(sk
, lost
);
2230 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2231 if (sacked_upto
< fast_rexmit
)
2232 sacked_upto
= fast_rexmit
;
2233 tcp_mark_head_lost(sk
, sacked_upto
);
2236 /* New heuristics: it is possible only after we switched
2237 * to restart timer each time when something is ACKed.
2238 * Hence, we can detect timed out packets during fast
2239 * retransmit without falling to slow start.
2241 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
)) {
2242 struct sk_buff
*skb
;
2244 skb
= tp
->scoreboard_skb_hint
? tp
->scoreboard_skb_hint
2245 : tcp_write_queue_head(sk
);
2247 tcp_for_write_queue_from(skb
, sk
) {
2248 if (skb
== tcp_send_head(sk
))
2250 if (!tcp_skb_timedout(sk
, skb
))
2253 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_SACKED_ACKED
|TCPCB_LOST
))) {
2254 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2255 tp
->lost_out
+= tcp_skb_pcount(skb
);
2256 tcp_verify_retransmit_hint(tp
, skb
);
2260 tp
->scoreboard_skb_hint
= skb
;
2262 tcp_verify_left_out(tp
);
2266 /* CWND moderation, preventing bursts due to too big ACKs
2267 * in dubious situations.
2269 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2271 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2272 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2273 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2276 /* Lower bound on congestion window is slow start threshold
2277 * unless congestion avoidance choice decides to overide it.
2279 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2281 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2283 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2286 /* Decrease cwnd each second ack. */
2287 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2289 struct tcp_sock
*tp
= tcp_sk(sk
);
2290 int decr
= tp
->snd_cwnd_cnt
+ 1;
2292 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2293 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2294 tp
->snd_cwnd_cnt
= decr
& 1;
2297 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2298 tp
->snd_cwnd
-= decr
;
2300 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2301 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2305 /* Nothing was retransmitted or returned timestamp is less
2306 * than timestamp of the first retransmission.
2308 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2310 return !tp
->retrans_stamp
||
2311 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2312 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2315 /* Undo procedures. */
2317 #if FASTRETRANS_DEBUG > 1
2318 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2320 struct tcp_sock
*tp
= tcp_sk(sk
);
2321 struct inet_sock
*inet
= inet_sk(sk
);
2323 if (sk
->sk_family
== AF_INET
) {
2324 printk(KERN_DEBUG
"Undo %s " NIPQUAD_FMT
"/%u c%u l%u ss%u/%u p%u\n",
2326 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
2327 tp
->snd_cwnd
, tcp_left_out(tp
),
2328 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2331 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2332 else if (sk
->sk_family
== AF_INET6
) {
2333 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2334 printk(KERN_DEBUG
"Undo %s " NIP6_FMT
"/%u c%u l%u ss%u/%u p%u\n",
2336 NIP6(np
->daddr
), ntohs(inet
->dport
),
2337 tp
->snd_cwnd
, tcp_left_out(tp
),
2338 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2344 #define DBGUNDO(x...) do { } while (0)
2347 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2349 struct tcp_sock
*tp
= tcp_sk(sk
);
2351 if (tp
->prior_ssthresh
) {
2352 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2354 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2355 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2357 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2359 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2360 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2361 TCP_ECN_withdraw_cwr(tp
);
2364 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2366 tcp_moderate_cwnd(tp
);
2367 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2369 /* There is something screwy going on with the retrans hints after
2371 tcp_clear_all_retrans_hints(tp
);
2374 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2376 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2379 /* People celebrate: "We love our President!" */
2380 static int tcp_try_undo_recovery(struct sock
*sk
)
2382 struct tcp_sock
*tp
= tcp_sk(sk
);
2384 if (tcp_may_undo(tp
)) {
2385 /* Happy end! We did not retransmit anything
2386 * or our original transmission succeeded.
2388 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2389 tcp_undo_cwr(sk
, 1);
2390 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2391 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
2393 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
2394 tp
->undo_marker
= 0;
2396 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2397 /* Hold old state until something *above* high_seq
2398 * is ACKed. For Reno it is MUST to prevent false
2399 * fast retransmits (RFC2582). SACK TCP is safe. */
2400 tcp_moderate_cwnd(tp
);
2403 tcp_set_ca_state(sk
, TCP_CA_Open
);
2407 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2408 static void tcp_try_undo_dsack(struct sock
*sk
)
2410 struct tcp_sock
*tp
= tcp_sk(sk
);
2412 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2413 DBGUNDO(sk
, "D-SACK");
2414 tcp_undo_cwr(sk
, 1);
2415 tp
->undo_marker
= 0;
2416 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
2420 /* Undo during fast recovery after partial ACK. */
2422 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2424 struct tcp_sock
*tp
= tcp_sk(sk
);
2425 /* Partial ACK arrived. Force Hoe's retransmit. */
2426 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2428 if (tcp_may_undo(tp
)) {
2429 /* Plain luck! Hole if filled with delayed
2430 * packet, rather than with a retransmit.
2432 if (tp
->retrans_out
== 0)
2433 tp
->retrans_stamp
= 0;
2435 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2438 tcp_undo_cwr(sk
, 0);
2439 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
2441 /* So... Do not make Hoe's retransmit yet.
2442 * If the first packet was delayed, the rest
2443 * ones are most probably delayed as well.
2450 /* Undo during loss recovery after partial ACK. */
2451 static int tcp_try_undo_loss(struct sock
*sk
)
2453 struct tcp_sock
*tp
= tcp_sk(sk
);
2455 if (tcp_may_undo(tp
)) {
2456 struct sk_buff
*skb
;
2457 tcp_for_write_queue(skb
, sk
) {
2458 if (skb
== tcp_send_head(sk
))
2460 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2463 tcp_clear_all_retrans_hints(tp
);
2465 DBGUNDO(sk
, "partial loss");
2467 tcp_undo_cwr(sk
, 1);
2468 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
2469 inet_csk(sk
)->icsk_retransmits
= 0;
2470 tp
->undo_marker
= 0;
2471 if (tcp_is_sack(tp
))
2472 tcp_set_ca_state(sk
, TCP_CA_Open
);
2478 static inline void tcp_complete_cwr(struct sock
*sk
)
2480 struct tcp_sock
*tp
= tcp_sk(sk
);
2481 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2482 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2483 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2486 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2488 struct tcp_sock
*tp
= tcp_sk(sk
);
2490 tcp_verify_left_out(tp
);
2492 if (!tp
->frto_counter
&& tp
->retrans_out
== 0)
2493 tp
->retrans_stamp
= 0;
2495 if (flag
& FLAG_ECE
)
2496 tcp_enter_cwr(sk
, 1);
2498 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2499 int state
= TCP_CA_Open
;
2501 if (tcp_left_out(tp
) || tp
->retrans_out
|| tp
->undo_marker
)
2502 state
= TCP_CA_Disorder
;
2504 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2505 tcp_set_ca_state(sk
, state
);
2506 tp
->high_seq
= tp
->snd_nxt
;
2508 tcp_moderate_cwnd(tp
);
2510 tcp_cwnd_down(sk
, flag
);
2514 static void tcp_mtup_probe_failed(struct sock
*sk
)
2516 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2518 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2519 icsk
->icsk_mtup
.probe_size
= 0;
2522 static void tcp_mtup_probe_success(struct sock
*sk
, struct sk_buff
*skb
)
2524 struct tcp_sock
*tp
= tcp_sk(sk
);
2525 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2527 /* FIXME: breaks with very large cwnd */
2528 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2529 tp
->snd_cwnd
= tp
->snd_cwnd
*
2530 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2531 icsk
->icsk_mtup
.probe_size
;
2532 tp
->snd_cwnd_cnt
= 0;
2533 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2534 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2536 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2537 icsk
->icsk_mtup
.probe_size
= 0;
2538 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2541 /* Process an event, which can update packets-in-flight not trivially.
2542 * Main goal of this function is to calculate new estimate for left_out,
2543 * taking into account both packets sitting in receiver's buffer and
2544 * packets lost by network.
2546 * Besides that it does CWND reduction, when packet loss is detected
2547 * and changes state of machine.
2549 * It does _not_ decide what to send, it is made in function
2550 * tcp_xmit_retransmit_queue().
2552 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2554 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2555 struct tcp_sock
*tp
= tcp_sk(sk
);
2556 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2557 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2558 (tcp_fackets_out(tp
) > tp
->reordering
));
2559 int fast_rexmit
= 0;
2561 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2563 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2564 tp
->fackets_out
= 0;
2566 /* Now state machine starts.
2567 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2568 if (flag
& FLAG_ECE
)
2569 tp
->prior_ssthresh
= 0;
2571 /* B. In all the states check for reneging SACKs. */
2572 if (tcp_check_sack_reneging(sk
, flag
))
2575 /* C. Process data loss notification, provided it is valid. */
2576 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2577 before(tp
->snd_una
, tp
->high_seq
) &&
2578 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2579 tp
->fackets_out
> tp
->reordering
) {
2580 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2581 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
2584 /* D. Check consistency of the current state. */
2585 tcp_verify_left_out(tp
);
2587 /* E. Check state exit conditions. State can be terminated
2588 * when high_seq is ACKed. */
2589 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2590 BUG_TRAP(tp
->retrans_out
== 0);
2591 tp
->retrans_stamp
= 0;
2592 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2593 switch (icsk
->icsk_ca_state
) {
2595 icsk
->icsk_retransmits
= 0;
2596 if (tcp_try_undo_recovery(sk
))
2601 /* CWR is to be held something *above* high_seq
2602 * is ACKed for CWR bit to reach receiver. */
2603 if (tp
->snd_una
!= tp
->high_seq
) {
2604 tcp_complete_cwr(sk
);
2605 tcp_set_ca_state(sk
, TCP_CA_Open
);
2609 case TCP_CA_Disorder
:
2610 tcp_try_undo_dsack(sk
);
2611 if (!tp
->undo_marker
||
2612 /* For SACK case do not Open to allow to undo
2613 * catching for all duplicate ACKs. */
2614 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2615 tp
->undo_marker
= 0;
2616 tcp_set_ca_state(sk
, TCP_CA_Open
);
2620 case TCP_CA_Recovery
:
2621 if (tcp_is_reno(tp
))
2622 tcp_reset_reno_sack(tp
);
2623 if (tcp_try_undo_recovery(sk
))
2625 tcp_complete_cwr(sk
);
2630 /* F. Process state. */
2631 switch (icsk
->icsk_ca_state
) {
2632 case TCP_CA_Recovery
:
2633 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2634 if (tcp_is_reno(tp
) && is_dupack
)
2635 tcp_add_reno_sack(sk
);
2637 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2640 if (flag
& FLAG_DATA_ACKED
)
2641 icsk
->icsk_retransmits
= 0;
2642 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
2643 tcp_reset_reno_sack(tp
);
2644 if (!tcp_try_undo_loss(sk
)) {
2645 tcp_moderate_cwnd(tp
);
2646 tcp_xmit_retransmit_queue(sk
);
2649 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2651 /* Loss is undone; fall through to processing in Open state. */
2653 if (tcp_is_reno(tp
)) {
2654 if (flag
& FLAG_SND_UNA_ADVANCED
)
2655 tcp_reset_reno_sack(tp
);
2657 tcp_add_reno_sack(sk
);
2660 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
2661 tcp_try_undo_dsack(sk
);
2663 if (!tcp_time_to_recover(sk
)) {
2664 tcp_try_to_open(sk
, flag
);
2668 /* MTU probe failure: don't reduce cwnd */
2669 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2670 icsk
->icsk_mtup
.probe_size
&&
2671 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2672 tcp_mtup_probe_failed(sk
);
2673 /* Restores the reduction we did in tcp_mtup_probe() */
2675 tcp_simple_retransmit(sk
);
2679 /* Otherwise enter Recovery state */
2681 if (tcp_is_reno(tp
))
2682 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
2684 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
2686 tp
->high_seq
= tp
->snd_nxt
;
2687 tp
->prior_ssthresh
= 0;
2688 tp
->undo_marker
= tp
->snd_una
;
2689 tp
->undo_retrans
= tp
->retrans_out
;
2691 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
2692 if (!(flag
& FLAG_ECE
))
2693 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2694 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2695 TCP_ECN_queue_cwr(tp
);
2698 tp
->bytes_acked
= 0;
2699 tp
->snd_cwnd_cnt
= 0;
2700 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2704 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
2705 tcp_update_scoreboard(sk
, fast_rexmit
);
2706 tcp_cwnd_down(sk
, flag
);
2707 tcp_xmit_retransmit_queue(sk
);
2710 /* Read draft-ietf-tcplw-high-performance before mucking
2711 * with this code. (Supersedes RFC1323)
2713 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
2715 /* RTTM Rule: A TSecr value received in a segment is used to
2716 * update the averaged RTT measurement only if the segment
2717 * acknowledges some new data, i.e., only if it advances the
2718 * left edge of the send window.
2720 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2721 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2723 * Changed: reset backoff as soon as we see the first valid sample.
2724 * If we do not, we get strongly overestimated rto. With timestamps
2725 * samples are accepted even from very old segments: f.e., when rtt=1
2726 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2727 * answer arrives rto becomes 120 seconds! If at least one of segments
2728 * in window is lost... Voila. --ANK (010210)
2730 struct tcp_sock
*tp
= tcp_sk(sk
);
2731 const __u32 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
2732 tcp_rtt_estimator(sk
, seq_rtt
);
2734 inet_csk(sk
)->icsk_backoff
= 0;
2738 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
2740 /* We don't have a timestamp. Can only use
2741 * packets that are not retransmitted to determine
2742 * rtt estimates. Also, we must not reset the
2743 * backoff for rto until we get a non-retransmitted
2744 * packet. This allows us to deal with a situation
2745 * where the network delay has increased suddenly.
2746 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2749 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2752 tcp_rtt_estimator(sk
, seq_rtt
);
2754 inet_csk(sk
)->icsk_backoff
= 0;
2758 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2761 const struct tcp_sock
*tp
= tcp_sk(sk
);
2762 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2763 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
2764 tcp_ack_saw_tstamp(sk
, flag
);
2765 else if (seq_rtt
>= 0)
2766 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
2769 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
2771 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2772 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
2773 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2776 /* Restart timer after forward progress on connection.
2777 * RFC2988 recommends to restart timer to now+rto.
2779 static void tcp_rearm_rto(struct sock
*sk
)
2781 struct tcp_sock
*tp
= tcp_sk(sk
);
2783 if (!tp
->packets_out
) {
2784 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2786 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2787 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2791 /* If we get here, the whole TSO packet has not been acked. */
2792 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
2794 struct tcp_sock
*tp
= tcp_sk(sk
);
2797 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
2799 packets_acked
= tcp_skb_pcount(skb
);
2800 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2802 packets_acked
-= tcp_skb_pcount(skb
);
2804 if (packets_acked
) {
2805 BUG_ON(tcp_skb_pcount(skb
) == 0);
2806 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
2809 return packets_acked
;
2812 /* Remove acknowledged frames from the retransmission queue. If our packet
2813 * is before the ack sequence we can discard it as it's confirmed to have
2814 * arrived at the other end.
2816 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
)
2818 struct tcp_sock
*tp
= tcp_sk(sk
);
2819 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2820 struct sk_buff
*skb
;
2821 u32 now
= tcp_time_stamp
;
2822 int fully_acked
= 1;
2825 u32 reord
= tp
->packets_out
;
2827 s32 ca_seq_rtt
= -1;
2828 ktime_t last_ackt
= net_invalid_timestamp();
2830 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
2831 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2834 u8 sacked
= scb
->sacked
;
2836 /* Determine how many packets and what bytes were acked, tso and else */
2837 if (after(scb
->end_seq
, tp
->snd_una
)) {
2838 if (tcp_skb_pcount(skb
) == 1 ||
2839 !after(tp
->snd_una
, scb
->seq
))
2842 acked_pcount
= tcp_tso_acked(sk
, skb
);
2847 end_seq
= tp
->snd_una
;
2849 acked_pcount
= tcp_skb_pcount(skb
);
2850 end_seq
= scb
->end_seq
;
2853 /* MTU probing checks */
2854 if (fully_acked
&& icsk
->icsk_mtup
.probe_size
&&
2855 !after(tp
->mtu_probe
.probe_seq_end
, scb
->end_seq
)) {
2856 tcp_mtup_probe_success(sk
, skb
);
2859 if (sacked
& TCPCB_RETRANS
) {
2860 if (sacked
& TCPCB_SACKED_RETRANS
)
2861 tp
->retrans_out
-= acked_pcount
;
2862 flag
|= FLAG_RETRANS_DATA_ACKED
;
2865 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
2866 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
2868 ca_seq_rtt
= now
- scb
->when
;
2869 last_ackt
= skb
->tstamp
;
2871 seq_rtt
= ca_seq_rtt
;
2873 if (!(sacked
& TCPCB_SACKED_ACKED
))
2874 reord
= min(pkts_acked
, reord
);
2877 if (sacked
& TCPCB_SACKED_ACKED
)
2878 tp
->sacked_out
-= acked_pcount
;
2879 if (sacked
& TCPCB_LOST
)
2880 tp
->lost_out
-= acked_pcount
;
2882 if (unlikely(tp
->urg_mode
&& !before(end_seq
, tp
->snd_up
)))
2885 tp
->packets_out
-= acked_pcount
;
2886 pkts_acked
+= acked_pcount
;
2888 /* Initial outgoing SYN's get put onto the write_queue
2889 * just like anything else we transmit. It is not
2890 * true data, and if we misinform our callers that
2891 * this ACK acks real data, we will erroneously exit
2892 * connection startup slow start one packet too
2893 * quickly. This is severely frowned upon behavior.
2895 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2896 flag
|= FLAG_DATA_ACKED
;
2898 flag
|= FLAG_SYN_ACKED
;
2899 tp
->retrans_stamp
= 0;
2905 tcp_unlink_write_queue(skb
, sk
);
2906 sk_wmem_free_skb(sk
, skb
);
2907 tcp_clear_all_retrans_hints(tp
);
2910 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2911 flag
|= FLAG_SACK_RENEGING
;
2913 if (flag
& FLAG_ACKED
) {
2914 const struct tcp_congestion_ops
*ca_ops
2915 = inet_csk(sk
)->icsk_ca_ops
;
2917 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
2920 if (tcp_is_reno(tp
)) {
2921 tcp_remove_reno_sacks(sk
, pkts_acked
);
2923 /* Non-retransmitted hole got filled? That's reordering */
2924 if (reord
< prior_fackets
)
2925 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
2928 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
2930 if (ca_ops
->pkts_acked
) {
2933 /* Is the ACK triggering packet unambiguous? */
2934 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
2935 /* High resolution needed and available? */
2936 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
2937 !ktime_equal(last_ackt
,
2938 net_invalid_timestamp()))
2939 rtt_us
= ktime_us_delta(ktime_get_real(),
2941 else if (ca_seq_rtt
> 0)
2942 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
2945 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
2949 #if FASTRETRANS_DEBUG > 0
2950 BUG_TRAP((int)tp
->sacked_out
>= 0);
2951 BUG_TRAP((int)tp
->lost_out
>= 0);
2952 BUG_TRAP((int)tp
->retrans_out
>= 0);
2953 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
2954 icsk
= inet_csk(sk
);
2956 printk(KERN_DEBUG
"Leak l=%u %d\n",
2957 tp
->lost_out
, icsk
->icsk_ca_state
);
2960 if (tp
->sacked_out
) {
2961 printk(KERN_DEBUG
"Leak s=%u %d\n",
2962 tp
->sacked_out
, icsk
->icsk_ca_state
);
2965 if (tp
->retrans_out
) {
2966 printk(KERN_DEBUG
"Leak r=%u %d\n",
2967 tp
->retrans_out
, icsk
->icsk_ca_state
);
2968 tp
->retrans_out
= 0;
2975 static void tcp_ack_probe(struct sock
*sk
)
2977 const struct tcp_sock
*tp
= tcp_sk(sk
);
2978 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2980 /* Was it a usable window open? */
2982 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
2983 icsk
->icsk_backoff
= 0;
2984 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
2985 /* Socket must be waked up by subsequent tcp_data_snd_check().
2986 * This function is not for random using!
2989 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2990 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2995 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
2997 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2998 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3001 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3003 const struct tcp_sock
*tp
= tcp_sk(sk
);
3004 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3005 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3008 /* Check that window update is acceptable.
3009 * The function assumes that snd_una<=ack<=snd_next.
3011 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3012 const u32 ack
, const u32 ack_seq
,
3015 return (after(ack
, tp
->snd_una
) ||
3016 after(ack_seq
, tp
->snd_wl1
) ||
3017 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3020 /* Update our send window.
3022 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3023 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3025 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3028 struct tcp_sock
*tp
= tcp_sk(sk
);
3030 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3032 if (likely(!tcp_hdr(skb
)->syn
))
3033 nwin
<<= tp
->rx_opt
.snd_wscale
;
3035 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3036 flag
|= FLAG_WIN_UPDATE
;
3037 tcp_update_wl(tp
, ack
, ack_seq
);
3039 if (tp
->snd_wnd
!= nwin
) {
3042 /* Note, it is the only place, where
3043 * fast path is recovered for sending TCP.
3046 tcp_fast_path_check(sk
);
3048 if (nwin
> tp
->max_window
) {
3049 tp
->max_window
= nwin
;
3050 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3060 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3061 * continue in congestion avoidance.
3063 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3065 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3066 tp
->snd_cwnd_cnt
= 0;
3067 tp
->bytes_acked
= 0;
3068 TCP_ECN_queue_cwr(tp
);
3069 tcp_moderate_cwnd(tp
);
3072 /* A conservative spurious RTO response algorithm: reduce cwnd using
3073 * rate halving and continue in congestion avoidance.
3075 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3077 tcp_enter_cwr(sk
, 0);
3080 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3082 if (flag
& FLAG_ECE
)
3083 tcp_ratehalving_spur_to_response(sk
);
3085 tcp_undo_cwr(sk
, 1);
3088 /* F-RTO spurious RTO detection algorithm (RFC4138)
3090 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3091 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3092 * window (but not to or beyond highest sequence sent before RTO):
3093 * On First ACK, send two new segments out.
3094 * On Second ACK, RTO was likely spurious. Do spurious response (response
3095 * algorithm is not part of the F-RTO detection algorithm
3096 * given in RFC4138 but can be selected separately).
3097 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3098 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3099 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3100 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3102 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3103 * original window even after we transmit two new data segments.
3106 * on first step, wait until first cumulative ACK arrives, then move to
3107 * the second step. In second step, the next ACK decides.
3109 * F-RTO is implemented (mainly) in four functions:
3110 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3111 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3112 * called when tcp_use_frto() showed green light
3113 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3114 * - tcp_enter_frto_loss() is called if there is not enough evidence
3115 * to prove that the RTO is indeed spurious. It transfers the control
3116 * from F-RTO to the conventional RTO recovery
3118 static int tcp_process_frto(struct sock
*sk
, int flag
)
3120 struct tcp_sock
*tp
= tcp_sk(sk
);
3122 tcp_verify_left_out(tp
);
3124 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3125 if (flag
& FLAG_DATA_ACKED
)
3126 inet_csk(sk
)->icsk_retransmits
= 0;
3128 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3129 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3130 tp
->undo_marker
= 0;
3132 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3133 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3137 if (!tcp_is_sackfrto(tp
)) {
3138 /* RFC4138 shortcoming in step 2; should also have case c):
3139 * ACK isn't duplicate nor advances window, e.g., opposite dir
3142 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3145 if (!(flag
& FLAG_DATA_ACKED
)) {
3146 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3151 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3152 /* Prevent sending of new data. */
3153 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3154 tcp_packets_in_flight(tp
));
3158 if ((tp
->frto_counter
>= 2) &&
3159 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3160 ((flag
& FLAG_DATA_SACKED
) &&
3161 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3162 /* RFC4138 shortcoming (see comment above) */
3163 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3164 (flag
& FLAG_NOT_DUP
))
3167 tcp_enter_frto_loss(sk
, 3, flag
);
3172 if (tp
->frto_counter
== 1) {
3173 /* tcp_may_send_now needs to see updated state */
3174 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3175 tp
->frto_counter
= 2;
3177 if (!tcp_may_send_now(sk
))
3178 tcp_enter_frto_loss(sk
, 2, flag
);
3182 switch (sysctl_tcp_frto_response
) {
3184 tcp_undo_spur_to_response(sk
, flag
);
3187 tcp_conservative_spur_to_response(tp
);
3190 tcp_ratehalving_spur_to_response(sk
);
3193 tp
->frto_counter
= 0;
3194 tp
->undo_marker
= 0;
3195 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS
);
3200 /* This routine deals with incoming acks, but not outgoing ones. */
3201 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3203 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3204 struct tcp_sock
*tp
= tcp_sk(sk
);
3205 u32 prior_snd_una
= tp
->snd_una
;
3206 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3207 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3208 u32 prior_in_flight
;
3213 /* If the ack is newer than sent or older than previous acks
3214 * then we can probably ignore it.
3216 if (after(ack
, tp
->snd_nxt
))
3217 goto uninteresting_ack
;
3219 if (before(ack
, prior_snd_una
))
3222 if (after(ack
, prior_snd_una
))
3223 flag
|= FLAG_SND_UNA_ADVANCED
;
3225 if (sysctl_tcp_abc
) {
3226 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3227 tp
->bytes_acked
+= ack
- prior_snd_una
;
3228 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3229 /* we assume just one segment left network */
3230 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3234 prior_fackets
= tp
->fackets_out
;
3235 prior_in_flight
= tcp_packets_in_flight(tp
);
3237 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3238 /* Window is constant, pure forward advance.
3239 * No more checks are required.
3240 * Note, we use the fact that SND.UNA>=SND.WL2.
3242 tcp_update_wl(tp
, ack
, ack_seq
);
3244 flag
|= FLAG_WIN_UPDATE
;
3246 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3248 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
3250 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3253 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
3255 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3257 if (TCP_SKB_CB(skb
)->sacked
)
3258 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3260 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3263 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3266 /* We passed data and got it acked, remove any soft error
3267 * log. Something worked...
3269 sk
->sk_err_soft
= 0;
3270 tp
->rcv_tstamp
= tcp_time_stamp
;
3271 prior_packets
= tp
->packets_out
;
3275 /* See if we can take anything off of the retransmit queue. */
3276 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
);
3278 if (tp
->frto_counter
)
3279 frto_cwnd
= tcp_process_frto(sk
, flag
);
3280 /* Guarantee sacktag reordering detection against wrap-arounds */
3281 if (before(tp
->frto_highmark
, tp
->snd_una
))
3282 tp
->frto_highmark
= 0;
3284 if (tcp_ack_is_dubious(sk
, flag
)) {
3285 /* Advance CWND, if state allows this. */
3286 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3287 tcp_may_raise_cwnd(sk
, flag
))
3288 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3289 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3292 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3293 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3296 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3297 dst_confirm(sk
->sk_dst_cache
);
3302 icsk
->icsk_probes_out
= 0;
3304 /* If this ack opens up a zero window, clear backoff. It was
3305 * being used to time the probes, and is probably far higher than
3306 * it needs to be for normal retransmission.
3308 if (tcp_send_head(sk
))
3313 if (TCP_SKB_CB(skb
)->sacked
)
3314 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3317 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3321 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3322 * But, this can also be called on packets in the established flow when
3323 * the fast version below fails.
3325 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3329 struct tcphdr
*th
= tcp_hdr(skb
);
3330 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3332 ptr
= (unsigned char *)(th
+ 1);
3333 opt_rx
->saw_tstamp
= 0;
3335 while (length
> 0) {
3336 int opcode
= *ptr
++;
3342 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3347 if (opsize
< 2) /* "silly options" */
3349 if (opsize
> length
)
3350 return; /* don't parse partial options */
3353 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3354 u16 in_mss
= get_unaligned_be16(ptr
);
3356 if (opt_rx
->user_mss
&&
3357 opt_rx
->user_mss
< in_mss
)
3358 in_mss
= opt_rx
->user_mss
;
3359 opt_rx
->mss_clamp
= in_mss
;
3364 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3365 !estab
&& sysctl_tcp_window_scaling
) {
3366 __u8 snd_wscale
= *(__u8
*)ptr
;
3367 opt_rx
->wscale_ok
= 1;
3368 if (snd_wscale
> 14) {
3369 if (net_ratelimit())
3370 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3371 "scaling value %d >14 received.\n",
3375 opt_rx
->snd_wscale
= snd_wscale
;
3378 case TCPOPT_TIMESTAMP
:
3379 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3380 ((estab
&& opt_rx
->tstamp_ok
) ||
3381 (!estab
&& sysctl_tcp_timestamps
))) {
3382 opt_rx
->saw_tstamp
= 1;
3383 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3384 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3387 case TCPOPT_SACK_PERM
:
3388 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3389 !estab
&& sysctl_tcp_sack
) {
3390 opt_rx
->sack_ok
= 1;
3391 tcp_sack_reset(opt_rx
);
3396 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3397 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3399 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3402 #ifdef CONFIG_TCP_MD5SIG
3405 * The MD5 Hash has already been
3406 * checked (see tcp_v{4,6}_do_rcv()).
3418 /* Fast parse options. This hopes to only see timestamps.
3419 * If it is wrong it falls back on tcp_parse_options().
3421 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3422 struct tcp_sock
*tp
)
3424 if (th
->doff
== sizeof(struct tcphdr
) >> 2) {
3425 tp
->rx_opt
.saw_tstamp
= 0;
3427 } else if (tp
->rx_opt
.tstamp_ok
&&
3428 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3429 __be32
*ptr
= (__be32
*)(th
+ 1);
3430 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3431 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3432 tp
->rx_opt
.saw_tstamp
= 1;
3434 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3436 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3440 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3444 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3446 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3447 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3450 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3452 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3453 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3454 * extra check below makes sure this can only happen
3455 * for pure ACK frames. -DaveM
3457 * Not only, also it occurs for expired timestamps.
3460 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
3461 get_seconds() >= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
3462 tcp_store_ts_recent(tp
);
3466 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3468 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3469 * it can pass through stack. So, the following predicate verifies that
3470 * this segment is not used for anything but congestion avoidance or
3471 * fast retransmit. Moreover, we even are able to eliminate most of such
3472 * second order effects, if we apply some small "replay" window (~RTO)
3473 * to timestamp space.
3475 * All these measures still do not guarantee that we reject wrapped ACKs
3476 * on networks with high bandwidth, when sequence space is recycled fastly,
3477 * but it guarantees that such events will be very rare and do not affect
3478 * connection seriously. This doesn't look nice, but alas, PAWS is really
3481 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3482 * states that events when retransmit arrives after original data are rare.
3483 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3484 * the biggest problem on large power networks even with minor reordering.
3485 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3486 * up to bandwidth of 18Gigabit/sec. 8) ]
3489 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3491 struct tcp_sock
*tp
= tcp_sk(sk
);
3492 struct tcphdr
*th
= tcp_hdr(skb
);
3493 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3494 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3496 return (/* 1. Pure ACK with correct sequence number. */
3497 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3499 /* 2. ... and duplicate ACK. */
3500 ack
== tp
->snd_una
&&
3502 /* 3. ... and does not update window. */
3503 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3505 /* 4. ... and sits in replay window. */
3506 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3509 static inline int tcp_paws_discard(const struct sock
*sk
,
3510 const struct sk_buff
*skb
)
3512 const struct tcp_sock
*tp
= tcp_sk(sk
);
3513 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
3514 get_seconds() < tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
3515 !tcp_disordered_ack(sk
, skb
));
3518 /* Check segment sequence number for validity.
3520 * Segment controls are considered valid, if the segment
3521 * fits to the window after truncation to the window. Acceptability
3522 * of data (and SYN, FIN, of course) is checked separately.
3523 * See tcp_data_queue(), for example.
3525 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3526 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3527 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3528 * (borrowed from freebsd)
3531 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3533 return !before(end_seq
, tp
->rcv_wup
) &&
3534 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3537 /* When we get a reset we do this. */
3538 static void tcp_reset(struct sock
*sk
)
3540 /* We want the right error as BSD sees it (and indeed as we do). */
3541 switch (sk
->sk_state
) {
3543 sk
->sk_err
= ECONNREFUSED
;
3545 case TCP_CLOSE_WAIT
:
3551 sk
->sk_err
= ECONNRESET
;
3554 if (!sock_flag(sk
, SOCK_DEAD
))
3555 sk
->sk_error_report(sk
);
3561 * Process the FIN bit. This now behaves as it is supposed to work
3562 * and the FIN takes effect when it is validly part of sequence
3563 * space. Not before when we get holes.
3565 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3566 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3569 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3570 * close and we go into CLOSING (and later onto TIME-WAIT)
3572 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3574 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3576 struct tcp_sock
*tp
= tcp_sk(sk
);
3578 inet_csk_schedule_ack(sk
);
3580 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3581 sock_set_flag(sk
, SOCK_DONE
);
3583 switch (sk
->sk_state
) {
3585 case TCP_ESTABLISHED
:
3586 /* Move to CLOSE_WAIT */
3587 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3588 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
3591 case TCP_CLOSE_WAIT
:
3593 /* Received a retransmission of the FIN, do
3598 /* RFC793: Remain in the LAST-ACK state. */
3602 /* This case occurs when a simultaneous close
3603 * happens, we must ack the received FIN and
3604 * enter the CLOSING state.
3607 tcp_set_state(sk
, TCP_CLOSING
);
3610 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3612 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
3615 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3616 * cases we should never reach this piece of code.
3618 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
3619 __func__
, sk
->sk_state
);
3623 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3624 * Probably, we should reset in this case. For now drop them.
3626 __skb_queue_purge(&tp
->out_of_order_queue
);
3627 if (tcp_is_sack(tp
))
3628 tcp_sack_reset(&tp
->rx_opt
);
3631 if (!sock_flag(sk
, SOCK_DEAD
)) {
3632 sk
->sk_state_change(sk
);
3634 /* Do not send POLL_HUP for half duplex close. */
3635 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
3636 sk
->sk_state
== TCP_CLOSE
)
3637 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
3639 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
3643 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
3646 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
3647 if (before(seq
, sp
->start_seq
))
3648 sp
->start_seq
= seq
;
3649 if (after(end_seq
, sp
->end_seq
))
3650 sp
->end_seq
= end_seq
;
3656 static void tcp_dsack_set(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3658 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3659 if (before(seq
, tp
->rcv_nxt
))
3660 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
3662 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
3664 tp
->rx_opt
.dsack
= 1;
3665 tp
->duplicate_sack
[0].start_seq
= seq
;
3666 tp
->duplicate_sack
[0].end_seq
= end_seq
;
3667 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ 1,
3668 4 - tp
->rx_opt
.tstamp_ok
);
3672 static void tcp_dsack_extend(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3674 if (!tp
->rx_opt
.dsack
)
3675 tcp_dsack_set(tp
, seq
, end_seq
);
3677 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
3680 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
3682 struct tcp_sock
*tp
= tcp_sk(sk
);
3684 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
3685 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3686 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3687 tcp_enter_quickack_mode(sk
);
3689 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3690 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3692 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
3693 end_seq
= tp
->rcv_nxt
;
3694 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
3701 /* These routines update the SACK block as out-of-order packets arrive or
3702 * in-order packets close up the sequence space.
3704 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
3707 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3708 struct tcp_sack_block
*swalk
= sp
+ 1;
3710 /* See if the recent change to the first SACK eats into
3711 * or hits the sequence space of other SACK blocks, if so coalesce.
3713 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
3714 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
3717 /* Zap SWALK, by moving every further SACK up by one slot.
3718 * Decrease num_sacks.
3720 tp
->rx_opt
.num_sacks
--;
3721 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+
3723 4 - tp
->rx_opt
.tstamp_ok
);
3724 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
3728 this_sack
++, swalk
++;
3732 static inline void tcp_sack_swap(struct tcp_sack_block
*sack1
,
3733 struct tcp_sack_block
*sack2
)
3737 tmp
= sack1
->start_seq
;
3738 sack1
->start_seq
= sack2
->start_seq
;
3739 sack2
->start_seq
= tmp
;
3741 tmp
= sack1
->end_seq
;
3742 sack1
->end_seq
= sack2
->end_seq
;
3743 sack2
->end_seq
= tmp
;
3746 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3748 struct tcp_sock
*tp
= tcp_sk(sk
);
3749 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3750 int cur_sacks
= tp
->rx_opt
.num_sacks
;
3756 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
3757 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3758 /* Rotate this_sack to the first one. */
3759 for (; this_sack
> 0; this_sack
--, sp
--)
3760 tcp_sack_swap(sp
, sp
- 1);
3762 tcp_sack_maybe_coalesce(tp
);
3767 /* Could not find an adjacent existing SACK, build a new one,
3768 * put it at the front, and shift everyone else down. We
3769 * always know there is at least one SACK present already here.
3771 * If the sack array is full, forget about the last one.
3773 if (this_sack
>= 4) {
3775 tp
->rx_opt
.num_sacks
--;
3778 for (; this_sack
> 0; this_sack
--, sp
--)
3782 /* Build the new head SACK, and we're done. */
3783 sp
->start_seq
= seq
;
3784 sp
->end_seq
= end_seq
;
3785 tp
->rx_opt
.num_sacks
++;
3786 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
,
3787 4 - tp
->rx_opt
.tstamp_ok
);
3790 /* RCV.NXT advances, some SACKs should be eaten. */
3792 static void tcp_sack_remove(struct tcp_sock
*tp
)
3794 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3795 int num_sacks
= tp
->rx_opt
.num_sacks
;
3798 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3799 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
3800 tp
->rx_opt
.num_sacks
= 0;
3801 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
3805 for (this_sack
= 0; this_sack
< num_sacks
;) {
3806 /* Check if the start of the sack is covered by RCV.NXT. */
3807 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
3810 /* RCV.NXT must cover all the block! */
3811 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
3813 /* Zap this SACK, by moving forward any other SACKS. */
3814 for (i
=this_sack
+1; i
< num_sacks
; i
++)
3815 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
3822 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
3823 tp
->rx_opt
.num_sacks
= num_sacks
;
3824 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+
3826 4 - tp
->rx_opt
.tstamp_ok
);
3830 /* This one checks to see if we can put data from the
3831 * out_of_order queue into the receive_queue.
3833 static void tcp_ofo_queue(struct sock
*sk
)
3835 struct tcp_sock
*tp
= tcp_sk(sk
);
3836 __u32 dsack_high
= tp
->rcv_nxt
;
3837 struct sk_buff
*skb
;
3839 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
3840 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
3843 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
3844 __u32 dsack
= dsack_high
;
3845 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
3846 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
3847 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
3850 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3851 SOCK_DEBUG(sk
, "ofo packet was already received \n");
3852 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3856 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
3857 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3858 TCP_SKB_CB(skb
)->end_seq
);
3860 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3861 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3862 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3863 if (tcp_hdr(skb
)->fin
)
3864 tcp_fin(skb
, sk
, tcp_hdr(skb
));
3868 static int tcp_prune_ofo_queue(struct sock
*sk
);
3869 static int tcp_prune_queue(struct sock
*sk
);
3871 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
3873 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3874 !sk_rmem_schedule(sk
, size
)) {
3876 if (tcp_prune_queue(sk
) < 0)
3879 if (!sk_rmem_schedule(sk
, size
)) {
3880 if (!tcp_prune_ofo_queue(sk
))
3883 if (!sk_rmem_schedule(sk
, size
))
3890 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
3892 struct tcphdr
*th
= tcp_hdr(skb
);
3893 struct tcp_sock
*tp
= tcp_sk(sk
);
3896 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
3899 __skb_pull(skb
, th
->doff
* 4);
3901 TCP_ECN_accept_cwr(tp
, skb
);
3903 if (tp
->rx_opt
.dsack
) {
3904 tp
->rx_opt
.dsack
= 0;
3905 tp
->rx_opt
.eff_sacks
= min_t(unsigned int, tp
->rx_opt
.num_sacks
,
3906 4 - tp
->rx_opt
.tstamp_ok
);
3909 /* Queue data for delivery to the user.
3910 * Packets in sequence go to the receive queue.
3911 * Out of sequence packets to the out_of_order_queue.
3913 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3914 if (tcp_receive_window(tp
) == 0)
3917 /* Ok. In sequence. In window. */
3918 if (tp
->ucopy
.task
== current
&&
3919 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
3920 sock_owned_by_user(sk
) && !tp
->urg_data
) {
3921 int chunk
= min_t(unsigned int, skb
->len
,
3924 __set_current_state(TASK_RUNNING
);
3927 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
3928 tp
->ucopy
.len
-= chunk
;
3929 tp
->copied_seq
+= chunk
;
3930 eaten
= (chunk
== skb
->len
&& !th
->fin
);
3931 tcp_rcv_space_adjust(sk
);
3939 tcp_try_rmem_schedule(sk
, skb
->truesize
))
3942 skb_set_owner_r(skb
, sk
);
3943 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3945 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3947 tcp_event_data_recv(sk
, skb
);
3949 tcp_fin(skb
, sk
, th
);
3951 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3954 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3955 * gap in queue is filled.
3957 if (skb_queue_empty(&tp
->out_of_order_queue
))
3958 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
3961 if (tp
->rx_opt
.num_sacks
)
3962 tcp_sack_remove(tp
);
3964 tcp_fast_path_check(sk
);
3968 else if (!sock_flag(sk
, SOCK_DEAD
))
3969 sk
->sk_data_ready(sk
, 0);
3973 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3974 /* A retransmit, 2nd most common case. Force an immediate ack. */
3975 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3976 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3979 tcp_enter_quickack_mode(sk
);
3980 inet_csk_schedule_ack(sk
);
3986 /* Out of window. F.e. zero window probe. */
3987 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
3990 tcp_enter_quickack_mode(sk
);
3992 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3993 /* Partial packet, seq < rcv_next < end_seq */
3994 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
3995 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3996 TCP_SKB_CB(skb
)->end_seq
);
3998 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4000 /* If window is closed, drop tail of packet. But after
4001 * remembering D-SACK for its head made in previous line.
4003 if (!tcp_receive_window(tp
))
4008 TCP_ECN_check_ce(tp
, skb
);
4010 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4013 /* Disable header prediction. */
4015 inet_csk_schedule_ack(sk
);
4017 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4018 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4020 skb_set_owner_r(skb
, sk
);
4022 if (!skb_peek(&tp
->out_of_order_queue
)) {
4023 /* Initial out of order segment, build 1 SACK. */
4024 if (tcp_is_sack(tp
)) {
4025 tp
->rx_opt
.num_sacks
= 1;
4026 tp
->rx_opt
.dsack
= 0;
4027 tp
->rx_opt
.eff_sacks
= 1;
4028 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4029 tp
->selective_acks
[0].end_seq
=
4030 TCP_SKB_CB(skb
)->end_seq
;
4032 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4034 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
4035 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4036 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4038 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4039 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4041 if (!tp
->rx_opt
.num_sacks
||
4042 tp
->selective_acks
[0].end_seq
!= seq
)
4045 /* Common case: data arrive in order after hole. */
4046 tp
->selective_acks
[0].end_seq
= end_seq
;
4050 /* Find place to insert this segment. */
4052 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4054 } while ((skb1
= skb1
->prev
) !=
4055 (struct sk_buff
*)&tp
->out_of_order_queue
);
4057 /* Do skb overlap to previous one? */
4058 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
4059 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4060 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4061 /* All the bits are present. Drop. */
4063 tcp_dsack_set(tp
, seq
, end_seq
);
4066 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4067 /* Partial overlap. */
4068 tcp_dsack_set(tp
, seq
,
4069 TCP_SKB_CB(skb1
)->end_seq
);
4074 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
4076 /* And clean segments covered by new one as whole. */
4077 while ((skb1
= skb
->next
) !=
4078 (struct sk_buff
*)&tp
->out_of_order_queue
&&
4079 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
4080 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4081 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
,
4085 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4086 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
,
4087 TCP_SKB_CB(skb1
)->end_seq
);
4092 if (tcp_is_sack(tp
))
4093 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4097 /* Collapse contiguous sequence of skbs head..tail with
4098 * sequence numbers start..end.
4099 * Segments with FIN/SYN are not collapsed (only because this
4103 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4104 struct sk_buff
*head
, struct sk_buff
*tail
,
4107 struct sk_buff
*skb
;
4109 /* First, check that queue is collapsible and find
4110 * the point where collapsing can be useful. */
4111 for (skb
= head
; skb
!= tail
;) {
4112 /* No new bits? It is possible on ofo queue. */
4113 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4114 struct sk_buff
*next
= skb
->next
;
4115 __skb_unlink(skb
, list
);
4117 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
4122 /* The first skb to collapse is:
4124 * - bloated or contains data before "start" or
4125 * overlaps to the next one.
4127 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4128 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4129 before(TCP_SKB_CB(skb
)->seq
, start
) ||
4130 (skb
->next
!= tail
&&
4131 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
4134 /* Decided to skip this, advance start seq. */
4135 start
= TCP_SKB_CB(skb
)->end_seq
;
4138 if (skb
== tail
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4141 while (before(start
, end
)) {
4142 struct sk_buff
*nskb
;
4143 unsigned int header
= skb_headroom(skb
);
4144 int copy
= SKB_MAX_ORDER(header
, 0);
4146 /* Too big header? This can happen with IPv6. */
4149 if (end
- start
< copy
)
4151 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4155 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4156 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4158 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4160 skb_reserve(nskb
, header
);
4161 memcpy(nskb
->head
, skb
->head
, header
);
4162 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4163 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4164 __skb_insert(nskb
, skb
->prev
, skb
, list
);
4165 skb_set_owner_r(nskb
, sk
);
4167 /* Copy data, releasing collapsed skbs. */
4169 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4170 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4174 size
= min(copy
, size
);
4175 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4177 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4181 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4182 struct sk_buff
*next
= skb
->next
;
4183 __skb_unlink(skb
, list
);
4185 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
4188 tcp_hdr(skb
)->syn
||
4196 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4197 * and tcp_collapse() them until all the queue is collapsed.
4199 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4201 struct tcp_sock
*tp
= tcp_sk(sk
);
4202 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4203 struct sk_buff
*head
;
4209 start
= TCP_SKB_CB(skb
)->seq
;
4210 end
= TCP_SKB_CB(skb
)->end_seq
;
4216 /* Segment is terminated when we see gap or when
4217 * we are at the end of all the queue. */
4218 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
4219 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4220 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4221 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4222 head
, skb
, start
, end
);
4224 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
4226 /* Start new segment */
4227 start
= TCP_SKB_CB(skb
)->seq
;
4228 end
= TCP_SKB_CB(skb
)->end_seq
;
4230 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4231 start
= TCP_SKB_CB(skb
)->seq
;
4232 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4233 end
= TCP_SKB_CB(skb
)->end_seq
;
4239 * Purge the out-of-order queue.
4240 * Return true if queue was pruned.
4242 static int tcp_prune_ofo_queue(struct sock
*sk
)
4244 struct tcp_sock
*tp
= tcp_sk(sk
);
4247 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4248 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED
);
4249 __skb_queue_purge(&tp
->out_of_order_queue
);
4251 /* Reset SACK state. A conforming SACK implementation will
4252 * do the same at a timeout based retransmit. When a connection
4253 * is in a sad state like this, we care only about integrity
4254 * of the connection not performance.
4256 if (tp
->rx_opt
.sack_ok
)
4257 tcp_sack_reset(&tp
->rx_opt
);
4264 /* Reduce allocated memory if we can, trying to get
4265 * the socket within its memory limits again.
4267 * Return less than zero if we should start dropping frames
4268 * until the socket owning process reads some of the data
4269 * to stabilize the situation.
4271 static int tcp_prune_queue(struct sock
*sk
)
4273 struct tcp_sock
*tp
= tcp_sk(sk
);
4275 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4277 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
4279 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4280 tcp_clamp_window(sk
);
4281 else if (tcp_memory_pressure
)
4282 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4284 tcp_collapse_ofo_queue(sk
);
4285 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4286 sk
->sk_receive_queue
.next
,
4287 (struct sk_buff
*)&sk
->sk_receive_queue
,
4288 tp
->copied_seq
, tp
->rcv_nxt
);
4291 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4294 /* Collapsing did not help, destructive actions follow.
4295 * This must not ever occur. */
4297 tcp_prune_ofo_queue(sk
);
4299 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4302 /* If we are really being abused, tell the caller to silently
4303 * drop receive data on the floor. It will get retransmitted
4304 * and hopefully then we'll have sufficient space.
4306 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
4308 /* Massive buffer overcommit. */
4313 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4314 * As additional protections, we do not touch cwnd in retransmission phases,
4315 * and if application hit its sndbuf limit recently.
4317 void tcp_cwnd_application_limited(struct sock
*sk
)
4319 struct tcp_sock
*tp
= tcp_sk(sk
);
4321 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4322 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4323 /* Limited by application or receiver window. */
4324 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4325 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4326 if (win_used
< tp
->snd_cwnd
) {
4327 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4328 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4330 tp
->snd_cwnd_used
= 0;
4332 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4335 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4337 struct tcp_sock
*tp
= tcp_sk(sk
);
4339 /* If the user specified a specific send buffer setting, do
4342 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4345 /* If we are under global TCP memory pressure, do not expand. */
4346 if (tcp_memory_pressure
)
4349 /* If we are under soft global TCP memory pressure, do not expand. */
4350 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4353 /* If we filled the congestion window, do not expand. */
4354 if (tp
->packets_out
>= tp
->snd_cwnd
)
4360 /* When incoming ACK allowed to free some skb from write_queue,
4361 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4362 * on the exit from tcp input handler.
4364 * PROBLEM: sndbuf expansion does not work well with largesend.
4366 static void tcp_new_space(struct sock
*sk
)
4368 struct tcp_sock
*tp
= tcp_sk(sk
);
4370 if (tcp_should_expand_sndbuf(sk
)) {
4371 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4372 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
4373 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4374 tp
->reordering
+ 1);
4375 sndmem
*= 2 * demanded
;
4376 if (sndmem
> sk
->sk_sndbuf
)
4377 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4378 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4381 sk
->sk_write_space(sk
);
4384 static void tcp_check_space(struct sock
*sk
)
4386 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4387 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4388 if (sk
->sk_socket
&&
4389 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4394 static inline void tcp_data_snd_check(struct sock
*sk
)
4396 tcp_push_pending_frames(sk
);
4397 tcp_check_space(sk
);
4401 * Check if sending an ack is needed.
4403 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4405 struct tcp_sock
*tp
= tcp_sk(sk
);
4407 /* More than one full frame received... */
4408 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
4409 /* ... and right edge of window advances far enough.
4410 * (tcp_recvmsg() will send ACK otherwise). Or...
4412 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4413 /* We ACK each frame or... */
4414 tcp_in_quickack_mode(sk
) ||
4415 /* We have out of order data. */
4416 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4417 /* Then ack it now */
4420 /* Else, send delayed ack. */
4421 tcp_send_delayed_ack(sk
);
4425 static inline void tcp_ack_snd_check(struct sock
*sk
)
4427 if (!inet_csk_ack_scheduled(sk
)) {
4428 /* We sent a data segment already. */
4431 __tcp_ack_snd_check(sk
, 1);
4435 * This routine is only called when we have urgent data
4436 * signaled. Its the 'slow' part of tcp_urg. It could be
4437 * moved inline now as tcp_urg is only called from one
4438 * place. We handle URGent data wrong. We have to - as
4439 * BSD still doesn't use the correction from RFC961.
4440 * For 1003.1g we should support a new option TCP_STDURG to permit
4441 * either form (or just set the sysctl tcp_stdurg).
4444 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4446 struct tcp_sock
*tp
= tcp_sk(sk
);
4447 u32 ptr
= ntohs(th
->urg_ptr
);
4449 if (ptr
&& !sysctl_tcp_stdurg
)
4451 ptr
+= ntohl(th
->seq
);
4453 /* Ignore urgent data that we've already seen and read. */
4454 if (after(tp
->copied_seq
, ptr
))
4457 /* Do not replay urg ptr.
4459 * NOTE: interesting situation not covered by specs.
4460 * Misbehaving sender may send urg ptr, pointing to segment,
4461 * which we already have in ofo queue. We are not able to fetch
4462 * such data and will stay in TCP_URG_NOTYET until will be eaten
4463 * by recvmsg(). Seems, we are not obliged to handle such wicked
4464 * situations. But it is worth to think about possibility of some
4465 * DoSes using some hypothetical application level deadlock.
4467 if (before(ptr
, tp
->rcv_nxt
))
4470 /* Do we already have a newer (or duplicate) urgent pointer? */
4471 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4474 /* Tell the world about our new urgent pointer. */
4477 /* We may be adding urgent data when the last byte read was
4478 * urgent. To do this requires some care. We cannot just ignore
4479 * tp->copied_seq since we would read the last urgent byte again
4480 * as data, nor can we alter copied_seq until this data arrives
4481 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4483 * NOTE. Double Dutch. Rendering to plain English: author of comment
4484 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4485 * and expect that both A and B disappear from stream. This is _wrong_.
4486 * Though this happens in BSD with high probability, this is occasional.
4487 * Any application relying on this is buggy. Note also, that fix "works"
4488 * only in this artificial test. Insert some normal data between A and B and we will
4489 * decline of BSD again. Verdict: it is better to remove to trap
4492 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4493 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4494 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4496 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4497 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4502 tp
->urg_data
= TCP_URG_NOTYET
;
4505 /* Disable header prediction. */
4509 /* This is the 'fast' part of urgent handling. */
4510 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4512 struct tcp_sock
*tp
= tcp_sk(sk
);
4514 /* Check if we get a new urgent pointer - normally not. */
4516 tcp_check_urg(sk
, th
);
4518 /* Do we wait for any urgent data? - normally not... */
4519 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4520 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4523 /* Is the urgent pointer pointing into this packet? */
4524 if (ptr
< skb
->len
) {
4526 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4528 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4529 if (!sock_flag(sk
, SOCK_DEAD
))
4530 sk
->sk_data_ready(sk
, 0);
4535 static int tcp_defer_accept_check(struct sock
*sk
)
4537 struct tcp_sock
*tp
= tcp_sk(sk
);
4539 if (tp
->defer_tcp_accept
.request
) {
4540 int queued_data
= tp
->rcv_nxt
- tp
->copied_seq
;
4541 int hasfin
= !skb_queue_empty(&sk
->sk_receive_queue
) ?
4542 tcp_hdr((struct sk_buff
*)
4543 sk
->sk_receive_queue
.prev
)->fin
: 0;
4545 if (queued_data
&& hasfin
)
4549 tp
->defer_tcp_accept
.listen_sk
->sk_state
== TCP_LISTEN
) {
4550 if (sock_flag(sk
, SOCK_KEEPOPEN
)) {
4551 inet_csk_reset_keepalive_timer(sk
,
4552 keepalive_time_when(tp
));
4554 inet_csk_delete_keepalive_timer(sk
);
4557 inet_csk_reqsk_queue_add(
4558 tp
->defer_tcp_accept
.listen_sk
,
4559 tp
->defer_tcp_accept
.request
,
4562 tp
->defer_tcp_accept
.listen_sk
->sk_data_ready(
4563 tp
->defer_tcp_accept
.listen_sk
, 0);
4565 sock_put(tp
->defer_tcp_accept
.listen_sk
);
4567 tp
->defer_tcp_accept
.listen_sk
= NULL
;
4568 tp
->defer_tcp_accept
.request
= NULL
;
4569 } else if (hasfin
||
4570 tp
->defer_tcp_accept
.listen_sk
->sk_state
!= TCP_LISTEN
) {
4578 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4580 struct tcp_sock
*tp
= tcp_sk(sk
);
4581 int chunk
= skb
->len
- hlen
;
4585 if (skb_csum_unnecessary(skb
))
4586 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4588 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4592 tp
->ucopy
.len
-= chunk
;
4593 tp
->copied_seq
+= chunk
;
4594 tcp_rcv_space_adjust(sk
);
4601 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
4602 struct sk_buff
*skb
)
4606 if (sock_owned_by_user(sk
)) {
4608 result
= __tcp_checksum_complete(skb
);
4611 result
= __tcp_checksum_complete(skb
);
4616 static inline int tcp_checksum_complete_user(struct sock
*sk
,
4617 struct sk_buff
*skb
)
4619 return !skb_csum_unnecessary(skb
) &&
4620 __tcp_checksum_complete_user(sk
, skb
);
4623 #ifdef CONFIG_NET_DMA
4624 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
4627 struct tcp_sock
*tp
= tcp_sk(sk
);
4628 int chunk
= skb
->len
- hlen
;
4630 int copied_early
= 0;
4632 if (tp
->ucopy
.wakeup
)
4635 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
4636 tp
->ucopy
.dma_chan
= get_softnet_dma();
4638 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
4640 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
4642 tp
->ucopy
.iov
, chunk
,
4643 tp
->ucopy
.pinned_list
);
4648 tp
->ucopy
.dma_cookie
= dma_cookie
;
4651 tp
->ucopy
.len
-= chunk
;
4652 tp
->copied_seq
+= chunk
;
4653 tcp_rcv_space_adjust(sk
);
4655 if ((tp
->ucopy
.len
== 0) ||
4656 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
4657 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
4658 tp
->ucopy
.wakeup
= 1;
4659 sk
->sk_data_ready(sk
, 0);
4661 } else if (chunk
> 0) {
4662 tp
->ucopy
.wakeup
= 1;
4663 sk
->sk_data_ready(sk
, 0);
4666 return copied_early
;
4668 #endif /* CONFIG_NET_DMA */
4671 * TCP receive function for the ESTABLISHED state.
4673 * It is split into a fast path and a slow path. The fast path is
4675 * - A zero window was announced from us - zero window probing
4676 * is only handled properly in the slow path.
4677 * - Out of order segments arrived.
4678 * - Urgent data is expected.
4679 * - There is no buffer space left
4680 * - Unexpected TCP flags/window values/header lengths are received
4681 * (detected by checking the TCP header against pred_flags)
4682 * - Data is sent in both directions. Fast path only supports pure senders
4683 * or pure receivers (this means either the sequence number or the ack
4684 * value must stay constant)
4685 * - Unexpected TCP option.
4687 * When these conditions are not satisfied it drops into a standard
4688 * receive procedure patterned after RFC793 to handle all cases.
4689 * The first three cases are guaranteed by proper pred_flags setting,
4690 * the rest is checked inline. Fast processing is turned on in
4691 * tcp_data_queue when everything is OK.
4693 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
4694 struct tcphdr
*th
, unsigned len
)
4696 struct tcp_sock
*tp
= tcp_sk(sk
);
4699 * Header prediction.
4700 * The code loosely follows the one in the famous
4701 * "30 instruction TCP receive" Van Jacobson mail.
4703 * Van's trick is to deposit buffers into socket queue
4704 * on a device interrupt, to call tcp_recv function
4705 * on the receive process context and checksum and copy
4706 * the buffer to user space. smart...
4708 * Our current scheme is not silly either but we take the
4709 * extra cost of the net_bh soft interrupt processing...
4710 * We do checksum and copy also but from device to kernel.
4713 tp
->rx_opt
.saw_tstamp
= 0;
4715 /* pred_flags is 0xS?10 << 16 + snd_wnd
4716 * if header_prediction is to be made
4717 * 'S' will always be tp->tcp_header_len >> 2
4718 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4719 * turn it off (when there are holes in the receive
4720 * space for instance)
4721 * PSH flag is ignored.
4724 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
4725 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4726 int tcp_header_len
= tp
->tcp_header_len
;
4728 /* Timestamp header prediction: tcp_header_len
4729 * is automatically equal to th->doff*4 due to pred_flags
4733 /* Check timestamp */
4734 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
4735 __be32
*ptr
= (__be32
*)(th
+ 1);
4737 /* No? Slow path! */
4738 if (*ptr
!= htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
4739 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
4742 tp
->rx_opt
.saw_tstamp
= 1;
4744 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
4746 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
4748 /* If PAWS failed, check it more carefully in slow path */
4749 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
4752 /* DO NOT update ts_recent here, if checksum fails
4753 * and timestamp was corrupted part, it will result
4754 * in a hung connection since we will drop all
4755 * future packets due to the PAWS test.
4759 if (len
<= tcp_header_len
) {
4760 /* Bulk data transfer: sender */
4761 if (len
== tcp_header_len
) {
4762 /* Predicted packet is in window by definition.
4763 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4764 * Hence, check seq<=rcv_wup reduces to:
4766 if (tcp_header_len
==
4767 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4768 tp
->rcv_nxt
== tp
->rcv_wup
)
4769 tcp_store_ts_recent(tp
);
4771 /* We know that such packets are checksummed
4774 tcp_ack(sk
, skb
, 0);
4776 tcp_data_snd_check(sk
);
4778 } else { /* Header too small */
4779 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4784 int copied_early
= 0;
4786 if (tp
->copied_seq
== tp
->rcv_nxt
&&
4787 len
- tcp_header_len
<= tp
->ucopy
.len
) {
4788 #ifdef CONFIG_NET_DMA
4789 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
4794 if (tp
->ucopy
.task
== current
&&
4795 sock_owned_by_user(sk
) && !copied_early
) {
4796 __set_current_state(TASK_RUNNING
);
4798 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
4802 /* Predicted packet is in window by definition.
4803 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4804 * Hence, check seq<=rcv_wup reduces to:
4806 if (tcp_header_len
==
4807 (sizeof(struct tcphdr
) +
4808 TCPOLEN_TSTAMP_ALIGNED
) &&
4809 tp
->rcv_nxt
== tp
->rcv_wup
)
4810 tcp_store_ts_recent(tp
);
4812 tcp_rcv_rtt_measure_ts(sk
, skb
);
4814 __skb_pull(skb
, tcp_header_len
);
4815 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4816 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
4819 tcp_cleanup_rbuf(sk
, skb
->len
);
4822 if (tcp_checksum_complete_user(sk
, skb
))
4825 /* Predicted packet is in window by definition.
4826 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4827 * Hence, check seq<=rcv_wup reduces to:
4829 if (tcp_header_len
==
4830 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4831 tp
->rcv_nxt
== tp
->rcv_wup
)
4832 tcp_store_ts_recent(tp
);
4834 tcp_rcv_rtt_measure_ts(sk
, skb
);
4836 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
4839 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
4841 /* Bulk data transfer: receiver */
4842 __skb_pull(skb
, tcp_header_len
);
4843 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4844 skb_set_owner_r(skb
, sk
);
4845 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4848 tcp_event_data_recv(sk
, skb
);
4850 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
4851 /* Well, only one small jumplet in fast path... */
4852 tcp_ack(sk
, skb
, FLAG_DATA
);
4853 tcp_data_snd_check(sk
);
4854 if (!inet_csk_ack_scheduled(sk
))
4858 __tcp_ack_snd_check(sk
, 0);
4860 #ifdef CONFIG_NET_DMA
4862 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
4868 sk
->sk_data_ready(sk
, 0);
4874 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
4878 * RFC1323: H1. Apply PAWS check first.
4880 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4881 tcp_paws_discard(sk
, skb
)) {
4883 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4884 tcp_send_dupack(sk
, skb
);
4887 /* Resets are accepted even if PAWS failed.
4889 ts_recent update must be made after we are sure
4890 that the packet is in window.
4895 * Standard slow path.
4898 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4899 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4900 * (RST) segments are validated by checking their SEQ-fields."
4901 * And page 69: "If an incoming segment is not acceptable,
4902 * an acknowledgment should be sent in reply (unless the RST bit
4903 * is set, if so drop the segment and return)".
4906 tcp_send_dupack(sk
, skb
);
4915 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4917 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4918 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4919 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4926 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4928 tcp_rcv_rtt_measure_ts(sk
, skb
);
4930 /* Process urgent data. */
4931 tcp_urg(sk
, skb
, th
);
4933 /* step 7: process the segment text */
4934 tcp_data_queue(sk
, skb
);
4936 tcp_data_snd_check(sk
);
4937 tcp_ack_snd_check(sk
);
4939 tcp_defer_accept_check(sk
);
4943 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4950 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4951 struct tcphdr
*th
, unsigned len
)
4953 struct tcp_sock
*tp
= tcp_sk(sk
);
4954 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4955 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
4957 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
4961 * "If the state is SYN-SENT then
4962 * first check the ACK bit
4963 * If the ACK bit is set
4964 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4965 * a reset (unless the RST bit is set, if so drop
4966 * the segment and return)"
4968 * We do not send data with SYN, so that RFC-correct
4971 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
4972 goto reset_and_undo
;
4974 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4975 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
4977 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
4978 goto reset_and_undo
;
4981 /* Now ACK is acceptable.
4983 * "If the RST bit is set
4984 * If the ACK was acceptable then signal the user "error:
4985 * connection reset", drop the segment, enter CLOSED state,
4986 * delete TCB, and return."
4995 * "fifth, if neither of the SYN or RST bits is set then
4996 * drop the segment and return."
5002 goto discard_and_undo
;
5005 * "If the SYN bit is on ...
5006 * are acceptable then ...
5007 * (our SYN has been ACKed), change the connection
5008 * state to ESTABLISHED..."
5011 TCP_ECN_rcv_synack(tp
, th
);
5013 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5014 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5016 /* Ok.. it's good. Set up sequence numbers and
5017 * move to established.
5019 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5020 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5022 /* RFC1323: The window in SYN & SYN/ACK segments is
5025 tp
->snd_wnd
= ntohs(th
->window
);
5026 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
5028 if (!tp
->rx_opt
.wscale_ok
) {
5029 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5030 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5033 if (tp
->rx_opt
.saw_tstamp
) {
5034 tp
->rx_opt
.tstamp_ok
= 1;
5035 tp
->tcp_header_len
=
5036 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5037 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5038 tcp_store_ts_recent(tp
);
5040 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5043 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5044 tcp_enable_fack(tp
);
5047 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5048 tcp_initialize_rcv_mss(sk
);
5050 /* Remember, tcp_poll() does not lock socket!
5051 * Change state from SYN-SENT only after copied_seq
5052 * is initialized. */
5053 tp
->copied_seq
= tp
->rcv_nxt
;
5055 tcp_set_state(sk
, TCP_ESTABLISHED
);
5057 security_inet_conn_established(sk
, skb
);
5059 /* Make sure socket is routed, for correct metrics. */
5060 icsk
->icsk_af_ops
->rebuild_header(sk
);
5062 tcp_init_metrics(sk
);
5064 tcp_init_congestion_control(sk
);
5066 /* Prevent spurious tcp_cwnd_restart() on first data
5069 tp
->lsndtime
= tcp_time_stamp
;
5071 tcp_init_buffer_space(sk
);
5073 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5074 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5076 if (!tp
->rx_opt
.snd_wscale
)
5077 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5081 if (!sock_flag(sk
, SOCK_DEAD
)) {
5082 sk
->sk_state_change(sk
);
5083 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5086 if (sk
->sk_write_pending
||
5087 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5088 icsk
->icsk_ack
.pingpong
) {
5089 /* Save one ACK. Data will be ready after
5090 * several ticks, if write_pending is set.
5092 * It may be deleted, but with this feature tcpdumps
5093 * look so _wonderfully_ clever, that I was not able
5094 * to stand against the temptation 8) --ANK
5096 inet_csk_schedule_ack(sk
);
5097 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5098 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5099 tcp_incr_quickack(sk
);
5100 tcp_enter_quickack_mode(sk
);
5101 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5102 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5113 /* No ACK in the segment */
5117 * "If the RST bit is set
5119 * Otherwise (no ACK) drop the segment and return."
5122 goto discard_and_undo
;
5126 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5127 tcp_paws_check(&tp
->rx_opt
, 0))
5128 goto discard_and_undo
;
5131 /* We see SYN without ACK. It is attempt of
5132 * simultaneous connect with crossed SYNs.
5133 * Particularly, it can be connect to self.
5135 tcp_set_state(sk
, TCP_SYN_RECV
);
5137 if (tp
->rx_opt
.saw_tstamp
) {
5138 tp
->rx_opt
.tstamp_ok
= 1;
5139 tcp_store_ts_recent(tp
);
5140 tp
->tcp_header_len
=
5141 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5143 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5146 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5147 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5149 /* RFC1323: The window in SYN & SYN/ACK segments is
5152 tp
->snd_wnd
= ntohs(th
->window
);
5153 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5154 tp
->max_window
= tp
->snd_wnd
;
5156 TCP_ECN_rcv_syn(tp
, th
);
5159 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5160 tcp_initialize_rcv_mss(sk
);
5162 tcp_send_synack(sk
);
5164 /* Note, we could accept data and URG from this segment.
5165 * There are no obstacles to make this.
5167 * However, if we ignore data in ACKless segments sometimes,
5168 * we have no reasons to accept it sometimes.
5169 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5170 * is not flawless. So, discard packet for sanity.
5171 * Uncomment this return to process the data.
5178 /* "fifth, if neither of the SYN or RST bits is set then
5179 * drop the segment and return."
5183 tcp_clear_options(&tp
->rx_opt
);
5184 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5188 tcp_clear_options(&tp
->rx_opt
);
5189 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5194 * This function implements the receiving procedure of RFC 793 for
5195 * all states except ESTABLISHED and TIME_WAIT.
5196 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5197 * address independent.
5200 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5201 struct tcphdr
*th
, unsigned len
)
5203 struct tcp_sock
*tp
= tcp_sk(sk
);
5204 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5207 tp
->rx_opt
.saw_tstamp
= 0;
5209 switch (sk
->sk_state
) {
5221 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5224 /* Now we have several options: In theory there is
5225 * nothing else in the frame. KA9Q has an option to
5226 * send data with the syn, BSD accepts data with the
5227 * syn up to the [to be] advertised window and
5228 * Solaris 2.1 gives you a protocol error. For now
5229 * we just ignore it, that fits the spec precisely
5230 * and avoids incompatibilities. It would be nice in
5231 * future to drop through and process the data.
5233 * Now that TTCP is starting to be used we ought to
5235 * But, this leaves one open to an easy denial of
5236 * service attack, and SYN cookies can't defend
5237 * against this problem. So, we drop the data
5238 * in the interest of security over speed unless
5239 * it's still in use.
5247 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5251 /* Do step6 onward by hand. */
5252 tcp_urg(sk
, skb
, th
);
5254 tcp_data_snd_check(sk
);
5258 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5259 tcp_paws_discard(sk
, skb
)) {
5261 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
5262 tcp_send_dupack(sk
, skb
);
5265 /* Reset is accepted even if it did not pass PAWS. */
5268 /* step 1: check sequence number */
5269 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5271 tcp_send_dupack(sk
, skb
);
5275 /* step 2: check RST bit */
5281 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5283 /* step 3: check security and precedence [ignored] */
5287 * Check for a SYN in window.
5289 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5290 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
5295 /* step 5: check the ACK field */
5297 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5299 switch (sk
->sk_state
) {
5302 tp
->copied_seq
= tp
->rcv_nxt
;
5304 tcp_set_state(sk
, TCP_ESTABLISHED
);
5305 sk
->sk_state_change(sk
);
5307 /* Note, that this wakeup is only for marginal
5308 * crossed SYN case. Passively open sockets
5309 * are not waked up, because sk->sk_sleep ==
5310 * NULL and sk->sk_socket == NULL.
5314 SOCK_WAKE_IO
, POLL_OUT
);
5316 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5317 tp
->snd_wnd
= ntohs(th
->window
) <<
5318 tp
->rx_opt
.snd_wscale
;
5319 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
5320 TCP_SKB_CB(skb
)->seq
);
5322 /* tcp_ack considers this ACK as duplicate
5323 * and does not calculate rtt.
5324 * Fix it at least with timestamps.
5326 if (tp
->rx_opt
.saw_tstamp
&&
5327 tp
->rx_opt
.rcv_tsecr
&& !tp
->srtt
)
5328 tcp_ack_saw_tstamp(sk
, 0);
5330 if (tp
->rx_opt
.tstamp_ok
)
5331 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5333 /* Make sure socket is routed, for
5336 icsk
->icsk_af_ops
->rebuild_header(sk
);
5338 tcp_init_metrics(sk
);
5340 tcp_init_congestion_control(sk
);
5342 /* Prevent spurious tcp_cwnd_restart() on
5343 * first data packet.
5345 tp
->lsndtime
= tcp_time_stamp
;
5348 tcp_initialize_rcv_mss(sk
);
5349 tcp_init_buffer_space(sk
);
5350 tcp_fast_path_on(tp
);
5357 if (tp
->snd_una
== tp
->write_seq
) {
5358 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5359 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5360 dst_confirm(sk
->sk_dst_cache
);
5362 if (!sock_flag(sk
, SOCK_DEAD
))
5363 /* Wake up lingering close() */
5364 sk
->sk_state_change(sk
);
5368 if (tp
->linger2
< 0 ||
5369 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5370 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5372 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
5376 tmo
= tcp_fin_time(sk
);
5377 if (tmo
> TCP_TIMEWAIT_LEN
) {
5378 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5379 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5380 /* Bad case. We could lose such FIN otherwise.
5381 * It is not a big problem, but it looks confusing
5382 * and not so rare event. We still can lose it now,
5383 * if it spins in bh_lock_sock(), but it is really
5386 inet_csk_reset_keepalive_timer(sk
, tmo
);
5388 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5396 if (tp
->snd_una
== tp
->write_seq
) {
5397 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5403 if (tp
->snd_una
== tp
->write_seq
) {
5404 tcp_update_metrics(sk
);
5413 /* step 6: check the URG bit */
5414 tcp_urg(sk
, skb
, th
);
5416 /* step 7: process the segment text */
5417 switch (sk
->sk_state
) {
5418 case TCP_CLOSE_WAIT
:
5421 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5425 /* RFC 793 says to queue data in these states,
5426 * RFC 1122 says we MUST send a reset.
5427 * BSD 4.4 also does reset.
5429 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5430 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5431 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5432 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
5438 case TCP_ESTABLISHED
:
5439 tcp_data_queue(sk
, skb
);
5444 /* tcp_data could move socket to TIME-WAIT */
5445 if (sk
->sk_state
!= TCP_CLOSE
) {
5446 tcp_data_snd_check(sk
);
5447 tcp_ack_snd_check(sk
);
5457 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5458 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5459 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5460 EXPORT_SYMBOL(tcp_parse_options
);
5461 EXPORT_SYMBOL(tcp_rcv_established
);
5462 EXPORT_SYMBOL(tcp_rcv_state_process
);
5463 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);