ARM: OMAP: Improve 34xx detection
[linux-ginger.git] / kernel / rcupreempt.c
blob27827931ca0dd6ca905040955616c970b2e7539d
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2006
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
32 * Design Document: http://lwn.net/Articles/253651/
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/init.h>
41 #include <linux/spinlock.h>
42 #include <linux/smp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/interrupt.h>
45 #include <linux/sched.h>
46 #include <asm/atomic.h>
47 #include <linux/bitops.h>
48 #include <linux/module.h>
49 #include <linux/kthread.h>
50 #include <linux/completion.h>
51 #include <linux/moduleparam.h>
52 #include <linux/percpu.h>
53 #include <linux/notifier.h>
54 #include <linux/cpu.h>
55 #include <linux/random.h>
56 #include <linux/delay.h>
57 #include <linux/byteorder/swabb.h>
58 #include <linux/cpumask.h>
59 #include <linux/rcupreempt_trace.h>
62 * Macro that prevents the compiler from reordering accesses, but does
63 * absolutely -nothing- to prevent CPUs from reordering. This is used
64 * only to mediate communication between mainline code and hardware
65 * interrupt and NMI handlers.
67 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
70 * PREEMPT_RCU data structures.
74 * GP_STAGES specifies the number of times the state machine has
75 * to go through the all the rcu_try_flip_states (see below)
76 * in a single Grace Period.
78 * GP in GP_STAGES stands for Grace Period ;)
80 #define GP_STAGES 2
81 struct rcu_data {
82 spinlock_t lock; /* Protect rcu_data fields. */
83 long completed; /* Number of last completed batch. */
84 int waitlistcount;
85 struct rcu_head *nextlist;
86 struct rcu_head **nexttail;
87 struct rcu_head *waitlist[GP_STAGES];
88 struct rcu_head **waittail[GP_STAGES];
89 struct rcu_head *donelist; /* from waitlist & waitschedlist */
90 struct rcu_head **donetail;
91 long rcu_flipctr[2];
92 struct rcu_head *nextschedlist;
93 struct rcu_head **nextschedtail;
94 struct rcu_head *waitschedlist;
95 struct rcu_head **waitschedtail;
96 int rcu_sched_sleeping;
97 #ifdef CONFIG_RCU_TRACE
98 struct rcupreempt_trace trace;
99 #endif /* #ifdef CONFIG_RCU_TRACE */
103 * States for rcu_try_flip() and friends.
106 enum rcu_try_flip_states {
109 * Stay here if nothing is happening. Flip the counter if somthing
110 * starts happening. Denoted by "I"
112 rcu_try_flip_idle_state,
115 * Wait here for all CPUs to notice that the counter has flipped. This
116 * prevents the old set of counters from ever being incremented once
117 * we leave this state, which in turn is necessary because we cannot
118 * test any individual counter for zero -- we can only check the sum.
119 * Denoted by "A".
121 rcu_try_flip_waitack_state,
124 * Wait here for the sum of the old per-CPU counters to reach zero.
125 * Denoted by "Z".
127 rcu_try_flip_waitzero_state,
130 * Wait here for each of the other CPUs to execute a memory barrier.
131 * This is necessary to ensure that these other CPUs really have
132 * completed executing their RCU read-side critical sections, despite
133 * their CPUs wildly reordering memory. Denoted by "M".
135 rcu_try_flip_waitmb_state,
139 * States for rcu_ctrlblk.rcu_sched_sleep.
142 enum rcu_sched_sleep_states {
143 rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */
144 rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */
145 rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */
148 struct rcu_ctrlblk {
149 spinlock_t fliplock; /* Protect state-machine transitions. */
150 long completed; /* Number of last completed batch. */
151 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
152 the rcu state machine */
153 spinlock_t schedlock; /* Protect rcu_sched sleep state. */
154 enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
155 wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */
158 static DEFINE_PER_CPU(struct rcu_data, rcu_data);
159 static struct rcu_ctrlblk rcu_ctrlblk = {
160 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
161 .completed = 0,
162 .rcu_try_flip_state = rcu_try_flip_idle_state,
163 .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
164 .sched_sleep = rcu_sched_not_sleeping,
165 .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
168 static struct task_struct *rcu_sched_grace_period_task;
170 #ifdef CONFIG_RCU_TRACE
171 static char *rcu_try_flip_state_names[] =
172 { "idle", "waitack", "waitzero", "waitmb" };
173 #endif /* #ifdef CONFIG_RCU_TRACE */
175 static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
178 * Enum and per-CPU flag to determine when each CPU has seen
179 * the most recent counter flip.
182 enum rcu_flip_flag_values {
183 rcu_flip_seen, /* Steady/initial state, last flip seen. */
184 /* Only GP detector can update. */
185 rcu_flipped /* Flip just completed, need confirmation. */
186 /* Only corresponding CPU can update. */
188 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
189 = rcu_flip_seen;
192 * Enum and per-CPU flag to determine when each CPU has executed the
193 * needed memory barrier to fence in memory references from its last RCU
194 * read-side critical section in the just-completed grace period.
197 enum rcu_mb_flag_values {
198 rcu_mb_done, /* Steady/initial state, no mb()s required. */
199 /* Only GP detector can update. */
200 rcu_mb_needed /* Flip just completed, need an mb(). */
201 /* Only corresponding CPU can update. */
203 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
204 = rcu_mb_done;
207 * RCU_DATA_ME: find the current CPU's rcu_data structure.
208 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
210 #define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
211 #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
214 * Helper macro for tracing when the appropriate rcu_data is not
215 * cached in a local variable, but where the CPU number is so cached.
217 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
220 * Helper macro for tracing when the appropriate rcu_data is not
221 * cached in a local variable.
223 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
226 * Helper macro for tracing when the appropriate rcu_data is pointed
227 * to by a local variable.
229 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
231 #define RCU_SCHED_BATCH_TIME (HZ / 50)
234 * Return the number of RCU batches processed thus far. Useful
235 * for debug and statistics.
237 long rcu_batches_completed(void)
239 return rcu_ctrlblk.completed;
241 EXPORT_SYMBOL_GPL(rcu_batches_completed);
243 void __rcu_read_lock(void)
245 int idx;
246 struct task_struct *t = current;
247 int nesting;
249 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
250 if (nesting != 0) {
252 /* An earlier rcu_read_lock() covers us, just count it. */
254 t->rcu_read_lock_nesting = nesting + 1;
256 } else {
257 unsigned long flags;
260 * We disable interrupts for the following reasons:
261 * - If we get scheduling clock interrupt here, and we
262 * end up acking the counter flip, it's like a promise
263 * that we will never increment the old counter again.
264 * Thus we will break that promise if that
265 * scheduling clock interrupt happens between the time
266 * we pick the .completed field and the time that we
267 * increment our counter.
269 * - We don't want to be preempted out here.
271 * NMIs can still occur, of course, and might themselves
272 * contain rcu_read_lock().
275 local_irq_save(flags);
278 * Outermost nesting of rcu_read_lock(), so increment
279 * the current counter for the current CPU. Use volatile
280 * casts to prevent the compiler from reordering.
283 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
284 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
287 * Now that the per-CPU counter has been incremented, we
288 * are protected from races with rcu_read_lock() invoked
289 * from NMI handlers on this CPU. We can therefore safely
290 * increment the nesting counter, relieving further NMIs
291 * of the need to increment the per-CPU counter.
294 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
297 * Now that we have preventing any NMIs from storing
298 * to the ->rcu_flipctr_idx, we can safely use it to
299 * remember which counter to decrement in the matching
300 * rcu_read_unlock().
303 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
304 local_irq_restore(flags);
307 EXPORT_SYMBOL_GPL(__rcu_read_lock);
309 void __rcu_read_unlock(void)
311 int idx;
312 struct task_struct *t = current;
313 int nesting;
315 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
316 if (nesting > 1) {
319 * We are still protected by the enclosing rcu_read_lock(),
320 * so simply decrement the counter.
323 t->rcu_read_lock_nesting = nesting - 1;
325 } else {
326 unsigned long flags;
329 * Disable local interrupts to prevent the grace-period
330 * detection state machine from seeing us half-done.
331 * NMIs can still occur, of course, and might themselves
332 * contain rcu_read_lock() and rcu_read_unlock().
335 local_irq_save(flags);
338 * Outermost nesting of rcu_read_unlock(), so we must
339 * decrement the current counter for the current CPU.
340 * This must be done carefully, because NMIs can
341 * occur at any point in this code, and any rcu_read_lock()
342 * and rcu_read_unlock() pairs in the NMI handlers
343 * must interact non-destructively with this code.
344 * Lots of volatile casts, and -very- careful ordering.
346 * Changes to this code, including this one, must be
347 * inspected, validated, and tested extremely carefully!!!
351 * First, pick up the index.
354 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
357 * Now that we have fetched the counter index, it is
358 * safe to decrement the per-task RCU nesting counter.
359 * After this, any interrupts or NMIs will increment and
360 * decrement the per-CPU counters.
362 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
365 * It is now safe to decrement this task's nesting count.
366 * NMIs that occur after this statement will route their
367 * rcu_read_lock() calls through this "else" clause, and
368 * will thus start incrementing the per-CPU counter on
369 * their own. They will also clobber ->rcu_flipctr_idx,
370 * but that is OK, since we have already fetched it.
373 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
374 local_irq_restore(flags);
377 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
380 * If a global counter flip has occurred since the last time that we
381 * advanced callbacks, advance them. Hardware interrupts must be
382 * disabled when calling this function.
384 static void __rcu_advance_callbacks(struct rcu_data *rdp)
386 int cpu;
387 int i;
388 int wlc = 0;
390 if (rdp->completed != rcu_ctrlblk.completed) {
391 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
392 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
393 rdp->donetail = rdp->waittail[GP_STAGES - 1];
394 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
396 for (i = GP_STAGES - 2; i >= 0; i--) {
397 if (rdp->waitlist[i] != NULL) {
398 rdp->waitlist[i + 1] = rdp->waitlist[i];
399 rdp->waittail[i + 1] = rdp->waittail[i];
400 wlc++;
401 } else {
402 rdp->waitlist[i + 1] = NULL;
403 rdp->waittail[i + 1] =
404 &rdp->waitlist[i + 1];
407 if (rdp->nextlist != NULL) {
408 rdp->waitlist[0] = rdp->nextlist;
409 rdp->waittail[0] = rdp->nexttail;
410 wlc++;
411 rdp->nextlist = NULL;
412 rdp->nexttail = &rdp->nextlist;
413 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
414 } else {
415 rdp->waitlist[0] = NULL;
416 rdp->waittail[0] = &rdp->waitlist[0];
418 rdp->waitlistcount = wlc;
419 rdp->completed = rcu_ctrlblk.completed;
423 * Check to see if this CPU needs to report that it has seen
424 * the most recent counter flip, thereby declaring that all
425 * subsequent rcu_read_lock() invocations will respect this flip.
428 cpu = raw_smp_processor_id();
429 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
430 smp_mb(); /* Subsequent counter accesses must see new value */
431 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
432 smp_mb(); /* Subsequent RCU read-side critical sections */
433 /* seen -after- acknowledgement. */
437 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
438 .dynticks = 1,
441 #ifdef CONFIG_NO_HZ
442 static DEFINE_PER_CPU(int, rcu_update_flag);
445 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
447 * If the CPU was idle with dynamic ticks active, this updates the
448 * rcu_dyntick_sched.dynticks to let the RCU handling know that the
449 * CPU is active.
451 void rcu_irq_enter(void)
453 int cpu = smp_processor_id();
454 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
456 if (per_cpu(rcu_update_flag, cpu))
457 per_cpu(rcu_update_flag, cpu)++;
460 * Only update if we are coming from a stopped ticks mode
461 * (rcu_dyntick_sched.dynticks is even).
463 if (!in_interrupt() &&
464 (rdssp->dynticks & 0x1) == 0) {
466 * The following might seem like we could have a race
467 * with NMI/SMIs. But this really isn't a problem.
468 * Here we do a read/modify/write, and the race happens
469 * when an NMI/SMI comes in after the read and before
470 * the write. But NMI/SMIs will increment this counter
471 * twice before returning, so the zero bit will not
472 * be corrupted by the NMI/SMI which is the most important
473 * part.
475 * The only thing is that we would bring back the counter
476 * to a postion that it was in during the NMI/SMI.
477 * But the zero bit would be set, so the rest of the
478 * counter would again be ignored.
480 * On return from the IRQ, the counter may have the zero
481 * bit be 0 and the counter the same as the return from
482 * the NMI/SMI. If the state machine was so unlucky to
483 * see that, it still doesn't matter, since all
484 * RCU read-side critical sections on this CPU would
485 * have already completed.
487 rdssp->dynticks++;
489 * The following memory barrier ensures that any
490 * rcu_read_lock() primitives in the irq handler
491 * are seen by other CPUs to follow the above
492 * increment to rcu_dyntick_sched.dynticks. This is
493 * required in order for other CPUs to correctly
494 * determine when it is safe to advance the RCU
495 * grace-period state machine.
497 smp_mb(); /* see above block comment. */
499 * Since we can't determine the dynamic tick mode from
500 * the rcu_dyntick_sched.dynticks after this routine,
501 * we use a second flag to acknowledge that we came
502 * from an idle state with ticks stopped.
504 per_cpu(rcu_update_flag, cpu)++;
506 * If we take an NMI/SMI now, they will also increment
507 * the rcu_update_flag, and will not update the
508 * rcu_dyntick_sched.dynticks on exit. That is for
509 * this IRQ to do.
515 * rcu_irq_exit - Called from exiting Hard irq context.
517 * If the CPU was idle with dynamic ticks active, update the
518 * rcu_dyntick_sched.dynticks to put let the RCU handling be
519 * aware that the CPU is going back to idle with no ticks.
521 void rcu_irq_exit(void)
523 int cpu = smp_processor_id();
524 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
527 * rcu_update_flag is set if we interrupted the CPU
528 * when it was idle with ticks stopped.
529 * Once this occurs, we keep track of interrupt nesting
530 * because a NMI/SMI could also come in, and we still
531 * only want the IRQ that started the increment of the
532 * rcu_dyntick_sched.dynticks to be the one that modifies
533 * it on exit.
535 if (per_cpu(rcu_update_flag, cpu)) {
536 if (--per_cpu(rcu_update_flag, cpu))
537 return;
539 /* This must match the interrupt nesting */
540 WARN_ON(in_interrupt());
543 * If an NMI/SMI happens now we are still
544 * protected by the rcu_dyntick_sched.dynticks being odd.
548 * The following memory barrier ensures that any
549 * rcu_read_unlock() primitives in the irq handler
550 * are seen by other CPUs to preceed the following
551 * increment to rcu_dyntick_sched.dynticks. This
552 * is required in order for other CPUs to determine
553 * when it is safe to advance the RCU grace-period
554 * state machine.
556 smp_mb(); /* see above block comment. */
557 rdssp->dynticks++;
558 WARN_ON(rdssp->dynticks & 0x1);
562 static void dyntick_save_progress_counter(int cpu)
564 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
566 rdssp->dynticks_snap = rdssp->dynticks;
569 static inline int
570 rcu_try_flip_waitack_needed(int cpu)
572 long curr;
573 long snap;
574 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
576 curr = rdssp->dynticks;
577 snap = rdssp->dynticks_snap;
578 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
581 * If the CPU remained in dynticks mode for the entire time
582 * and didn't take any interrupts, NMIs, SMIs, or whatever,
583 * then it cannot be in the middle of an rcu_read_lock(), so
584 * the next rcu_read_lock() it executes must use the new value
585 * of the counter. So we can safely pretend that this CPU
586 * already acknowledged the counter.
589 if ((curr == snap) && ((curr & 0x1) == 0))
590 return 0;
593 * If the CPU passed through or entered a dynticks idle phase with
594 * no active irq handlers, then, as above, we can safely pretend
595 * that this CPU already acknowledged the counter.
598 if ((curr - snap) > 2 || (curr & 0x1) == 0)
599 return 0;
601 /* We need this CPU to explicitly acknowledge the counter flip. */
603 return 1;
606 static inline int
607 rcu_try_flip_waitmb_needed(int cpu)
609 long curr;
610 long snap;
611 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
613 curr = rdssp->dynticks;
614 snap = rdssp->dynticks_snap;
615 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
618 * If the CPU remained in dynticks mode for the entire time
619 * and didn't take any interrupts, NMIs, SMIs, or whatever,
620 * then it cannot have executed an RCU read-side critical section
621 * during that time, so there is no need for it to execute a
622 * memory barrier.
625 if ((curr == snap) && ((curr & 0x1) == 0))
626 return 0;
629 * If the CPU either entered or exited an outermost interrupt,
630 * SMI, NMI, or whatever handler, then we know that it executed
631 * a memory barrier when doing so. So we don't need another one.
633 if (curr != snap)
634 return 0;
636 /* We need the CPU to execute a memory barrier. */
638 return 1;
641 static void dyntick_save_progress_counter_sched(int cpu)
643 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
645 rdssp->sched_dynticks_snap = rdssp->dynticks;
648 static int rcu_qsctr_inc_needed_dyntick(int cpu)
650 long curr;
651 long snap;
652 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
654 curr = rdssp->dynticks;
655 snap = rdssp->sched_dynticks_snap;
656 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
659 * If the CPU remained in dynticks mode for the entire time
660 * and didn't take any interrupts, NMIs, SMIs, or whatever,
661 * then it cannot be in the middle of an rcu_read_lock(), so
662 * the next rcu_read_lock() it executes must use the new value
663 * of the counter. Therefore, this CPU has been in a quiescent
664 * state the entire time, and we don't need to wait for it.
667 if ((curr == snap) && ((curr & 0x1) == 0))
668 return 0;
671 * If the CPU passed through or entered a dynticks idle phase with
672 * no active irq handlers, then, as above, this CPU has already
673 * passed through a quiescent state.
676 if ((curr - snap) > 2 || (snap & 0x1) == 0)
677 return 0;
679 /* We need this CPU to go through a quiescent state. */
681 return 1;
684 #else /* !CONFIG_NO_HZ */
686 # define dyntick_save_progress_counter(cpu) do { } while (0)
687 # define rcu_try_flip_waitack_needed(cpu) (1)
688 # define rcu_try_flip_waitmb_needed(cpu) (1)
690 # define dyntick_save_progress_counter_sched(cpu) do { } while (0)
691 # define rcu_qsctr_inc_needed_dyntick(cpu) (1)
693 #endif /* CONFIG_NO_HZ */
695 static void save_qsctr_sched(int cpu)
697 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
699 rdssp->sched_qs_snap = rdssp->sched_qs;
702 static inline int rcu_qsctr_inc_needed(int cpu)
704 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
707 * If there has been a quiescent state, no more need to wait
708 * on this CPU.
711 if (rdssp->sched_qs != rdssp->sched_qs_snap) {
712 smp_mb(); /* force ordering with cpu entering schedule(). */
713 return 0;
716 /* We need this CPU to go through a quiescent state. */
718 return 1;
722 * Get here when RCU is idle. Decide whether we need to
723 * move out of idle state, and return non-zero if so.
724 * "Straightforward" approach for the moment, might later
725 * use callback-list lengths, grace-period duration, or
726 * some such to determine when to exit idle state.
727 * Might also need a pre-idle test that does not acquire
728 * the lock, but let's get the simple case working first...
731 static int
732 rcu_try_flip_idle(void)
734 int cpu;
736 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
737 if (!rcu_pending(smp_processor_id())) {
738 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
739 return 0;
743 * Do the flip.
746 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
747 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
750 * Need a memory barrier so that other CPUs see the new
751 * counter value before they see the subsequent change of all
752 * the rcu_flip_flag instances to rcu_flipped.
755 smp_mb(); /* see above block comment. */
757 /* Now ask each CPU for acknowledgement of the flip. */
759 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map) {
760 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
761 dyntick_save_progress_counter(cpu);
764 return 1;
768 * Wait for CPUs to acknowledge the flip.
771 static int
772 rcu_try_flip_waitack(void)
774 int cpu;
776 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
777 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
778 if (rcu_try_flip_waitack_needed(cpu) &&
779 per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
780 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
781 return 0;
785 * Make sure our checks above don't bleed into subsequent
786 * waiting for the sum of the counters to reach zero.
789 smp_mb(); /* see above block comment. */
790 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
791 return 1;
795 * Wait for collective ``last'' counter to reach zero,
796 * then tell all CPUs to do an end-of-grace-period memory barrier.
799 static int
800 rcu_try_flip_waitzero(void)
802 int cpu;
803 int lastidx = !(rcu_ctrlblk.completed & 0x1);
804 int sum = 0;
806 /* Check to see if the sum of the "last" counters is zero. */
808 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
809 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
810 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
811 if (sum != 0) {
812 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
813 return 0;
817 * This ensures that the other CPUs see the call for
818 * memory barriers -after- the sum to zero has been
819 * detected here
821 smp_mb(); /* ^^^^^^^^^^^^ */
823 /* Call for a memory barrier from each CPU. */
824 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map) {
825 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
826 dyntick_save_progress_counter(cpu);
829 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
830 return 1;
834 * Wait for all CPUs to do their end-of-grace-period memory barrier.
835 * Return 0 once all CPUs have done so.
838 static int
839 rcu_try_flip_waitmb(void)
841 int cpu;
843 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
844 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
845 if (rcu_try_flip_waitmb_needed(cpu) &&
846 per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
847 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
848 return 0;
851 smp_mb(); /* Ensure that the above checks precede any following flip. */
852 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
853 return 1;
857 * Attempt a single flip of the counters. Remember, a single flip does
858 * -not- constitute a grace period. Instead, the interval between
859 * at least GP_STAGES consecutive flips is a grace period.
861 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
862 * on a large SMP, they might want to use a hierarchical organization of
863 * the per-CPU-counter pairs.
865 static void rcu_try_flip(void)
867 unsigned long flags;
869 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
870 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
871 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
872 return;
876 * Take the next transition(s) through the RCU grace-period
877 * flip-counter state machine.
880 switch (rcu_ctrlblk.rcu_try_flip_state) {
881 case rcu_try_flip_idle_state:
882 if (rcu_try_flip_idle())
883 rcu_ctrlblk.rcu_try_flip_state =
884 rcu_try_flip_waitack_state;
885 break;
886 case rcu_try_flip_waitack_state:
887 if (rcu_try_flip_waitack())
888 rcu_ctrlblk.rcu_try_flip_state =
889 rcu_try_flip_waitzero_state;
890 break;
891 case rcu_try_flip_waitzero_state:
892 if (rcu_try_flip_waitzero())
893 rcu_ctrlblk.rcu_try_flip_state =
894 rcu_try_flip_waitmb_state;
895 break;
896 case rcu_try_flip_waitmb_state:
897 if (rcu_try_flip_waitmb())
898 rcu_ctrlblk.rcu_try_flip_state =
899 rcu_try_flip_idle_state;
901 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
905 * Check to see if this CPU needs to do a memory barrier in order to
906 * ensure that any prior RCU read-side critical sections have committed
907 * their counter manipulations and critical-section memory references
908 * before declaring the grace period to be completed.
910 static void rcu_check_mb(int cpu)
912 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
913 smp_mb(); /* Ensure RCU read-side accesses are visible. */
914 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
918 void rcu_check_callbacks(int cpu, int user)
920 unsigned long flags;
921 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
924 * If this CPU took its interrupt from user mode or from the
925 * idle loop, and this is not a nested interrupt, then
926 * this CPU has to have exited all prior preept-disable
927 * sections of code. So increment the counter to note this.
929 * The memory barrier is needed to handle the case where
930 * writes from a preempt-disable section of code get reordered
931 * into schedule() by this CPU's write buffer. So the memory
932 * barrier makes sure that the rcu_qsctr_inc() is seen by other
933 * CPUs to happen after any such write.
936 if (user ||
937 (idle_cpu(cpu) && !in_softirq() &&
938 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
939 smp_mb(); /* Guard against aggressive schedule(). */
940 rcu_qsctr_inc(cpu);
943 rcu_check_mb(cpu);
944 if (rcu_ctrlblk.completed == rdp->completed)
945 rcu_try_flip();
946 spin_lock_irqsave(&rdp->lock, flags);
947 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
948 __rcu_advance_callbacks(rdp);
949 if (rdp->donelist == NULL) {
950 spin_unlock_irqrestore(&rdp->lock, flags);
951 } else {
952 spin_unlock_irqrestore(&rdp->lock, flags);
953 raise_softirq(RCU_SOFTIRQ);
958 * Needed by dynticks, to make sure all RCU processing has finished
959 * when we go idle:
961 void rcu_advance_callbacks(int cpu, int user)
963 unsigned long flags;
964 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
966 if (rcu_ctrlblk.completed == rdp->completed) {
967 rcu_try_flip();
968 if (rcu_ctrlblk.completed == rdp->completed)
969 return;
971 spin_lock_irqsave(&rdp->lock, flags);
972 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
973 __rcu_advance_callbacks(rdp);
974 spin_unlock_irqrestore(&rdp->lock, flags);
977 #ifdef CONFIG_HOTPLUG_CPU
978 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
979 *dsttail = srclist; \
980 if (srclist != NULL) { \
981 dsttail = srctail; \
982 srclist = NULL; \
983 srctail = &srclist;\
985 } while (0)
987 void rcu_offline_cpu(int cpu)
989 int i;
990 struct rcu_head *list = NULL;
991 unsigned long flags;
992 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
993 struct rcu_head *schedlist = NULL;
994 struct rcu_head **schedtail = &schedlist;
995 struct rcu_head **tail = &list;
998 * Remove all callbacks from the newly dead CPU, retaining order.
999 * Otherwise rcu_barrier() will fail
1002 spin_lock_irqsave(&rdp->lock, flags);
1003 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
1004 for (i = GP_STAGES - 1; i >= 0; i--)
1005 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
1006 list, tail);
1007 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
1008 rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
1009 schedlist, schedtail);
1010 rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
1011 schedlist, schedtail);
1012 rdp->rcu_sched_sleeping = 0;
1013 spin_unlock_irqrestore(&rdp->lock, flags);
1014 rdp->waitlistcount = 0;
1016 /* Disengage the newly dead CPU from the grace-period computation. */
1018 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1019 rcu_check_mb(cpu);
1020 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
1021 smp_mb(); /* Subsequent counter accesses must see new value */
1022 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
1023 smp_mb(); /* Subsequent RCU read-side critical sections */
1024 /* seen -after- acknowledgement. */
1027 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1028 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
1030 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
1031 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
1033 cpu_clear(cpu, rcu_cpu_online_map);
1035 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1038 * Place the removed callbacks on the current CPU's queue.
1039 * Make them all start a new grace period: simple approach,
1040 * in theory could starve a given set of callbacks, but
1041 * you would need to be doing some serious CPU hotplugging
1042 * to make this happen. If this becomes a problem, adding
1043 * a synchronize_rcu() to the hotplug path would be a simple
1044 * fix.
1047 local_irq_save(flags); /* disable preempt till we know what lock. */
1048 rdp = RCU_DATA_ME();
1049 spin_lock(&rdp->lock);
1050 *rdp->nexttail = list;
1051 if (list)
1052 rdp->nexttail = tail;
1053 *rdp->nextschedtail = schedlist;
1054 if (schedlist)
1055 rdp->nextschedtail = schedtail;
1056 spin_unlock_irqrestore(&rdp->lock, flags);
1059 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1061 void rcu_offline_cpu(int cpu)
1065 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1067 void __cpuinit rcu_online_cpu(int cpu)
1069 unsigned long flags;
1070 struct rcu_data *rdp;
1072 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1073 cpu_set(cpu, rcu_cpu_online_map);
1074 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1077 * The rcu_sched grace-period processing might have bypassed
1078 * this CPU, given that it was not in the rcu_cpu_online_map
1079 * when the grace-period scan started. This means that the
1080 * grace-period task might sleep. So make sure that if this
1081 * should happen, the first callback posted to this CPU will
1082 * wake up the grace-period task if need be.
1085 rdp = RCU_DATA_CPU(cpu);
1086 spin_lock_irqsave(&rdp->lock, flags);
1087 rdp->rcu_sched_sleeping = 1;
1088 spin_unlock_irqrestore(&rdp->lock, flags);
1091 static void rcu_process_callbacks(struct softirq_action *unused)
1093 unsigned long flags;
1094 struct rcu_head *next, *list;
1095 struct rcu_data *rdp;
1097 local_irq_save(flags);
1098 rdp = RCU_DATA_ME();
1099 spin_lock(&rdp->lock);
1100 list = rdp->donelist;
1101 if (list == NULL) {
1102 spin_unlock_irqrestore(&rdp->lock, flags);
1103 return;
1105 rdp->donelist = NULL;
1106 rdp->donetail = &rdp->donelist;
1107 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
1108 spin_unlock_irqrestore(&rdp->lock, flags);
1109 while (list) {
1110 next = list->next;
1111 list->func(list);
1112 list = next;
1113 RCU_TRACE_ME(rcupreempt_trace_invoke);
1117 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1119 unsigned long flags;
1120 struct rcu_data *rdp;
1122 head->func = func;
1123 head->next = NULL;
1124 local_irq_save(flags);
1125 rdp = RCU_DATA_ME();
1126 spin_lock(&rdp->lock);
1127 __rcu_advance_callbacks(rdp);
1128 *rdp->nexttail = head;
1129 rdp->nexttail = &head->next;
1130 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
1131 spin_unlock_irqrestore(&rdp->lock, flags);
1133 EXPORT_SYMBOL_GPL(call_rcu);
1135 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1137 unsigned long flags;
1138 struct rcu_data *rdp;
1139 int wake_gp = 0;
1141 head->func = func;
1142 head->next = NULL;
1143 local_irq_save(flags);
1144 rdp = RCU_DATA_ME();
1145 spin_lock(&rdp->lock);
1146 *rdp->nextschedtail = head;
1147 rdp->nextschedtail = &head->next;
1148 if (rdp->rcu_sched_sleeping) {
1150 /* Grace-period processing might be sleeping... */
1152 rdp->rcu_sched_sleeping = 0;
1153 wake_gp = 1;
1155 spin_unlock_irqrestore(&rdp->lock, flags);
1156 if (wake_gp) {
1158 /* Wake up grace-period processing, unless someone beat us. */
1160 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1161 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping)
1162 wake_gp = 0;
1163 rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping;
1164 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1165 if (wake_gp)
1166 wake_up_interruptible(&rcu_ctrlblk.sched_wq);
1169 EXPORT_SYMBOL_GPL(call_rcu_sched);
1172 * Wait until all currently running preempt_disable() code segments
1173 * (including hardware-irq-disable segments) complete. Note that
1174 * in -rt this does -not- necessarily result in all currently executing
1175 * interrupt -handlers- having completed.
1177 synchronize_rcu_xxx(__synchronize_sched, call_rcu_sched)
1178 EXPORT_SYMBOL_GPL(__synchronize_sched);
1181 * kthread function that manages call_rcu_sched grace periods.
1183 static int rcu_sched_grace_period(void *arg)
1185 int couldsleep; /* might sleep after current pass. */
1186 int couldsleepnext = 0; /* might sleep after next pass. */
1187 int cpu;
1188 unsigned long flags;
1189 struct rcu_data *rdp;
1190 int ret;
1193 * Each pass through the following loop handles one
1194 * rcu_sched grace period cycle.
1196 do {
1197 /* Save each CPU's current state. */
1199 for_each_online_cpu(cpu) {
1200 dyntick_save_progress_counter_sched(cpu);
1201 save_qsctr_sched(cpu);
1205 * Sleep for about an RCU grace-period's worth to
1206 * allow better batching and to consume less CPU.
1208 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME);
1211 * If there was nothing to do last time, prepare to
1212 * sleep at the end of the current grace period cycle.
1214 couldsleep = couldsleepnext;
1215 couldsleepnext = 1;
1216 if (couldsleep) {
1217 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1218 rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep;
1219 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1223 * Wait on each CPU in turn to have either visited
1224 * a quiescent state or been in dynticks-idle mode.
1226 for_each_online_cpu(cpu) {
1227 while (rcu_qsctr_inc_needed(cpu) &&
1228 rcu_qsctr_inc_needed_dyntick(cpu)) {
1229 /* resched_cpu(cpu); @@@ */
1230 schedule_timeout_interruptible(1);
1234 /* Advance callbacks for each CPU. */
1236 for_each_online_cpu(cpu) {
1238 rdp = RCU_DATA_CPU(cpu);
1239 spin_lock_irqsave(&rdp->lock, flags);
1242 * We are running on this CPU irq-disabled, so no
1243 * CPU can go offline until we re-enable irqs.
1244 * The current CPU might have already gone
1245 * offline (between the for_each_offline_cpu and
1246 * the spin_lock_irqsave), but in that case all its
1247 * callback lists will be empty, so no harm done.
1249 * Advance the callbacks! We share normal RCU's
1250 * donelist, since callbacks are invoked the
1251 * same way in either case.
1253 if (rdp->waitschedlist != NULL) {
1254 *rdp->donetail = rdp->waitschedlist;
1255 rdp->donetail = rdp->waitschedtail;
1258 * Next rcu_check_callbacks() will
1259 * do the required raise_softirq().
1262 if (rdp->nextschedlist != NULL) {
1263 rdp->waitschedlist = rdp->nextschedlist;
1264 rdp->waitschedtail = rdp->nextschedtail;
1265 couldsleep = 0;
1266 couldsleepnext = 0;
1267 } else {
1268 rdp->waitschedlist = NULL;
1269 rdp->waitschedtail = &rdp->waitschedlist;
1271 rdp->nextschedlist = NULL;
1272 rdp->nextschedtail = &rdp->nextschedlist;
1274 /* Mark sleep intention. */
1276 rdp->rcu_sched_sleeping = couldsleep;
1278 spin_unlock_irqrestore(&rdp->lock, flags);
1281 /* If we saw callbacks on the last scan, go deal with them. */
1283 if (!couldsleep)
1284 continue;
1286 /* Attempt to block... */
1288 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1289 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) {
1292 * Someone posted a callback after we scanned.
1293 * Go take care of it.
1295 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1296 couldsleepnext = 0;
1297 continue;
1300 /* Block until the next person posts a callback. */
1302 rcu_ctrlblk.sched_sleep = rcu_sched_sleeping;
1303 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1304 ret = 0;
1305 __wait_event_interruptible(rcu_ctrlblk.sched_wq,
1306 rcu_ctrlblk.sched_sleep != rcu_sched_sleeping,
1307 ret);
1310 * Signals would prevent us from sleeping, and we cannot
1311 * do much with them in any case. So flush them.
1313 if (ret)
1314 flush_signals(current);
1315 couldsleepnext = 0;
1317 } while (!kthread_should_stop());
1319 return (0);
1323 * Check to see if any future RCU-related work will need to be done
1324 * by the current CPU, even if none need be done immediately, returning
1325 * 1 if so. Assumes that notifiers would take care of handling any
1326 * outstanding requests from the RCU core.
1328 * This function is part of the RCU implementation; it is -not-
1329 * an exported member of the RCU API.
1331 int rcu_needs_cpu(int cpu)
1333 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1335 return (rdp->donelist != NULL ||
1336 !!rdp->waitlistcount ||
1337 rdp->nextlist != NULL ||
1338 rdp->nextschedlist != NULL ||
1339 rdp->waitschedlist != NULL);
1342 int rcu_pending(int cpu)
1344 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1346 /* The CPU has at least one callback queued somewhere. */
1348 if (rdp->donelist != NULL ||
1349 !!rdp->waitlistcount ||
1350 rdp->nextlist != NULL ||
1351 rdp->nextschedlist != NULL ||
1352 rdp->waitschedlist != NULL)
1353 return 1;
1355 /* The RCU core needs an acknowledgement from this CPU. */
1357 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
1358 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
1359 return 1;
1361 /* This CPU has fallen behind the global grace-period number. */
1363 if (rdp->completed != rcu_ctrlblk.completed)
1364 return 1;
1366 /* Nothing needed from this CPU. */
1368 return 0;
1371 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1372 unsigned long action, void *hcpu)
1374 long cpu = (long)hcpu;
1376 switch (action) {
1377 case CPU_UP_PREPARE:
1378 case CPU_UP_PREPARE_FROZEN:
1379 rcu_online_cpu(cpu);
1380 break;
1381 case CPU_UP_CANCELED:
1382 case CPU_UP_CANCELED_FROZEN:
1383 case CPU_DEAD:
1384 case CPU_DEAD_FROZEN:
1385 rcu_offline_cpu(cpu);
1386 break;
1387 default:
1388 break;
1390 return NOTIFY_OK;
1393 static struct notifier_block __cpuinitdata rcu_nb = {
1394 .notifier_call = rcu_cpu_notify,
1397 void __init __rcu_init(void)
1399 int cpu;
1400 int i;
1401 struct rcu_data *rdp;
1403 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
1404 for_each_possible_cpu(cpu) {
1405 rdp = RCU_DATA_CPU(cpu);
1406 spin_lock_init(&rdp->lock);
1407 rdp->completed = 0;
1408 rdp->waitlistcount = 0;
1409 rdp->nextlist = NULL;
1410 rdp->nexttail = &rdp->nextlist;
1411 for (i = 0; i < GP_STAGES; i++) {
1412 rdp->waitlist[i] = NULL;
1413 rdp->waittail[i] = &rdp->waitlist[i];
1415 rdp->donelist = NULL;
1416 rdp->donetail = &rdp->donelist;
1417 rdp->rcu_flipctr[0] = 0;
1418 rdp->rcu_flipctr[1] = 0;
1419 rdp->nextschedlist = NULL;
1420 rdp->nextschedtail = &rdp->nextschedlist;
1421 rdp->waitschedlist = NULL;
1422 rdp->waitschedtail = &rdp->waitschedlist;
1423 rdp->rcu_sched_sleeping = 0;
1425 register_cpu_notifier(&rcu_nb);
1428 * We don't need protection against CPU-Hotplug here
1429 * since
1430 * a) If a CPU comes online while we are iterating over the
1431 * cpu_online_map below, we would only end up making a
1432 * duplicate call to rcu_online_cpu() which sets the corresponding
1433 * CPU's mask in the rcu_cpu_online_map.
1435 * b) A CPU cannot go offline at this point in time since the user
1436 * does not have access to the sysfs interface, nor do we
1437 * suspend the system.
1439 for_each_online_cpu(cpu)
1440 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
1442 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1446 * Late-boot-time RCU initialization that must wait until after scheduler
1447 * has been initialized.
1449 void __init rcu_init_sched(void)
1451 rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period,
1452 NULL,
1453 "rcu_sched_grace_period");
1454 WARN_ON(IS_ERR(rcu_sched_grace_period_task));
1457 #ifdef CONFIG_RCU_TRACE
1458 long *rcupreempt_flipctr(int cpu)
1460 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1462 EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
1464 int rcupreempt_flip_flag(int cpu)
1466 return per_cpu(rcu_flip_flag, cpu);
1468 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
1470 int rcupreempt_mb_flag(int cpu)
1472 return per_cpu(rcu_mb_flag, cpu);
1474 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
1476 char *rcupreempt_try_flip_state_name(void)
1478 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
1480 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
1482 struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
1484 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1486 return &rdp->trace;
1488 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
1490 #endif /* #ifdef RCU_TRACE */