ARM: OMAP: Improve 34xx detection
[linux-ginger.git] / kernel / time.c
blob6a08660b4fac30f97ea573b9cd017941401046ff
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/slab.h>
39 #include <linux/math64.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz;
52 EXPORT_SYMBOL(sys_tz);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 asmlinkage long sys_time(time_t __user * tloc)
64 time_t i = get_seconds();
66 if (tloc) {
67 if (put_user(i,tloc))
68 i = -EFAULT;
70 return i;
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
80 asmlinkage long sys_stime(time_t __user *tptr)
82 struct timespec tv;
83 int err;
85 if (get_user(tv.tv_sec, tptr))
86 return -EFAULT;
88 tv.tv_nsec = 0;
90 err = security_settime(&tv, NULL);
91 if (err)
92 return err;
94 do_settimeofday(&tv);
95 return 0;
98 #endif /* __ARCH_WANT_SYS_TIME */
100 asmlinkage long sys_gettimeofday(struct timeval __user *tv,
101 struct timezone __user *tz)
103 if (likely(tv != NULL)) {
104 struct timeval ktv;
105 do_gettimeofday(&ktv);
106 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 return -EFAULT;
109 if (unlikely(tz != NULL)) {
110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
111 return -EFAULT;
113 return 0;
117 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * local time.
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
126 * - TYT, 1992-01-01
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
132 static inline void warp_clock(void)
134 write_seqlock_irq(&xtime_lock);
135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
136 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
137 update_xtime_cache(0);
138 write_sequnlock_irq(&xtime_lock);
139 clock_was_set();
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
155 static int firsttime = 1;
156 int error = 0;
158 if (tv && !timespec_valid(tv))
159 return -EINVAL;
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
168 update_vsyscall_tz();
169 if (firsttime) {
170 firsttime = 0;
171 if (!tv)
172 warp_clock();
175 if (tv)
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
180 return do_settimeofday(tv);
182 return 0;
185 asmlinkage long sys_settimeofday(struct timeval __user *tv,
186 struct timezone __user *tz)
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
192 if (tv) {
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 return -EFAULT;
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
198 if (tz) {
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 return -EFAULT;
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
206 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
208 struct timex txc; /* Local copy of parameter */
209 int ret;
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
213 * may change
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 return -EFAULT;
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
222 * current_fs_time - Return FS time
223 * @sb: Superblock.
225 * Return the current time truncated to the time granularity supported by
226 * the fs.
228 struct timespec current_fs_time(struct super_block *sb)
230 struct timespec now = current_kernel_time();
231 return timespec_trunc(now, sb->s_time_gran);
233 EXPORT_SYMBOL(current_fs_time);
236 * Convert jiffies to milliseconds and back.
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
241 unsigned int inline jiffies_to_msecs(const unsigned long j)
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC / HZ) * j;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247 #else
248 # if BITS_PER_LONG == 32
249 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
250 # else
251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252 # endif
253 #endif
255 EXPORT_SYMBOL(jiffies_to_msecs);
257 unsigned int inline jiffies_to_usecs(const unsigned long j)
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC / HZ) * j;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263 #else
264 # if BITS_PER_LONG == 32
265 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
266 # else
267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268 # endif
269 #endif
271 EXPORT_SYMBOL(jiffies_to_usecs);
274 * timespec_trunc - Truncate timespec to a granularity
275 * @t: Timespec
276 * @gran: Granularity in ns.
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
285 struct timespec timespec_trunc(struct timespec t, unsigned gran)
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
292 if (gran <= jiffies_to_usecs(1) * 1000) {
293 /* nothing */
294 } else if (gran == 1000000000) {
295 t.tv_nsec = 0;
296 } else {
297 t.tv_nsec -= t.tv_nsec % gran;
299 return t;
301 EXPORT_SYMBOL(timespec_trunc);
303 #ifndef CONFIG_GENERIC_TIME
305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
306 * and therefore only yields usec accuracy
308 void getnstimeofday(struct timespec *tv)
310 struct timeval x;
312 do_gettimeofday(&x);
313 tv->tv_sec = x.tv_sec;
314 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
316 EXPORT_SYMBOL_GPL(getnstimeofday);
317 #endif
319 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
323 * [For the Julian calendar (which was used in Russia before 1917,
324 * Britain & colonies before 1752, anywhere else before 1582,
325 * and is still in use by some communities) leave out the
326 * -year/100+year/400 terms, and add 10.]
328 * This algorithm was first published by Gauss (I think).
330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
331 * machines where long is 32-bit! (However, as time_t is signed, we
332 * will already get problems at other places on 2038-01-19 03:14:08)
334 unsigned long
335 mktime(const unsigned int year0, const unsigned int mon0,
336 const unsigned int day, const unsigned int hour,
337 const unsigned int min, const unsigned int sec)
339 unsigned int mon = mon0, year = year0;
341 /* 1..12 -> 11,12,1..10 */
342 if (0 >= (int) (mon -= 2)) {
343 mon += 12; /* Puts Feb last since it has leap day */
344 year -= 1;
347 return ((((unsigned long)
348 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
349 year*365 - 719499
350 )*24 + hour /* now have hours */
351 )*60 + min /* now have minutes */
352 )*60 + sec; /* finally seconds */
355 EXPORT_SYMBOL(mktime);
358 * set_normalized_timespec - set timespec sec and nsec parts and normalize
360 * @ts: pointer to timespec variable to be set
361 * @sec: seconds to set
362 * @nsec: nanoseconds to set
364 * Set seconds and nanoseconds field of a timespec variable and
365 * normalize to the timespec storage format
367 * Note: The tv_nsec part is always in the range of
368 * 0 <= tv_nsec < NSEC_PER_SEC
369 * For negative values only the tv_sec field is negative !
371 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
373 while (nsec >= NSEC_PER_SEC) {
374 nsec -= NSEC_PER_SEC;
375 ++sec;
377 while (nsec < 0) {
378 nsec += NSEC_PER_SEC;
379 --sec;
381 ts->tv_sec = sec;
382 ts->tv_nsec = nsec;
384 EXPORT_SYMBOL(set_normalized_timespec);
387 * ns_to_timespec - Convert nanoseconds to timespec
388 * @nsec: the nanoseconds value to be converted
390 * Returns the timespec representation of the nsec parameter.
392 struct timespec ns_to_timespec(const s64 nsec)
394 struct timespec ts;
395 s32 rem;
397 if (!nsec)
398 return (struct timespec) {0, 0};
400 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
401 if (unlikely(rem < 0)) {
402 ts.tv_sec--;
403 rem += NSEC_PER_SEC;
405 ts.tv_nsec = rem;
407 return ts;
409 EXPORT_SYMBOL(ns_to_timespec);
412 * ns_to_timeval - Convert nanoseconds to timeval
413 * @nsec: the nanoseconds value to be converted
415 * Returns the timeval representation of the nsec parameter.
417 struct timeval ns_to_timeval(const s64 nsec)
419 struct timespec ts = ns_to_timespec(nsec);
420 struct timeval tv;
422 tv.tv_sec = ts.tv_sec;
423 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
425 return tv;
427 EXPORT_SYMBOL(ns_to_timeval);
430 * When we convert to jiffies then we interpret incoming values
431 * the following way:
433 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
435 * - 'too large' values [that would result in larger than
436 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
438 * - all other values are converted to jiffies by either multiplying
439 * the input value by a factor or dividing it with a factor
441 * We must also be careful about 32-bit overflows.
443 unsigned long msecs_to_jiffies(const unsigned int m)
446 * Negative value, means infinite timeout:
448 if ((int)m < 0)
449 return MAX_JIFFY_OFFSET;
451 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
453 * HZ is equal to or smaller than 1000, and 1000 is a nice
454 * round multiple of HZ, divide with the factor between them,
455 * but round upwards:
457 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
458 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
460 * HZ is larger than 1000, and HZ is a nice round multiple of
461 * 1000 - simply multiply with the factor between them.
463 * But first make sure the multiplication result cannot
464 * overflow:
466 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
467 return MAX_JIFFY_OFFSET;
469 return m * (HZ / MSEC_PER_SEC);
470 #else
472 * Generic case - multiply, round and divide. But first
473 * check that if we are doing a net multiplication, that
474 * we wouldn't overflow:
476 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
477 return MAX_JIFFY_OFFSET;
479 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
480 >> MSEC_TO_HZ_SHR32;
481 #endif
483 EXPORT_SYMBOL(msecs_to_jiffies);
485 unsigned long usecs_to_jiffies(const unsigned int u)
487 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
488 return MAX_JIFFY_OFFSET;
489 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
490 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
491 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
492 return u * (HZ / USEC_PER_SEC);
493 #else
494 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
495 >> USEC_TO_HZ_SHR32;
496 #endif
498 EXPORT_SYMBOL(usecs_to_jiffies);
501 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
502 * that a remainder subtract here would not do the right thing as the
503 * resolution values don't fall on second boundries. I.e. the line:
504 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
506 * Rather, we just shift the bits off the right.
508 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
509 * value to a scaled second value.
511 unsigned long
512 timespec_to_jiffies(const struct timespec *value)
514 unsigned long sec = value->tv_sec;
515 long nsec = value->tv_nsec + TICK_NSEC - 1;
517 if (sec >= MAX_SEC_IN_JIFFIES){
518 sec = MAX_SEC_IN_JIFFIES;
519 nsec = 0;
521 return (((u64)sec * SEC_CONVERSION) +
522 (((u64)nsec * NSEC_CONVERSION) >>
523 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
526 EXPORT_SYMBOL(timespec_to_jiffies);
528 void
529 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
532 * Convert jiffies to nanoseconds and separate with
533 * one divide.
535 u32 rem;
536 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
537 NSEC_PER_SEC, &rem);
538 value->tv_nsec = rem;
540 EXPORT_SYMBOL(jiffies_to_timespec);
542 /* Same for "timeval"
544 * Well, almost. The problem here is that the real system resolution is
545 * in nanoseconds and the value being converted is in micro seconds.
546 * Also for some machines (those that use HZ = 1024, in-particular),
547 * there is a LARGE error in the tick size in microseconds.
549 * The solution we use is to do the rounding AFTER we convert the
550 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
551 * Instruction wise, this should cost only an additional add with carry
552 * instruction above the way it was done above.
554 unsigned long
555 timeval_to_jiffies(const struct timeval *value)
557 unsigned long sec = value->tv_sec;
558 long usec = value->tv_usec;
560 if (sec >= MAX_SEC_IN_JIFFIES){
561 sec = MAX_SEC_IN_JIFFIES;
562 usec = 0;
564 return (((u64)sec * SEC_CONVERSION) +
565 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
566 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
568 EXPORT_SYMBOL(timeval_to_jiffies);
570 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
573 * Convert jiffies to nanoseconds and separate with
574 * one divide.
576 u32 rem;
578 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
579 NSEC_PER_SEC, &rem);
580 value->tv_usec = rem / NSEC_PER_USEC;
582 EXPORT_SYMBOL(jiffies_to_timeval);
585 * Convert jiffies/jiffies_64 to clock_t and back.
587 clock_t jiffies_to_clock_t(long x)
589 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
590 # if HZ < USER_HZ
591 return x * (USER_HZ / HZ);
592 # else
593 return x / (HZ / USER_HZ);
594 # endif
595 #else
596 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
597 #endif
599 EXPORT_SYMBOL(jiffies_to_clock_t);
601 unsigned long clock_t_to_jiffies(unsigned long x)
603 #if (HZ % USER_HZ)==0
604 if (x >= ~0UL / (HZ / USER_HZ))
605 return ~0UL;
606 return x * (HZ / USER_HZ);
607 #else
608 /* Don't worry about loss of precision here .. */
609 if (x >= ~0UL / HZ * USER_HZ)
610 return ~0UL;
612 /* .. but do try to contain it here */
613 return div_u64((u64)x * HZ, USER_HZ);
614 #endif
616 EXPORT_SYMBOL(clock_t_to_jiffies);
618 u64 jiffies_64_to_clock_t(u64 x)
620 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
621 # if HZ < USER_HZ
622 x = div_u64(x * USER_HZ, HZ);
623 # elif HZ > USER_HZ
624 x = div_u64(x, HZ / USER_HZ);
625 # else
626 /* Nothing to do */
627 # endif
628 #else
630 * There are better ways that don't overflow early,
631 * but even this doesn't overflow in hundreds of years
632 * in 64 bits, so..
634 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
635 #endif
636 return x;
638 EXPORT_SYMBOL(jiffies_64_to_clock_t);
640 u64 nsec_to_clock_t(u64 x)
642 #if (NSEC_PER_SEC % USER_HZ) == 0
643 return div_u64(x, NSEC_PER_SEC / USER_HZ);
644 #elif (USER_HZ % 512) == 0
645 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
646 #else
648 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
649 * overflow after 64.99 years.
650 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
652 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
653 #endif
656 #if (BITS_PER_LONG < 64)
657 u64 get_jiffies_64(void)
659 unsigned long seq;
660 u64 ret;
662 do {
663 seq = read_seqbegin(&xtime_lock);
664 ret = jiffies_64;
665 } while (read_seqretry(&xtime_lock, seq));
666 return ret;
668 EXPORT_SYMBOL(get_jiffies_64);
669 #endif
671 EXPORT_SYMBOL(jiffies);