4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
49 #define PFX "IPMI message handler: "
51 #define IPMI_DRIVER_VERSION "39.2"
53 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
56 static int initialized
;
59 static struct proc_dir_entry
*proc_ipmi_root
;
60 #endif /* CONFIG_PROC_FS */
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
65 #define MAX_EVENTS_IN_QUEUE 25
68 * Don't let a message sit in a queue forever, always time it with at lest
69 * the max message timer. This is in milliseconds.
71 #define MAX_MSG_TIMEOUT 60000
74 * The main "user" data structure.
77 struct list_head link
;
79 /* Set to "0" when the user is destroyed. */
84 /* The upper layer that handles receive messages. */
85 struct ipmi_user_hndl
*handler
;
88 /* The interface this user is bound to. */
91 /* Does this interface receive IPMI events? */
96 struct list_head link
;
104 * This is used to form a linked lised during mass deletion.
105 * Since this is in an RCU list, we cannot use the link above
106 * or change any data until the RCU period completes. So we
107 * use this next variable during mass deletion so we can have
108 * a list and don't have to wait and restart the search on
109 * every individual deletion of a command.
111 struct cmd_rcvr
*next
;
115 unsigned int inuse
: 1;
116 unsigned int broadcast
: 1;
118 unsigned long timeout
;
119 unsigned long orig_timeout
;
120 unsigned int retries_left
;
123 * To verify on an incoming send message response that this is
124 * the message that the response is for, we keep a sequence id
125 * and increment it every time we send a message.
130 * This is held so we can properly respond to the message on a
131 * timeout, and it is used to hold the temporary data for
132 * retransmission, too.
134 struct ipmi_recv_msg
*recv_msg
;
138 * Store the information in a msgid (long) to allow us to find a
139 * sequence table entry from the msgid.
141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
145 seq = ((msgid >> 26) & 0x3f); \
146 seqid = (msgid & 0x3fffff); \
149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
151 struct ipmi_channel
{
152 unsigned char medium
;
153 unsigned char protocol
;
156 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
157 * but may be changed by the user.
159 unsigned char address
;
162 * My LUN. This should generally stay the SMS LUN, but just in
168 #ifdef CONFIG_PROC_FS
169 struct ipmi_proc_entry
{
171 struct ipmi_proc_entry
*next
;
176 struct platform_device
*dev
;
177 struct ipmi_device_id id
;
178 unsigned char guid
[16];
181 struct kref refcount
;
183 /* bmc device attributes */
184 struct device_attribute device_id_attr
;
185 struct device_attribute provides_dev_sdrs_attr
;
186 struct device_attribute revision_attr
;
187 struct device_attribute firmware_rev_attr
;
188 struct device_attribute version_attr
;
189 struct device_attribute add_dev_support_attr
;
190 struct device_attribute manufacturer_id_attr
;
191 struct device_attribute product_id_attr
;
192 struct device_attribute guid_attr
;
193 struct device_attribute aux_firmware_rev_attr
;
197 * Various statistics for IPMI, these index stats[] in the ipmi_smi
200 enum ipmi_stat_indexes
{
201 /* Commands we got from the user that were invalid. */
202 IPMI_STAT_sent_invalid_commands
= 0,
204 /* Commands we sent to the MC. */
205 IPMI_STAT_sent_local_commands
,
207 /* Responses from the MC that were delivered to a user. */
208 IPMI_STAT_handled_local_responses
,
210 /* Responses from the MC that were not delivered to a user. */
211 IPMI_STAT_unhandled_local_responses
,
213 /* Commands we sent out to the IPMB bus. */
214 IPMI_STAT_sent_ipmb_commands
,
216 /* Commands sent on the IPMB that had errors on the SEND CMD */
217 IPMI_STAT_sent_ipmb_command_errs
,
219 /* Each retransmit increments this count. */
220 IPMI_STAT_retransmitted_ipmb_commands
,
223 * When a message times out (runs out of retransmits) this is
226 IPMI_STAT_timed_out_ipmb_commands
,
229 * This is like above, but for broadcasts. Broadcasts are
230 * *not* included in the above count (they are expected to
233 IPMI_STAT_timed_out_ipmb_broadcasts
,
235 /* Responses I have sent to the IPMB bus. */
236 IPMI_STAT_sent_ipmb_responses
,
238 /* The response was delivered to the user. */
239 IPMI_STAT_handled_ipmb_responses
,
241 /* The response had invalid data in it. */
242 IPMI_STAT_invalid_ipmb_responses
,
244 /* The response didn't have anyone waiting for it. */
245 IPMI_STAT_unhandled_ipmb_responses
,
247 /* Commands we sent out to the IPMB bus. */
248 IPMI_STAT_sent_lan_commands
,
250 /* Commands sent on the IPMB that had errors on the SEND CMD */
251 IPMI_STAT_sent_lan_command_errs
,
253 /* Each retransmit increments this count. */
254 IPMI_STAT_retransmitted_lan_commands
,
257 * When a message times out (runs out of retransmits) this is
260 IPMI_STAT_timed_out_lan_commands
,
262 /* Responses I have sent to the IPMB bus. */
263 IPMI_STAT_sent_lan_responses
,
265 /* The response was delivered to the user. */
266 IPMI_STAT_handled_lan_responses
,
268 /* The response had invalid data in it. */
269 IPMI_STAT_invalid_lan_responses
,
271 /* The response didn't have anyone waiting for it. */
272 IPMI_STAT_unhandled_lan_responses
,
274 /* The command was delivered to the user. */
275 IPMI_STAT_handled_commands
,
277 /* The command had invalid data in it. */
278 IPMI_STAT_invalid_commands
,
280 /* The command didn't have anyone waiting for it. */
281 IPMI_STAT_unhandled_commands
,
283 /* Invalid data in an event. */
284 IPMI_STAT_invalid_events
,
286 /* Events that were received with the proper format. */
289 /* Retransmissions on IPMB that failed. */
290 IPMI_STAT_dropped_rexmit_ipmb_commands
,
292 /* Retransmissions on LAN that failed. */
293 IPMI_STAT_dropped_rexmit_lan_commands
,
295 /* This *must* remain last, add new values above this. */
300 #define IPMI_IPMB_NUM_SEQ 64
301 #define IPMI_MAX_CHANNELS 16
303 /* What interface number are we? */
306 struct kref refcount
;
308 /* Used for a list of interfaces. */
309 struct list_head link
;
312 * The list of upper layers that are using me. seq_lock
315 struct list_head users
;
317 /* Information to supply to users. */
318 unsigned char ipmi_version_major
;
319 unsigned char ipmi_version_minor
;
321 /* Used for wake ups at startup. */
322 wait_queue_head_t waitq
;
324 struct bmc_device
*bmc
;
329 * This is the lower-layer's sender routine. Note that you
330 * must either be holding the ipmi_interfaces_mutex or be in
331 * an umpreemptible region to use this. You must fetch the
332 * value into a local variable and make sure it is not NULL.
334 struct ipmi_smi_handlers
*handlers
;
337 #ifdef CONFIG_PROC_FS
338 /* A list of proc entries for this interface. */
339 struct mutex proc_entry_lock
;
340 struct ipmi_proc_entry
*proc_entries
;
343 /* Driver-model device for the system interface. */
344 struct device
*si_dev
;
347 * A table of sequence numbers for this interface. We use the
348 * sequence numbers for IPMB messages that go out of the
349 * interface to match them up with their responses. A routine
350 * is called periodically to time the items in this list.
353 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
357 * Messages that were delayed for some reason (out of memory,
358 * for instance), will go in here to be processed later in a
359 * periodic timer interrupt.
361 spinlock_t waiting_msgs_lock
;
362 struct list_head waiting_msgs
;
365 * The list of command receivers that are registered for commands
368 struct mutex cmd_rcvrs_mutex
;
369 struct list_head cmd_rcvrs
;
372 * Events that were queues because no one was there to receive
375 spinlock_t events_lock
; /* For dealing with event stuff. */
376 struct list_head waiting_events
;
377 unsigned int waiting_events_count
; /* How many events in queue? */
378 char delivering_events
;
379 char event_msg_printed
;
382 * The event receiver for my BMC, only really used at panic
383 * shutdown as a place to store this.
385 unsigned char event_receiver
;
386 unsigned char event_receiver_lun
;
387 unsigned char local_sel_device
;
388 unsigned char local_event_generator
;
390 /* For handling of maintenance mode. */
391 int maintenance_mode
;
392 int maintenance_mode_enable
;
393 int auto_maintenance_timeout
;
394 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
397 * A cheap hack, if this is non-null and a message to an
398 * interface comes in with a NULL user, call this routine with
399 * it. Note that the message will still be freed by the
400 * caller. This only works on the system interface.
402 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
405 * When we are scanning the channels for an SMI, this will
406 * tell which channel we are scanning.
410 /* Channel information */
411 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
414 struct proc_dir_entry
*proc_dir
;
415 char proc_dir_name
[10];
417 atomic_t stats
[IPMI_NUM_STATS
];
420 * run_to_completion duplicate of smb_info, smi_info
421 * and ipmi_serial_info structures. Used to decrease numbers of
422 * parameters passed by "low" level IPMI code.
424 int run_to_completion
;
426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
429 * The driver model view of the IPMI messaging driver.
431 static struct platform_driver ipmidriver
= {
434 .bus
= &platform_bus_type
437 static DEFINE_MUTEX(ipmidriver_mutex
);
439 static LIST_HEAD(ipmi_interfaces
);
440 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
443 * List of watchers that want to know when smi's are added and deleted.
445 static LIST_HEAD(smi_watchers
);
446 static DEFINE_MUTEX(smi_watchers_mutex
);
449 #define ipmi_inc_stat(intf, stat) \
450 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451 #define ipmi_get_stat(intf, stat) \
452 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
454 static int is_lan_addr(struct ipmi_addr
*addr
)
456 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
459 static int is_ipmb_addr(struct ipmi_addr
*addr
)
461 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
464 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
466 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
469 static void free_recv_msg_list(struct list_head
*q
)
471 struct ipmi_recv_msg
*msg
, *msg2
;
473 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
474 list_del(&msg
->link
);
475 ipmi_free_recv_msg(msg
);
479 static void free_smi_msg_list(struct list_head
*q
)
481 struct ipmi_smi_msg
*msg
, *msg2
;
483 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
484 list_del(&msg
->link
);
485 ipmi_free_smi_msg(msg
);
489 static void clean_up_interface_data(ipmi_smi_t intf
)
492 struct cmd_rcvr
*rcvr
, *rcvr2
;
493 struct list_head list
;
495 free_smi_msg_list(&intf
->waiting_msgs
);
496 free_recv_msg_list(&intf
->waiting_events
);
499 * Wholesale remove all the entries from the list in the
500 * interface and wait for RCU to know that none are in use.
502 mutex_lock(&intf
->cmd_rcvrs_mutex
);
503 INIT_LIST_HEAD(&list
);
504 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
505 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
507 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
510 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
511 if ((intf
->seq_table
[i
].inuse
)
512 && (intf
->seq_table
[i
].recv_msg
))
513 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
517 static void intf_free(struct kref
*ref
)
519 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
521 clean_up_interface_data(intf
);
525 struct watcher_entry
{
528 struct list_head link
;
531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
534 LIST_HEAD(to_deliver
);
535 struct watcher_entry
*e
, *e2
;
537 mutex_lock(&smi_watchers_mutex
);
539 mutex_lock(&ipmi_interfaces_mutex
);
541 /* Build a list of things to deliver. */
542 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
543 if (intf
->intf_num
== -1)
545 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
548 kref_get(&intf
->refcount
);
550 e
->intf_num
= intf
->intf_num
;
551 list_add_tail(&e
->link
, &to_deliver
);
554 /* We will succeed, so add it to the list. */
555 list_add(&watcher
->link
, &smi_watchers
);
557 mutex_unlock(&ipmi_interfaces_mutex
);
559 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
561 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
562 kref_put(&e
->intf
->refcount
, intf_free
);
566 mutex_unlock(&smi_watchers_mutex
);
571 mutex_unlock(&ipmi_interfaces_mutex
);
572 mutex_unlock(&smi_watchers_mutex
);
573 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
575 kref_put(&e
->intf
->refcount
, intf_free
);
580 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
584 mutex_lock(&smi_watchers_mutex
);
585 list_del(&(watcher
->link
));
586 mutex_unlock(&smi_watchers_mutex
);
589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
592 * Must be called with smi_watchers_mutex held.
595 call_smi_watchers(int i
, struct device
*dev
)
597 struct ipmi_smi_watcher
*w
;
599 list_for_each_entry(w
, &smi_watchers
, link
) {
600 if (try_module_get(w
->owner
)) {
602 module_put(w
->owner
);
608 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
610 if (addr1
->addr_type
!= addr2
->addr_type
)
613 if (addr1
->channel
!= addr2
->channel
)
616 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
617 struct ipmi_system_interface_addr
*smi_addr1
618 = (struct ipmi_system_interface_addr
*) addr1
;
619 struct ipmi_system_interface_addr
*smi_addr2
620 = (struct ipmi_system_interface_addr
*) addr2
;
621 return (smi_addr1
->lun
== smi_addr2
->lun
);
624 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
625 struct ipmi_ipmb_addr
*ipmb_addr1
626 = (struct ipmi_ipmb_addr
*) addr1
;
627 struct ipmi_ipmb_addr
*ipmb_addr2
628 = (struct ipmi_ipmb_addr
*) addr2
;
630 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
631 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
634 if (is_lan_addr(addr1
)) {
635 struct ipmi_lan_addr
*lan_addr1
636 = (struct ipmi_lan_addr
*) addr1
;
637 struct ipmi_lan_addr
*lan_addr2
638 = (struct ipmi_lan_addr
*) addr2
;
640 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
641 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
642 && (lan_addr1
->session_handle
643 == lan_addr2
->session_handle
)
644 && (lan_addr1
->lun
== lan_addr2
->lun
));
650 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
652 if (len
< sizeof(struct ipmi_system_interface_addr
))
655 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
656 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
661 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
662 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
663 || (addr
->channel
< 0))
666 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
667 if (len
< sizeof(struct ipmi_ipmb_addr
))
672 if (is_lan_addr(addr
)) {
673 if (len
< sizeof(struct ipmi_lan_addr
))
680 EXPORT_SYMBOL(ipmi_validate_addr
);
682 unsigned int ipmi_addr_length(int addr_type
)
684 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
685 return sizeof(struct ipmi_system_interface_addr
);
687 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
688 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
689 return sizeof(struct ipmi_ipmb_addr
);
691 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
692 return sizeof(struct ipmi_lan_addr
);
696 EXPORT_SYMBOL(ipmi_addr_length
);
698 static void deliver_response(struct ipmi_recv_msg
*msg
)
701 ipmi_smi_t intf
= msg
->user_msg_data
;
703 /* Special handling for NULL users. */
704 if (intf
->null_user_handler
) {
705 intf
->null_user_handler(intf
, msg
);
706 ipmi_inc_stat(intf
, handled_local_responses
);
708 /* No handler, so give up. */
709 ipmi_inc_stat(intf
, unhandled_local_responses
);
711 ipmi_free_recv_msg(msg
);
713 ipmi_user_t user
= msg
->user
;
714 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
719 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
721 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
722 msg
->msg_data
[0] = err
;
723 msg
->msg
.netfn
|= 1; /* Convert to a response. */
724 msg
->msg
.data_len
= 1;
725 msg
->msg
.data
= msg
->msg_data
;
726 deliver_response(msg
);
730 * Find the next sequence number not being used and add the given
731 * message with the given timeout to the sequence table. This must be
732 * called with the interface's seq_lock held.
734 static int intf_next_seq(ipmi_smi_t intf
,
735 struct ipmi_recv_msg
*recv_msg
,
736 unsigned long timeout
,
745 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
746 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
747 if (!intf
->seq_table
[i
].inuse
)
751 if (!intf
->seq_table
[i
].inuse
) {
752 intf
->seq_table
[i
].recv_msg
= recv_msg
;
755 * Start with the maximum timeout, when the send response
756 * comes in we will start the real timer.
758 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
759 intf
->seq_table
[i
].orig_timeout
= timeout
;
760 intf
->seq_table
[i
].retries_left
= retries
;
761 intf
->seq_table
[i
].broadcast
= broadcast
;
762 intf
->seq_table
[i
].inuse
= 1;
763 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
765 *seqid
= intf
->seq_table
[i
].seqid
;
766 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
775 * Return the receive message for the given sequence number and
776 * release the sequence number so it can be reused. Some other data
777 * is passed in to be sure the message matches up correctly (to help
778 * guard against message coming in after their timeout and the
779 * sequence number being reused).
781 static int intf_find_seq(ipmi_smi_t intf
,
786 struct ipmi_addr
*addr
,
787 struct ipmi_recv_msg
**recv_msg
)
792 if (seq
>= IPMI_IPMB_NUM_SEQ
)
795 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
796 if (intf
->seq_table
[seq
].inuse
) {
797 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
799 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
800 && (msg
->msg
.netfn
== netfn
)
801 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
803 intf
->seq_table
[seq
].inuse
= 0;
807 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
813 /* Start the timer for a specific sequence table entry. */
814 static int intf_start_seq_timer(ipmi_smi_t intf
,
823 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
825 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
827 * We do this verification because the user can be deleted
828 * while a message is outstanding.
830 if ((intf
->seq_table
[seq
].inuse
)
831 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
832 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
833 ent
->timeout
= ent
->orig_timeout
;
836 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
841 /* Got an error for the send message for a specific sequence number. */
842 static int intf_err_seq(ipmi_smi_t intf
,
850 struct ipmi_recv_msg
*msg
= NULL
;
853 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
855 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
857 * We do this verification because the user can be deleted
858 * while a message is outstanding.
860 if ((intf
->seq_table
[seq
].inuse
)
861 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
862 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
868 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
871 deliver_err_response(msg
, err
);
877 int ipmi_create_user(unsigned int if_num
,
878 struct ipmi_user_hndl
*handler
,
883 ipmi_user_t new_user
;
888 * There is no module usecount here, because it's not
889 * required. Since this can only be used by and called from
890 * other modules, they will implicitly use this module, and
891 * thus this can't be removed unless the other modules are
899 * Make sure the driver is actually initialized, this handles
900 * problems with initialization order.
903 rv
= ipmi_init_msghandler();
908 * The init code doesn't return an error if it was turned
909 * off, but it won't initialize. Check that.
915 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
919 mutex_lock(&ipmi_interfaces_mutex
);
920 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
921 if (intf
->intf_num
== if_num
)
924 /* Not found, return an error */
929 /* Note that each existing user holds a refcount to the interface. */
930 kref_get(&intf
->refcount
);
932 kref_init(&new_user
->refcount
);
933 new_user
->handler
= handler
;
934 new_user
->handler_data
= handler_data
;
935 new_user
->intf
= intf
;
936 new_user
->gets_events
= 0;
938 if (!try_module_get(intf
->handlers
->owner
)) {
943 if (intf
->handlers
->inc_usecount
) {
944 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
946 module_put(intf
->handlers
->owner
);
952 * Hold the lock so intf->handlers is guaranteed to be good
955 mutex_unlock(&ipmi_interfaces_mutex
);
958 spin_lock_irqsave(&intf
->seq_lock
, flags
);
959 list_add_rcu(&new_user
->link
, &intf
->users
);
960 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
965 kref_put(&intf
->refcount
, intf_free
);
967 mutex_unlock(&ipmi_interfaces_mutex
);
971 EXPORT_SYMBOL(ipmi_create_user
);
973 static void free_user(struct kref
*ref
)
975 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
979 int ipmi_destroy_user(ipmi_user_t user
)
981 ipmi_smi_t intf
= user
->intf
;
984 struct cmd_rcvr
*rcvr
;
985 struct cmd_rcvr
*rcvrs
= NULL
;
989 /* Remove the user from the interface's sequence table. */
990 spin_lock_irqsave(&intf
->seq_lock
, flags
);
991 list_del_rcu(&user
->link
);
993 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
994 if (intf
->seq_table
[i
].inuse
995 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
996 intf
->seq_table
[i
].inuse
= 0;
997 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1000 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1003 * Remove the user from the command receiver's table. First
1004 * we build a list of everything (not using the standard link,
1005 * since other things may be using it till we do
1006 * synchronize_rcu()) then free everything in that list.
1008 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1009 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1010 if (rcvr
->user
== user
) {
1011 list_del_rcu(&rcvr
->link
);
1016 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1024 mutex_lock(&ipmi_interfaces_mutex
);
1025 if (intf
->handlers
) {
1026 module_put(intf
->handlers
->owner
);
1027 if (intf
->handlers
->dec_usecount
)
1028 intf
->handlers
->dec_usecount(intf
->send_info
);
1030 mutex_unlock(&ipmi_interfaces_mutex
);
1032 kref_put(&intf
->refcount
, intf_free
);
1034 kref_put(&user
->refcount
, free_user
);
1038 EXPORT_SYMBOL(ipmi_destroy_user
);
1040 void ipmi_get_version(ipmi_user_t user
,
1041 unsigned char *major
,
1042 unsigned char *minor
)
1044 *major
= user
->intf
->ipmi_version_major
;
1045 *minor
= user
->intf
->ipmi_version_minor
;
1047 EXPORT_SYMBOL(ipmi_get_version
);
1049 int ipmi_set_my_address(ipmi_user_t user
,
1050 unsigned int channel
,
1051 unsigned char address
)
1053 if (channel
>= IPMI_MAX_CHANNELS
)
1055 user
->intf
->channels
[channel
].address
= address
;
1058 EXPORT_SYMBOL(ipmi_set_my_address
);
1060 int ipmi_get_my_address(ipmi_user_t user
,
1061 unsigned int channel
,
1062 unsigned char *address
)
1064 if (channel
>= IPMI_MAX_CHANNELS
)
1066 *address
= user
->intf
->channels
[channel
].address
;
1069 EXPORT_SYMBOL(ipmi_get_my_address
);
1071 int ipmi_set_my_LUN(ipmi_user_t user
,
1072 unsigned int channel
,
1075 if (channel
>= IPMI_MAX_CHANNELS
)
1077 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1080 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1082 int ipmi_get_my_LUN(ipmi_user_t user
,
1083 unsigned int channel
,
1084 unsigned char *address
)
1086 if (channel
>= IPMI_MAX_CHANNELS
)
1088 *address
= user
->intf
->channels
[channel
].lun
;
1091 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1093 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1096 unsigned long flags
;
1098 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1099 mode
= user
->intf
->maintenance_mode
;
1100 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1104 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1106 static void maintenance_mode_update(ipmi_smi_t intf
)
1108 if (intf
->handlers
->set_maintenance_mode
)
1109 intf
->handlers
->set_maintenance_mode(
1110 intf
->send_info
, intf
->maintenance_mode_enable
);
1113 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1116 unsigned long flags
;
1117 ipmi_smi_t intf
= user
->intf
;
1119 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1120 if (intf
->maintenance_mode
!= mode
) {
1122 case IPMI_MAINTENANCE_MODE_AUTO
:
1123 intf
->maintenance_mode
= mode
;
1124 intf
->maintenance_mode_enable
1125 = (intf
->auto_maintenance_timeout
> 0);
1128 case IPMI_MAINTENANCE_MODE_OFF
:
1129 intf
->maintenance_mode
= mode
;
1130 intf
->maintenance_mode_enable
= 0;
1133 case IPMI_MAINTENANCE_MODE_ON
:
1134 intf
->maintenance_mode
= mode
;
1135 intf
->maintenance_mode_enable
= 1;
1143 maintenance_mode_update(intf
);
1146 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1150 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1152 int ipmi_set_gets_events(ipmi_user_t user
, int val
)
1154 unsigned long flags
;
1155 ipmi_smi_t intf
= user
->intf
;
1156 struct ipmi_recv_msg
*msg
, *msg2
;
1157 struct list_head msgs
;
1159 INIT_LIST_HEAD(&msgs
);
1161 spin_lock_irqsave(&intf
->events_lock
, flags
);
1162 user
->gets_events
= val
;
1164 if (intf
->delivering_events
)
1166 * Another thread is delivering events for this, so
1167 * let it handle any new events.
1171 /* Deliver any queued events. */
1172 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1173 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1174 list_move_tail(&msg
->link
, &msgs
);
1175 intf
->waiting_events_count
= 0;
1176 if (intf
->event_msg_printed
) {
1177 printk(KERN_WARNING PFX
"Event queue no longer"
1179 intf
->event_msg_printed
= 0;
1182 intf
->delivering_events
= 1;
1183 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1185 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1187 kref_get(&user
->refcount
);
1188 deliver_response(msg
);
1191 spin_lock_irqsave(&intf
->events_lock
, flags
);
1192 intf
->delivering_events
= 0;
1196 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1200 EXPORT_SYMBOL(ipmi_set_gets_events
);
1202 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1203 unsigned char netfn
,
1207 struct cmd_rcvr
*rcvr
;
1209 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1210 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1211 && (rcvr
->chans
& (1 << chan
)))
1217 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1218 unsigned char netfn
,
1222 struct cmd_rcvr
*rcvr
;
1224 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1225 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1226 && (rcvr
->chans
& chans
))
1232 int ipmi_register_for_cmd(ipmi_user_t user
,
1233 unsigned char netfn
,
1237 ipmi_smi_t intf
= user
->intf
;
1238 struct cmd_rcvr
*rcvr
;
1242 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1246 rcvr
->netfn
= netfn
;
1247 rcvr
->chans
= chans
;
1250 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1251 /* Make sure the command/netfn is not already registered. */
1252 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1257 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1260 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1266 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1268 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1269 unsigned char netfn
,
1273 ipmi_smi_t intf
= user
->intf
;
1274 struct cmd_rcvr
*rcvr
;
1275 struct cmd_rcvr
*rcvrs
= NULL
;
1276 int i
, rv
= -ENOENT
;
1278 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1279 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1280 if (((1 << i
) & chans
) == 0)
1282 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1285 if (rcvr
->user
== user
) {
1287 rcvr
->chans
&= ~chans
;
1288 if (rcvr
->chans
== 0) {
1289 list_del_rcu(&rcvr
->link
);
1295 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1304 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1306 static unsigned char
1307 ipmb_checksum(unsigned char *data
, int size
)
1309 unsigned char csum
= 0;
1311 for (; size
> 0; size
--, data
++)
1317 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1318 struct kernel_ipmi_msg
*msg
,
1319 struct ipmi_ipmb_addr
*ipmb_addr
,
1321 unsigned char ipmb_seq
,
1323 unsigned char source_address
,
1324 unsigned char source_lun
)
1328 /* Format the IPMB header data. */
1329 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1330 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1331 smi_msg
->data
[2] = ipmb_addr
->channel
;
1333 smi_msg
->data
[3] = 0;
1334 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1335 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1336 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1337 smi_msg
->data
[i
+6] = source_address
;
1338 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1339 smi_msg
->data
[i
+8] = msg
->cmd
;
1341 /* Now tack on the data to the message. */
1342 if (msg
->data_len
> 0)
1343 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1345 smi_msg
->data_size
= msg
->data_len
+ 9;
1347 /* Now calculate the checksum and tack it on. */
1348 smi_msg
->data
[i
+smi_msg
->data_size
]
1349 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1350 smi_msg
->data_size
-6);
1353 * Add on the checksum size and the offset from the
1356 smi_msg
->data_size
+= 1 + i
;
1358 smi_msg
->msgid
= msgid
;
1361 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1362 struct kernel_ipmi_msg
*msg
,
1363 struct ipmi_lan_addr
*lan_addr
,
1365 unsigned char ipmb_seq
,
1366 unsigned char source_lun
)
1368 /* Format the IPMB header data. */
1369 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1370 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1371 smi_msg
->data
[2] = lan_addr
->channel
;
1372 smi_msg
->data
[3] = lan_addr
->session_handle
;
1373 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1374 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1375 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1376 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1377 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1378 smi_msg
->data
[9] = msg
->cmd
;
1380 /* Now tack on the data to the message. */
1381 if (msg
->data_len
> 0)
1382 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1384 smi_msg
->data_size
= msg
->data_len
+ 10;
1386 /* Now calculate the checksum and tack it on. */
1387 smi_msg
->data
[smi_msg
->data_size
]
1388 = ipmb_checksum(&(smi_msg
->data
[7]),
1389 smi_msg
->data_size
-7);
1392 * Add on the checksum size and the offset from the
1395 smi_msg
->data_size
+= 1;
1397 smi_msg
->msgid
= msgid
;
1401 * Separate from ipmi_request so that the user does not have to be
1402 * supplied in certain circumstances (mainly at panic time). If
1403 * messages are supplied, they will be freed, even if an error
1406 static int i_ipmi_request(ipmi_user_t user
,
1408 struct ipmi_addr
*addr
,
1410 struct kernel_ipmi_msg
*msg
,
1411 void *user_msg_data
,
1413 struct ipmi_recv_msg
*supplied_recv
,
1415 unsigned char source_address
,
1416 unsigned char source_lun
,
1418 unsigned int retry_time_ms
)
1421 struct ipmi_smi_msg
*smi_msg
;
1422 struct ipmi_recv_msg
*recv_msg
;
1423 unsigned long flags
;
1424 struct ipmi_smi_handlers
*handlers
;
1428 recv_msg
= supplied_recv
;
1430 recv_msg
= ipmi_alloc_recv_msg();
1431 if (recv_msg
== NULL
)
1434 recv_msg
->user_msg_data
= user_msg_data
;
1437 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1439 smi_msg
= ipmi_alloc_smi_msg();
1440 if (smi_msg
== NULL
) {
1441 ipmi_free_recv_msg(recv_msg
);
1447 handlers
= intf
->handlers
;
1453 recv_msg
->user
= user
;
1455 kref_get(&user
->refcount
);
1456 recv_msg
->msgid
= msgid
;
1458 * Store the message to send in the receive message so timeout
1459 * responses can get the proper response data.
1461 recv_msg
->msg
= *msg
;
1463 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1464 struct ipmi_system_interface_addr
*smi_addr
;
1466 if (msg
->netfn
& 1) {
1467 /* Responses are not allowed to the SMI. */
1472 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1473 if (smi_addr
->lun
> 3) {
1474 ipmi_inc_stat(intf
, sent_invalid_commands
);
1479 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1481 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1482 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1483 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1484 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1486 * We don't let the user do these, since we manage
1487 * the sequence numbers.
1489 ipmi_inc_stat(intf
, sent_invalid_commands
);
1494 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1495 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1496 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1497 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1498 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1499 intf
->auto_maintenance_timeout
1500 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1501 if (!intf
->maintenance_mode
1502 && !intf
->maintenance_mode_enable
) {
1503 intf
->maintenance_mode_enable
= 1;
1504 maintenance_mode_update(intf
);
1506 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1510 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1511 ipmi_inc_stat(intf
, sent_invalid_commands
);
1516 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1517 smi_msg
->data
[1] = msg
->cmd
;
1518 smi_msg
->msgid
= msgid
;
1519 smi_msg
->user_data
= recv_msg
;
1520 if (msg
->data_len
> 0)
1521 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1522 smi_msg
->data_size
= msg
->data_len
+ 2;
1523 ipmi_inc_stat(intf
, sent_local_commands
);
1524 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1525 struct ipmi_ipmb_addr
*ipmb_addr
;
1526 unsigned char ipmb_seq
;
1530 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1531 ipmi_inc_stat(intf
, sent_invalid_commands
);
1536 if (intf
->channels
[addr
->channel
].medium
1537 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1538 ipmi_inc_stat(intf
, sent_invalid_commands
);
1544 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1545 retries
= 0; /* Don't retry broadcasts. */
1549 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1551 * Broadcasts add a zero at the beginning of the
1552 * message, but otherwise is the same as an IPMB
1555 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1560 /* Default to 1 second retries. */
1561 if (retry_time_ms
== 0)
1562 retry_time_ms
= 1000;
1565 * 9 for the header and 1 for the checksum, plus
1566 * possibly one for the broadcast.
1568 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1569 ipmi_inc_stat(intf
, sent_invalid_commands
);
1574 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1575 if (ipmb_addr
->lun
> 3) {
1576 ipmi_inc_stat(intf
, sent_invalid_commands
);
1581 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1583 if (recv_msg
->msg
.netfn
& 0x1) {
1585 * It's a response, so use the user's sequence
1588 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1589 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1591 source_address
, source_lun
);
1594 * Save the receive message so we can use it
1595 * to deliver the response.
1597 smi_msg
->user_data
= recv_msg
;
1599 /* It's a command, so get a sequence for it. */
1601 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1604 * Create a sequence number with a 1 second
1605 * timeout and 4 retries.
1607 rv
= intf_next_seq(intf
,
1616 * We have used up all the sequence numbers,
1617 * probably, so abort.
1619 spin_unlock_irqrestore(&(intf
->seq_lock
),
1624 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1627 * Store the sequence number in the message,
1628 * so that when the send message response
1629 * comes back we can start the timer.
1631 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1632 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1633 ipmb_seq
, broadcast
,
1634 source_address
, source_lun
);
1637 * Copy the message into the recv message data, so we
1638 * can retransmit it later if necessary.
1640 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1641 smi_msg
->data_size
);
1642 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1643 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1646 * We don't unlock until here, because we need
1647 * to copy the completed message into the
1648 * recv_msg before we release the lock.
1649 * Otherwise, race conditions may bite us. I
1650 * know that's pretty paranoid, but I prefer
1653 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1655 } else if (is_lan_addr(addr
)) {
1656 struct ipmi_lan_addr
*lan_addr
;
1657 unsigned char ipmb_seq
;
1660 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1661 ipmi_inc_stat(intf
, sent_invalid_commands
);
1666 if ((intf
->channels
[addr
->channel
].medium
1667 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1668 && (intf
->channels
[addr
->channel
].medium
1669 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1670 ipmi_inc_stat(intf
, sent_invalid_commands
);
1677 /* Default to 1 second retries. */
1678 if (retry_time_ms
== 0)
1679 retry_time_ms
= 1000;
1681 /* 11 for the header and 1 for the checksum. */
1682 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1683 ipmi_inc_stat(intf
, sent_invalid_commands
);
1688 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1689 if (lan_addr
->lun
> 3) {
1690 ipmi_inc_stat(intf
, sent_invalid_commands
);
1695 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1697 if (recv_msg
->msg
.netfn
& 0x1) {
1699 * It's a response, so use the user's sequence
1702 ipmi_inc_stat(intf
, sent_lan_responses
);
1703 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1707 * Save the receive message so we can use it
1708 * to deliver the response.
1710 smi_msg
->user_data
= recv_msg
;
1712 /* It's a command, so get a sequence for it. */
1714 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1717 * Create a sequence number with a 1 second
1718 * timeout and 4 retries.
1720 rv
= intf_next_seq(intf
,
1729 * We have used up all the sequence numbers,
1730 * probably, so abort.
1732 spin_unlock_irqrestore(&(intf
->seq_lock
),
1737 ipmi_inc_stat(intf
, sent_lan_commands
);
1740 * Store the sequence number in the message,
1741 * so that when the send message response
1742 * comes back we can start the timer.
1744 format_lan_msg(smi_msg
, msg
, lan_addr
,
1745 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1746 ipmb_seq
, source_lun
);
1749 * Copy the message into the recv message data, so we
1750 * can retransmit it later if necessary.
1752 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1753 smi_msg
->data_size
);
1754 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1755 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1758 * We don't unlock until here, because we need
1759 * to copy the completed message into the
1760 * recv_msg before we release the lock.
1761 * Otherwise, race conditions may bite us. I
1762 * know that's pretty paranoid, but I prefer
1765 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1768 /* Unknown address type. */
1769 ipmi_inc_stat(intf
, sent_invalid_commands
);
1777 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1778 printk(" %2.2x", smi_msg
->data
[m
]);
1783 handlers
->sender(intf
->send_info
, smi_msg
, priority
);
1790 ipmi_free_smi_msg(smi_msg
);
1791 ipmi_free_recv_msg(recv_msg
);
1795 static int check_addr(ipmi_smi_t intf
,
1796 struct ipmi_addr
*addr
,
1797 unsigned char *saddr
,
1800 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1802 *lun
= intf
->channels
[addr
->channel
].lun
;
1803 *saddr
= intf
->channels
[addr
->channel
].address
;
1807 int ipmi_request_settime(ipmi_user_t user
,
1808 struct ipmi_addr
*addr
,
1810 struct kernel_ipmi_msg
*msg
,
1811 void *user_msg_data
,
1814 unsigned int retry_time_ms
)
1816 unsigned char saddr
, lun
;
1821 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1824 return i_ipmi_request(user
,
1837 EXPORT_SYMBOL(ipmi_request_settime
);
1839 int ipmi_request_supply_msgs(ipmi_user_t user
,
1840 struct ipmi_addr
*addr
,
1842 struct kernel_ipmi_msg
*msg
,
1843 void *user_msg_data
,
1845 struct ipmi_recv_msg
*supplied_recv
,
1848 unsigned char saddr
, lun
;
1853 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1856 return i_ipmi_request(user
,
1869 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1871 #ifdef CONFIG_PROC_FS
1872 static int ipmb_file_read_proc(char *page
, char **start
, off_t off
,
1873 int count
, int *eof
, void *data
)
1875 char *out
= (char *) page
;
1876 ipmi_smi_t intf
= data
;
1880 for (i
= 0; i
< IPMI_MAX_CHANNELS
; i
++)
1881 rv
+= sprintf(out
+rv
, "%x ", intf
->channels
[i
].address
);
1882 out
[rv
-1] = '\n'; /* Replace the final space with a newline */
1888 static int version_file_read_proc(char *page
, char **start
, off_t off
,
1889 int count
, int *eof
, void *data
)
1891 char *out
= (char *) page
;
1892 ipmi_smi_t intf
= data
;
1894 return sprintf(out
, "%u.%u\n",
1895 ipmi_version_major(&intf
->bmc
->id
),
1896 ipmi_version_minor(&intf
->bmc
->id
));
1899 static int stat_file_read_proc(char *page
, char **start
, off_t off
,
1900 int count
, int *eof
, void *data
)
1902 char *out
= (char *) page
;
1903 ipmi_smi_t intf
= data
;
1905 out
+= sprintf(out
, "sent_invalid_commands: %u\n",
1906 ipmi_get_stat(intf
, sent_invalid_commands
));
1907 out
+= sprintf(out
, "sent_local_commands: %u\n",
1908 ipmi_get_stat(intf
, sent_local_commands
));
1909 out
+= sprintf(out
, "handled_local_responses: %u\n",
1910 ipmi_get_stat(intf
, handled_local_responses
));
1911 out
+= sprintf(out
, "unhandled_local_responses: %u\n",
1912 ipmi_get_stat(intf
, unhandled_local_responses
));
1913 out
+= sprintf(out
, "sent_ipmb_commands: %u\n",
1914 ipmi_get_stat(intf
, sent_ipmb_commands
));
1915 out
+= sprintf(out
, "sent_ipmb_command_errs: %u\n",
1916 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
1917 out
+= sprintf(out
, "retransmitted_ipmb_commands: %u\n",
1918 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
1919 out
+= sprintf(out
, "timed_out_ipmb_commands: %u\n",
1920 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
1921 out
+= sprintf(out
, "timed_out_ipmb_broadcasts: %u\n",
1922 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
1923 out
+= sprintf(out
, "sent_ipmb_responses: %u\n",
1924 ipmi_get_stat(intf
, sent_ipmb_responses
));
1925 out
+= sprintf(out
, "handled_ipmb_responses: %u\n",
1926 ipmi_get_stat(intf
, handled_ipmb_responses
));
1927 out
+= sprintf(out
, "invalid_ipmb_responses: %u\n",
1928 ipmi_get_stat(intf
, invalid_ipmb_responses
));
1929 out
+= sprintf(out
, "unhandled_ipmb_responses: %u\n",
1930 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
1931 out
+= sprintf(out
, "sent_lan_commands: %u\n",
1932 ipmi_get_stat(intf
, sent_lan_commands
));
1933 out
+= sprintf(out
, "sent_lan_command_errs: %u\n",
1934 ipmi_get_stat(intf
, sent_lan_command_errs
));
1935 out
+= sprintf(out
, "retransmitted_lan_commands: %u\n",
1936 ipmi_get_stat(intf
, retransmitted_lan_commands
));
1937 out
+= sprintf(out
, "timed_out_lan_commands: %u\n",
1938 ipmi_get_stat(intf
, timed_out_lan_commands
));
1939 out
+= sprintf(out
, "sent_lan_responses: %u\n",
1940 ipmi_get_stat(intf
, sent_lan_responses
));
1941 out
+= sprintf(out
, "handled_lan_responses: %u\n",
1942 ipmi_get_stat(intf
, handled_lan_responses
));
1943 out
+= sprintf(out
, "invalid_lan_responses: %u\n",
1944 ipmi_get_stat(intf
, invalid_lan_responses
));
1945 out
+= sprintf(out
, "unhandled_lan_responses: %u\n",
1946 ipmi_get_stat(intf
, unhandled_lan_responses
));
1947 out
+= sprintf(out
, "handled_commands: %u\n",
1948 ipmi_get_stat(intf
, handled_commands
));
1949 out
+= sprintf(out
, "invalid_commands: %u\n",
1950 ipmi_get_stat(intf
, invalid_commands
));
1951 out
+= sprintf(out
, "unhandled_commands: %u\n",
1952 ipmi_get_stat(intf
, unhandled_commands
));
1953 out
+= sprintf(out
, "invalid_events: %u\n",
1954 ipmi_get_stat(intf
, invalid_events
));
1955 out
+= sprintf(out
, "events: %u\n",
1956 ipmi_get_stat(intf
, events
));
1957 out
+= sprintf(out
, "failed rexmit LAN msgs: %u\n",
1958 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
1959 out
+= sprintf(out
, "failed rexmit IPMB msgs: %u\n",
1960 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
1962 return (out
- ((char *) page
));
1964 #endif /* CONFIG_PROC_FS */
1966 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
1967 read_proc_t
*read_proc
,
1971 #ifdef CONFIG_PROC_FS
1972 struct proc_dir_entry
*file
;
1973 struct ipmi_proc_entry
*entry
;
1975 /* Create a list element. */
1976 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
1979 entry
->name
= kmalloc(strlen(name
)+1, GFP_KERNEL
);
1984 strcpy(entry
->name
, name
);
1986 file
= create_proc_entry(name
, 0, smi
->proc_dir
);
1993 file
->read_proc
= read_proc
;
1995 mutex_lock(&smi
->proc_entry_lock
);
1996 /* Stick it on the list. */
1997 entry
->next
= smi
->proc_entries
;
1998 smi
->proc_entries
= entry
;
1999 mutex_unlock(&smi
->proc_entry_lock
);
2001 #endif /* CONFIG_PROC_FS */
2005 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2007 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2011 #ifdef CONFIG_PROC_FS
2012 sprintf(smi
->proc_dir_name
, "%d", num
);
2013 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2018 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2019 stat_file_read_proc
,
2023 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2024 ipmb_file_read_proc
,
2028 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2029 version_file_read_proc
,
2031 #endif /* CONFIG_PROC_FS */
2036 static void remove_proc_entries(ipmi_smi_t smi
)
2038 #ifdef CONFIG_PROC_FS
2039 struct ipmi_proc_entry
*entry
;
2041 mutex_lock(&smi
->proc_entry_lock
);
2042 while (smi
->proc_entries
) {
2043 entry
= smi
->proc_entries
;
2044 smi
->proc_entries
= entry
->next
;
2046 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2050 mutex_unlock(&smi
->proc_entry_lock
);
2051 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2052 #endif /* CONFIG_PROC_FS */
2055 static int __find_bmc_guid(struct device
*dev
, void *data
)
2057 unsigned char *id
= data
;
2058 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2059 return memcmp(bmc
->guid
, id
, 16) == 0;
2062 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2063 unsigned char *guid
)
2067 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2069 return dev_get_drvdata(dev
);
2074 struct prod_dev_id
{
2075 unsigned int product_id
;
2076 unsigned char device_id
;
2079 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2081 struct prod_dev_id
*id
= data
;
2082 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2084 return (bmc
->id
.product_id
== id
->product_id
2085 && bmc
->id
.device_id
== id
->device_id
);
2088 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2089 struct device_driver
*drv
,
2090 unsigned int product_id
, unsigned char device_id
)
2092 struct prod_dev_id id
= {
2093 .product_id
= product_id
,
2094 .device_id
= device_id
,
2098 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2100 return dev_get_drvdata(dev
);
2105 static ssize_t
device_id_show(struct device
*dev
,
2106 struct device_attribute
*attr
,
2109 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2111 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2114 static ssize_t
provides_dev_sdrs_show(struct device
*dev
,
2115 struct device_attribute
*attr
,
2118 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2120 return snprintf(buf
, 10, "%u\n",
2121 (bmc
->id
.device_revision
& 0x80) >> 7);
2124 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2127 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2129 return snprintf(buf
, 20, "%u\n",
2130 bmc
->id
.device_revision
& 0x0F);
2133 static ssize_t
firmware_rev_show(struct device
*dev
,
2134 struct device_attribute
*attr
,
2137 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2139 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2140 bmc
->id
.firmware_revision_2
);
2143 static ssize_t
ipmi_version_show(struct device
*dev
,
2144 struct device_attribute
*attr
,
2147 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2149 return snprintf(buf
, 20, "%u.%u\n",
2150 ipmi_version_major(&bmc
->id
),
2151 ipmi_version_minor(&bmc
->id
));
2154 static ssize_t
add_dev_support_show(struct device
*dev
,
2155 struct device_attribute
*attr
,
2158 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2160 return snprintf(buf
, 10, "0x%02x\n",
2161 bmc
->id
.additional_device_support
);
2164 static ssize_t
manufacturer_id_show(struct device
*dev
,
2165 struct device_attribute
*attr
,
2168 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2170 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2173 static ssize_t
product_id_show(struct device
*dev
,
2174 struct device_attribute
*attr
,
2177 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2179 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2182 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2183 struct device_attribute
*attr
,
2186 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2188 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2189 bmc
->id
.aux_firmware_revision
[3],
2190 bmc
->id
.aux_firmware_revision
[2],
2191 bmc
->id
.aux_firmware_revision
[1],
2192 bmc
->id
.aux_firmware_revision
[0]);
2195 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2198 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2200 return snprintf(buf
, 100, "%Lx%Lx\n",
2201 (long long) bmc
->guid
[0],
2202 (long long) bmc
->guid
[8]);
2205 static void remove_files(struct bmc_device
*bmc
)
2210 device_remove_file(&bmc
->dev
->dev
,
2211 &bmc
->device_id_attr
);
2212 device_remove_file(&bmc
->dev
->dev
,
2213 &bmc
->provides_dev_sdrs_attr
);
2214 device_remove_file(&bmc
->dev
->dev
,
2215 &bmc
->revision_attr
);
2216 device_remove_file(&bmc
->dev
->dev
,
2217 &bmc
->firmware_rev_attr
);
2218 device_remove_file(&bmc
->dev
->dev
,
2219 &bmc
->version_attr
);
2220 device_remove_file(&bmc
->dev
->dev
,
2221 &bmc
->add_dev_support_attr
);
2222 device_remove_file(&bmc
->dev
->dev
,
2223 &bmc
->manufacturer_id_attr
);
2224 device_remove_file(&bmc
->dev
->dev
,
2225 &bmc
->product_id_attr
);
2227 if (bmc
->id
.aux_firmware_revision_set
)
2228 device_remove_file(&bmc
->dev
->dev
,
2229 &bmc
->aux_firmware_rev_attr
);
2231 device_remove_file(&bmc
->dev
->dev
,
2236 cleanup_bmc_device(struct kref
*ref
)
2238 struct bmc_device
*bmc
;
2240 bmc
= container_of(ref
, struct bmc_device
, refcount
);
2243 platform_device_unregister(bmc
->dev
);
2247 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2249 struct bmc_device
*bmc
= intf
->bmc
;
2251 if (intf
->sysfs_name
) {
2252 sysfs_remove_link(&intf
->si_dev
->kobj
, intf
->sysfs_name
);
2253 kfree(intf
->sysfs_name
);
2254 intf
->sysfs_name
= NULL
;
2256 if (intf
->my_dev_name
) {
2257 sysfs_remove_link(&bmc
->dev
->dev
.kobj
, intf
->my_dev_name
);
2258 kfree(intf
->my_dev_name
);
2259 intf
->my_dev_name
= NULL
;
2262 mutex_lock(&ipmidriver_mutex
);
2263 kref_put(&bmc
->refcount
, cleanup_bmc_device
);
2265 mutex_unlock(&ipmidriver_mutex
);
2268 static int create_files(struct bmc_device
*bmc
)
2272 bmc
->device_id_attr
.attr
.name
= "device_id";
2273 bmc
->device_id_attr
.attr
.mode
= S_IRUGO
;
2274 bmc
->device_id_attr
.show
= device_id_show
;
2276 bmc
->provides_dev_sdrs_attr
.attr
.name
= "provides_device_sdrs";
2277 bmc
->provides_dev_sdrs_attr
.attr
.mode
= S_IRUGO
;
2278 bmc
->provides_dev_sdrs_attr
.show
= provides_dev_sdrs_show
;
2280 bmc
->revision_attr
.attr
.name
= "revision";
2281 bmc
->revision_attr
.attr
.mode
= S_IRUGO
;
2282 bmc
->revision_attr
.show
= revision_show
;
2284 bmc
->firmware_rev_attr
.attr
.name
= "firmware_revision";
2285 bmc
->firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2286 bmc
->firmware_rev_attr
.show
= firmware_rev_show
;
2288 bmc
->version_attr
.attr
.name
= "ipmi_version";
2289 bmc
->version_attr
.attr
.mode
= S_IRUGO
;
2290 bmc
->version_attr
.show
= ipmi_version_show
;
2292 bmc
->add_dev_support_attr
.attr
.name
= "additional_device_support";
2293 bmc
->add_dev_support_attr
.attr
.mode
= S_IRUGO
;
2294 bmc
->add_dev_support_attr
.show
= add_dev_support_show
;
2296 bmc
->manufacturer_id_attr
.attr
.name
= "manufacturer_id";
2297 bmc
->manufacturer_id_attr
.attr
.mode
= S_IRUGO
;
2298 bmc
->manufacturer_id_attr
.show
= manufacturer_id_show
;
2300 bmc
->product_id_attr
.attr
.name
= "product_id";
2301 bmc
->product_id_attr
.attr
.mode
= S_IRUGO
;
2302 bmc
->product_id_attr
.show
= product_id_show
;
2304 bmc
->guid_attr
.attr
.name
= "guid";
2305 bmc
->guid_attr
.attr
.mode
= S_IRUGO
;
2306 bmc
->guid_attr
.show
= guid_show
;
2308 bmc
->aux_firmware_rev_attr
.attr
.name
= "aux_firmware_revision";
2309 bmc
->aux_firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2310 bmc
->aux_firmware_rev_attr
.show
= aux_firmware_rev_show
;
2312 err
= device_create_file(&bmc
->dev
->dev
,
2313 &bmc
->device_id_attr
);
2316 err
= device_create_file(&bmc
->dev
->dev
,
2317 &bmc
->provides_dev_sdrs_attr
);
2320 err
= device_create_file(&bmc
->dev
->dev
,
2321 &bmc
->revision_attr
);
2324 err
= device_create_file(&bmc
->dev
->dev
,
2325 &bmc
->firmware_rev_attr
);
2328 err
= device_create_file(&bmc
->dev
->dev
,
2329 &bmc
->version_attr
);
2332 err
= device_create_file(&bmc
->dev
->dev
,
2333 &bmc
->add_dev_support_attr
);
2336 err
= device_create_file(&bmc
->dev
->dev
,
2337 &bmc
->manufacturer_id_attr
);
2340 err
= device_create_file(&bmc
->dev
->dev
,
2341 &bmc
->product_id_attr
);
2344 if (bmc
->id
.aux_firmware_revision_set
) {
2345 err
= device_create_file(&bmc
->dev
->dev
,
2346 &bmc
->aux_firmware_rev_attr
);
2350 if (bmc
->guid_set
) {
2351 err
= device_create_file(&bmc
->dev
->dev
,
2360 if (bmc
->id
.aux_firmware_revision_set
)
2361 device_remove_file(&bmc
->dev
->dev
,
2362 &bmc
->aux_firmware_rev_attr
);
2364 device_remove_file(&bmc
->dev
->dev
,
2365 &bmc
->product_id_attr
);
2367 device_remove_file(&bmc
->dev
->dev
,
2368 &bmc
->manufacturer_id_attr
);
2370 device_remove_file(&bmc
->dev
->dev
,
2371 &bmc
->add_dev_support_attr
);
2373 device_remove_file(&bmc
->dev
->dev
,
2374 &bmc
->version_attr
);
2376 device_remove_file(&bmc
->dev
->dev
,
2377 &bmc
->firmware_rev_attr
);
2379 device_remove_file(&bmc
->dev
->dev
,
2380 &bmc
->revision_attr
);
2382 device_remove_file(&bmc
->dev
->dev
,
2383 &bmc
->provides_dev_sdrs_attr
);
2385 device_remove_file(&bmc
->dev
->dev
,
2386 &bmc
->device_id_attr
);
2391 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
,
2392 const char *sysfs_name
)
2395 struct bmc_device
*bmc
= intf
->bmc
;
2396 struct bmc_device
*old_bmc
;
2400 mutex_lock(&ipmidriver_mutex
);
2403 * Try to find if there is an bmc_device struct
2404 * representing the interfaced BMC already
2407 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2409 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2414 * If there is already an bmc_device, free the new one,
2415 * otherwise register the new BMC device
2419 intf
->bmc
= old_bmc
;
2422 kref_get(&bmc
->refcount
);
2423 mutex_unlock(&ipmidriver_mutex
);
2426 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2427 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2428 bmc
->id
.manufacturer_id
,
2433 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2434 int warn_printed
= 0;
2436 snprintf(name
, sizeof(name
),
2437 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2439 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2441 bmc
->id
.device_id
)) {
2442 if (!warn_printed
) {
2443 printk(KERN_WARNING PFX
2444 "This machine has two different BMCs"
2445 " with the same product id and device"
2446 " id. This is an error in the"
2447 " firmware, but incrementing the"
2448 " device id to work around the problem."
2449 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2450 bmc
->id
.product_id
, bmc
->id
.device_id
);
2453 bmc
->id
.device_id
++; /* Wraps at 255 */
2454 if (bmc
->id
.device_id
== orig_dev_id
) {
2456 "Out of device ids!\n");
2461 bmc
->dev
= platform_device_alloc(name
, bmc
->id
.device_id
);
2463 mutex_unlock(&ipmidriver_mutex
);
2466 " Unable to allocate platform device\n");
2469 bmc
->dev
->dev
.driver
= &ipmidriver
.driver
;
2470 dev_set_drvdata(&bmc
->dev
->dev
, bmc
);
2471 kref_init(&bmc
->refcount
);
2473 rv
= platform_device_add(bmc
->dev
);
2474 mutex_unlock(&ipmidriver_mutex
);
2476 platform_device_put(bmc
->dev
);
2480 " Unable to register bmc device: %d\n",
2483 * Don't go to out_err, you can only do that if
2484 * the device is registered already.
2489 rv
= create_files(bmc
);
2491 mutex_lock(&ipmidriver_mutex
);
2492 platform_device_unregister(bmc
->dev
);
2493 mutex_unlock(&ipmidriver_mutex
);
2499 "ipmi: Found new BMC (man_id: 0x%6.6x, "
2500 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2501 bmc
->id
.manufacturer_id
,
2507 * create symlink from system interface device to bmc device
2510 intf
->sysfs_name
= kstrdup(sysfs_name
, GFP_KERNEL
);
2511 if (!intf
->sysfs_name
) {
2514 "ipmi_msghandler: allocate link to BMC: %d\n",
2519 rv
= sysfs_create_link(&intf
->si_dev
->kobj
,
2520 &bmc
->dev
->dev
.kobj
, intf
->sysfs_name
);
2522 kfree(intf
->sysfs_name
);
2523 intf
->sysfs_name
= NULL
;
2525 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2530 size
= snprintf(dummy
, 0, "ipmi%d", ifnum
);
2531 intf
->my_dev_name
= kmalloc(size
+1, GFP_KERNEL
);
2532 if (!intf
->my_dev_name
) {
2533 kfree(intf
->sysfs_name
);
2534 intf
->sysfs_name
= NULL
;
2537 "ipmi_msghandler: allocate link from BMC: %d\n",
2541 snprintf(intf
->my_dev_name
, size
+1, "ipmi%d", ifnum
);
2543 rv
= sysfs_create_link(&bmc
->dev
->dev
.kobj
, &intf
->si_dev
->kobj
,
2546 kfree(intf
->sysfs_name
);
2547 intf
->sysfs_name
= NULL
;
2548 kfree(intf
->my_dev_name
);
2549 intf
->my_dev_name
= NULL
;
2552 " Unable to create symlink to bmc: %d\n",
2560 ipmi_bmc_unregister(intf
);
2565 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2567 struct kernel_ipmi_msg msg
;
2568 struct ipmi_system_interface_addr si
;
2570 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2571 si
.channel
= IPMI_BMC_CHANNEL
;
2574 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2575 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2578 return i_ipmi_request(NULL
,
2580 (struct ipmi_addr
*) &si
,
2587 intf
->channels
[0].address
,
2588 intf
->channels
[0].lun
,
2593 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2595 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2596 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2597 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2601 if (msg
->msg
.data
[0] != 0) {
2602 /* Error from getting the GUID, the BMC doesn't have one. */
2603 intf
->bmc
->guid_set
= 0;
2607 if (msg
->msg
.data_len
< 17) {
2608 intf
->bmc
->guid_set
= 0;
2609 printk(KERN_WARNING PFX
2610 "guid_handler: The GUID response from the BMC was too"
2611 " short, it was %d but should have been 17. Assuming"
2612 " GUID is not available.\n",
2617 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2618 intf
->bmc
->guid_set
= 1;
2620 wake_up(&intf
->waitq
);
2624 get_guid(ipmi_smi_t intf
)
2628 intf
->bmc
->guid_set
= 0x2;
2629 intf
->null_user_handler
= guid_handler
;
2630 rv
= send_guid_cmd(intf
, 0);
2632 /* Send failed, no GUID available. */
2633 intf
->bmc
->guid_set
= 0;
2634 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2635 intf
->null_user_handler
= NULL
;
2639 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2641 struct kernel_ipmi_msg msg
;
2642 unsigned char data
[1];
2643 struct ipmi_system_interface_addr si
;
2645 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2646 si
.channel
= IPMI_BMC_CHANNEL
;
2649 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2650 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2654 return i_ipmi_request(NULL
,
2656 (struct ipmi_addr
*) &si
,
2663 intf
->channels
[0].address
,
2664 intf
->channels
[0].lun
,
2669 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2674 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2675 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2676 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2677 /* It's the one we want */
2678 if (msg
->msg
.data
[0] != 0) {
2679 /* Got an error from the channel, just go on. */
2681 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2683 * If the MC does not support this
2684 * command, that is legal. We just
2685 * assume it has one IPMB at channel
2688 intf
->channels
[0].medium
2689 = IPMI_CHANNEL_MEDIUM_IPMB
;
2690 intf
->channels
[0].protocol
2691 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2694 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2695 wake_up(&intf
->waitq
);
2700 if (msg
->msg
.data_len
< 4) {
2701 /* Message not big enough, just go on. */
2704 chan
= intf
->curr_channel
;
2705 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2706 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2709 intf
->curr_channel
++;
2710 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2711 wake_up(&intf
->waitq
);
2713 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2716 /* Got an error somehow, just give up. */
2717 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2718 wake_up(&intf
->waitq
);
2720 printk(KERN_WARNING PFX
2721 "Error sending channel information: %d\n",
2729 void ipmi_poll_interface(ipmi_user_t user
)
2731 ipmi_smi_t intf
= user
->intf
;
2733 if (intf
->handlers
->poll
)
2734 intf
->handlers
->poll(intf
->send_info
);
2736 EXPORT_SYMBOL(ipmi_poll_interface
);
2738 int ipmi_register_smi(struct ipmi_smi_handlers
*handlers
,
2740 struct ipmi_device_id
*device_id
,
2741 struct device
*si_dev
,
2742 const char *sysfs_name
,
2743 unsigned char slave_addr
)
2749 struct list_head
*link
;
2752 * Make sure the driver is actually initialized, this handles
2753 * problems with initialization order.
2756 rv
= ipmi_init_msghandler();
2760 * The init code doesn't return an error if it was turned
2761 * off, but it won't initialize. Check that.
2767 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2771 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2772 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2774 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2779 intf
->intf_num
= -1; /* Mark it invalid for now. */
2780 kref_init(&intf
->refcount
);
2781 intf
->bmc
->id
= *device_id
;
2782 intf
->si_dev
= si_dev
;
2783 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2784 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2785 intf
->channels
[j
].lun
= 2;
2787 if (slave_addr
!= 0)
2788 intf
->channels
[0].address
= slave_addr
;
2789 INIT_LIST_HEAD(&intf
->users
);
2790 intf
->handlers
= handlers
;
2791 intf
->send_info
= send_info
;
2792 spin_lock_init(&intf
->seq_lock
);
2793 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2794 intf
->seq_table
[j
].inuse
= 0;
2795 intf
->seq_table
[j
].seqid
= 0;
2798 #ifdef CONFIG_PROC_FS
2799 mutex_init(&intf
->proc_entry_lock
);
2801 spin_lock_init(&intf
->waiting_msgs_lock
);
2802 INIT_LIST_HEAD(&intf
->waiting_msgs
);
2803 spin_lock_init(&intf
->events_lock
);
2804 INIT_LIST_HEAD(&intf
->waiting_events
);
2805 intf
->waiting_events_count
= 0;
2806 mutex_init(&intf
->cmd_rcvrs_mutex
);
2807 spin_lock_init(&intf
->maintenance_mode_lock
);
2808 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2809 init_waitqueue_head(&intf
->waitq
);
2810 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2811 atomic_set(&intf
->stats
[i
], 0);
2813 intf
->proc_dir
= NULL
;
2815 mutex_lock(&smi_watchers_mutex
);
2816 mutex_lock(&ipmi_interfaces_mutex
);
2817 /* Look for a hole in the numbers. */
2819 link
= &ipmi_interfaces
;
2820 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2821 if (tintf
->intf_num
!= i
) {
2822 link
= &tintf
->link
;
2827 /* Add the new interface in numeric order. */
2829 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2831 list_add_tail_rcu(&intf
->link
, link
);
2833 rv
= handlers
->start_processing(send_info
, intf
);
2839 if ((intf
->ipmi_version_major
> 1)
2840 || ((intf
->ipmi_version_major
== 1)
2841 && (intf
->ipmi_version_minor
>= 5))) {
2843 * Start scanning the channels to see what is
2846 intf
->null_user_handler
= channel_handler
;
2847 intf
->curr_channel
= 0;
2848 rv
= send_channel_info_cmd(intf
, 0);
2852 /* Wait for the channel info to be read. */
2853 wait_event(intf
->waitq
,
2854 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2855 intf
->null_user_handler
= NULL
;
2857 /* Assume a single IPMB channel at zero. */
2858 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2859 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2860 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2864 rv
= add_proc_entries(intf
, i
);
2866 rv
= ipmi_bmc_register(intf
, i
, sysfs_name
);
2871 remove_proc_entries(intf
);
2872 intf
->handlers
= NULL
;
2873 list_del_rcu(&intf
->link
);
2874 mutex_unlock(&ipmi_interfaces_mutex
);
2875 mutex_unlock(&smi_watchers_mutex
);
2877 kref_put(&intf
->refcount
, intf_free
);
2880 * Keep memory order straight for RCU readers. Make
2881 * sure everything else is committed to memory before
2882 * setting intf_num to mark the interface valid.
2886 mutex_unlock(&ipmi_interfaces_mutex
);
2887 /* After this point the interface is legal to use. */
2888 call_smi_watchers(i
, intf
->si_dev
);
2889 mutex_unlock(&smi_watchers_mutex
);
2894 EXPORT_SYMBOL(ipmi_register_smi
);
2896 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2899 struct seq_table
*ent
;
2901 /* No need for locks, the interface is down. */
2902 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2903 ent
= &(intf
->seq_table
[i
]);
2906 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2910 int ipmi_unregister_smi(ipmi_smi_t intf
)
2912 struct ipmi_smi_watcher
*w
;
2913 int intf_num
= intf
->intf_num
;
2915 ipmi_bmc_unregister(intf
);
2917 mutex_lock(&smi_watchers_mutex
);
2918 mutex_lock(&ipmi_interfaces_mutex
);
2919 intf
->intf_num
= -1;
2920 intf
->handlers
= NULL
;
2921 list_del_rcu(&intf
->link
);
2922 mutex_unlock(&ipmi_interfaces_mutex
);
2925 cleanup_smi_msgs(intf
);
2927 remove_proc_entries(intf
);
2930 * Call all the watcher interfaces to tell them that
2931 * an interface is gone.
2933 list_for_each_entry(w
, &smi_watchers
, link
)
2934 w
->smi_gone(intf_num
);
2935 mutex_unlock(&smi_watchers_mutex
);
2937 kref_put(&intf
->refcount
, intf_free
);
2940 EXPORT_SYMBOL(ipmi_unregister_smi
);
2942 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
2943 struct ipmi_smi_msg
*msg
)
2945 struct ipmi_ipmb_addr ipmb_addr
;
2946 struct ipmi_recv_msg
*recv_msg
;
2949 * This is 11, not 10, because the response must contain a
2952 if (msg
->rsp_size
< 11) {
2953 /* Message not big enough, just ignore it. */
2954 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
2958 if (msg
->rsp
[2] != 0) {
2959 /* An error getting the response, just ignore it. */
2963 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
2964 ipmb_addr
.slave_addr
= msg
->rsp
[6];
2965 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
2966 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
2969 * It's a response from a remote entity. Look up the sequence
2970 * number and handle the response.
2972 if (intf_find_seq(intf
,
2976 (msg
->rsp
[4] >> 2) & (~1),
2977 (struct ipmi_addr
*) &(ipmb_addr
),
2980 * We were unable to find the sequence number,
2981 * so just nuke the message.
2983 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
2987 memcpy(recv_msg
->msg_data
,
2991 * The other fields matched, so no need to set them, except
2992 * for netfn, which needs to be the response that was
2993 * returned, not the request value.
2995 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
2996 recv_msg
->msg
.data
= recv_msg
->msg_data
;
2997 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
2998 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
2999 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3000 deliver_response(recv_msg
);
3005 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3006 struct ipmi_smi_msg
*msg
)
3008 struct cmd_rcvr
*rcvr
;
3010 unsigned char netfn
;
3013 ipmi_user_t user
= NULL
;
3014 struct ipmi_ipmb_addr
*ipmb_addr
;
3015 struct ipmi_recv_msg
*recv_msg
;
3016 struct ipmi_smi_handlers
*handlers
;
3018 if (msg
->rsp_size
< 10) {
3019 /* Message not big enough, just ignore it. */
3020 ipmi_inc_stat(intf
, invalid_commands
);
3024 if (msg
->rsp
[2] != 0) {
3025 /* An error getting the response, just ignore it. */
3029 netfn
= msg
->rsp
[4] >> 2;
3031 chan
= msg
->rsp
[3] & 0xf;
3034 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3037 kref_get(&user
->refcount
);
3043 /* We didn't find a user, deliver an error response. */
3044 ipmi_inc_stat(intf
, unhandled_commands
);
3046 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3047 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3048 msg
->data
[2] = msg
->rsp
[3];
3049 msg
->data
[3] = msg
->rsp
[6];
3050 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3051 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3052 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3054 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3055 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3056 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3057 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3058 msg
->data_size
= 11;
3063 printk("Invalid command:");
3064 for (m
= 0; m
< msg
->data_size
; m
++)
3065 printk(" %2.2x", msg
->data
[m
]);
3070 handlers
= intf
->handlers
;
3072 handlers
->sender(intf
->send_info
, msg
, 0);
3074 * We used the message, so return the value
3075 * that causes it to not be freed or
3082 /* Deliver the message to the user. */
3083 ipmi_inc_stat(intf
, handled_commands
);
3085 recv_msg
= ipmi_alloc_recv_msg();
3088 * We couldn't allocate memory for the
3089 * message, so requeue it for handling
3093 kref_put(&user
->refcount
, free_user
);
3095 /* Extract the source address from the data. */
3096 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3097 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3098 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3099 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3100 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3103 * Extract the rest of the message information
3104 * from the IPMB header.
3106 recv_msg
->user
= user
;
3107 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3108 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3109 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3110 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3111 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3114 * We chop off 10, not 9 bytes because the checksum
3115 * at the end also needs to be removed.
3117 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3118 memcpy(recv_msg
->msg_data
,
3120 msg
->rsp_size
- 10);
3121 deliver_response(recv_msg
);
3128 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3129 struct ipmi_smi_msg
*msg
)
3131 struct ipmi_lan_addr lan_addr
;
3132 struct ipmi_recv_msg
*recv_msg
;
3136 * This is 13, not 12, because the response must contain a
3139 if (msg
->rsp_size
< 13) {
3140 /* Message not big enough, just ignore it. */
3141 ipmi_inc_stat(intf
, invalid_lan_responses
);
3145 if (msg
->rsp
[2] != 0) {
3146 /* An error getting the response, just ignore it. */
3150 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3151 lan_addr
.session_handle
= msg
->rsp
[4];
3152 lan_addr
.remote_SWID
= msg
->rsp
[8];
3153 lan_addr
.local_SWID
= msg
->rsp
[5];
3154 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3155 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3156 lan_addr
.lun
= msg
->rsp
[9] & 3;
3159 * It's a response from a remote entity. Look up the sequence
3160 * number and handle the response.
3162 if (intf_find_seq(intf
,
3166 (msg
->rsp
[6] >> 2) & (~1),
3167 (struct ipmi_addr
*) &(lan_addr
),
3170 * We were unable to find the sequence number,
3171 * so just nuke the message.
3173 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3177 memcpy(recv_msg
->msg_data
,
3179 msg
->rsp_size
- 11);
3181 * The other fields matched, so no need to set them, except
3182 * for netfn, which needs to be the response that was
3183 * returned, not the request value.
3185 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3186 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3187 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3188 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3189 ipmi_inc_stat(intf
, handled_lan_responses
);
3190 deliver_response(recv_msg
);
3195 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3196 struct ipmi_smi_msg
*msg
)
3198 struct cmd_rcvr
*rcvr
;
3200 unsigned char netfn
;
3203 ipmi_user_t user
= NULL
;
3204 struct ipmi_lan_addr
*lan_addr
;
3205 struct ipmi_recv_msg
*recv_msg
;
3207 if (msg
->rsp_size
< 12) {
3208 /* Message not big enough, just ignore it. */
3209 ipmi_inc_stat(intf
, invalid_commands
);
3213 if (msg
->rsp
[2] != 0) {
3214 /* An error getting the response, just ignore it. */
3218 netfn
= msg
->rsp
[6] >> 2;
3220 chan
= msg
->rsp
[3] & 0xf;
3223 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3226 kref_get(&user
->refcount
);
3232 /* We didn't find a user, just give up. */
3233 ipmi_inc_stat(intf
, unhandled_commands
);
3236 * Don't do anything with these messages, just allow
3241 /* Deliver the message to the user. */
3242 ipmi_inc_stat(intf
, handled_commands
);
3244 recv_msg
= ipmi_alloc_recv_msg();
3247 * We couldn't allocate memory for the
3248 * message, so requeue it for handling later.
3251 kref_put(&user
->refcount
, free_user
);
3253 /* Extract the source address from the data. */
3254 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3255 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3256 lan_addr
->session_handle
= msg
->rsp
[4];
3257 lan_addr
->remote_SWID
= msg
->rsp
[8];
3258 lan_addr
->local_SWID
= msg
->rsp
[5];
3259 lan_addr
->lun
= msg
->rsp
[9] & 3;
3260 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3261 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3264 * Extract the rest of the message information
3265 * from the IPMB header.
3267 recv_msg
->user
= user
;
3268 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3269 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3270 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3271 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3272 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3275 * We chop off 12, not 11 bytes because the checksum
3276 * at the end also needs to be removed.
3278 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3279 memcpy(recv_msg
->msg_data
,
3281 msg
->rsp_size
- 12);
3282 deliver_response(recv_msg
);
3290 * This routine will handle "Get Message" command responses with
3291 * channels that use an OEM Medium. The message format belongs to
3292 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3293 * Chapter 22, sections 22.6 and 22.24 for more details.
3295 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3296 struct ipmi_smi_msg
*msg
)
3298 struct cmd_rcvr
*rcvr
;
3300 unsigned char netfn
;
3303 ipmi_user_t user
= NULL
;
3304 struct ipmi_system_interface_addr
*smi_addr
;
3305 struct ipmi_recv_msg
*recv_msg
;
3308 * We expect the OEM SW to perform error checking
3309 * so we just do some basic sanity checks
3311 if (msg
->rsp_size
< 4) {
3312 /* Message not big enough, just ignore it. */
3313 ipmi_inc_stat(intf
, invalid_commands
);
3317 if (msg
->rsp
[2] != 0) {
3318 /* An error getting the response, just ignore it. */
3323 * This is an OEM Message so the OEM needs to know how
3324 * handle the message. We do no interpretation.
3326 netfn
= msg
->rsp
[0] >> 2;
3328 chan
= msg
->rsp
[3] & 0xf;
3331 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3334 kref_get(&user
->refcount
);
3340 /* We didn't find a user, just give up. */
3341 ipmi_inc_stat(intf
, unhandled_commands
);
3344 * Don't do anything with these messages, just allow
3350 /* Deliver the message to the user. */
3351 ipmi_inc_stat(intf
, handled_commands
);
3353 recv_msg
= ipmi_alloc_recv_msg();
3356 * We couldn't allocate memory for the
3357 * message, so requeue it for handling
3361 kref_put(&user
->refcount
, free_user
);
3364 * OEM Messages are expected to be delivered via
3365 * the system interface to SMS software. We might
3366 * need to visit this again depending on OEM
3369 smi_addr
= ((struct ipmi_system_interface_addr
*)
3371 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3372 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3373 smi_addr
->lun
= msg
->rsp
[0] & 3;
3375 recv_msg
->user
= user
;
3376 recv_msg
->user_msg_data
= NULL
;
3377 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3378 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3379 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3380 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3383 * The message starts at byte 4 which follows the
3384 * the Channel Byte in the "GET MESSAGE" command
3386 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3387 memcpy(recv_msg
->msg_data
,
3390 deliver_response(recv_msg
);
3397 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3398 struct ipmi_smi_msg
*msg
)
3400 struct ipmi_system_interface_addr
*smi_addr
;
3402 recv_msg
->msgid
= 0;
3403 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3404 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3405 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3406 smi_addr
->lun
= msg
->rsp
[0] & 3;
3407 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3408 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3409 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3410 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3411 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3412 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3415 static int handle_read_event_rsp(ipmi_smi_t intf
,
3416 struct ipmi_smi_msg
*msg
)
3418 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3419 struct list_head msgs
;
3422 int deliver_count
= 0;
3423 unsigned long flags
;
3425 if (msg
->rsp_size
< 19) {
3426 /* Message is too small to be an IPMB event. */
3427 ipmi_inc_stat(intf
, invalid_events
);
3431 if (msg
->rsp
[2] != 0) {
3432 /* An error getting the event, just ignore it. */
3436 INIT_LIST_HEAD(&msgs
);
3438 spin_lock_irqsave(&intf
->events_lock
, flags
);
3440 ipmi_inc_stat(intf
, events
);
3443 * Allocate and fill in one message for every user that is
3447 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3448 if (!user
->gets_events
)
3451 recv_msg
= ipmi_alloc_recv_msg();
3454 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3456 list_del(&recv_msg
->link
);
3457 ipmi_free_recv_msg(recv_msg
);
3460 * We couldn't allocate memory for the
3461 * message, so requeue it for handling
3470 copy_event_into_recv_msg(recv_msg
, msg
);
3471 recv_msg
->user
= user
;
3472 kref_get(&user
->refcount
);
3473 list_add_tail(&(recv_msg
->link
), &msgs
);
3477 if (deliver_count
) {
3478 /* Now deliver all the messages. */
3479 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3480 list_del(&recv_msg
->link
);
3481 deliver_response(recv_msg
);
3483 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3485 * No one to receive the message, put it in queue if there's
3486 * not already too many things in the queue.
3488 recv_msg
= ipmi_alloc_recv_msg();
3491 * We couldn't allocate memory for the
3492 * message, so requeue it for handling
3499 copy_event_into_recv_msg(recv_msg
, msg
);
3500 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3501 intf
->waiting_events_count
++;
3502 } else if (!intf
->event_msg_printed
) {
3504 * There's too many things in the queue, discard this
3507 printk(KERN_WARNING PFX
"Event queue full, discarding"
3508 " incoming events\n");
3509 intf
->event_msg_printed
= 1;
3513 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3518 static int handle_bmc_rsp(ipmi_smi_t intf
,
3519 struct ipmi_smi_msg
*msg
)
3521 struct ipmi_recv_msg
*recv_msg
;
3522 struct ipmi_user
*user
;
3524 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3525 if (recv_msg
== NULL
) {
3527 "IPMI message received with no owner. This\n"
3528 "could be because of a malformed message, or\n"
3529 "because of a hardware error. Contact your\n"
3530 "hardware vender for assistance\n");
3534 user
= recv_msg
->user
;
3535 /* Make sure the user still exists. */
3536 if (user
&& !user
->valid
) {
3537 /* The user for the message went away, so give up. */
3538 ipmi_inc_stat(intf
, unhandled_local_responses
);
3539 ipmi_free_recv_msg(recv_msg
);
3541 struct ipmi_system_interface_addr
*smi_addr
;
3543 ipmi_inc_stat(intf
, handled_local_responses
);
3544 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3545 recv_msg
->msgid
= msg
->msgid
;
3546 smi_addr
= ((struct ipmi_system_interface_addr
*)
3548 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3549 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3550 smi_addr
->lun
= msg
->rsp
[0] & 3;
3551 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3552 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3553 memcpy(recv_msg
->msg_data
,
3556 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3557 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3558 deliver_response(recv_msg
);
3565 * Handle a new message. Return 1 if the message should be requeued,
3566 * 0 if the message should be freed, or -1 if the message should not
3567 * be freed or requeued.
3569 static int handle_new_recv_msg(ipmi_smi_t intf
,
3570 struct ipmi_smi_msg
*msg
)
3578 for (m
= 0; m
< msg
->rsp_size
; m
++)
3579 printk(" %2.2x", msg
->rsp
[m
]);
3582 if (msg
->rsp_size
< 2) {
3583 /* Message is too small to be correct. */
3584 printk(KERN_WARNING PFX
"BMC returned to small a message"
3585 " for netfn %x cmd %x, got %d bytes\n",
3586 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3588 /* Generate an error response for the message. */
3589 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3590 msg
->rsp
[1] = msg
->data
[1];
3591 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3593 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3594 || (msg
->rsp
[1] != msg
->data
[1])) {
3596 * The NetFN and Command in the response is not even
3597 * marginally correct.
3599 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3600 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3601 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3602 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3604 /* Generate an error response for the message. */
3605 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3606 msg
->rsp
[1] = msg
->data
[1];
3607 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3611 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3612 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3613 && (msg
->user_data
!= NULL
)) {
3615 * It's a response to a response we sent. For this we
3616 * deliver a send message response to the user.
3618 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3621 if (msg
->rsp_size
< 2)
3622 /* Message is too small to be correct. */
3625 chan
= msg
->data
[2] & 0x0f;
3626 if (chan
>= IPMI_MAX_CHANNELS
)
3627 /* Invalid channel number */
3633 /* Make sure the user still exists. */
3634 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3637 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3638 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3639 recv_msg
->msg
.data_len
= 1;
3640 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3641 deliver_response(recv_msg
);
3642 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3643 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3644 /* It's from the receive queue. */
3645 chan
= msg
->rsp
[3] & 0xf;
3646 if (chan
>= IPMI_MAX_CHANNELS
) {
3647 /* Invalid channel number */
3653 * We need to make sure the channels have been initialized.
3654 * The channel_handler routine will set the "curr_channel"
3655 * equal to or greater than IPMI_MAX_CHANNELS when all the
3656 * channels for this interface have been initialized.
3658 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3659 requeue
= 0; /* Throw the message away */
3663 switch (intf
->channels
[chan
].medium
) {
3664 case IPMI_CHANNEL_MEDIUM_IPMB
:
3665 if (msg
->rsp
[4] & 0x04) {
3667 * It's a response, so find the
3668 * requesting message and send it up.
3670 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3673 * It's a command to the SMS from some other
3674 * entity. Handle that.
3676 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3680 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3681 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3682 if (msg
->rsp
[6] & 0x04) {
3684 * It's a response, so find the
3685 * requesting message and send it up.
3687 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3690 * It's a command to the SMS from some other
3691 * entity. Handle that.
3693 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3698 /* Check for OEM Channels. Clients had better
3699 register for these commands. */
3700 if ((intf
->channels
[chan
].medium
3701 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3702 && (intf
->channels
[chan
].medium
3703 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3704 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3707 * We don't handle the channel type, so just
3714 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3715 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3716 /* It's an asyncronous event. */
3717 requeue
= handle_read_event_rsp(intf
, msg
);
3719 /* It's a response from the local BMC. */
3720 requeue
= handle_bmc_rsp(intf
, msg
);
3727 /* Handle a new message from the lower layer. */
3728 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3729 struct ipmi_smi_msg
*msg
)
3731 unsigned long flags
= 0; /* keep us warning-free. */
3733 int run_to_completion
;
3736 if ((msg
->data_size
>= 2)
3737 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3738 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3739 && (msg
->user_data
== NULL
)) {
3741 * This is the local response to a command send, start
3742 * the timer for these. The user_data will not be
3743 * NULL if this is a response send, and we will let
3744 * response sends just go through.
3748 * Check for errors, if we get certain errors (ones
3749 * that mean basically we can try again later), we
3750 * ignore them and start the timer. Otherwise we
3751 * report the error immediately.
3753 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3754 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3755 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3756 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3757 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3758 int chan
= msg
->rsp
[3] & 0xf;
3760 /* Got an error sending the message, handle it. */
3761 if (chan
>= IPMI_MAX_CHANNELS
)
3762 ; /* This shouldn't happen */
3763 else if ((intf
->channels
[chan
].medium
3764 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3765 || (intf
->channels
[chan
].medium
3766 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3767 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3769 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3770 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3772 /* The message was sent, start the timer. */
3773 intf_start_seq_timer(intf
, msg
->msgid
);
3775 ipmi_free_smi_msg(msg
);
3780 * To preserve message order, if the list is not empty, we
3781 * tack this message onto the end of the list.
3783 run_to_completion
= intf
->run_to_completion
;
3784 if (!run_to_completion
)
3785 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3786 if (!list_empty(&intf
->waiting_msgs
)) {
3787 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3788 if (!run_to_completion
)
3789 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3792 if (!run_to_completion
)
3793 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3795 rv
= handle_new_recv_msg(intf
, msg
);
3798 * Could not handle the message now, just add it to a
3799 * list to handle later.
3801 run_to_completion
= intf
->run_to_completion
;
3802 if (!run_to_completion
)
3803 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3804 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3805 if (!run_to_completion
)
3806 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3807 } else if (rv
== 0) {
3808 ipmi_free_smi_msg(msg
);
3814 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3816 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3821 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3822 if (!user
->handler
->ipmi_watchdog_pretimeout
)
3825 user
->handler
->ipmi_watchdog_pretimeout(user
->handler_data
);
3829 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3831 static struct ipmi_smi_msg
*
3832 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3833 unsigned char seq
, long seqid
)
3835 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
3838 * If we can't allocate the message, then just return, we
3839 * get 4 retries, so this should be ok.
3843 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
3844 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
3845 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
3851 for (m
= 0; m
< smi_msg
->data_size
; m
++)
3852 printk(" %2.2x", smi_msg
->data
[m
]);
3859 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
3860 struct list_head
*timeouts
, long timeout_period
,
3861 int slot
, unsigned long *flags
)
3863 struct ipmi_recv_msg
*msg
;
3864 struct ipmi_smi_handlers
*handlers
;
3866 if (intf
->intf_num
== -1)
3872 ent
->timeout
-= timeout_period
;
3873 if (ent
->timeout
> 0)
3876 if (ent
->retries_left
== 0) {
3877 /* The message has used all its retries. */
3879 msg
= ent
->recv_msg
;
3880 list_add_tail(&msg
->link
, timeouts
);
3882 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
3883 else if (is_lan_addr(&ent
->recv_msg
->addr
))
3884 ipmi_inc_stat(intf
, timed_out_lan_commands
);
3886 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
3888 struct ipmi_smi_msg
*smi_msg
;
3889 /* More retries, send again. */
3892 * Start with the max timer, set to normal timer after
3893 * the message is sent.
3895 ent
->timeout
= MAX_MSG_TIMEOUT
;
3896 ent
->retries_left
--;
3897 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
3900 if (is_lan_addr(&ent
->recv_msg
->addr
))
3902 dropped_rexmit_lan_commands
);
3905 dropped_rexmit_ipmb_commands
);
3909 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
3912 * Send the new message. We send with a zero
3913 * priority. It timed out, I doubt time is that
3914 * critical now, and high priority messages are really
3915 * only for messages to the local MC, which don't get
3918 handlers
= intf
->handlers
;
3920 if (is_lan_addr(&ent
->recv_msg
->addr
))
3922 retransmitted_lan_commands
);
3925 retransmitted_ipmb_commands
);
3927 intf
->handlers
->sender(intf
->send_info
,
3930 ipmi_free_smi_msg(smi_msg
);
3932 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
3936 static void ipmi_timeout_handler(long timeout_period
)
3939 struct list_head timeouts
;
3940 struct ipmi_recv_msg
*msg
, *msg2
;
3941 struct ipmi_smi_msg
*smi_msg
, *smi_msg2
;
3942 unsigned long flags
;
3946 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
3947 /* See if any waiting messages need to be processed. */
3948 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3949 list_for_each_entry_safe(smi_msg
, smi_msg2
,
3950 &intf
->waiting_msgs
, link
) {
3951 if (!handle_new_recv_msg(intf
, smi_msg
)) {
3952 list_del(&smi_msg
->link
);
3953 ipmi_free_smi_msg(smi_msg
);
3956 * To preserve message order, quit if we
3957 * can't handle a message.
3962 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3965 * Go through the seq table and find any messages that
3966 * have timed out, putting them in the timeouts
3969 INIT_LIST_HEAD(&timeouts
);
3970 spin_lock_irqsave(&intf
->seq_lock
, flags
);
3971 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
3972 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
3973 &timeouts
, timeout_period
, i
,
3975 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
3977 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
3978 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
3981 * Maintenance mode handling. Check the timeout
3982 * optimistically before we claim the lock. It may
3983 * mean a timeout gets missed occasionally, but that
3984 * only means the timeout gets extended by one period
3985 * in that case. No big deal, and it avoids the lock
3988 if (intf
->auto_maintenance_timeout
> 0) {
3989 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
3990 if (intf
->auto_maintenance_timeout
> 0) {
3991 intf
->auto_maintenance_timeout
3993 if (!intf
->maintenance_mode
3994 && (intf
->auto_maintenance_timeout
<= 0)) {
3995 intf
->maintenance_mode_enable
= 0;
3996 maintenance_mode_update(intf
);
3999 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4006 static void ipmi_request_event(void)
4009 struct ipmi_smi_handlers
*handlers
;
4013 * Called from the timer, no need to check if handlers is
4016 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4017 /* No event requests when in maintenance mode. */
4018 if (intf
->maintenance_mode_enable
)
4021 handlers
= intf
->handlers
;
4023 handlers
->request_events(intf
->send_info
);
4028 static struct timer_list ipmi_timer
;
4030 /* Call every ~100 ms. */
4031 #define IPMI_TIMEOUT_TIME 100
4033 /* How many jiffies does it take to get to the timeout time. */
4034 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4037 * Request events from the queue every second (this is the number of
4038 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4039 * future, IPMI will add a way to know immediately if an event is in
4040 * the queue and this silliness can go away.
4042 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4044 static atomic_t stop_operation
;
4045 static unsigned int ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4047 static void ipmi_timeout(unsigned long data
)
4049 if (atomic_read(&stop_operation
))
4053 if (ticks_to_req_ev
== 0) {
4054 ipmi_request_event();
4055 ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4058 ipmi_timeout_handler(IPMI_TIMEOUT_TIME
);
4060 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4064 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4065 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4067 /* FIXME - convert these to slabs. */
4068 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4070 atomic_dec(&smi_msg_inuse_count
);
4074 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4076 struct ipmi_smi_msg
*rv
;
4077 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4079 rv
->done
= free_smi_msg
;
4080 rv
->user_data
= NULL
;
4081 atomic_inc(&smi_msg_inuse_count
);
4085 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4087 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4089 atomic_dec(&recv_msg_inuse_count
);
4093 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4095 struct ipmi_recv_msg
*rv
;
4097 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4100 rv
->done
= free_recv_msg
;
4101 atomic_inc(&recv_msg_inuse_count
);
4106 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4109 kref_put(&msg
->user
->refcount
, free_user
);
4112 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4114 #ifdef CONFIG_IPMI_PANIC_EVENT
4116 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4120 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4124 #ifdef CONFIG_IPMI_PANIC_STRING
4125 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4127 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4128 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4129 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4130 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4131 /* A get event receiver command, save it. */
4132 intf
->event_receiver
= msg
->msg
.data
[1];
4133 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4137 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4139 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4140 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4141 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4142 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4144 * A get device id command, save if we are an event
4145 * receiver or generator.
4147 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4148 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4153 static void send_panic_events(char *str
)
4155 struct kernel_ipmi_msg msg
;
4157 unsigned char data
[16];
4158 struct ipmi_system_interface_addr
*si
;
4159 struct ipmi_addr addr
;
4160 struct ipmi_smi_msg smi_msg
;
4161 struct ipmi_recv_msg recv_msg
;
4163 si
= (struct ipmi_system_interface_addr
*) &addr
;
4164 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4165 si
->channel
= IPMI_BMC_CHANNEL
;
4168 /* Fill in an event telling that we have failed. */
4169 msg
.netfn
= 0x04; /* Sensor or Event. */
4170 msg
.cmd
= 2; /* Platform event command. */
4173 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4174 data
[1] = 0x03; /* This is for IPMI 1.0. */
4175 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4176 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4177 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4180 * Put a few breadcrumbs in. Hopefully later we can add more things
4181 * to make the panic events more useful.
4189 smi_msg
.done
= dummy_smi_done_handler
;
4190 recv_msg
.done
= dummy_recv_done_handler
;
4192 /* For every registered interface, send the event. */
4193 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4194 if (!intf
->handlers
)
4195 /* Interface is not ready. */
4198 intf
->run_to_completion
= 1;
4199 /* Send the event announcing the panic. */
4200 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4201 i_ipmi_request(NULL
,
4210 intf
->channels
[0].address
,
4211 intf
->channels
[0].lun
,
4212 0, 1); /* Don't retry, and don't wait. */
4215 #ifdef CONFIG_IPMI_PANIC_STRING
4217 * On every interface, dump a bunch of OEM event holding the
4223 /* For every registered interface, send the event. */
4224 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4226 struct ipmi_ipmb_addr
*ipmb
;
4229 if (intf
->intf_num
== -1)
4230 /* Interface was not ready yet. */
4234 * intf_num is used as an marker to tell if the
4235 * interface is valid. Thus we need a read barrier to
4236 * make sure data fetched before checking intf_num
4242 * First job here is to figure out where to send the
4243 * OEM events. There's no way in IPMI to send OEM
4244 * events using an event send command, so we have to
4245 * find the SEL to put them in and stick them in
4249 /* Get capabilities from the get device id. */
4250 intf
->local_sel_device
= 0;
4251 intf
->local_event_generator
= 0;
4252 intf
->event_receiver
= 0;
4254 /* Request the device info from the local MC. */
4255 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4256 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4259 intf
->null_user_handler
= device_id_fetcher
;
4260 i_ipmi_request(NULL
,
4269 intf
->channels
[0].address
,
4270 intf
->channels
[0].lun
,
4271 0, 1); /* Don't retry, and don't wait. */
4273 if (intf
->local_event_generator
) {
4274 /* Request the event receiver from the local MC. */
4275 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4276 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4279 intf
->null_user_handler
= event_receiver_fetcher
;
4280 i_ipmi_request(NULL
,
4289 intf
->channels
[0].address
,
4290 intf
->channels
[0].lun
,
4291 0, 1); /* no retry, and no wait. */
4293 intf
->null_user_handler
= NULL
;
4296 * Validate the event receiver. The low bit must not
4297 * be 1 (it must be a valid IPMB address), it cannot
4298 * be zero, and it must not be my address.
4300 if (((intf
->event_receiver
& 1) == 0)
4301 && (intf
->event_receiver
!= 0)
4302 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4304 * The event receiver is valid, send an IPMB
4307 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4308 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4309 ipmb
->channel
= 0; /* FIXME - is this right? */
4310 ipmb
->lun
= intf
->event_receiver_lun
;
4311 ipmb
->slave_addr
= intf
->event_receiver
;
4312 } else if (intf
->local_sel_device
) {
4314 * The event receiver was not valid (or was
4315 * me), but I am an SEL device, just dump it
4318 si
= (struct ipmi_system_interface_addr
*) &addr
;
4319 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4320 si
->channel
= IPMI_BMC_CHANNEL
;
4323 continue; /* No where to send the event. */
4325 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4326 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4332 int size
= strlen(p
);
4338 data
[2] = 0xf0; /* OEM event without timestamp. */
4339 data
[3] = intf
->channels
[0].address
;
4340 data
[4] = j
++; /* sequence # */
4342 * Always give 11 bytes, so strncpy will fill
4343 * it with zeroes for me.
4345 strncpy(data
+5, p
, 11);
4348 i_ipmi_request(NULL
,
4357 intf
->channels
[0].address
,
4358 intf
->channels
[0].lun
,
4359 0, 1); /* no retry, and no wait. */
4362 #endif /* CONFIG_IPMI_PANIC_STRING */
4364 #endif /* CONFIG_IPMI_PANIC_EVENT */
4366 static int has_panicked
;
4368 static int panic_event(struct notifier_block
*this,
4369 unsigned long event
,
4378 /* For every registered interface, set it to run to completion. */
4379 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4380 if (!intf
->handlers
)
4381 /* Interface is not ready. */
4384 intf
->run_to_completion
= 1;
4385 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4388 #ifdef CONFIG_IPMI_PANIC_EVENT
4389 send_panic_events(ptr
);
4395 static struct notifier_block panic_block
= {
4396 .notifier_call
= panic_event
,
4398 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4401 static int ipmi_init_msghandler(void)
4408 rv
= driver_register(&ipmidriver
.driver
);
4410 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4414 printk(KERN_INFO
"ipmi message handler version "
4415 IPMI_DRIVER_VERSION
"\n");
4417 #ifdef CONFIG_PROC_FS
4418 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4419 if (!proc_ipmi_root
) {
4420 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4424 #endif /* CONFIG_PROC_FS */
4426 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4427 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4429 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4436 static __init
int ipmi_init_msghandler_mod(void)
4438 ipmi_init_msghandler();
4442 static __exit
void cleanup_ipmi(void)
4449 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4452 * This can't be called if any interfaces exist, so no worry
4453 * about shutting down the interfaces.
4457 * Tell the timer to stop, then wait for it to stop. This
4458 * avoids problems with race conditions removing the timer
4461 atomic_inc(&stop_operation
);
4462 del_timer_sync(&ipmi_timer
);
4464 #ifdef CONFIG_PROC_FS
4465 remove_proc_entry(proc_ipmi_root
->name
, NULL
);
4466 #endif /* CONFIG_PROC_FS */
4468 driver_unregister(&ipmidriver
.driver
);
4472 /* Check for buffer leaks. */
4473 count
= atomic_read(&smi_msg_inuse_count
);
4475 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4477 count
= atomic_read(&recv_msg_inuse_count
);
4479 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4482 module_exit(cleanup_ipmi
);
4484 module_init(ipmi_init_msghandler_mod
);
4485 MODULE_LICENSE("GPL");
4486 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4487 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4489 MODULE_VERSION(IPMI_DRIVER_VERSION
);