OMAP3: PM: Prevented DVFS state switches when enabling off-mode
[linux-ginger.git] / drivers / char / ipmi / ipmi_si_intf.c
blobd2e698096ace182698152e2366d7c2dc2cf91342
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
73 #define PFX "ipmi_si: "
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC 10000
80 #define SI_USEC_PER_JIFFY (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
83 short timeout */
85 enum si_intf_state {
86 SI_NORMAL,
87 SI_GETTING_FLAGS,
88 SI_GETTING_EVENTS,
89 SI_CLEARING_FLAGS,
90 SI_CLEARING_FLAGS_THEN_SET_IRQ,
91 SI_GETTING_MESSAGES,
92 SI_ENABLE_INTERRUPTS1,
93 SI_ENABLE_INTERRUPTS2,
94 SI_DISABLE_INTERRUPTS1,
95 SI_DISABLE_INTERRUPTS2
96 /* FIXME - add watchdog stuff. */
99 /* Some BT-specific defines we need here. */
100 #define IPMI_BT_INTMASK_REG 2
101 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
102 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104 enum si_type {
105 SI_KCS, SI_SMIC, SI_BT
107 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 #define DEVICE_NAME "ipmi_si"
111 static struct platform_driver ipmi_driver = {
112 .driver = {
113 .name = DEVICE_NAME,
114 .bus = &platform_bus_type
120 * Indexes into stats[] in smi_info below.
122 enum si_stat_indexes {
124 * Number of times the driver requested a timer while an operation
125 * was in progress.
127 SI_STAT_short_timeouts = 0,
130 * Number of times the driver requested a timer while nothing was in
131 * progress.
133 SI_STAT_long_timeouts,
135 /* Number of times the interface was idle while being polled. */
136 SI_STAT_idles,
138 /* Number of interrupts the driver handled. */
139 SI_STAT_interrupts,
141 /* Number of time the driver got an ATTN from the hardware. */
142 SI_STAT_attentions,
144 /* Number of times the driver requested flags from the hardware. */
145 SI_STAT_flag_fetches,
147 /* Number of times the hardware didn't follow the state machine. */
148 SI_STAT_hosed_count,
150 /* Number of completed messages. */
151 SI_STAT_complete_transactions,
153 /* Number of IPMI events received from the hardware. */
154 SI_STAT_events,
156 /* Number of watchdog pretimeouts. */
157 SI_STAT_watchdog_pretimeouts,
159 /* Number of asyncronous messages received. */
160 SI_STAT_incoming_messages,
163 /* This *must* remain last, add new values above this. */
164 SI_NUM_STATS
167 struct smi_info {
168 int intf_num;
169 ipmi_smi_t intf;
170 struct si_sm_data *si_sm;
171 struct si_sm_handlers *handlers;
172 enum si_type si_type;
173 spinlock_t si_lock;
174 spinlock_t msg_lock;
175 struct list_head xmit_msgs;
176 struct list_head hp_xmit_msgs;
177 struct ipmi_smi_msg *curr_msg;
178 enum si_intf_state si_state;
181 * Used to handle the various types of I/O that can occur with
182 * IPMI
184 struct si_sm_io io;
185 int (*io_setup)(struct smi_info *info);
186 void (*io_cleanup)(struct smi_info *info);
187 int (*irq_setup)(struct smi_info *info);
188 void (*irq_cleanup)(struct smi_info *info);
189 unsigned int io_size;
190 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
191 void (*addr_source_cleanup)(struct smi_info *info);
192 void *addr_source_data;
195 * Per-OEM handler, called from handle_flags(). Returns 1
196 * when handle_flags() needs to be re-run or 0 indicating it
197 * set si_state itself.
199 int (*oem_data_avail_handler)(struct smi_info *smi_info);
202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203 * is set to hold the flags until we are done handling everything
204 * from the flags.
206 #define RECEIVE_MSG_AVAIL 0x01
207 #define EVENT_MSG_BUFFER_FULL 0x02
208 #define WDT_PRE_TIMEOUT_INT 0x08
209 #define OEM0_DATA_AVAIL 0x20
210 #define OEM1_DATA_AVAIL 0x40
211 #define OEM2_DATA_AVAIL 0x80
212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
213 OEM1_DATA_AVAIL | \
214 OEM2_DATA_AVAIL)
215 unsigned char msg_flags;
217 /* Does the BMC have an event buffer? */
218 char has_event_buffer;
221 * If set to true, this will request events the next time the
222 * state machine is idle.
224 atomic_t req_events;
227 * If true, run the state machine to completion on every send
228 * call. Generally used after a panic to make sure stuff goes
229 * out.
231 int run_to_completion;
233 /* The I/O port of an SI interface. */
234 int port;
237 * The space between start addresses of the two ports. For
238 * instance, if the first port is 0xca2 and the spacing is 4, then
239 * the second port is 0xca6.
241 unsigned int spacing;
243 /* zero if no irq; */
244 int irq;
246 /* The timer for this si. */
247 struct timer_list si_timer;
249 /* The time (in jiffies) the last timeout occurred at. */
250 unsigned long last_timeout_jiffies;
252 /* Used to gracefully stop the timer without race conditions. */
253 atomic_t stop_operation;
256 * The driver will disable interrupts when it gets into a
257 * situation where it cannot handle messages due to lack of
258 * memory. Once that situation clears up, it will re-enable
259 * interrupts.
261 int interrupt_disabled;
263 /* From the get device id response... */
264 struct ipmi_device_id device_id;
266 /* Driver model stuff. */
267 struct device *dev;
268 struct platform_device *pdev;
271 * True if we allocated the device, false if it came from
272 * someplace else (like PCI).
274 int dev_registered;
276 /* Slave address, could be reported from DMI. */
277 unsigned char slave_addr;
279 /* Counters and things for the proc filesystem. */
280 atomic_t stats[SI_NUM_STATS];
282 struct task_struct *thread;
284 struct list_head link;
287 #define smi_inc_stat(smi, stat) \
288 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292 #define SI_MAX_PARMS 4
294 static int force_kipmid[SI_MAX_PARMS];
295 static int num_force_kipmid;
297 static int unload_when_empty = 1;
299 static int try_smi_init(struct smi_info *smi);
300 static void cleanup_one_si(struct smi_info *to_clean);
302 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
303 static int register_xaction_notifier(struct notifier_block *nb)
305 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
308 static void deliver_recv_msg(struct smi_info *smi_info,
309 struct ipmi_smi_msg *msg)
311 /* Deliver the message to the upper layer with the lock
312 released. */
313 spin_unlock(&(smi_info->si_lock));
314 ipmi_smi_msg_received(smi_info->intf, msg);
315 spin_lock(&(smi_info->si_lock));
318 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
320 struct ipmi_smi_msg *msg = smi_info->curr_msg;
322 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
323 cCode = IPMI_ERR_UNSPECIFIED;
324 /* else use it as is */
326 /* Make it a reponse */
327 msg->rsp[0] = msg->data[0] | 4;
328 msg->rsp[1] = msg->data[1];
329 msg->rsp[2] = cCode;
330 msg->rsp_size = 3;
332 smi_info->curr_msg = NULL;
333 deliver_recv_msg(smi_info, msg);
336 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
338 int rv;
339 struct list_head *entry = NULL;
340 #ifdef DEBUG_TIMING
341 struct timeval t;
342 #endif
345 * No need to save flags, we aleady have interrupts off and we
346 * already hold the SMI lock.
348 if (!smi_info->run_to_completion)
349 spin_lock(&(smi_info->msg_lock));
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 entry = smi_info->hp_xmit_msgs.next;
354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
355 entry = smi_info->xmit_msgs.next;
358 if (!entry) {
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368 #ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
382 if (err)
383 return_hosed_msg(smi_info, err);
385 rv = SI_SM_CALL_WITHOUT_DELAY;
387 out:
388 if (!smi_info->run_to_completion)
389 spin_unlock(&(smi_info->msg_lock));
391 return rv;
394 static void start_enable_irq(struct smi_info *smi_info)
396 unsigned char msg[2];
399 * If we are enabling interrupts, we have to tell the
400 * BMC to use them.
402 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
405 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
406 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
409 static void start_disable_irq(struct smi_info *smi_info)
411 unsigned char msg[2];
413 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
417 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
420 static void start_clear_flags(struct smi_info *smi_info)
422 unsigned char msg[3];
424 /* Make sure the watchdog pre-timeout flag is not set at startup. */
425 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
427 msg[2] = WDT_PRE_TIMEOUT_INT;
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
430 smi_info->si_state = SI_CLEARING_FLAGS;
434 * When we have a situtaion where we run out of memory and cannot
435 * allocate messages, we just leave them in the BMC and run the system
436 * polled until we can allocate some memory. Once we have some
437 * memory, we will re-enable the interrupt.
439 static inline void disable_si_irq(struct smi_info *smi_info)
441 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
442 start_disable_irq(smi_info);
443 smi_info->interrupt_disabled = 1;
447 static inline void enable_si_irq(struct smi_info *smi_info)
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 start_enable_irq(smi_info);
451 smi_info->interrupt_disabled = 0;
455 static void handle_flags(struct smi_info *smi_info)
457 retry:
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 spin_unlock(&(smi_info->si_lock));
465 ipmi_smi_watchdog_pretimeout(smi_info->intf);
466 spin_lock(&(smi_info->si_lock));
467 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
468 /* Messages available. */
469 smi_info->curr_msg = ipmi_alloc_smi_msg();
470 if (!smi_info->curr_msg) {
471 disable_si_irq(smi_info);
472 smi_info->si_state = SI_NORMAL;
473 return;
475 enable_si_irq(smi_info);
477 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
478 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
479 smi_info->curr_msg->data_size = 2;
481 smi_info->handlers->start_transaction(
482 smi_info->si_sm,
483 smi_info->curr_msg->data,
484 smi_info->curr_msg->data_size);
485 smi_info->si_state = SI_GETTING_MESSAGES;
486 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
487 /* Events available. */
488 smi_info->curr_msg = ipmi_alloc_smi_msg();
489 if (!smi_info->curr_msg) {
490 disable_si_irq(smi_info);
491 smi_info->si_state = SI_NORMAL;
492 return;
494 enable_si_irq(smi_info);
496 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
498 smi_info->curr_msg->data_size = 2;
500 smi_info->handlers->start_transaction(
501 smi_info->si_sm,
502 smi_info->curr_msg->data,
503 smi_info->curr_msg->data_size);
504 smi_info->si_state = SI_GETTING_EVENTS;
505 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
506 smi_info->oem_data_avail_handler) {
507 if (smi_info->oem_data_avail_handler(smi_info))
508 goto retry;
509 } else
510 smi_info->si_state = SI_NORMAL;
513 static void handle_transaction_done(struct smi_info *smi_info)
515 struct ipmi_smi_msg *msg;
516 #ifdef DEBUG_TIMING
517 struct timeval t;
519 do_gettimeofday(&t);
520 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
521 #endif
522 switch (smi_info->si_state) {
523 case SI_NORMAL:
524 if (!smi_info->curr_msg)
525 break;
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
534 * Do this here becase deliver_recv_msg() releases the
535 * lock, and a new message can be put in during the
536 * time the lock is released.
538 msg = smi_info->curr_msg;
539 smi_info->curr_msg = NULL;
540 deliver_recv_msg(smi_info, msg);
541 break;
543 case SI_GETTING_FLAGS:
545 unsigned char msg[4];
546 unsigned int len;
548 /* We got the flags from the SMI, now handle them. */
549 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
550 if (msg[2] != 0) {
551 /* Error fetching flags, just give up for now. */
552 smi_info->si_state = SI_NORMAL;
553 } else if (len < 4) {
555 * Hmm, no flags. That's technically illegal, but
556 * don't use uninitialized data.
558 smi_info->si_state = SI_NORMAL;
559 } else {
560 smi_info->msg_flags = msg[3];
561 handle_flags(smi_info);
563 break;
566 case SI_CLEARING_FLAGS:
567 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
569 unsigned char msg[3];
571 /* We cleared the flags. */
572 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
573 if (msg[2] != 0) {
574 /* Error clearing flags */
575 printk(KERN_WARNING
576 "ipmi_si: Error clearing flags: %2.2x\n",
577 msg[2]);
579 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
580 start_enable_irq(smi_info);
581 else
582 smi_info->si_state = SI_NORMAL;
583 break;
586 case SI_GETTING_EVENTS:
588 smi_info->curr_msg->rsp_size
589 = smi_info->handlers->get_result(
590 smi_info->si_sm,
591 smi_info->curr_msg->rsp,
592 IPMI_MAX_MSG_LENGTH);
595 * Do this here becase deliver_recv_msg() releases the
596 * lock, and a new message can be put in during the
597 * time the lock is released.
599 msg = smi_info->curr_msg;
600 smi_info->curr_msg = NULL;
601 if (msg->rsp[2] != 0) {
602 /* Error getting event, probably done. */
603 msg->done(msg);
605 /* Take off the event flag. */
606 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
607 handle_flags(smi_info);
608 } else {
609 smi_inc_stat(smi_info, events);
612 * Do this before we deliver the message
613 * because delivering the message releases the
614 * lock and something else can mess with the
615 * state.
617 handle_flags(smi_info);
619 deliver_recv_msg(smi_info, msg);
621 break;
624 case SI_GETTING_MESSAGES:
626 smi_info->curr_msg->rsp_size
627 = smi_info->handlers->get_result(
628 smi_info->si_sm,
629 smi_info->curr_msg->rsp,
630 IPMI_MAX_MSG_LENGTH);
633 * Do this here becase deliver_recv_msg() releases the
634 * lock, and a new message can be put in during the
635 * time the lock is released.
637 msg = smi_info->curr_msg;
638 smi_info->curr_msg = NULL;
639 if (msg->rsp[2] != 0) {
640 /* Error getting event, probably done. */
641 msg->done(msg);
643 /* Take off the msg flag. */
644 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
645 handle_flags(smi_info);
646 } else {
647 smi_inc_stat(smi_info, incoming_messages);
650 * Do this before we deliver the message
651 * because delivering the message releases the
652 * lock and something else can mess with the
653 * state.
655 handle_flags(smi_info);
657 deliver_recv_msg(smi_info, msg);
659 break;
662 case SI_ENABLE_INTERRUPTS1:
664 unsigned char msg[4];
666 /* We got the flags from the SMI, now handle them. */
667 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
668 if (msg[2] != 0) {
669 printk(KERN_WARNING
670 "ipmi_si: Could not enable interrupts"
671 ", failed get, using polled mode.\n");
672 smi_info->si_state = SI_NORMAL;
673 } else {
674 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
675 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
676 msg[2] = (msg[3] |
677 IPMI_BMC_RCV_MSG_INTR |
678 IPMI_BMC_EVT_MSG_INTR);
679 smi_info->handlers->start_transaction(
680 smi_info->si_sm, msg, 3);
681 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
683 break;
686 case SI_ENABLE_INTERRUPTS2:
688 unsigned char msg[4];
690 /* We got the flags from the SMI, now handle them. */
691 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
692 if (msg[2] != 0) {
693 printk(KERN_WARNING
694 "ipmi_si: Could not enable interrupts"
695 ", failed set, using polled mode.\n");
697 smi_info->si_state = SI_NORMAL;
698 break;
701 case SI_DISABLE_INTERRUPTS1:
703 unsigned char msg[4];
705 /* We got the flags from the SMI, now handle them. */
706 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707 if (msg[2] != 0) {
708 printk(KERN_WARNING
709 "ipmi_si: Could not disable interrupts"
710 ", failed get.\n");
711 smi_info->si_state = SI_NORMAL;
712 } else {
713 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
714 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
715 msg[2] = (msg[3] &
716 ~(IPMI_BMC_RCV_MSG_INTR |
717 IPMI_BMC_EVT_MSG_INTR));
718 smi_info->handlers->start_transaction(
719 smi_info->si_sm, msg, 3);
720 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
722 break;
725 case SI_DISABLE_INTERRUPTS2:
727 unsigned char msg[4];
729 /* We got the flags from the SMI, now handle them. */
730 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
731 if (msg[2] != 0) {
732 printk(KERN_WARNING
733 "ipmi_si: Could not disable interrupts"
734 ", failed set.\n");
736 smi_info->si_state = SI_NORMAL;
737 break;
743 * Called on timeouts and events. Timeouts should pass the elapsed
744 * time, interrupts should pass in zero. Must be called with
745 * si_lock held and interrupts disabled.
747 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
748 int time)
750 enum si_sm_result si_sm_result;
752 restart:
754 * There used to be a loop here that waited a little while
755 * (around 25us) before giving up. That turned out to be
756 * pointless, the minimum delays I was seeing were in the 300us
757 * range, which is far too long to wait in an interrupt. So
758 * we just run until the state machine tells us something
759 * happened or it needs a delay.
761 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
762 time = 0;
763 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
767 smi_inc_stat(smi_info, complete_transactions);
769 handle_transaction_done(smi_info);
770 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771 } else if (si_sm_result == SI_SM_HOSED) {
772 smi_inc_stat(smi_info, hosed_count);
775 * Do the before return_hosed_msg, because that
776 * releases the lock.
778 smi_info->si_state = SI_NORMAL;
779 if (smi_info->curr_msg != NULL) {
781 * If we were handling a user message, format
782 * a response to send to the upper layer to
783 * tell it about the error.
785 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791 * We prefer handling attn over new messages. But don't do
792 * this if there is not yet an upper layer to handle anything.
794 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
795 unsigned char msg[2];
797 smi_inc_stat(smi_info, attentions);
800 * Got a attn, send down a get message flags to see
801 * what's causing it. It would be better to handle
802 * this in the upper layer, but due to the way
803 * interrupts work with the SMI, that's not really
804 * possible.
806 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
807 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
809 smi_info->handlers->start_transaction(
810 smi_info->si_sm, msg, 2);
811 smi_info->si_state = SI_GETTING_FLAGS;
812 goto restart;
815 /* If we are currently idle, try to start the next message. */
816 if (si_sm_result == SI_SM_IDLE) {
817 smi_inc_stat(smi_info, idles);
819 si_sm_result = start_next_msg(smi_info);
820 if (si_sm_result != SI_SM_IDLE)
821 goto restart;
824 if ((si_sm_result == SI_SM_IDLE)
825 && (atomic_read(&smi_info->req_events))) {
827 * We are idle and the upper layer requested that I fetch
828 * events, so do so.
830 atomic_set(&smi_info->req_events, 0);
832 smi_info->curr_msg = ipmi_alloc_smi_msg();
833 if (!smi_info->curr_msg)
834 goto out;
836 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
837 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
838 smi_info->curr_msg->data_size = 2;
840 smi_info->handlers->start_transaction(
841 smi_info->si_sm,
842 smi_info->curr_msg->data,
843 smi_info->curr_msg->data_size);
844 smi_info->si_state = SI_GETTING_EVENTS;
845 goto restart;
847 out:
848 return si_sm_result;
851 static void sender(void *send_info,
852 struct ipmi_smi_msg *msg,
853 int priority)
855 struct smi_info *smi_info = send_info;
856 enum si_sm_result result;
857 unsigned long flags;
858 #ifdef DEBUG_TIMING
859 struct timeval t;
860 #endif
862 if (atomic_read(&smi_info->stop_operation)) {
863 msg->rsp[0] = msg->data[0] | 4;
864 msg->rsp[1] = msg->data[1];
865 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
866 msg->rsp_size = 3;
867 deliver_recv_msg(smi_info, msg);
868 return;
871 #ifdef DEBUG_TIMING
872 do_gettimeofday(&t);
873 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
874 #endif
876 if (smi_info->run_to_completion) {
878 * If we are running to completion, then throw it in
879 * the list and run transactions until everything is
880 * clear. Priority doesn't matter here.
884 * Run to completion means we are single-threaded, no
885 * need for locks.
887 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
889 result = smi_event_handler(smi_info, 0);
890 while (result != SI_SM_IDLE) {
891 udelay(SI_SHORT_TIMEOUT_USEC);
892 result = smi_event_handler(smi_info,
893 SI_SHORT_TIMEOUT_USEC);
895 return;
898 spin_lock_irqsave(&smi_info->msg_lock, flags);
899 if (priority > 0)
900 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
901 else
902 list_add_tail(&msg->link, &smi_info->xmit_msgs);
903 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
905 spin_lock_irqsave(&smi_info->si_lock, flags);
906 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
907 start_next_msg(smi_info);
908 spin_unlock_irqrestore(&smi_info->si_lock, flags);
911 static void set_run_to_completion(void *send_info, int i_run_to_completion)
913 struct smi_info *smi_info = send_info;
914 enum si_sm_result result;
916 smi_info->run_to_completion = i_run_to_completion;
917 if (i_run_to_completion) {
918 result = smi_event_handler(smi_info, 0);
919 while (result != SI_SM_IDLE) {
920 udelay(SI_SHORT_TIMEOUT_USEC);
921 result = smi_event_handler(smi_info,
922 SI_SHORT_TIMEOUT_USEC);
927 static int ipmi_thread(void *data)
929 struct smi_info *smi_info = data;
930 unsigned long flags;
931 enum si_sm_result smi_result;
933 set_user_nice(current, 19);
934 while (!kthread_should_stop()) {
935 spin_lock_irqsave(&(smi_info->si_lock), flags);
936 smi_result = smi_event_handler(smi_info, 0);
937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
939 ; /* do nothing */
940 else if (smi_result == SI_SM_CALL_WITH_DELAY)
941 schedule();
942 else
943 schedule_timeout_interruptible(1);
945 return 0;
949 static void poll(void *send_info)
951 struct smi_info *smi_info = send_info;
952 unsigned long flags;
955 * Make sure there is some delay in the poll loop so we can
956 * drive time forward and timeout things.
958 udelay(10);
959 spin_lock_irqsave(&smi_info->si_lock, flags);
960 smi_event_handler(smi_info, 10);
961 spin_unlock_irqrestore(&smi_info->si_lock, flags);
964 static void request_events(void *send_info)
966 struct smi_info *smi_info = send_info;
968 if (atomic_read(&smi_info->stop_operation) ||
969 !smi_info->has_event_buffer)
970 return;
972 atomic_set(&smi_info->req_events, 1);
975 static int initialized;
977 static void smi_timeout(unsigned long data)
979 struct smi_info *smi_info = (struct smi_info *) data;
980 enum si_sm_result smi_result;
981 unsigned long flags;
982 unsigned long jiffies_now;
983 long time_diff;
984 #ifdef DEBUG_TIMING
985 struct timeval t;
986 #endif
988 spin_lock_irqsave(&(smi_info->si_lock), flags);
989 #ifdef DEBUG_TIMING
990 do_gettimeofday(&t);
991 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992 #endif
993 jiffies_now = jiffies;
994 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995 * SI_USEC_PER_JIFFY);
996 smi_result = smi_event_handler(smi_info, time_diff);
998 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000 smi_info->last_timeout_jiffies = jiffies_now;
1002 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003 /* Running with interrupts, only do long timeouts. */
1004 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005 smi_inc_stat(smi_info, long_timeouts);
1006 goto do_add_timer;
1010 * If the state machine asks for a short delay, then shorten
1011 * the timer timeout.
1013 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014 smi_inc_stat(smi_info, short_timeouts);
1015 smi_info->si_timer.expires = jiffies + 1;
1016 } else {
1017 smi_inc_stat(smi_info, long_timeouts);
1018 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1021 do_add_timer:
1022 add_timer(&(smi_info->si_timer));
1025 static irqreturn_t si_irq_handler(int irq, void *data)
1027 struct smi_info *smi_info = data;
1028 unsigned long flags;
1029 #ifdef DEBUG_TIMING
1030 struct timeval t;
1031 #endif
1033 spin_lock_irqsave(&(smi_info->si_lock), flags);
1035 smi_inc_stat(smi_info, interrupts);
1037 #ifdef DEBUG_TIMING
1038 do_gettimeofday(&t);
1039 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040 #endif
1041 smi_event_handler(smi_info, 0);
1042 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043 return IRQ_HANDLED;
1046 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1048 struct smi_info *smi_info = data;
1049 /* We need to clear the IRQ flag for the BT interface. */
1050 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053 return si_irq_handler(irq, data);
1056 static int smi_start_processing(void *send_info,
1057 ipmi_smi_t intf)
1059 struct smi_info *new_smi = send_info;
1060 int enable = 0;
1062 new_smi->intf = intf;
1064 /* Try to claim any interrupts. */
1065 if (new_smi->irq_setup)
1066 new_smi->irq_setup(new_smi);
1068 /* Set up the timer that drives the interface. */
1069 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070 new_smi->last_timeout_jiffies = jiffies;
1071 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1074 * Check if the user forcefully enabled the daemon.
1076 if (new_smi->intf_num < num_force_kipmid)
1077 enable = force_kipmid[new_smi->intf_num];
1079 * The BT interface is efficient enough to not need a thread,
1080 * and there is no need for a thread if we have interrupts.
1082 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083 enable = 1;
1085 if (enable) {
1086 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087 "kipmi%d", new_smi->intf_num);
1088 if (IS_ERR(new_smi->thread)) {
1089 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090 " kernel thread due to error %ld, only using"
1091 " timers to drive the interface\n",
1092 PTR_ERR(new_smi->thread));
1093 new_smi->thread = NULL;
1097 return 0;
1100 static void set_maintenance_mode(void *send_info, int enable)
1102 struct smi_info *smi_info = send_info;
1104 if (!enable)
1105 atomic_set(&smi_info->req_events, 0);
1108 static struct ipmi_smi_handlers handlers = {
1109 .owner = THIS_MODULE,
1110 .start_processing = smi_start_processing,
1111 .sender = sender,
1112 .request_events = request_events,
1113 .set_maintenance_mode = set_maintenance_mode,
1114 .set_run_to_completion = set_run_to_completion,
1115 .poll = poll,
1119 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1123 static LIST_HEAD(smi_infos);
1124 static DEFINE_MUTEX(smi_infos_lock);
1125 static int smi_num; /* Used to sequence the SMIs */
1127 #define DEFAULT_REGSPACING 1
1128 #define DEFAULT_REGSIZE 1
1130 static int si_trydefaults = 1;
1131 static char *si_type[SI_MAX_PARMS];
1132 #define MAX_SI_TYPE_STR 30
1133 static char si_type_str[MAX_SI_TYPE_STR];
1134 static unsigned long addrs[SI_MAX_PARMS];
1135 static unsigned int num_addrs;
1136 static unsigned int ports[SI_MAX_PARMS];
1137 static unsigned int num_ports;
1138 static int irqs[SI_MAX_PARMS];
1139 static unsigned int num_irqs;
1140 static int regspacings[SI_MAX_PARMS];
1141 static unsigned int num_regspacings;
1142 static int regsizes[SI_MAX_PARMS];
1143 static unsigned int num_regsizes;
1144 static int regshifts[SI_MAX_PARMS];
1145 static unsigned int num_regshifts;
1146 static int slave_addrs[SI_MAX_PARMS];
1147 static unsigned int num_slave_addrs;
1149 #define IPMI_IO_ADDR_SPACE 0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str[] = { "i/o", "mem" };
1153 static int hotmod_handler(const char *val, struct kernel_param *kp);
1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1157 " Documentation/IPMI.txt in the kernel sources for the"
1158 " gory details.");
1160 module_param_named(trydefaults, si_trydefaults, bool, 0);
1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162 " default scan of the KCS and SMIC interface at the standard"
1163 " address");
1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166 " interface separated by commas. The types are 'kcs',"
1167 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1168 " the first interface to kcs and the second to bt");
1169 module_param_array(addrs, ulong, &num_addrs, 0);
1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171 " addresses separated by commas. Only use if an interface"
1172 " is in memory. Otherwise, set it to zero or leave"
1173 " it blank.");
1174 module_param_array(ports, uint, &num_ports, 0);
1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176 " addresses separated by commas. Only use if an interface"
1177 " is a port. Otherwise, set it to zero or leave"
1178 " it blank.");
1179 module_param_array(irqs, int, &num_irqs, 0);
1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181 " addresses separated by commas. Only use if an interface"
1182 " has an interrupt. Otherwise, set it to zero or leave"
1183 " it blank.");
1184 module_param_array(regspacings, int, &num_regspacings, 0);
1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186 " and each successive register used by the interface. For"
1187 " instance, if the start address is 0xca2 and the spacing"
1188 " is 2, then the second address is at 0xca4. Defaults"
1189 " to 1.");
1190 module_param_array(regsizes, int, &num_regsizes, 0);
1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1194 " the 8-bit IPMI register has to be read from a larger"
1195 " register.");
1196 module_param_array(regshifts, int, &num_regshifts, 0);
1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198 " IPMI register, in bits. For instance, if the data"
1199 " is read from a 32-bit word and the IPMI data is in"
1200 " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203 " the controller. Normally this is 0x20, but can be"
1204 " overridden by this parm. This is an array indexed"
1205 " by interface number.");
1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208 " disabled(0). Normally the IPMI driver auto-detects"
1209 " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212 " specified or found, default is 1. Setting to 0"
1213 " is useful for hot add of devices using hotmod.");
1216 static void std_irq_cleanup(struct smi_info *info)
1218 if (info->si_type == SI_BT)
1219 /* Disable the interrupt in the BT interface. */
1220 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221 free_irq(info->irq, info);
1224 static int std_irq_setup(struct smi_info *info)
1226 int rv;
1228 if (!info->irq)
1229 return 0;
1231 if (info->si_type == SI_BT) {
1232 rv = request_irq(info->irq,
1233 si_bt_irq_handler,
1234 IRQF_SHARED | IRQF_DISABLED,
1235 DEVICE_NAME,
1236 info);
1237 if (!rv)
1238 /* Enable the interrupt in the BT interface. */
1239 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 } else
1242 rv = request_irq(info->irq,
1243 si_irq_handler,
1244 IRQF_SHARED | IRQF_DISABLED,
1245 DEVICE_NAME,
1246 info);
1247 if (rv) {
1248 printk(KERN_WARNING
1249 "ipmi_si: %s unable to claim interrupt %d,"
1250 " running polled\n",
1251 DEVICE_NAME, info->irq);
1252 info->irq = 0;
1253 } else {
1254 info->irq_cleanup = std_irq_cleanup;
1255 printk(" Using irq %d\n", info->irq);
1258 return rv;
1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1263 unsigned int addr = io->addr_data;
1265 return inb(addr + (offset * io->regspacing));
1268 static void port_outb(struct si_sm_io *io, unsigned int offset,
1269 unsigned char b)
1271 unsigned int addr = io->addr_data;
1273 outb(b, addr + (offset * io->regspacing));
1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1278 unsigned int addr = io->addr_data;
1280 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1283 static void port_outw(struct si_sm_io *io, unsigned int offset,
1284 unsigned char b)
1286 unsigned int addr = io->addr_data;
1288 outw(b << io->regshift, addr + (offset * io->regspacing));
1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1293 unsigned int addr = io->addr_data;
1295 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1298 static void port_outl(struct si_sm_io *io, unsigned int offset,
1299 unsigned char b)
1301 unsigned int addr = io->addr_data;
1303 outl(b << io->regshift, addr+(offset * io->regspacing));
1306 static void port_cleanup(struct smi_info *info)
1308 unsigned int addr = info->io.addr_data;
1309 int idx;
1311 if (addr) {
1312 for (idx = 0; idx < info->io_size; idx++)
1313 release_region(addr + idx * info->io.regspacing,
1314 info->io.regsize);
1318 static int port_setup(struct smi_info *info)
1320 unsigned int addr = info->io.addr_data;
1321 int idx;
1323 if (!addr)
1324 return -ENODEV;
1326 info->io_cleanup = port_cleanup;
1329 * Figure out the actual inb/inw/inl/etc routine to use based
1330 * upon the register size.
1332 switch (info->io.regsize) {
1333 case 1:
1334 info->io.inputb = port_inb;
1335 info->io.outputb = port_outb;
1336 break;
1337 case 2:
1338 info->io.inputb = port_inw;
1339 info->io.outputb = port_outw;
1340 break;
1341 case 4:
1342 info->io.inputb = port_inl;
1343 info->io.outputb = port_outl;
1344 break;
1345 default:
1346 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347 info->io.regsize);
1348 return -EINVAL;
1352 * Some BIOSes reserve disjoint I/O regions in their ACPI
1353 * tables. This causes problems when trying to register the
1354 * entire I/O region. Therefore we must register each I/O
1355 * port separately.
1357 for (idx = 0; idx < info->io_size; idx++) {
1358 if (request_region(addr + idx * info->io.regspacing,
1359 info->io.regsize, DEVICE_NAME) == NULL) {
1360 /* Undo allocations */
1361 while (idx--) {
1362 release_region(addr + idx * info->io.regspacing,
1363 info->io.regsize);
1365 return -EIO;
1368 return 0;
1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1373 return readb((io->addr)+(offset * io->regspacing));
1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377 unsigned char b)
1379 writeb(b, (io->addr)+(offset * io->regspacing));
1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1384 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385 & 0xff;
1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389 unsigned char b)
1391 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1396 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397 & 0xff;
1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401 unsigned char b)
1403 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1406 #ifdef readq
1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1409 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410 & 0xff;
1413 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414 unsigned char b)
1416 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1418 #endif
1420 static void mem_cleanup(struct smi_info *info)
1422 unsigned long addr = info->io.addr_data;
1423 int mapsize;
1425 if (info->io.addr) {
1426 iounmap(info->io.addr);
1428 mapsize = ((info->io_size * info->io.regspacing)
1429 - (info->io.regspacing - info->io.regsize));
1431 release_mem_region(addr, mapsize);
1435 static int mem_setup(struct smi_info *info)
1437 unsigned long addr = info->io.addr_data;
1438 int mapsize;
1440 if (!addr)
1441 return -ENODEV;
1443 info->io_cleanup = mem_cleanup;
1446 * Figure out the actual readb/readw/readl/etc routine to use based
1447 * upon the register size.
1449 switch (info->io.regsize) {
1450 case 1:
1451 info->io.inputb = intf_mem_inb;
1452 info->io.outputb = intf_mem_outb;
1453 break;
1454 case 2:
1455 info->io.inputb = intf_mem_inw;
1456 info->io.outputb = intf_mem_outw;
1457 break;
1458 case 4:
1459 info->io.inputb = intf_mem_inl;
1460 info->io.outputb = intf_mem_outl;
1461 break;
1462 #ifdef readq
1463 case 8:
1464 info->io.inputb = mem_inq;
1465 info->io.outputb = mem_outq;
1466 break;
1467 #endif
1468 default:
1469 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470 info->io.regsize);
1471 return -EINVAL;
1475 * Calculate the total amount of memory to claim. This is an
1476 * unusual looking calculation, but it avoids claiming any
1477 * more memory than it has to. It will claim everything
1478 * between the first address to the end of the last full
1479 * register.
1481 mapsize = ((info->io_size * info->io.regspacing)
1482 - (info->io.regspacing - info->io.regsize));
1484 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485 return -EIO;
1487 info->io.addr = ioremap(addr, mapsize);
1488 if (info->io.addr == NULL) {
1489 release_mem_region(addr, mapsize);
1490 return -EIO;
1492 return 0;
1496 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1497 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498 * Options are:
1499 * rsp=<regspacing>
1500 * rsi=<regsize>
1501 * rsh=<regshift>
1502 * irq=<irq>
1503 * ipmb=<ipmb addr>
1505 enum hotmod_op { HM_ADD, HM_REMOVE };
1506 struct hotmod_vals {
1507 char *name;
1508 int val;
1510 static struct hotmod_vals hotmod_ops[] = {
1511 { "add", HM_ADD },
1512 { "remove", HM_REMOVE },
1513 { NULL }
1515 static struct hotmod_vals hotmod_si[] = {
1516 { "kcs", SI_KCS },
1517 { "smic", SI_SMIC },
1518 { "bt", SI_BT },
1519 { NULL }
1521 static struct hotmod_vals hotmod_as[] = {
1522 { "mem", IPMI_MEM_ADDR_SPACE },
1523 { "i/o", IPMI_IO_ADDR_SPACE },
1524 { NULL }
1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1529 char *s;
1530 int i;
1532 s = strchr(*curr, ',');
1533 if (!s) {
1534 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535 return -EINVAL;
1537 *s = '\0';
1538 s++;
1539 for (i = 0; hotmod_ops[i].name; i++) {
1540 if (strcmp(*curr, v[i].name) == 0) {
1541 *val = v[i].val;
1542 *curr = s;
1543 return 0;
1547 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548 return -EINVAL;
1551 static int check_hotmod_int_op(const char *curr, const char *option,
1552 const char *name, int *val)
1554 char *n;
1556 if (strcmp(curr, name) == 0) {
1557 if (!option) {
1558 printk(KERN_WARNING PFX
1559 "No option given for '%s'\n",
1560 curr);
1561 return -EINVAL;
1563 *val = simple_strtoul(option, &n, 0);
1564 if ((*n != '\0') || (*option == '\0')) {
1565 printk(KERN_WARNING PFX
1566 "Bad option given for '%s'\n",
1567 curr);
1568 return -EINVAL;
1570 return 1;
1572 return 0;
1575 static int hotmod_handler(const char *val, struct kernel_param *kp)
1577 char *str = kstrdup(val, GFP_KERNEL);
1578 int rv;
1579 char *next, *curr, *s, *n, *o;
1580 enum hotmod_op op;
1581 enum si_type si_type;
1582 int addr_space;
1583 unsigned long addr;
1584 int regspacing;
1585 int regsize;
1586 int regshift;
1587 int irq;
1588 int ipmb;
1589 int ival;
1590 int len;
1591 struct smi_info *info;
1593 if (!str)
1594 return -ENOMEM;
1596 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1597 len = strlen(str);
1598 ival = len - 1;
1599 while ((ival >= 0) && isspace(str[ival])) {
1600 str[ival] = '\0';
1601 ival--;
1604 for (curr = str; curr; curr = next) {
1605 regspacing = 1;
1606 regsize = 1;
1607 regshift = 0;
1608 irq = 0;
1609 ipmb = 0x20;
1611 next = strchr(curr, ':');
1612 if (next) {
1613 *next = '\0';
1614 next++;
1617 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618 if (rv)
1619 break;
1620 op = ival;
1622 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623 if (rv)
1624 break;
1625 si_type = ival;
1627 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628 if (rv)
1629 break;
1631 s = strchr(curr, ',');
1632 if (s) {
1633 *s = '\0';
1634 s++;
1636 addr = simple_strtoul(curr, &n, 0);
1637 if ((*n != '\0') || (*curr == '\0')) {
1638 printk(KERN_WARNING PFX "Invalid hotmod address"
1639 " '%s'\n", curr);
1640 break;
1643 while (s) {
1644 curr = s;
1645 s = strchr(curr, ',');
1646 if (s) {
1647 *s = '\0';
1648 s++;
1650 o = strchr(curr, '=');
1651 if (o) {
1652 *o = '\0';
1653 o++;
1655 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656 if (rv < 0)
1657 goto out;
1658 else if (rv)
1659 continue;
1660 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661 if (rv < 0)
1662 goto out;
1663 else if (rv)
1664 continue;
1665 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666 if (rv < 0)
1667 goto out;
1668 else if (rv)
1669 continue;
1670 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671 if (rv < 0)
1672 goto out;
1673 else if (rv)
1674 continue;
1675 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676 if (rv < 0)
1677 goto out;
1678 else if (rv)
1679 continue;
1681 rv = -EINVAL;
1682 printk(KERN_WARNING PFX
1683 "Invalid hotmod option '%s'\n",
1684 curr);
1685 goto out;
1688 if (op == HM_ADD) {
1689 info = kzalloc(sizeof(*info), GFP_KERNEL);
1690 if (!info) {
1691 rv = -ENOMEM;
1692 goto out;
1695 info->addr_source = "hotmod";
1696 info->si_type = si_type;
1697 info->io.addr_data = addr;
1698 info->io.addr_type = addr_space;
1699 if (addr_space == IPMI_MEM_ADDR_SPACE)
1700 info->io_setup = mem_setup;
1701 else
1702 info->io_setup = port_setup;
1704 info->io.addr = NULL;
1705 info->io.regspacing = regspacing;
1706 if (!info->io.regspacing)
1707 info->io.regspacing = DEFAULT_REGSPACING;
1708 info->io.regsize = regsize;
1709 if (!info->io.regsize)
1710 info->io.regsize = DEFAULT_REGSPACING;
1711 info->io.regshift = regshift;
1712 info->irq = irq;
1713 if (info->irq)
1714 info->irq_setup = std_irq_setup;
1715 info->slave_addr = ipmb;
1717 try_smi_init(info);
1718 } else {
1719 /* remove */
1720 struct smi_info *e, *tmp_e;
1722 mutex_lock(&smi_infos_lock);
1723 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724 if (e->io.addr_type != addr_space)
1725 continue;
1726 if (e->si_type != si_type)
1727 continue;
1728 if (e->io.addr_data == addr)
1729 cleanup_one_si(e);
1731 mutex_unlock(&smi_infos_lock);
1734 rv = len;
1735 out:
1736 kfree(str);
1737 return rv;
1740 static __devinit void hardcode_find_bmc(void)
1742 int i;
1743 struct smi_info *info;
1745 for (i = 0; i < SI_MAX_PARMS; i++) {
1746 if (!ports[i] && !addrs[i])
1747 continue;
1749 info = kzalloc(sizeof(*info), GFP_KERNEL);
1750 if (!info)
1751 return;
1753 info->addr_source = "hardcoded";
1755 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756 info->si_type = SI_KCS;
1757 } else if (strcmp(si_type[i], "smic") == 0) {
1758 info->si_type = SI_SMIC;
1759 } else if (strcmp(si_type[i], "bt") == 0) {
1760 info->si_type = SI_BT;
1761 } else {
1762 printk(KERN_WARNING
1763 "ipmi_si: Interface type specified "
1764 "for interface %d, was invalid: %s\n",
1765 i, si_type[i]);
1766 kfree(info);
1767 continue;
1770 if (ports[i]) {
1771 /* An I/O port */
1772 info->io_setup = port_setup;
1773 info->io.addr_data = ports[i];
1774 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775 } else if (addrs[i]) {
1776 /* A memory port */
1777 info->io_setup = mem_setup;
1778 info->io.addr_data = addrs[i];
1779 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780 } else {
1781 printk(KERN_WARNING
1782 "ipmi_si: Interface type specified "
1783 "for interface %d, "
1784 "but port and address were not set or "
1785 "set to zero.\n", i);
1786 kfree(info);
1787 continue;
1790 info->io.addr = NULL;
1791 info->io.regspacing = regspacings[i];
1792 if (!info->io.regspacing)
1793 info->io.regspacing = DEFAULT_REGSPACING;
1794 info->io.regsize = regsizes[i];
1795 if (!info->io.regsize)
1796 info->io.regsize = DEFAULT_REGSPACING;
1797 info->io.regshift = regshifts[i];
1798 info->irq = irqs[i];
1799 if (info->irq)
1800 info->irq_setup = std_irq_setup;
1802 try_smi_init(info);
1806 #ifdef CONFIG_ACPI
1808 #include <linux/acpi.h>
1811 * Once we get an ACPI failure, we don't try any more, because we go
1812 * through the tables sequentially. Once we don't find a table, there
1813 * are no more.
1815 static int acpi_failure;
1817 /* For GPE-type interrupts. */
1818 static u32 ipmi_acpi_gpe(void *context)
1820 struct smi_info *smi_info = context;
1821 unsigned long flags;
1822 #ifdef DEBUG_TIMING
1823 struct timeval t;
1824 #endif
1826 spin_lock_irqsave(&(smi_info->si_lock), flags);
1828 smi_inc_stat(smi_info, interrupts);
1830 #ifdef DEBUG_TIMING
1831 do_gettimeofday(&t);
1832 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833 #endif
1834 smi_event_handler(smi_info, 0);
1835 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1837 return ACPI_INTERRUPT_HANDLED;
1840 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1842 if (!info->irq)
1843 return;
1845 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1848 static int acpi_gpe_irq_setup(struct smi_info *info)
1850 acpi_status status;
1852 if (!info->irq)
1853 return 0;
1855 /* FIXME - is level triggered right? */
1856 status = acpi_install_gpe_handler(NULL,
1857 info->irq,
1858 ACPI_GPE_LEVEL_TRIGGERED,
1859 &ipmi_acpi_gpe,
1860 info);
1861 if (status != AE_OK) {
1862 printk(KERN_WARNING
1863 "ipmi_si: %s unable to claim ACPI GPE %d,"
1864 " running polled\n",
1865 DEVICE_NAME, info->irq);
1866 info->irq = 0;
1867 return -EINVAL;
1868 } else {
1869 info->irq_cleanup = acpi_gpe_irq_cleanup;
1870 printk(" Using ACPI GPE %d\n", info->irq);
1871 return 0;
1876 * Defined at
1877 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878 * Docs/TechPapers/IA64/hpspmi.pdf
1880 struct SPMITable {
1881 s8 Signature[4];
1882 u32 Length;
1883 u8 Revision;
1884 u8 Checksum;
1885 s8 OEMID[6];
1886 s8 OEMTableID[8];
1887 s8 OEMRevision[4];
1888 s8 CreatorID[4];
1889 s8 CreatorRevision[4];
1890 u8 InterfaceType;
1891 u8 IPMIlegacy;
1892 s16 SpecificationRevision;
1895 * Bit 0 - SCI interrupt supported
1896 * Bit 1 - I/O APIC/SAPIC
1898 u8 InterruptType;
1901 * If bit 0 of InterruptType is set, then this is the SCI
1902 * interrupt in the GPEx_STS register.
1904 u8 GPE;
1906 s16 Reserved;
1909 * If bit 1 of InterruptType is set, then this is the I/O
1910 * APIC/SAPIC interrupt.
1912 u32 GlobalSystemInterrupt;
1914 /* The actual register address. */
1915 struct acpi_generic_address addr;
1917 u8 UID[4];
1919 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1922 static __devinit int try_init_acpi(struct SPMITable *spmi)
1924 struct smi_info *info;
1925 u8 addr_space;
1927 if (spmi->IPMIlegacy != 1) {
1928 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929 return -ENODEV;
1932 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933 addr_space = IPMI_MEM_ADDR_SPACE;
1934 else
1935 addr_space = IPMI_IO_ADDR_SPACE;
1937 info = kzalloc(sizeof(*info), GFP_KERNEL);
1938 if (!info) {
1939 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940 return -ENOMEM;
1943 info->addr_source = "ACPI";
1945 /* Figure out the interface type. */
1946 switch (spmi->InterfaceType) {
1947 case 1: /* KCS */
1948 info->si_type = SI_KCS;
1949 break;
1950 case 2: /* SMIC */
1951 info->si_type = SI_SMIC;
1952 break;
1953 case 3: /* BT */
1954 info->si_type = SI_BT;
1955 break;
1956 default:
1957 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958 spmi->InterfaceType);
1959 kfree(info);
1960 return -EIO;
1963 if (spmi->InterruptType & 1) {
1964 /* We've got a GPE interrupt. */
1965 info->irq = spmi->GPE;
1966 info->irq_setup = acpi_gpe_irq_setup;
1967 } else if (spmi->InterruptType & 2) {
1968 /* We've got an APIC/SAPIC interrupt. */
1969 info->irq = spmi->GlobalSystemInterrupt;
1970 info->irq_setup = std_irq_setup;
1971 } else {
1972 /* Use the default interrupt setting. */
1973 info->irq = 0;
1974 info->irq_setup = NULL;
1977 if (spmi->addr.bit_width) {
1978 /* A (hopefully) properly formed register bit width. */
1979 info->io.regspacing = spmi->addr.bit_width / 8;
1980 } else {
1981 info->io.regspacing = DEFAULT_REGSPACING;
1983 info->io.regsize = info->io.regspacing;
1984 info->io.regshift = spmi->addr.bit_offset;
1986 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987 info->io_setup = mem_setup;
1988 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990 info->io_setup = port_setup;
1991 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992 } else {
1993 kfree(info);
1994 printk(KERN_WARNING
1995 "ipmi_si: Unknown ACPI I/O Address type\n");
1996 return -EIO;
1998 info->io.addr_data = spmi->addr.address;
2000 try_smi_init(info);
2002 return 0;
2005 static __devinit void acpi_find_bmc(void)
2007 acpi_status status;
2008 struct SPMITable *spmi;
2009 int i;
2011 if (acpi_disabled)
2012 return;
2014 if (acpi_failure)
2015 return;
2017 for (i = 0; ; i++) {
2018 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019 (struct acpi_table_header **)&spmi);
2020 if (status != AE_OK)
2021 return;
2023 try_init_acpi(spmi);
2026 #endif
2028 #ifdef CONFIG_DMI
2029 struct dmi_ipmi_data {
2030 u8 type;
2031 u8 addr_space;
2032 unsigned long base_addr;
2033 u8 irq;
2034 u8 offset;
2035 u8 slave_addr;
2038 static int __devinit decode_dmi(const struct dmi_header *dm,
2039 struct dmi_ipmi_data *dmi)
2041 const u8 *data = (const u8 *)dm;
2042 unsigned long base_addr;
2043 u8 reg_spacing;
2044 u8 len = dm->length;
2046 dmi->type = data[4];
2048 memcpy(&base_addr, data+8, sizeof(unsigned long));
2049 if (len >= 0x11) {
2050 if (base_addr & 1) {
2051 /* I/O */
2052 base_addr &= 0xFFFE;
2053 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054 } else
2055 /* Memory */
2056 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2058 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2059 is odd. */
2060 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2062 dmi->irq = data[0x11];
2064 /* The top two bits of byte 0x10 hold the register spacing. */
2065 reg_spacing = (data[0x10] & 0xC0) >> 6;
2066 switch (reg_spacing) {
2067 case 0x00: /* Byte boundaries */
2068 dmi->offset = 1;
2069 break;
2070 case 0x01: /* 32-bit boundaries */
2071 dmi->offset = 4;
2072 break;
2073 case 0x02: /* 16-byte boundaries */
2074 dmi->offset = 16;
2075 break;
2076 default:
2077 /* Some other interface, just ignore it. */
2078 return -EIO;
2080 } else {
2081 /* Old DMI spec. */
2083 * Note that technically, the lower bit of the base
2084 * address should be 1 if the address is I/O and 0 if
2085 * the address is in memory. So many systems get that
2086 * wrong (and all that I have seen are I/O) so we just
2087 * ignore that bit and assume I/O. Systems that use
2088 * memory should use the newer spec, anyway.
2090 dmi->base_addr = base_addr & 0xfffe;
2091 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092 dmi->offset = 1;
2095 dmi->slave_addr = data[6];
2097 return 0;
2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2102 struct smi_info *info;
2104 info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 if (!info) {
2106 printk(KERN_ERR
2107 "ipmi_si: Could not allocate SI data\n");
2108 return;
2111 info->addr_source = "SMBIOS";
2113 switch (ipmi_data->type) {
2114 case 0x01: /* KCS */
2115 info->si_type = SI_KCS;
2116 break;
2117 case 0x02: /* SMIC */
2118 info->si_type = SI_SMIC;
2119 break;
2120 case 0x03: /* BT */
2121 info->si_type = SI_BT;
2122 break;
2123 default:
2124 kfree(info);
2125 return;
2128 switch (ipmi_data->addr_space) {
2129 case IPMI_MEM_ADDR_SPACE:
2130 info->io_setup = mem_setup;
2131 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132 break;
2134 case IPMI_IO_ADDR_SPACE:
2135 info->io_setup = port_setup;
2136 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137 break;
2139 default:
2140 kfree(info);
2141 printk(KERN_WARNING
2142 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143 ipmi_data->addr_space);
2144 return;
2146 info->io.addr_data = ipmi_data->base_addr;
2148 info->io.regspacing = ipmi_data->offset;
2149 if (!info->io.regspacing)
2150 info->io.regspacing = DEFAULT_REGSPACING;
2151 info->io.regsize = DEFAULT_REGSPACING;
2152 info->io.regshift = 0;
2154 info->slave_addr = ipmi_data->slave_addr;
2156 info->irq = ipmi_data->irq;
2157 if (info->irq)
2158 info->irq_setup = std_irq_setup;
2160 try_smi_init(info);
2163 static void __devinit dmi_find_bmc(void)
2165 const struct dmi_device *dev = NULL;
2166 struct dmi_ipmi_data data;
2167 int rv;
2169 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170 memset(&data, 0, sizeof(data));
2171 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172 &data);
2173 if (!rv)
2174 try_init_dmi(&data);
2177 #endif /* CONFIG_DMI */
2179 #ifdef CONFIG_PCI
2181 #define PCI_ERMC_CLASSCODE 0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2188 #define PCI_HP_VENDOR_ID 0x103C
2189 #define PCI_MMC_DEVICE_ID 0x121A
2190 #define PCI_MMC_ADDR_CW 0x10
2192 static void ipmi_pci_cleanup(struct smi_info *info)
2194 struct pci_dev *pdev = info->addr_source_data;
2196 pci_disable_device(pdev);
2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200 const struct pci_device_id *ent)
2202 int rv;
2203 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204 struct smi_info *info;
2205 int first_reg_offset = 0;
2207 info = kzalloc(sizeof(*info), GFP_KERNEL);
2208 if (!info)
2209 return -ENOMEM;
2211 info->addr_source = "PCI";
2213 switch (class_type) {
2214 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215 info->si_type = SI_SMIC;
2216 break;
2218 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219 info->si_type = SI_KCS;
2220 break;
2222 case PCI_ERMC_CLASSCODE_TYPE_BT:
2223 info->si_type = SI_BT;
2224 break;
2226 default:
2227 kfree(info);
2228 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229 pci_name(pdev), class_type);
2230 return -ENOMEM;
2233 rv = pci_enable_device(pdev);
2234 if (rv) {
2235 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236 pci_name(pdev));
2237 kfree(info);
2238 return rv;
2241 info->addr_source_cleanup = ipmi_pci_cleanup;
2242 info->addr_source_data = pdev;
2244 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245 first_reg_offset = 1;
2247 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248 info->io_setup = port_setup;
2249 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250 } else {
2251 info->io_setup = mem_setup;
2252 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2254 info->io.addr_data = pci_resource_start(pdev, 0);
2256 info->io.regspacing = DEFAULT_REGSPACING;
2257 info->io.regsize = DEFAULT_REGSPACING;
2258 info->io.regshift = 0;
2260 info->irq = pdev->irq;
2261 if (info->irq)
2262 info->irq_setup = std_irq_setup;
2264 info->dev = &pdev->dev;
2265 pci_set_drvdata(pdev, info);
2267 return try_smi_init(info);
2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2272 struct smi_info *info = pci_get_drvdata(pdev);
2273 cleanup_one_si(info);
2276 #ifdef CONFIG_PM
2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2279 return 0;
2282 static int ipmi_pci_resume(struct pci_dev *pdev)
2284 return 0;
2286 #endif
2288 static struct pci_device_id ipmi_pci_devices[] = {
2289 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291 { 0, }
2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2295 static struct pci_driver ipmi_pci_driver = {
2296 .name = DEVICE_NAME,
2297 .id_table = ipmi_pci_devices,
2298 .probe = ipmi_pci_probe,
2299 .remove = __devexit_p(ipmi_pci_remove),
2300 #ifdef CONFIG_PM
2301 .suspend = ipmi_pci_suspend,
2302 .resume = ipmi_pci_resume,
2303 #endif
2305 #endif /* CONFIG_PCI */
2308 #ifdef CONFIG_PPC_OF
2309 static int __devinit ipmi_of_probe(struct of_device *dev,
2310 const struct of_device_id *match)
2312 struct smi_info *info;
2313 struct resource resource;
2314 const int *regsize, *regspacing, *regshift;
2315 struct device_node *np = dev->node;
2316 int ret;
2317 int proplen;
2319 dev_info(&dev->dev, PFX "probing via device tree\n");
2321 ret = of_address_to_resource(np, 0, &resource);
2322 if (ret) {
2323 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324 return ret;
2327 regsize = of_get_property(np, "reg-size", &proplen);
2328 if (regsize && proplen != 4) {
2329 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330 return -EINVAL;
2333 regspacing = of_get_property(np, "reg-spacing", &proplen);
2334 if (regspacing && proplen != 4) {
2335 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336 return -EINVAL;
2339 regshift = of_get_property(np, "reg-shift", &proplen);
2340 if (regshift && proplen != 4) {
2341 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342 return -EINVAL;
2345 info = kzalloc(sizeof(*info), GFP_KERNEL);
2347 if (!info) {
2348 dev_err(&dev->dev,
2349 PFX "could not allocate memory for OF probe\n");
2350 return -ENOMEM;
2353 info->si_type = (enum si_type) match->data;
2354 info->addr_source = "device-tree";
2355 info->irq_setup = std_irq_setup;
2357 if (resource.flags & IORESOURCE_IO) {
2358 info->io_setup = port_setup;
2359 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360 } else {
2361 info->io_setup = mem_setup;
2362 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2365 info->io.addr_data = resource.start;
2367 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2368 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2369 info->io.regshift = regshift ? *regshift : 0;
2371 info->irq = irq_of_parse_and_map(dev->node, 0);
2372 info->dev = &dev->dev;
2374 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375 info->io.addr_data, info->io.regsize, info->io.regspacing,
2376 info->irq);
2378 dev_set_drvdata(&dev->dev, info);
2380 return try_smi_init(info);
2383 static int __devexit ipmi_of_remove(struct of_device *dev)
2385 cleanup_one_si(dev_get_drvdata(&dev->dev));
2386 return 0;
2389 static struct of_device_id ipmi_match[] =
2391 { .type = "ipmi", .compatible = "ipmi-kcs",
2392 .data = (void *)(unsigned long) SI_KCS },
2393 { .type = "ipmi", .compatible = "ipmi-smic",
2394 .data = (void *)(unsigned long) SI_SMIC },
2395 { .type = "ipmi", .compatible = "ipmi-bt",
2396 .data = (void *)(unsigned long) SI_BT },
2400 static struct of_platform_driver ipmi_of_platform_driver = {
2401 .name = "ipmi",
2402 .match_table = ipmi_match,
2403 .probe = ipmi_of_probe,
2404 .remove = __devexit_p(ipmi_of_remove),
2406 #endif /* CONFIG_PPC_OF */
2408 static int wait_for_msg_done(struct smi_info *smi_info)
2410 enum si_sm_result smi_result;
2412 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2413 for (;;) {
2414 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2415 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2416 schedule_timeout_uninterruptible(1);
2417 smi_result = smi_info->handlers->event(
2418 smi_info->si_sm, 100);
2419 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2420 smi_result = smi_info->handlers->event(
2421 smi_info->si_sm, 0);
2422 } else
2423 break;
2425 if (smi_result == SI_SM_HOSED)
2427 * We couldn't get the state machine to run, so whatever's at
2428 * the port is probably not an IPMI SMI interface.
2430 return -ENODEV;
2432 return 0;
2435 static int try_get_dev_id(struct smi_info *smi_info)
2437 unsigned char msg[2];
2438 unsigned char *resp;
2439 unsigned long resp_len;
2440 int rv = 0;
2442 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2443 if (!resp)
2444 return -ENOMEM;
2447 * Do a Get Device ID command, since it comes back with some
2448 * useful info.
2450 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2451 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2452 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2454 rv = wait_for_msg_done(smi_info);
2455 if (rv)
2456 goto out;
2458 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2459 resp, IPMI_MAX_MSG_LENGTH);
2461 /* Check and record info from the get device id, in case we need it. */
2462 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2464 out:
2465 kfree(resp);
2466 return rv;
2469 static int try_enable_event_buffer(struct smi_info *smi_info)
2471 unsigned char msg[3];
2472 unsigned char *resp;
2473 unsigned long resp_len;
2474 int rv = 0;
2476 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2477 if (!resp)
2478 return -ENOMEM;
2480 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2481 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2482 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2484 rv = wait_for_msg_done(smi_info);
2485 if (rv) {
2486 printk(KERN_WARNING
2487 "ipmi_si: Error getting response from get global,"
2488 " enables command, the event buffer is not"
2489 " enabled.\n");
2490 goto out;
2493 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2494 resp, IPMI_MAX_MSG_LENGTH);
2496 if (resp_len < 4 ||
2497 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2498 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2499 resp[2] != 0) {
2500 printk(KERN_WARNING
2501 "ipmi_si: Invalid return from get global"
2502 " enables command, cannot enable the event"
2503 " buffer.\n");
2504 rv = -EINVAL;
2505 goto out;
2508 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2509 /* buffer is already enabled, nothing to do. */
2510 goto out;
2512 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2513 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2514 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2515 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2517 rv = wait_for_msg_done(smi_info);
2518 if (rv) {
2519 printk(KERN_WARNING
2520 "ipmi_si: Error getting response from set global,"
2521 " enables command, the event buffer is not"
2522 " enabled.\n");
2523 goto out;
2526 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2527 resp, IPMI_MAX_MSG_LENGTH);
2529 if (resp_len < 3 ||
2530 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2531 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2532 printk(KERN_WARNING
2533 "ipmi_si: Invalid return from get global,"
2534 "enables command, not enable the event"
2535 " buffer.\n");
2536 rv = -EINVAL;
2537 goto out;
2540 if (resp[2] != 0)
2542 * An error when setting the event buffer bit means
2543 * that the event buffer is not supported.
2545 rv = -ENOENT;
2546 out:
2547 kfree(resp);
2548 return rv;
2551 static int type_file_read_proc(char *page, char **start, off_t off,
2552 int count, int *eof, void *data)
2554 struct smi_info *smi = data;
2556 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2559 static int stat_file_read_proc(char *page, char **start, off_t off,
2560 int count, int *eof, void *data)
2562 char *out = (char *) page;
2563 struct smi_info *smi = data;
2565 out += sprintf(out, "interrupts_enabled: %d\n",
2566 smi->irq && !smi->interrupt_disabled);
2567 out += sprintf(out, "short_timeouts: %u\n",
2568 smi_get_stat(smi, short_timeouts));
2569 out += sprintf(out, "long_timeouts: %u\n",
2570 smi_get_stat(smi, long_timeouts));
2571 out += sprintf(out, "idles: %u\n",
2572 smi_get_stat(smi, idles));
2573 out += sprintf(out, "interrupts: %u\n",
2574 smi_get_stat(smi, interrupts));
2575 out += sprintf(out, "attentions: %u\n",
2576 smi_get_stat(smi, attentions));
2577 out += sprintf(out, "flag_fetches: %u\n",
2578 smi_get_stat(smi, flag_fetches));
2579 out += sprintf(out, "hosed_count: %u\n",
2580 smi_get_stat(smi, hosed_count));
2581 out += sprintf(out, "complete_transactions: %u\n",
2582 smi_get_stat(smi, complete_transactions));
2583 out += sprintf(out, "events: %u\n",
2584 smi_get_stat(smi, events));
2585 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2586 smi_get_stat(smi, watchdog_pretimeouts));
2587 out += sprintf(out, "incoming_messages: %u\n",
2588 smi_get_stat(smi, incoming_messages));
2590 return out - page;
2593 static int param_read_proc(char *page, char **start, off_t off,
2594 int count, int *eof, void *data)
2596 struct smi_info *smi = data;
2598 return sprintf(page,
2599 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2600 si_to_str[smi->si_type],
2601 addr_space_to_str[smi->io.addr_type],
2602 smi->io.addr_data,
2603 smi->io.regspacing,
2604 smi->io.regsize,
2605 smi->io.regshift,
2606 smi->irq,
2607 smi->slave_addr);
2611 * oem_data_avail_to_receive_msg_avail
2612 * @info - smi_info structure with msg_flags set
2614 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2615 * Returns 1 indicating need to re-run handle_flags().
2617 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2619 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2620 RECEIVE_MSG_AVAIL);
2621 return 1;
2625 * setup_dell_poweredge_oem_data_handler
2626 * @info - smi_info.device_id must be populated
2628 * Systems that match, but have firmware version < 1.40 may assert
2629 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2630 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2631 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2632 * as RECEIVE_MSG_AVAIL instead.
2634 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2635 * assert the OEM[012] bits, and if it did, the driver would have to
2636 * change to handle that properly, we don't actually check for the
2637 * firmware version.
2638 * Device ID = 0x20 BMC on PowerEdge 8G servers
2639 * Device Revision = 0x80
2640 * Firmware Revision1 = 0x01 BMC version 1.40
2641 * Firmware Revision2 = 0x40 BCD encoded
2642 * IPMI Version = 0x51 IPMI 1.5
2643 * Manufacturer ID = A2 02 00 Dell IANA
2645 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2646 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2649 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2650 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2651 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2652 #define DELL_IANA_MFR_ID 0x0002a2
2653 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2655 struct ipmi_device_id *id = &smi_info->device_id;
2656 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2657 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2658 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2659 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2660 smi_info->oem_data_avail_handler =
2661 oem_data_avail_to_receive_msg_avail;
2662 } else if (ipmi_version_major(id) < 1 ||
2663 (ipmi_version_major(id) == 1 &&
2664 ipmi_version_minor(id) < 5)) {
2665 smi_info->oem_data_avail_handler =
2666 oem_data_avail_to_receive_msg_avail;
2671 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2672 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2674 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2676 /* Make it a reponse */
2677 msg->rsp[0] = msg->data[0] | 4;
2678 msg->rsp[1] = msg->data[1];
2679 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2680 msg->rsp_size = 3;
2681 smi_info->curr_msg = NULL;
2682 deliver_recv_msg(smi_info, msg);
2686 * dell_poweredge_bt_xaction_handler
2687 * @info - smi_info.device_id must be populated
2689 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2690 * not respond to a Get SDR command if the length of the data
2691 * requested is exactly 0x3A, which leads to command timeouts and no
2692 * data returned. This intercepts such commands, and causes userspace
2693 * callers to try again with a different-sized buffer, which succeeds.
2696 #define STORAGE_NETFN 0x0A
2697 #define STORAGE_CMD_GET_SDR 0x23
2698 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2699 unsigned long unused,
2700 void *in)
2702 struct smi_info *smi_info = in;
2703 unsigned char *data = smi_info->curr_msg->data;
2704 unsigned int size = smi_info->curr_msg->data_size;
2705 if (size >= 8 &&
2706 (data[0]>>2) == STORAGE_NETFN &&
2707 data[1] == STORAGE_CMD_GET_SDR &&
2708 data[7] == 0x3A) {
2709 return_hosed_msg_badsize(smi_info);
2710 return NOTIFY_STOP;
2712 return NOTIFY_DONE;
2715 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2716 .notifier_call = dell_poweredge_bt_xaction_handler,
2720 * setup_dell_poweredge_bt_xaction_handler
2721 * @info - smi_info.device_id must be filled in already
2723 * Fills in smi_info.device_id.start_transaction_pre_hook
2724 * when we know what function to use there.
2726 static void
2727 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2729 struct ipmi_device_id *id = &smi_info->device_id;
2730 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2731 smi_info->si_type == SI_BT)
2732 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2736 * setup_oem_data_handler
2737 * @info - smi_info.device_id must be filled in already
2739 * Fills in smi_info.device_id.oem_data_available_handler
2740 * when we know what function to use there.
2743 static void setup_oem_data_handler(struct smi_info *smi_info)
2745 setup_dell_poweredge_oem_data_handler(smi_info);
2748 static void setup_xaction_handlers(struct smi_info *smi_info)
2750 setup_dell_poweredge_bt_xaction_handler(smi_info);
2753 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2755 if (smi_info->intf) {
2757 * The timer and thread are only running if the
2758 * interface has been started up and registered.
2760 if (smi_info->thread != NULL)
2761 kthread_stop(smi_info->thread);
2762 del_timer_sync(&smi_info->si_timer);
2766 static __devinitdata struct ipmi_default_vals
2768 int type;
2769 int port;
2770 } ipmi_defaults[] =
2772 { .type = SI_KCS, .port = 0xca2 },
2773 { .type = SI_SMIC, .port = 0xca9 },
2774 { .type = SI_BT, .port = 0xe4 },
2775 { .port = 0 }
2778 static __devinit void default_find_bmc(void)
2780 struct smi_info *info;
2781 int i;
2783 for (i = 0; ; i++) {
2784 if (!ipmi_defaults[i].port)
2785 break;
2786 #ifdef CONFIG_PPC
2787 if (check_legacy_ioport(ipmi_defaults[i].port))
2788 continue;
2789 #endif
2790 info = kzalloc(sizeof(*info), GFP_KERNEL);
2791 if (!info)
2792 return;
2794 info->addr_source = NULL;
2796 info->si_type = ipmi_defaults[i].type;
2797 info->io_setup = port_setup;
2798 info->io.addr_data = ipmi_defaults[i].port;
2799 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2801 info->io.addr = NULL;
2802 info->io.regspacing = DEFAULT_REGSPACING;
2803 info->io.regsize = DEFAULT_REGSPACING;
2804 info->io.regshift = 0;
2806 if (try_smi_init(info) == 0) {
2807 /* Found one... */
2808 printk(KERN_INFO "ipmi_si: Found default %s state"
2809 " machine at %s address 0x%lx\n",
2810 si_to_str[info->si_type],
2811 addr_space_to_str[info->io.addr_type],
2812 info->io.addr_data);
2813 return;
2818 static int is_new_interface(struct smi_info *info)
2820 struct smi_info *e;
2822 list_for_each_entry(e, &smi_infos, link) {
2823 if (e->io.addr_type != info->io.addr_type)
2824 continue;
2825 if (e->io.addr_data == info->io.addr_data)
2826 return 0;
2829 return 1;
2832 static int try_smi_init(struct smi_info *new_smi)
2834 int rv;
2835 int i;
2837 if (new_smi->addr_source) {
2838 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2839 " machine at %s address 0x%lx, slave address 0x%x,"
2840 " irq %d\n",
2841 new_smi->addr_source,
2842 si_to_str[new_smi->si_type],
2843 addr_space_to_str[new_smi->io.addr_type],
2844 new_smi->io.addr_data,
2845 new_smi->slave_addr, new_smi->irq);
2848 mutex_lock(&smi_infos_lock);
2849 if (!is_new_interface(new_smi)) {
2850 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2851 rv = -EBUSY;
2852 goto out_err;
2855 /* So we know not to free it unless we have allocated one. */
2856 new_smi->intf = NULL;
2857 new_smi->si_sm = NULL;
2858 new_smi->handlers = NULL;
2860 switch (new_smi->si_type) {
2861 case SI_KCS:
2862 new_smi->handlers = &kcs_smi_handlers;
2863 break;
2865 case SI_SMIC:
2866 new_smi->handlers = &smic_smi_handlers;
2867 break;
2869 case SI_BT:
2870 new_smi->handlers = &bt_smi_handlers;
2871 break;
2873 default:
2874 /* No support for anything else yet. */
2875 rv = -EIO;
2876 goto out_err;
2879 /* Allocate the state machine's data and initialize it. */
2880 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2881 if (!new_smi->si_sm) {
2882 printk(KERN_ERR "Could not allocate state machine memory\n");
2883 rv = -ENOMEM;
2884 goto out_err;
2886 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2887 &new_smi->io);
2889 /* Now that we know the I/O size, we can set up the I/O. */
2890 rv = new_smi->io_setup(new_smi);
2891 if (rv) {
2892 printk(KERN_ERR "Could not set up I/O space\n");
2893 goto out_err;
2896 spin_lock_init(&(new_smi->si_lock));
2897 spin_lock_init(&(new_smi->msg_lock));
2899 /* Do low-level detection first. */
2900 if (new_smi->handlers->detect(new_smi->si_sm)) {
2901 if (new_smi->addr_source)
2902 printk(KERN_INFO "ipmi_si: Interface detection"
2903 " failed\n");
2904 rv = -ENODEV;
2905 goto out_err;
2909 * Attempt a get device id command. If it fails, we probably
2910 * don't have a BMC here.
2912 rv = try_get_dev_id(new_smi);
2913 if (rv) {
2914 if (new_smi->addr_source)
2915 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2916 " at this location\n");
2917 goto out_err;
2920 setup_oem_data_handler(new_smi);
2921 setup_xaction_handlers(new_smi);
2923 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2924 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2925 new_smi->curr_msg = NULL;
2926 atomic_set(&new_smi->req_events, 0);
2927 new_smi->run_to_completion = 0;
2928 for (i = 0; i < SI_NUM_STATS; i++)
2929 atomic_set(&new_smi->stats[i], 0);
2931 new_smi->interrupt_disabled = 0;
2932 atomic_set(&new_smi->stop_operation, 0);
2933 new_smi->intf_num = smi_num;
2934 smi_num++;
2936 rv = try_enable_event_buffer(new_smi);
2937 if (rv == 0)
2938 new_smi->has_event_buffer = 1;
2941 * Start clearing the flags before we enable interrupts or the
2942 * timer to avoid racing with the timer.
2944 start_clear_flags(new_smi);
2945 /* IRQ is defined to be set when non-zero. */
2946 if (new_smi->irq)
2947 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2949 if (!new_smi->dev) {
2951 * If we don't already have a device from something
2952 * else (like PCI), then register a new one.
2954 new_smi->pdev = platform_device_alloc("ipmi_si",
2955 new_smi->intf_num);
2956 if (!new_smi->pdev) {
2957 printk(KERN_ERR
2958 "ipmi_si_intf:"
2959 " Unable to allocate platform device\n");
2960 goto out_err;
2962 new_smi->dev = &new_smi->pdev->dev;
2963 new_smi->dev->driver = &ipmi_driver.driver;
2965 rv = platform_device_add(new_smi->pdev);
2966 if (rv) {
2967 printk(KERN_ERR
2968 "ipmi_si_intf:"
2969 " Unable to register system interface device:"
2970 " %d\n",
2971 rv);
2972 goto out_err;
2974 new_smi->dev_registered = 1;
2977 rv = ipmi_register_smi(&handlers,
2978 new_smi,
2979 &new_smi->device_id,
2980 new_smi->dev,
2981 "bmc",
2982 new_smi->slave_addr);
2983 if (rv) {
2984 printk(KERN_ERR
2985 "ipmi_si: Unable to register device: error %d\n",
2986 rv);
2987 goto out_err_stop_timer;
2990 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2991 type_file_read_proc,
2992 new_smi);
2993 if (rv) {
2994 printk(KERN_ERR
2995 "ipmi_si: Unable to create proc entry: %d\n",
2996 rv);
2997 goto out_err_stop_timer;
3000 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3001 stat_file_read_proc,
3002 new_smi);
3003 if (rv) {
3004 printk(KERN_ERR
3005 "ipmi_si: Unable to create proc entry: %d\n",
3006 rv);
3007 goto out_err_stop_timer;
3010 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3011 param_read_proc,
3012 new_smi);
3013 if (rv) {
3014 printk(KERN_ERR
3015 "ipmi_si: Unable to create proc entry: %d\n",
3016 rv);
3017 goto out_err_stop_timer;
3020 list_add_tail(&new_smi->link, &smi_infos);
3022 mutex_unlock(&smi_infos_lock);
3024 printk(KERN_INFO "IPMI %s interface initialized\n",
3025 si_to_str[new_smi->si_type]);
3027 return 0;
3029 out_err_stop_timer:
3030 atomic_inc(&new_smi->stop_operation);
3031 wait_for_timer_and_thread(new_smi);
3033 out_err:
3034 if (new_smi->intf)
3035 ipmi_unregister_smi(new_smi->intf);
3037 if (new_smi->irq_cleanup)
3038 new_smi->irq_cleanup(new_smi);
3041 * Wait until we know that we are out of any interrupt
3042 * handlers might have been running before we freed the
3043 * interrupt.
3045 synchronize_sched();
3047 if (new_smi->si_sm) {
3048 if (new_smi->handlers)
3049 new_smi->handlers->cleanup(new_smi->si_sm);
3050 kfree(new_smi->si_sm);
3052 if (new_smi->addr_source_cleanup)
3053 new_smi->addr_source_cleanup(new_smi);
3054 if (new_smi->io_cleanup)
3055 new_smi->io_cleanup(new_smi);
3057 if (new_smi->dev_registered)
3058 platform_device_unregister(new_smi->pdev);
3060 kfree(new_smi);
3062 mutex_unlock(&smi_infos_lock);
3064 return rv;
3067 static __devinit int init_ipmi_si(void)
3069 int i;
3070 char *str;
3071 int rv;
3073 if (initialized)
3074 return 0;
3075 initialized = 1;
3077 /* Register the device drivers. */
3078 rv = driver_register(&ipmi_driver.driver);
3079 if (rv) {
3080 printk(KERN_ERR
3081 "init_ipmi_si: Unable to register driver: %d\n",
3082 rv);
3083 return rv;
3087 /* Parse out the si_type string into its components. */
3088 str = si_type_str;
3089 if (*str != '\0') {
3090 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3091 si_type[i] = str;
3092 str = strchr(str, ',');
3093 if (str) {
3094 *str = '\0';
3095 str++;
3096 } else {
3097 break;
3102 printk(KERN_INFO "IPMI System Interface driver.\n");
3104 hardcode_find_bmc();
3106 #ifdef CONFIG_DMI
3107 dmi_find_bmc();
3108 #endif
3110 #ifdef CONFIG_ACPI
3111 acpi_find_bmc();
3112 #endif
3114 #ifdef CONFIG_PCI
3115 rv = pci_register_driver(&ipmi_pci_driver);
3116 if (rv)
3117 printk(KERN_ERR
3118 "init_ipmi_si: Unable to register PCI driver: %d\n",
3119 rv);
3120 #endif
3122 #ifdef CONFIG_PPC_OF
3123 of_register_platform_driver(&ipmi_of_platform_driver);
3124 #endif
3126 if (si_trydefaults) {
3127 mutex_lock(&smi_infos_lock);
3128 if (list_empty(&smi_infos)) {
3129 /* No BMC was found, try defaults. */
3130 mutex_unlock(&smi_infos_lock);
3131 default_find_bmc();
3132 } else {
3133 mutex_unlock(&smi_infos_lock);
3137 mutex_lock(&smi_infos_lock);
3138 if (unload_when_empty && list_empty(&smi_infos)) {
3139 mutex_unlock(&smi_infos_lock);
3140 #ifdef CONFIG_PCI
3141 pci_unregister_driver(&ipmi_pci_driver);
3142 #endif
3144 #ifdef CONFIG_PPC_OF
3145 of_unregister_platform_driver(&ipmi_of_platform_driver);
3146 #endif
3147 driver_unregister(&ipmi_driver.driver);
3148 printk(KERN_WARNING
3149 "ipmi_si: Unable to find any System Interface(s)\n");
3150 return -ENODEV;
3151 } else {
3152 mutex_unlock(&smi_infos_lock);
3153 return 0;
3156 module_init(init_ipmi_si);
3158 static void cleanup_one_si(struct smi_info *to_clean)
3160 int rv;
3161 unsigned long flags;
3163 if (!to_clean)
3164 return;
3166 list_del(&to_clean->link);
3168 /* Tell the driver that we are shutting down. */
3169 atomic_inc(&to_clean->stop_operation);
3172 * Make sure the timer and thread are stopped and will not run
3173 * again.
3175 wait_for_timer_and_thread(to_clean);
3178 * Timeouts are stopped, now make sure the interrupts are off
3179 * for the device. A little tricky with locks to make sure
3180 * there are no races.
3182 spin_lock_irqsave(&to_clean->si_lock, flags);
3183 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3184 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3185 poll(to_clean);
3186 schedule_timeout_uninterruptible(1);
3187 spin_lock_irqsave(&to_clean->si_lock, flags);
3189 disable_si_irq(to_clean);
3190 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3191 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3192 poll(to_clean);
3193 schedule_timeout_uninterruptible(1);
3196 /* Clean up interrupts and make sure that everything is done. */
3197 if (to_clean->irq_cleanup)
3198 to_clean->irq_cleanup(to_clean);
3199 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3200 poll(to_clean);
3201 schedule_timeout_uninterruptible(1);
3204 rv = ipmi_unregister_smi(to_clean->intf);
3205 if (rv) {
3206 printk(KERN_ERR
3207 "ipmi_si: Unable to unregister device: errno=%d\n",
3208 rv);
3211 to_clean->handlers->cleanup(to_clean->si_sm);
3213 kfree(to_clean->si_sm);
3215 if (to_clean->addr_source_cleanup)
3216 to_clean->addr_source_cleanup(to_clean);
3217 if (to_clean->io_cleanup)
3218 to_clean->io_cleanup(to_clean);
3220 if (to_clean->dev_registered)
3221 platform_device_unregister(to_clean->pdev);
3223 kfree(to_clean);
3226 static __exit void cleanup_ipmi_si(void)
3228 struct smi_info *e, *tmp_e;
3230 if (!initialized)
3231 return;
3233 #ifdef CONFIG_PCI
3234 pci_unregister_driver(&ipmi_pci_driver);
3235 #endif
3237 #ifdef CONFIG_PPC_OF
3238 of_unregister_platform_driver(&ipmi_of_platform_driver);
3239 #endif
3241 mutex_lock(&smi_infos_lock);
3242 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3243 cleanup_one_si(e);
3244 mutex_unlock(&smi_infos_lock);
3246 driver_unregister(&ipmi_driver.driver);
3248 module_exit(cleanup_ipmi_si);
3250 MODULE_LICENSE("GPL");
3251 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3252 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3253 " system interfaces.");