OMAP3: PM: Prevented DVFS state switches when enabling off-mode
[linux-ginger.git] / drivers / uwb / whc-rc.c
blob01950c62dc8dd4ca58e1e4e0700f5e9b51771dc7
1 /*
2 * Wireless Host Controller: Radio Control Interface (WHCI v0.95[2.3])
3 * Radio Control command/event transport to the UWB stack
5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
23 * Initialize and hook up the Radio Control interface.
25 * For each device probed, creates an 'struct whcrc' which contains
26 * just the representation of the UWB Radio Controller, and the logic
27 * for reading notifications and passing them to the UWB Core.
29 * So we initialize all of those, register the UWB Radio Controller
30 * and setup the notification/event handle to pipe the notifications
31 * to the UWB management Daemon.
33 * Once uwb_rc_add() is called, the UWB stack takes control, resets
34 * the radio and readies the device to take commands the UWB
35 * API/user-space.
37 * Note this driver is just a transport driver; the commands are
38 * formed at the UWB stack and given to this driver who will deliver
39 * them to the hw and transfer the replies/notifications back to the
40 * UWB stack through the UWB daemon (UWBD).
42 #include <linux/init.h>
43 #include <linux/module.h>
44 #include <linux/pci.h>
45 #include <linux/sched.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/interrupt.h>
48 #include <linux/workqueue.h>
49 #include <linux/uwb.h>
50 #include <linux/uwb/whci.h>
51 #include <linux/uwb/umc.h>
53 #include "uwb-internal.h"
55 /**
56 * Descriptor for an instance of the UWB Radio Control Driver that
57 * attaches to the URC interface of the WHCI PCI card.
59 * Unless there is a lock specific to the 'data members', all access
60 * is protected by uwb_rc->mutex.
62 struct whcrc {
63 struct umc_dev *umc_dev;
64 struct uwb_rc *uwb_rc; /* UWB host controller */
66 unsigned long area;
67 void __iomem *rc_base;
68 size_t rc_len;
69 spinlock_t irq_lock;
71 void *evt_buf, *cmd_buf;
72 dma_addr_t evt_dma_buf, cmd_dma_buf;
73 wait_queue_head_t cmd_wq;
74 struct work_struct event_work;
77 /**
78 * Execute an UWB RC command on WHCI/RC
80 * @rc: Instance of a Radio Controller that is a whcrc
81 * @cmd: Buffer containing the RCCB and payload to execute
82 * @cmd_size: Size of the command buffer.
84 * We copy the command into whcrc->cmd_buf (as it is pretty and
85 * aligned`and physically contiguous) and then press the right keys in
86 * the controller's URCCMD register to get it to read it. We might
87 * have to wait for the cmd_sem to be open to us.
89 * NOTE: rc's mutex has to be locked
91 static int whcrc_cmd(struct uwb_rc *uwb_rc,
92 const struct uwb_rccb *cmd, size_t cmd_size)
94 int result = 0;
95 struct whcrc *whcrc = uwb_rc->priv;
96 struct device *dev = &whcrc->umc_dev->dev;
97 u32 urccmd;
99 if (cmd_size >= 4096)
100 return -EINVAL;
103 * If the URC is halted, then the hardware has reset itself.
104 * Attempt to recover by restarting the device and then return
105 * an error as it's likely that the current command isn't
106 * valid for a newly started RC.
108 if (le_readl(whcrc->rc_base + URCSTS) & URCSTS_HALTED) {
109 dev_err(dev, "requesting reset of halted radio controller\n");
110 uwb_rc_reset_all(uwb_rc);
111 return -EIO;
114 result = wait_event_timeout(whcrc->cmd_wq,
115 !(le_readl(whcrc->rc_base + URCCMD) & URCCMD_ACTIVE), HZ/2);
116 if (result == 0) {
117 dev_err(dev, "device is not ready to execute commands\n");
118 return -ETIMEDOUT;
121 memmove(whcrc->cmd_buf, cmd, cmd_size);
122 le_writeq(whcrc->cmd_dma_buf, whcrc->rc_base + URCCMDADDR);
124 spin_lock(&whcrc->irq_lock);
125 urccmd = le_readl(whcrc->rc_base + URCCMD);
126 urccmd &= ~(URCCMD_EARV | URCCMD_SIZE_MASK);
127 le_writel(urccmd | URCCMD_ACTIVE | URCCMD_IWR | cmd_size,
128 whcrc->rc_base + URCCMD);
129 spin_unlock(&whcrc->irq_lock);
131 return 0;
134 static int whcrc_reset(struct uwb_rc *rc)
136 struct whcrc *whcrc = rc->priv;
138 return umc_controller_reset(whcrc->umc_dev);
142 * Reset event reception mechanism and tell hw we are ready to get more
144 * We have read all the events in the event buffer, so we are ready to
145 * reset it to the beginning.
147 * This is only called during initialization or after an event buffer
148 * has been retired. This means we can be sure that event processing
149 * is disabled and it's safe to update the URCEVTADDR register.
151 * There's no need to wait for the event processing to start as the
152 * URC will not clear URCCMD_ACTIVE until (internal) event buffer
153 * space is available.
155 static
156 void whcrc_enable_events(struct whcrc *whcrc)
158 u32 urccmd;
160 le_writeq(whcrc->evt_dma_buf, whcrc->rc_base + URCEVTADDR);
162 spin_lock(&whcrc->irq_lock);
163 urccmd = le_readl(whcrc->rc_base + URCCMD) & ~URCCMD_ACTIVE;
164 le_writel(urccmd | URCCMD_EARV, whcrc->rc_base + URCCMD);
165 spin_unlock(&whcrc->irq_lock);
168 static void whcrc_event_work(struct work_struct *work)
170 struct whcrc *whcrc = container_of(work, struct whcrc, event_work);
171 size_t size;
172 u64 urcevtaddr;
174 urcevtaddr = le_readq(whcrc->rc_base + URCEVTADDR);
175 size = urcevtaddr & URCEVTADDR_OFFSET_MASK;
177 uwb_rc_neh_grok(whcrc->uwb_rc, whcrc->evt_buf, size);
178 whcrc_enable_events(whcrc);
182 * Catch interrupts?
184 * We ack inmediately (and expect the hw to do the right thing and
185 * raise another IRQ if things have changed :)
187 static
188 irqreturn_t whcrc_irq_cb(int irq, void *_whcrc)
190 struct whcrc *whcrc = _whcrc;
191 struct device *dev = &whcrc->umc_dev->dev;
192 u32 urcsts;
194 urcsts = le_readl(whcrc->rc_base + URCSTS);
195 if (!(urcsts & URCSTS_INT_MASK))
196 return IRQ_NONE;
197 le_writel(urcsts & URCSTS_INT_MASK, whcrc->rc_base + URCSTS);
199 if (urcsts & URCSTS_HSE) {
200 dev_err(dev, "host system error -- hardware halted\n");
201 /* FIXME: do something sensible here */
202 goto out;
204 if (urcsts & URCSTS_ER)
205 schedule_work(&whcrc->event_work);
206 if (urcsts & URCSTS_RCI)
207 wake_up_all(&whcrc->cmd_wq);
208 out:
209 return IRQ_HANDLED;
214 * Initialize a UMC RC interface: map regions, get (shared) IRQ
216 static
217 int whcrc_setup_rc_umc(struct whcrc *whcrc)
219 int result = 0;
220 struct device *dev = &whcrc->umc_dev->dev;
221 struct umc_dev *umc_dev = whcrc->umc_dev;
223 whcrc->area = umc_dev->resource.start;
224 whcrc->rc_len = umc_dev->resource.end - umc_dev->resource.start + 1;
225 result = -EBUSY;
226 if (request_mem_region(whcrc->area, whcrc->rc_len, KBUILD_MODNAME) == NULL) {
227 dev_err(dev, "can't request URC region (%zu bytes @ 0x%lx): %d\n",
228 whcrc->rc_len, whcrc->area, result);
229 goto error_request_region;
232 whcrc->rc_base = ioremap_nocache(whcrc->area, whcrc->rc_len);
233 if (whcrc->rc_base == NULL) {
234 dev_err(dev, "can't ioremap registers (%zu bytes @ 0x%lx): %d\n",
235 whcrc->rc_len, whcrc->area, result);
236 goto error_ioremap_nocache;
239 result = request_irq(umc_dev->irq, whcrc_irq_cb, IRQF_SHARED,
240 KBUILD_MODNAME, whcrc);
241 if (result < 0) {
242 dev_err(dev, "can't allocate IRQ %d: %d\n",
243 umc_dev->irq, result);
244 goto error_request_irq;
247 result = -ENOMEM;
248 whcrc->cmd_buf = dma_alloc_coherent(&umc_dev->dev, PAGE_SIZE,
249 &whcrc->cmd_dma_buf, GFP_KERNEL);
250 if (whcrc->cmd_buf == NULL) {
251 dev_err(dev, "Can't allocate cmd transfer buffer\n");
252 goto error_cmd_buffer;
255 whcrc->evt_buf = dma_alloc_coherent(&umc_dev->dev, PAGE_SIZE,
256 &whcrc->evt_dma_buf, GFP_KERNEL);
257 if (whcrc->evt_buf == NULL) {
258 dev_err(dev, "Can't allocate evt transfer buffer\n");
259 goto error_evt_buffer;
261 return 0;
263 error_evt_buffer:
264 dma_free_coherent(&umc_dev->dev, PAGE_SIZE, whcrc->cmd_buf,
265 whcrc->cmd_dma_buf);
266 error_cmd_buffer:
267 free_irq(umc_dev->irq, whcrc);
268 error_request_irq:
269 iounmap(whcrc->rc_base);
270 error_ioremap_nocache:
271 release_mem_region(whcrc->area, whcrc->rc_len);
272 error_request_region:
273 return result;
278 * Release RC's UMC resources
280 static
281 void whcrc_release_rc_umc(struct whcrc *whcrc)
283 struct umc_dev *umc_dev = whcrc->umc_dev;
285 dma_free_coherent(&umc_dev->dev, PAGE_SIZE, whcrc->evt_buf,
286 whcrc->evt_dma_buf);
287 dma_free_coherent(&umc_dev->dev, PAGE_SIZE, whcrc->cmd_buf,
288 whcrc->cmd_dma_buf);
289 free_irq(umc_dev->irq, whcrc);
290 iounmap(whcrc->rc_base);
291 release_mem_region(whcrc->area, whcrc->rc_len);
296 * whcrc_start_rc - start a WHCI radio controller
297 * @whcrc: the radio controller to start
299 * Reset the UMC device, start the radio controller, enable events and
300 * finally enable interrupts.
302 static int whcrc_start_rc(struct uwb_rc *rc)
304 struct whcrc *whcrc = rc->priv;
305 struct device *dev = &whcrc->umc_dev->dev;
307 /* Reset the thing */
308 le_writel(URCCMD_RESET, whcrc->rc_base + URCCMD);
309 if (whci_wait_for(dev, whcrc->rc_base + URCCMD, URCCMD_RESET, 0,
310 5000, "hardware reset") < 0)
311 return -EBUSY;
313 /* Set the event buffer, start the controller (enable IRQs later) */
314 le_writel(0, whcrc->rc_base + URCINTR);
315 le_writel(URCCMD_RS, whcrc->rc_base + URCCMD);
316 if (whci_wait_for(dev, whcrc->rc_base + URCSTS, URCSTS_HALTED, 0,
317 5000, "radio controller start") < 0)
318 return -ETIMEDOUT;
319 whcrc_enable_events(whcrc);
320 le_writel(URCINTR_EN_ALL, whcrc->rc_base + URCINTR);
321 return 0;
326 * whcrc_stop_rc - stop a WHCI radio controller
327 * @whcrc: the radio controller to stop
329 * Disable interrupts and cancel any pending event processing work
330 * before clearing the Run/Stop bit.
332 static
333 void whcrc_stop_rc(struct uwb_rc *rc)
335 struct whcrc *whcrc = rc->priv;
336 struct umc_dev *umc_dev = whcrc->umc_dev;
338 le_writel(0, whcrc->rc_base + URCINTR);
339 cancel_work_sync(&whcrc->event_work);
341 le_writel(0, whcrc->rc_base + URCCMD);
342 whci_wait_for(&umc_dev->dev, whcrc->rc_base + URCSTS,
343 URCSTS_HALTED, URCSTS_HALTED, 100, "radio controller stop");
346 static void whcrc_init(struct whcrc *whcrc)
348 spin_lock_init(&whcrc->irq_lock);
349 init_waitqueue_head(&whcrc->cmd_wq);
350 INIT_WORK(&whcrc->event_work, whcrc_event_work);
354 * Initialize the radio controller.
356 * NOTE: we setup whcrc->uwb_rc before calling uwb_rc_add(); in the
357 * IRQ handler we use that to determine if the hw is ready to
358 * handle events. Looks like a race condition, but it really is
359 * not.
361 static
362 int whcrc_probe(struct umc_dev *umc_dev)
364 int result;
365 struct uwb_rc *uwb_rc;
366 struct whcrc *whcrc;
367 struct device *dev = &umc_dev->dev;
369 result = -ENOMEM;
370 uwb_rc = uwb_rc_alloc();
371 if (uwb_rc == NULL) {
372 dev_err(dev, "unable to allocate RC instance\n");
373 goto error_rc_alloc;
375 whcrc = kzalloc(sizeof(*whcrc), GFP_KERNEL);
376 if (whcrc == NULL) {
377 dev_err(dev, "unable to allocate WHC-RC instance\n");
378 goto error_alloc;
380 whcrc_init(whcrc);
381 whcrc->umc_dev = umc_dev;
383 result = whcrc_setup_rc_umc(whcrc);
384 if (result < 0) {
385 dev_err(dev, "Can't setup RC UMC interface: %d\n", result);
386 goto error_setup_rc_umc;
388 whcrc->uwb_rc = uwb_rc;
390 uwb_rc->owner = THIS_MODULE;
391 uwb_rc->cmd = whcrc_cmd;
392 uwb_rc->reset = whcrc_reset;
393 uwb_rc->start = whcrc_start_rc;
394 uwb_rc->stop = whcrc_stop_rc;
396 result = uwb_rc_add(uwb_rc, dev, whcrc);
397 if (result < 0)
398 goto error_rc_add;
399 umc_set_drvdata(umc_dev, whcrc);
400 return 0;
402 error_rc_add:
403 whcrc_release_rc_umc(whcrc);
404 error_setup_rc_umc:
405 kfree(whcrc);
406 error_alloc:
407 uwb_rc_put(uwb_rc);
408 error_rc_alloc:
409 return result;
413 * Clean up the radio control resources
415 * When we up the command semaphore, everybody possibly held trying to
416 * execute a command should be granted entry and then they'll see the
417 * host is quiescing and up it (so it will chain to the next waiter).
418 * This should not happen (in any case), as we can only remove when
419 * there are no handles open...
421 static void whcrc_remove(struct umc_dev *umc_dev)
423 struct whcrc *whcrc = umc_get_drvdata(umc_dev);
424 struct uwb_rc *uwb_rc = whcrc->uwb_rc;
426 umc_set_drvdata(umc_dev, NULL);
427 uwb_rc_rm(uwb_rc);
428 whcrc_release_rc_umc(whcrc);
429 kfree(whcrc);
430 uwb_rc_put(uwb_rc);
433 static int whcrc_pre_reset(struct umc_dev *umc)
435 struct whcrc *whcrc = umc_get_drvdata(umc);
436 struct uwb_rc *uwb_rc = whcrc->uwb_rc;
438 uwb_rc_pre_reset(uwb_rc);
439 return 0;
442 static int whcrc_post_reset(struct umc_dev *umc)
444 struct whcrc *whcrc = umc_get_drvdata(umc);
445 struct uwb_rc *uwb_rc = whcrc->uwb_rc;
447 return uwb_rc_post_reset(uwb_rc);
450 /* PCI device ID's that we handle [so it gets loaded] */
451 static struct pci_device_id whcrc_id_table[] = {
452 { PCI_DEVICE_CLASS(PCI_CLASS_WIRELESS_WHCI, ~0) },
453 { /* empty last entry */ }
455 MODULE_DEVICE_TABLE(pci, whcrc_id_table);
457 static struct umc_driver whcrc_driver = {
458 .name = "whc-rc",
459 .cap_id = UMC_CAP_ID_WHCI_RC,
460 .probe = whcrc_probe,
461 .remove = whcrc_remove,
462 .pre_reset = whcrc_pre_reset,
463 .post_reset = whcrc_post_reset,
466 static int __init whcrc_driver_init(void)
468 return umc_driver_register(&whcrc_driver);
470 module_init(whcrc_driver_init);
472 static void __exit whcrc_driver_exit(void)
474 umc_driver_unregister(&whcrc_driver);
476 module_exit(whcrc_driver_exit);
478 MODULE_AUTHOR("Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>");
479 MODULE_DESCRIPTION("Wireless Host Controller Radio Control Driver");
480 MODULE_LICENSE("GPL");