OMAP3: SR: Reset voltage level on SR disable
[linux-ginger.git] / block / blk-core.c
blobac0fa10f8fa55a2372aa7bae2e0a257fc064b193
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
76 part_stat_unlock();
79 void blk_queue_congestion_threshold(struct request_queue *q)
81 int nr;
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
114 void blk_rq_init(struct request_queue *q, struct request *rq)
116 memset(rq, 0, sizeof(*rq));
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
131 EXPORT_SYMBOL(blk_rq_init);
133 static void req_bio_endio(struct request *rq, struct bio *bio,
134 unsigned int nbytes, int error)
136 struct request_queue *q = rq->q;
138 if (&q->bar_rq != rq) {
139 if (error)
140 clear_bit(BIO_UPTODATE, &bio->bi_flags);
141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
142 error = -EIO;
144 if (unlikely(nbytes > bio->bi_size)) {
145 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
146 __func__, nbytes, bio->bi_size);
147 nbytes = bio->bi_size;
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 set_bit(BIO_QUIET, &bio->bi_flags);
153 bio->bi_size -= nbytes;
154 bio->bi_sector += (nbytes >> 9);
156 if (bio_integrity(bio))
157 bio_integrity_advance(bio, nbytes);
159 if (bio->bi_size == 0)
160 bio_endio(bio, error);
161 } else {
164 * Okay, this is the barrier request in progress, just
165 * record the error;
167 if (error && !q->orderr)
168 q->orderr = error;
172 void blk_dump_rq_flags(struct request *rq, char *msg)
174 int bit;
176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 rq->cmd_flags);
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186 if (blk_pc_request(rq)) {
187 printk(KERN_INFO " cdb: ");
188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
193 EXPORT_SYMBOL(blk_dump_rq_flags);
196 * "plug" the device if there are no outstanding requests: this will
197 * force the transfer to start only after we have put all the requests
198 * on the list.
200 * This is called with interrupts off and no requests on the queue and
201 * with the queue lock held.
203 void blk_plug_device(struct request_queue *q)
205 WARN_ON(!irqs_disabled());
208 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 * which will restart the queueing
211 if (blk_queue_stopped(q))
212 return;
214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
216 trace_block_plug(q);
219 EXPORT_SYMBOL(blk_plug_device);
222 * blk_plug_device_unlocked - plug a device without queue lock held
223 * @q: The &struct request_queue to plug
225 * Description:
226 * Like @blk_plug_device(), but grabs the queue lock and disables
227 * interrupts.
229 void blk_plug_device_unlocked(struct request_queue *q)
231 unsigned long flags;
233 spin_lock_irqsave(q->queue_lock, flags);
234 blk_plug_device(q);
235 spin_unlock_irqrestore(q->queue_lock, flags);
237 EXPORT_SYMBOL(blk_plug_device_unlocked);
240 * remove the queue from the plugged list, if present. called with
241 * queue lock held and interrupts disabled.
243 int blk_remove_plug(struct request_queue *q)
245 WARN_ON(!irqs_disabled());
247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
248 return 0;
250 del_timer(&q->unplug_timer);
251 return 1;
253 EXPORT_SYMBOL(blk_remove_plug);
256 * remove the plug and let it rip..
258 void __generic_unplug_device(struct request_queue *q)
260 if (unlikely(blk_queue_stopped(q)))
261 return;
262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
263 return;
265 q->request_fn(q);
269 * generic_unplug_device - fire a request queue
270 * @q: The &struct request_queue in question
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
279 void generic_unplug_device(struct request_queue *q)
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
287 EXPORT_SYMBOL(generic_unplug_device);
289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
292 struct request_queue *q = bdi->unplug_io_data;
294 blk_unplug(q);
297 void blk_unplug_work(struct work_struct *work)
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
302 trace_block_unplug_io(q);
303 q->unplug_fn(q);
306 void blk_unplug_timeout(unsigned long data)
308 struct request_queue *q = (struct request_queue *)data;
310 trace_block_unplug_timer(q);
311 kblockd_schedule_work(q, &q->unplug_work);
314 void blk_unplug(struct request_queue *q)
317 * devices don't necessarily have an ->unplug_fn defined
319 if (q->unplug_fn) {
320 trace_block_unplug_io(q);
321 q->unplug_fn(q);
324 EXPORT_SYMBOL(blk_unplug);
327 * blk_start_queue - restart a previously stopped queue
328 * @q: The &struct request_queue in question
330 * Description:
331 * blk_start_queue() will clear the stop flag on the queue, and call
332 * the request_fn for the queue if it was in a stopped state when
333 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 void blk_start_queue(struct request_queue *q)
337 WARN_ON(!irqs_disabled());
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 __blk_run_queue(q);
342 EXPORT_SYMBOL(blk_start_queue);
345 * blk_stop_queue - stop a queue
346 * @q: The &struct request_queue in question
348 * Description:
349 * The Linux block layer assumes that a block driver will consume all
350 * entries on the request queue when the request_fn strategy is called.
351 * Often this will not happen, because of hardware limitations (queue
352 * depth settings). If a device driver gets a 'queue full' response,
353 * or if it simply chooses not to queue more I/O at one point, it can
354 * call this function to prevent the request_fn from being called until
355 * the driver has signalled it's ready to go again. This happens by calling
356 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 void blk_stop_queue(struct request_queue *q)
360 blk_remove_plug(q);
361 queue_flag_set(QUEUE_FLAG_STOPPED, q);
363 EXPORT_SYMBOL(blk_stop_queue);
366 * blk_sync_queue - cancel any pending callbacks on a queue
367 * @q: the queue
369 * Description:
370 * The block layer may perform asynchronous callback activity
371 * on a queue, such as calling the unplug function after a timeout.
372 * A block device may call blk_sync_queue to ensure that any
373 * such activity is cancelled, thus allowing it to release resources
374 * that the callbacks might use. The caller must already have made sure
375 * that its ->make_request_fn will not re-add plugging prior to calling
376 * this function.
379 void blk_sync_queue(struct request_queue *q)
381 del_timer_sync(&q->unplug_timer);
382 del_timer_sync(&q->timeout);
383 cancel_work_sync(&q->unplug_work);
385 EXPORT_SYMBOL(blk_sync_queue);
388 * __blk_run_queue - run a single device queue
389 * @q: The queue to run
391 * Description:
392 * See @blk_run_queue. This variant must be called with the queue lock
393 * held and interrupts disabled.
396 void __blk_run_queue(struct request_queue *q)
398 blk_remove_plug(q);
400 if (unlikely(blk_queue_stopped(q)))
401 return;
403 if (elv_queue_empty(q))
404 return;
407 * Only recurse once to avoid overrunning the stack, let the unplug
408 * handling reinvoke the handler shortly if we already got there.
410 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
411 q->request_fn(q);
412 queue_flag_clear(QUEUE_FLAG_REENTER, q);
413 } else {
414 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
415 kblockd_schedule_work(q, &q->unplug_work);
418 EXPORT_SYMBOL(__blk_run_queue);
421 * blk_run_queue - run a single device queue
422 * @q: The queue to run
424 * Description:
425 * Invoke request handling on this queue, if it has pending work to do.
426 * May be used to restart queueing when a request has completed.
428 void blk_run_queue(struct request_queue *q)
430 unsigned long flags;
432 spin_lock_irqsave(q->queue_lock, flags);
433 __blk_run_queue(q);
434 spin_unlock_irqrestore(q->queue_lock, flags);
436 EXPORT_SYMBOL(blk_run_queue);
438 void blk_put_queue(struct request_queue *q)
440 kobject_put(&q->kobj);
443 void blk_cleanup_queue(struct request_queue *q)
446 * We know we have process context here, so we can be a little
447 * cautious and ensure that pending block actions on this device
448 * are done before moving on. Going into this function, we should
449 * not have processes doing IO to this device.
451 blk_sync_queue(q);
453 mutex_lock(&q->sysfs_lock);
454 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
455 mutex_unlock(&q->sysfs_lock);
457 if (q->elevator)
458 elevator_exit(q->elevator);
460 blk_put_queue(q);
462 EXPORT_SYMBOL(blk_cleanup_queue);
464 static int blk_init_free_list(struct request_queue *q)
466 struct request_list *rl = &q->rq;
468 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
469 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
470 rl->elvpriv = 0;
471 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
472 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
474 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
475 mempool_free_slab, request_cachep, q->node);
477 if (!rl->rq_pool)
478 return -ENOMEM;
480 return 0;
483 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
485 return blk_alloc_queue_node(gfp_mask, -1);
487 EXPORT_SYMBOL(blk_alloc_queue);
489 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
491 struct request_queue *q;
492 int err;
494 q = kmem_cache_alloc_node(blk_requestq_cachep,
495 gfp_mask | __GFP_ZERO, node_id);
496 if (!q)
497 return NULL;
499 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
500 q->backing_dev_info.unplug_io_data = q;
501 q->backing_dev_info.ra_pages =
502 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
503 q->backing_dev_info.state = 0;
504 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
505 q->backing_dev_info.name = "block";
507 err = bdi_init(&q->backing_dev_info);
508 if (err) {
509 kmem_cache_free(blk_requestq_cachep, q);
510 return NULL;
513 init_timer(&q->unplug_timer);
514 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
515 INIT_LIST_HEAD(&q->timeout_list);
516 INIT_WORK(&q->unplug_work, blk_unplug_work);
518 kobject_init(&q->kobj, &blk_queue_ktype);
520 mutex_init(&q->sysfs_lock);
521 spin_lock_init(&q->__queue_lock);
523 return q;
525 EXPORT_SYMBOL(blk_alloc_queue_node);
528 * blk_init_queue - prepare a request queue for use with a block device
529 * @rfn: The function to be called to process requests that have been
530 * placed on the queue.
531 * @lock: Request queue spin lock
533 * Description:
534 * If a block device wishes to use the standard request handling procedures,
535 * which sorts requests and coalesces adjacent requests, then it must
536 * call blk_init_queue(). The function @rfn will be called when there
537 * are requests on the queue that need to be processed. If the device
538 * supports plugging, then @rfn may not be called immediately when requests
539 * are available on the queue, but may be called at some time later instead.
540 * Plugged queues are generally unplugged when a buffer belonging to one
541 * of the requests on the queue is needed, or due to memory pressure.
543 * @rfn is not required, or even expected, to remove all requests off the
544 * queue, but only as many as it can handle at a time. If it does leave
545 * requests on the queue, it is responsible for arranging that the requests
546 * get dealt with eventually.
548 * The queue spin lock must be held while manipulating the requests on the
549 * request queue; this lock will be taken also from interrupt context, so irq
550 * disabling is needed for it.
552 * Function returns a pointer to the initialized request queue, or %NULL if
553 * it didn't succeed.
555 * Note:
556 * blk_init_queue() must be paired with a blk_cleanup_queue() call
557 * when the block device is deactivated (such as at module unload).
560 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
562 return blk_init_queue_node(rfn, lock, -1);
564 EXPORT_SYMBOL(blk_init_queue);
566 struct request_queue *
567 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
569 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
571 if (!q)
572 return NULL;
574 q->node = node_id;
575 if (blk_init_free_list(q)) {
576 kmem_cache_free(blk_requestq_cachep, q);
577 return NULL;
580 q->request_fn = rfn;
581 q->prep_rq_fn = NULL;
582 q->unplug_fn = generic_unplug_device;
583 q->queue_flags = QUEUE_FLAG_DEFAULT;
584 q->queue_lock = lock;
587 * This also sets hw/phys segments, boundary and size
589 blk_queue_make_request(q, __make_request);
591 q->sg_reserved_size = INT_MAX;
594 * all done
596 if (!elevator_init(q, NULL)) {
597 blk_queue_congestion_threshold(q);
598 return q;
601 blk_put_queue(q);
602 return NULL;
604 EXPORT_SYMBOL(blk_init_queue_node);
606 int blk_get_queue(struct request_queue *q)
608 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
609 kobject_get(&q->kobj);
610 return 0;
613 return 1;
616 static inline void blk_free_request(struct request_queue *q, struct request *rq)
618 if (rq->cmd_flags & REQ_ELVPRIV)
619 elv_put_request(q, rq);
620 mempool_free(rq, q->rq.rq_pool);
623 static struct request *
624 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
626 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
628 if (!rq)
629 return NULL;
631 blk_rq_init(q, rq);
633 rq->cmd_flags = flags | REQ_ALLOCED;
635 if (priv) {
636 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
637 mempool_free(rq, q->rq.rq_pool);
638 return NULL;
640 rq->cmd_flags |= REQ_ELVPRIV;
643 return rq;
647 * ioc_batching returns true if the ioc is a valid batching request and
648 * should be given priority access to a request.
650 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
652 if (!ioc)
653 return 0;
656 * Make sure the process is able to allocate at least 1 request
657 * even if the batch times out, otherwise we could theoretically
658 * lose wakeups.
660 return ioc->nr_batch_requests == q->nr_batching ||
661 (ioc->nr_batch_requests > 0
662 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
666 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
667 * will cause the process to be a "batcher" on all queues in the system. This
668 * is the behaviour we want though - once it gets a wakeup it should be given
669 * a nice run.
671 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
673 if (!ioc || ioc_batching(q, ioc))
674 return;
676 ioc->nr_batch_requests = q->nr_batching;
677 ioc->last_waited = jiffies;
680 static void __freed_request(struct request_queue *q, int sync)
682 struct request_list *rl = &q->rq;
684 if (rl->count[sync] < queue_congestion_off_threshold(q))
685 blk_clear_queue_congested(q, sync);
687 if (rl->count[sync] + 1 <= q->nr_requests) {
688 if (waitqueue_active(&rl->wait[sync]))
689 wake_up(&rl->wait[sync]);
691 blk_clear_queue_full(q, sync);
696 * A request has just been released. Account for it, update the full and
697 * congestion status, wake up any waiters. Called under q->queue_lock.
699 static void freed_request(struct request_queue *q, int sync, int priv)
701 struct request_list *rl = &q->rq;
703 rl->count[sync]--;
704 if (priv)
705 rl->elvpriv--;
707 __freed_request(q, sync);
709 if (unlikely(rl->starved[sync ^ 1]))
710 __freed_request(q, sync ^ 1);
714 * Get a free request, queue_lock must be held.
715 * Returns NULL on failure, with queue_lock held.
716 * Returns !NULL on success, with queue_lock *not held*.
718 static struct request *get_request(struct request_queue *q, int rw_flags,
719 struct bio *bio, gfp_t gfp_mask)
721 struct request *rq = NULL;
722 struct request_list *rl = &q->rq;
723 struct io_context *ioc = NULL;
724 const bool is_sync = rw_is_sync(rw_flags) != 0;
725 int may_queue, priv;
727 may_queue = elv_may_queue(q, rw_flags);
728 if (may_queue == ELV_MQUEUE_NO)
729 goto rq_starved;
731 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
732 if (rl->count[is_sync]+1 >= q->nr_requests) {
733 ioc = current_io_context(GFP_ATOMIC, q->node);
735 * The queue will fill after this allocation, so set
736 * it as full, and mark this process as "batching".
737 * This process will be allowed to complete a batch of
738 * requests, others will be blocked.
740 if (!blk_queue_full(q, is_sync)) {
741 ioc_set_batching(q, ioc);
742 blk_set_queue_full(q, is_sync);
743 } else {
744 if (may_queue != ELV_MQUEUE_MUST
745 && !ioc_batching(q, ioc)) {
747 * The queue is full and the allocating
748 * process is not a "batcher", and not
749 * exempted by the IO scheduler
751 goto out;
755 blk_set_queue_congested(q, is_sync);
759 * Only allow batching queuers to allocate up to 50% over the defined
760 * limit of requests, otherwise we could have thousands of requests
761 * allocated with any setting of ->nr_requests
763 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
764 goto out;
766 rl->count[is_sync]++;
767 rl->starved[is_sync] = 0;
769 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
770 if (priv)
771 rl->elvpriv++;
773 if (blk_queue_io_stat(q))
774 rw_flags |= REQ_IO_STAT;
775 spin_unlock_irq(q->queue_lock);
777 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
778 if (unlikely(!rq)) {
780 * Allocation failed presumably due to memory. Undo anything
781 * we might have messed up.
783 * Allocating task should really be put onto the front of the
784 * wait queue, but this is pretty rare.
786 spin_lock_irq(q->queue_lock);
787 freed_request(q, is_sync, priv);
790 * in the very unlikely event that allocation failed and no
791 * requests for this direction was pending, mark us starved
792 * so that freeing of a request in the other direction will
793 * notice us. another possible fix would be to split the
794 * rq mempool into READ and WRITE
796 rq_starved:
797 if (unlikely(rl->count[is_sync] == 0))
798 rl->starved[is_sync] = 1;
800 goto out;
804 * ioc may be NULL here, and ioc_batching will be false. That's
805 * OK, if the queue is under the request limit then requests need
806 * not count toward the nr_batch_requests limit. There will always
807 * be some limit enforced by BLK_BATCH_TIME.
809 if (ioc_batching(q, ioc))
810 ioc->nr_batch_requests--;
812 trace_block_getrq(q, bio, rw_flags & 1);
813 out:
814 return rq;
818 * No available requests for this queue, unplug the device and wait for some
819 * requests to become available.
821 * Called with q->queue_lock held, and returns with it unlocked.
823 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
824 struct bio *bio)
826 const bool is_sync = rw_is_sync(rw_flags) != 0;
827 struct request *rq;
829 rq = get_request(q, rw_flags, bio, GFP_NOIO);
830 while (!rq) {
831 DEFINE_WAIT(wait);
832 struct io_context *ioc;
833 struct request_list *rl = &q->rq;
835 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
836 TASK_UNINTERRUPTIBLE);
838 trace_block_sleeprq(q, bio, rw_flags & 1);
840 __generic_unplug_device(q);
841 spin_unlock_irq(q->queue_lock);
842 io_schedule();
845 * After sleeping, we become a "batching" process and
846 * will be able to allocate at least one request, and
847 * up to a big batch of them for a small period time.
848 * See ioc_batching, ioc_set_batching
850 ioc = current_io_context(GFP_NOIO, q->node);
851 ioc_set_batching(q, ioc);
853 spin_lock_irq(q->queue_lock);
854 finish_wait(&rl->wait[is_sync], &wait);
856 rq = get_request(q, rw_flags, bio, GFP_NOIO);
859 return rq;
862 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
864 struct request *rq;
866 BUG_ON(rw != READ && rw != WRITE);
868 spin_lock_irq(q->queue_lock);
869 if (gfp_mask & __GFP_WAIT) {
870 rq = get_request_wait(q, rw, NULL);
871 } else {
872 rq = get_request(q, rw, NULL, gfp_mask);
873 if (!rq)
874 spin_unlock_irq(q->queue_lock);
876 /* q->queue_lock is unlocked at this point */
878 return rq;
880 EXPORT_SYMBOL(blk_get_request);
883 * blk_make_request - given a bio, allocate a corresponding struct request.
884 * @q: target request queue
885 * @bio: The bio describing the memory mappings that will be submitted for IO.
886 * It may be a chained-bio properly constructed by block/bio layer.
887 * @gfp_mask: gfp flags to be used for memory allocation
889 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
890 * type commands. Where the struct request needs to be farther initialized by
891 * the caller. It is passed a &struct bio, which describes the memory info of
892 * the I/O transfer.
894 * The caller of blk_make_request must make sure that bi_io_vec
895 * are set to describe the memory buffers. That bio_data_dir() will return
896 * the needed direction of the request. (And all bio's in the passed bio-chain
897 * are properly set accordingly)
899 * If called under none-sleepable conditions, mapped bio buffers must not
900 * need bouncing, by calling the appropriate masked or flagged allocator,
901 * suitable for the target device. Otherwise the call to blk_queue_bounce will
902 * BUG.
904 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
905 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
906 * anything but the first bio in the chain. Otherwise you risk waiting for IO
907 * completion of a bio that hasn't been submitted yet, thus resulting in a
908 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
909 * of bio_alloc(), as that avoids the mempool deadlock.
910 * If possible a big IO should be split into smaller parts when allocation
911 * fails. Partial allocation should not be an error, or you risk a live-lock.
913 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
914 gfp_t gfp_mask)
916 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
918 if (unlikely(!rq))
919 return ERR_PTR(-ENOMEM);
921 for_each_bio(bio) {
922 struct bio *bounce_bio = bio;
923 int ret;
925 blk_queue_bounce(q, &bounce_bio);
926 ret = blk_rq_append_bio(q, rq, bounce_bio);
927 if (unlikely(ret)) {
928 blk_put_request(rq);
929 return ERR_PTR(ret);
933 return rq;
935 EXPORT_SYMBOL(blk_make_request);
938 * blk_requeue_request - put a request back on queue
939 * @q: request queue where request should be inserted
940 * @rq: request to be inserted
942 * Description:
943 * Drivers often keep queueing requests until the hardware cannot accept
944 * more, when that condition happens we need to put the request back
945 * on the queue. Must be called with queue lock held.
947 void blk_requeue_request(struct request_queue *q, struct request *rq)
949 blk_delete_timer(rq);
950 blk_clear_rq_complete(rq);
951 trace_block_rq_requeue(q, rq);
953 if (blk_rq_tagged(rq))
954 blk_queue_end_tag(q, rq);
956 BUG_ON(blk_queued_rq(rq));
958 elv_requeue_request(q, rq);
960 EXPORT_SYMBOL(blk_requeue_request);
963 * blk_insert_request - insert a special request into a request queue
964 * @q: request queue where request should be inserted
965 * @rq: request to be inserted
966 * @at_head: insert request at head or tail of queue
967 * @data: private data
969 * Description:
970 * Many block devices need to execute commands asynchronously, so they don't
971 * block the whole kernel from preemption during request execution. This is
972 * accomplished normally by inserting aritficial requests tagged as
973 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
974 * be scheduled for actual execution by the request queue.
976 * We have the option of inserting the head or the tail of the queue.
977 * Typically we use the tail for new ioctls and so forth. We use the head
978 * of the queue for things like a QUEUE_FULL message from a device, or a
979 * host that is unable to accept a particular command.
981 void blk_insert_request(struct request_queue *q, struct request *rq,
982 int at_head, void *data)
984 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
985 unsigned long flags;
988 * tell I/O scheduler that this isn't a regular read/write (ie it
989 * must not attempt merges on this) and that it acts as a soft
990 * barrier
992 rq->cmd_type = REQ_TYPE_SPECIAL;
994 rq->special = data;
996 spin_lock_irqsave(q->queue_lock, flags);
999 * If command is tagged, release the tag
1001 if (blk_rq_tagged(rq))
1002 blk_queue_end_tag(q, rq);
1004 drive_stat_acct(rq, 1);
1005 __elv_add_request(q, rq, where, 0);
1006 __blk_run_queue(q);
1007 spin_unlock_irqrestore(q->queue_lock, flags);
1009 EXPORT_SYMBOL(blk_insert_request);
1012 * add-request adds a request to the linked list.
1013 * queue lock is held and interrupts disabled, as we muck with the
1014 * request queue list.
1016 static inline void add_request(struct request_queue *q, struct request *req)
1018 drive_stat_acct(req, 1);
1021 * elevator indicated where it wants this request to be
1022 * inserted at elevator_merge time
1024 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1027 static void part_round_stats_single(int cpu, struct hd_struct *part,
1028 unsigned long now)
1030 if (now == part->stamp)
1031 return;
1033 if (part_in_flight(part)) {
1034 __part_stat_add(cpu, part, time_in_queue,
1035 part_in_flight(part) * (now - part->stamp));
1036 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1038 part->stamp = now;
1042 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1043 * @cpu: cpu number for stats access
1044 * @part: target partition
1046 * The average IO queue length and utilisation statistics are maintained
1047 * by observing the current state of the queue length and the amount of
1048 * time it has been in this state for.
1050 * Normally, that accounting is done on IO completion, but that can result
1051 * in more than a second's worth of IO being accounted for within any one
1052 * second, leading to >100% utilisation. To deal with that, we call this
1053 * function to do a round-off before returning the results when reading
1054 * /proc/diskstats. This accounts immediately for all queue usage up to
1055 * the current jiffies and restarts the counters again.
1057 void part_round_stats(int cpu, struct hd_struct *part)
1059 unsigned long now = jiffies;
1061 if (part->partno)
1062 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1063 part_round_stats_single(cpu, part, now);
1065 EXPORT_SYMBOL_GPL(part_round_stats);
1068 * queue lock must be held
1070 void __blk_put_request(struct request_queue *q, struct request *req)
1072 if (unlikely(!q))
1073 return;
1074 if (unlikely(--req->ref_count))
1075 return;
1077 elv_completed_request(q, req);
1079 /* this is a bio leak */
1080 WARN_ON(req->bio != NULL);
1083 * Request may not have originated from ll_rw_blk. if not,
1084 * it didn't come out of our reserved rq pools
1086 if (req->cmd_flags & REQ_ALLOCED) {
1087 int is_sync = rq_is_sync(req) != 0;
1088 int priv = req->cmd_flags & REQ_ELVPRIV;
1090 BUG_ON(!list_empty(&req->queuelist));
1091 BUG_ON(!hlist_unhashed(&req->hash));
1093 blk_free_request(q, req);
1094 freed_request(q, is_sync, priv);
1097 EXPORT_SYMBOL_GPL(__blk_put_request);
1099 void blk_put_request(struct request *req)
1101 unsigned long flags;
1102 struct request_queue *q = req->q;
1104 spin_lock_irqsave(q->queue_lock, flags);
1105 __blk_put_request(q, req);
1106 spin_unlock_irqrestore(q->queue_lock, flags);
1108 EXPORT_SYMBOL(blk_put_request);
1110 void init_request_from_bio(struct request *req, struct bio *bio)
1112 req->cpu = bio->bi_comp_cpu;
1113 req->cmd_type = REQ_TYPE_FS;
1116 * Inherit FAILFAST from bio (for read-ahead, and explicit
1117 * FAILFAST). FAILFAST flags are identical for req and bio.
1119 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1120 req->cmd_flags |= REQ_FAILFAST_MASK;
1121 else
1122 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1124 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1125 req->cmd_flags |= REQ_DISCARD;
1126 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1127 req->cmd_flags |= REQ_SOFTBARRIER;
1128 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1129 req->cmd_flags |= REQ_HARDBARRIER;
1131 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1132 req->cmd_flags |= REQ_RW_SYNC;
1133 if (bio_rw_flagged(bio, BIO_RW_META))
1134 req->cmd_flags |= REQ_RW_META;
1135 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1136 req->cmd_flags |= REQ_NOIDLE;
1138 req->errors = 0;
1139 req->__sector = bio->bi_sector;
1140 req->ioprio = bio_prio(bio);
1141 blk_rq_bio_prep(req->q, req, bio);
1145 * Only disabling plugging for non-rotational devices if it does tagging
1146 * as well, otherwise we do need the proper merging
1148 static inline bool queue_should_plug(struct request_queue *q)
1150 return !(blk_queue_nonrot(q) && blk_queue_queuing(q));
1153 static int __make_request(struct request_queue *q, struct bio *bio)
1155 struct request *req;
1156 int el_ret;
1157 unsigned int bytes = bio->bi_size;
1158 const unsigned short prio = bio_prio(bio);
1159 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1160 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1161 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1162 int rw_flags;
1164 if (bio_rw_flagged(bio, BIO_RW_BARRIER) && bio_has_data(bio) &&
1165 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1166 bio_endio(bio, -EOPNOTSUPP);
1167 return 0;
1170 * low level driver can indicate that it wants pages above a
1171 * certain limit bounced to low memory (ie for highmem, or even
1172 * ISA dma in theory)
1174 blk_queue_bounce(q, &bio);
1176 spin_lock_irq(q->queue_lock);
1178 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1179 goto get_rq;
1181 el_ret = elv_merge(q, &req, bio);
1182 switch (el_ret) {
1183 case ELEVATOR_BACK_MERGE:
1184 BUG_ON(!rq_mergeable(req));
1186 if (!ll_back_merge_fn(q, req, bio))
1187 break;
1189 trace_block_bio_backmerge(q, bio);
1191 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1192 blk_rq_set_mixed_merge(req);
1194 req->biotail->bi_next = bio;
1195 req->biotail = bio;
1196 req->__data_len += bytes;
1197 req->ioprio = ioprio_best(req->ioprio, prio);
1198 if (!blk_rq_cpu_valid(req))
1199 req->cpu = bio->bi_comp_cpu;
1200 drive_stat_acct(req, 0);
1201 if (!attempt_back_merge(q, req))
1202 elv_merged_request(q, req, el_ret);
1203 goto out;
1205 case ELEVATOR_FRONT_MERGE:
1206 BUG_ON(!rq_mergeable(req));
1208 if (!ll_front_merge_fn(q, req, bio))
1209 break;
1211 trace_block_bio_frontmerge(q, bio);
1213 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1214 blk_rq_set_mixed_merge(req);
1215 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1216 req->cmd_flags |= ff;
1219 bio->bi_next = req->bio;
1220 req->bio = bio;
1223 * may not be valid. if the low level driver said
1224 * it didn't need a bounce buffer then it better
1225 * not touch req->buffer either...
1227 req->buffer = bio_data(bio);
1228 req->__sector = bio->bi_sector;
1229 req->__data_len += bytes;
1230 req->ioprio = ioprio_best(req->ioprio, prio);
1231 if (!blk_rq_cpu_valid(req))
1232 req->cpu = bio->bi_comp_cpu;
1233 drive_stat_acct(req, 0);
1234 if (!attempt_front_merge(q, req))
1235 elv_merged_request(q, req, el_ret);
1236 goto out;
1238 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1239 default:
1243 get_rq:
1245 * This sync check and mask will be re-done in init_request_from_bio(),
1246 * but we need to set it earlier to expose the sync flag to the
1247 * rq allocator and io schedulers.
1249 rw_flags = bio_data_dir(bio);
1250 if (sync)
1251 rw_flags |= REQ_RW_SYNC;
1254 * Grab a free request. This is might sleep but can not fail.
1255 * Returns with the queue unlocked.
1257 req = get_request_wait(q, rw_flags, bio);
1260 * After dropping the lock and possibly sleeping here, our request
1261 * may now be mergeable after it had proven unmergeable (above).
1262 * We don't worry about that case for efficiency. It won't happen
1263 * often, and the elevators are able to handle it.
1265 init_request_from_bio(req, bio);
1267 spin_lock_irq(q->queue_lock);
1268 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1269 bio_flagged(bio, BIO_CPU_AFFINE))
1270 req->cpu = blk_cpu_to_group(smp_processor_id());
1271 if (queue_should_plug(q) && elv_queue_empty(q))
1272 blk_plug_device(q);
1273 add_request(q, req);
1274 out:
1275 if (unplug || !queue_should_plug(q))
1276 __generic_unplug_device(q);
1277 spin_unlock_irq(q->queue_lock);
1278 return 0;
1282 * If bio->bi_dev is a partition, remap the location
1284 static inline void blk_partition_remap(struct bio *bio)
1286 struct block_device *bdev = bio->bi_bdev;
1288 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1289 struct hd_struct *p = bdev->bd_part;
1291 bio->bi_sector += p->start_sect;
1292 bio->bi_bdev = bdev->bd_contains;
1294 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1295 bdev->bd_dev,
1296 bio->bi_sector - p->start_sect);
1300 static void handle_bad_sector(struct bio *bio)
1302 char b[BDEVNAME_SIZE];
1304 printk(KERN_INFO "attempt to access beyond end of device\n");
1305 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1306 bdevname(bio->bi_bdev, b),
1307 bio->bi_rw,
1308 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1309 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1311 set_bit(BIO_EOF, &bio->bi_flags);
1314 #ifdef CONFIG_FAIL_MAKE_REQUEST
1316 static DECLARE_FAULT_ATTR(fail_make_request);
1318 static int __init setup_fail_make_request(char *str)
1320 return setup_fault_attr(&fail_make_request, str);
1322 __setup("fail_make_request=", setup_fail_make_request);
1324 static int should_fail_request(struct bio *bio)
1326 struct hd_struct *part = bio->bi_bdev->bd_part;
1328 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1329 return should_fail(&fail_make_request, bio->bi_size);
1331 return 0;
1334 static int __init fail_make_request_debugfs(void)
1336 return init_fault_attr_dentries(&fail_make_request,
1337 "fail_make_request");
1340 late_initcall(fail_make_request_debugfs);
1342 #else /* CONFIG_FAIL_MAKE_REQUEST */
1344 static inline int should_fail_request(struct bio *bio)
1346 return 0;
1349 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1352 * Check whether this bio extends beyond the end of the device.
1354 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1356 sector_t maxsector;
1358 if (!nr_sectors)
1359 return 0;
1361 /* Test device or partition size, when known. */
1362 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1363 if (maxsector) {
1364 sector_t sector = bio->bi_sector;
1366 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1368 * This may well happen - the kernel calls bread()
1369 * without checking the size of the device, e.g., when
1370 * mounting a device.
1372 handle_bad_sector(bio);
1373 return 1;
1377 return 0;
1381 * generic_make_request - hand a buffer to its device driver for I/O
1382 * @bio: The bio describing the location in memory and on the device.
1384 * generic_make_request() is used to make I/O requests of block
1385 * devices. It is passed a &struct bio, which describes the I/O that needs
1386 * to be done.
1388 * generic_make_request() does not return any status. The
1389 * success/failure status of the request, along with notification of
1390 * completion, is delivered asynchronously through the bio->bi_end_io
1391 * function described (one day) else where.
1393 * The caller of generic_make_request must make sure that bi_io_vec
1394 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1395 * set to describe the device address, and the
1396 * bi_end_io and optionally bi_private are set to describe how
1397 * completion notification should be signaled.
1399 * generic_make_request and the drivers it calls may use bi_next if this
1400 * bio happens to be merged with someone else, and may change bi_dev and
1401 * bi_sector for remaps as it sees fit. So the values of these fields
1402 * should NOT be depended on after the call to generic_make_request.
1404 static inline void __generic_make_request(struct bio *bio)
1406 struct request_queue *q;
1407 sector_t old_sector;
1408 int ret, nr_sectors = bio_sectors(bio);
1409 dev_t old_dev;
1410 int err = -EIO;
1412 might_sleep();
1414 if (bio_check_eod(bio, nr_sectors))
1415 goto end_io;
1418 * Resolve the mapping until finished. (drivers are
1419 * still free to implement/resolve their own stacking
1420 * by explicitly returning 0)
1422 * NOTE: we don't repeat the blk_size check for each new device.
1423 * Stacking drivers are expected to know what they are doing.
1425 old_sector = -1;
1426 old_dev = 0;
1427 do {
1428 char b[BDEVNAME_SIZE];
1430 q = bdev_get_queue(bio->bi_bdev);
1431 if (unlikely(!q)) {
1432 printk(KERN_ERR
1433 "generic_make_request: Trying to access "
1434 "nonexistent block-device %s (%Lu)\n",
1435 bdevname(bio->bi_bdev, b),
1436 (long long) bio->bi_sector);
1437 goto end_io;
1440 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1441 nr_sectors > queue_max_hw_sectors(q))) {
1442 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1443 bdevname(bio->bi_bdev, b),
1444 bio_sectors(bio),
1445 queue_max_hw_sectors(q));
1446 goto end_io;
1449 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1450 goto end_io;
1452 if (should_fail_request(bio))
1453 goto end_io;
1456 * If this device has partitions, remap block n
1457 * of partition p to block n+start(p) of the disk.
1459 blk_partition_remap(bio);
1461 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1462 goto end_io;
1464 if (old_sector != -1)
1465 trace_block_remap(q, bio, old_dev, old_sector);
1467 old_sector = bio->bi_sector;
1468 old_dev = bio->bi_bdev->bd_dev;
1470 if (bio_check_eod(bio, nr_sectors))
1471 goto end_io;
1473 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1474 !blk_queue_discard(q)) {
1475 err = -EOPNOTSUPP;
1476 goto end_io;
1479 trace_block_bio_queue(q, bio);
1481 ret = q->make_request_fn(q, bio);
1482 } while (ret);
1484 return;
1486 end_io:
1487 bio_endio(bio, err);
1491 * We only want one ->make_request_fn to be active at a time,
1492 * else stack usage with stacked devices could be a problem.
1493 * So use current->bio_{list,tail} to keep a list of requests
1494 * submited by a make_request_fn function.
1495 * current->bio_tail is also used as a flag to say if
1496 * generic_make_request is currently active in this task or not.
1497 * If it is NULL, then no make_request is active. If it is non-NULL,
1498 * then a make_request is active, and new requests should be added
1499 * at the tail
1501 void generic_make_request(struct bio *bio)
1503 if (current->bio_tail) {
1504 /* make_request is active */
1505 *(current->bio_tail) = bio;
1506 bio->bi_next = NULL;
1507 current->bio_tail = &bio->bi_next;
1508 return;
1510 /* following loop may be a bit non-obvious, and so deserves some
1511 * explanation.
1512 * Before entering the loop, bio->bi_next is NULL (as all callers
1513 * ensure that) so we have a list with a single bio.
1514 * We pretend that we have just taken it off a longer list, so
1515 * we assign bio_list to the next (which is NULL) and bio_tail
1516 * to &bio_list, thus initialising the bio_list of new bios to be
1517 * added. __generic_make_request may indeed add some more bios
1518 * through a recursive call to generic_make_request. If it
1519 * did, we find a non-NULL value in bio_list and re-enter the loop
1520 * from the top. In this case we really did just take the bio
1521 * of the top of the list (no pretending) and so fixup bio_list and
1522 * bio_tail or bi_next, and call into __generic_make_request again.
1524 * The loop was structured like this to make only one call to
1525 * __generic_make_request (which is important as it is large and
1526 * inlined) and to keep the structure simple.
1528 BUG_ON(bio->bi_next);
1529 do {
1530 current->bio_list = bio->bi_next;
1531 if (bio->bi_next == NULL)
1532 current->bio_tail = &current->bio_list;
1533 else
1534 bio->bi_next = NULL;
1535 __generic_make_request(bio);
1536 bio = current->bio_list;
1537 } while (bio);
1538 current->bio_tail = NULL; /* deactivate */
1540 EXPORT_SYMBOL(generic_make_request);
1543 * submit_bio - submit a bio to the block device layer for I/O
1544 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1545 * @bio: The &struct bio which describes the I/O
1547 * submit_bio() is very similar in purpose to generic_make_request(), and
1548 * uses that function to do most of the work. Both are fairly rough
1549 * interfaces; @bio must be presetup and ready for I/O.
1552 void submit_bio(int rw, struct bio *bio)
1554 int count = bio_sectors(bio);
1556 bio->bi_rw |= rw;
1559 * If it's a regular read/write or a barrier with data attached,
1560 * go through the normal accounting stuff before submission.
1562 if (bio_has_data(bio)) {
1563 if (rw & WRITE) {
1564 count_vm_events(PGPGOUT, count);
1565 } else {
1566 task_io_account_read(bio->bi_size);
1567 count_vm_events(PGPGIN, count);
1570 if (unlikely(block_dump)) {
1571 char b[BDEVNAME_SIZE];
1572 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1573 current->comm, task_pid_nr(current),
1574 (rw & WRITE) ? "WRITE" : "READ",
1575 (unsigned long long)bio->bi_sector,
1576 bdevname(bio->bi_bdev, b));
1580 generic_make_request(bio);
1582 EXPORT_SYMBOL(submit_bio);
1585 * blk_rq_check_limits - Helper function to check a request for the queue limit
1586 * @q: the queue
1587 * @rq: the request being checked
1589 * Description:
1590 * @rq may have been made based on weaker limitations of upper-level queues
1591 * in request stacking drivers, and it may violate the limitation of @q.
1592 * Since the block layer and the underlying device driver trust @rq
1593 * after it is inserted to @q, it should be checked against @q before
1594 * the insertion using this generic function.
1596 * This function should also be useful for request stacking drivers
1597 * in some cases below, so export this fuction.
1598 * Request stacking drivers like request-based dm may change the queue
1599 * limits while requests are in the queue (e.g. dm's table swapping).
1600 * Such request stacking drivers should check those requests agaist
1601 * the new queue limits again when they dispatch those requests,
1602 * although such checkings are also done against the old queue limits
1603 * when submitting requests.
1605 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1607 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1608 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1609 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1610 return -EIO;
1614 * queue's settings related to segment counting like q->bounce_pfn
1615 * may differ from that of other stacking queues.
1616 * Recalculate it to check the request correctly on this queue's
1617 * limitation.
1619 blk_recalc_rq_segments(rq);
1620 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1621 rq->nr_phys_segments > queue_max_hw_segments(q)) {
1622 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1623 return -EIO;
1626 return 0;
1628 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1631 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1632 * @q: the queue to submit the request
1633 * @rq: the request being queued
1635 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1637 unsigned long flags;
1639 if (blk_rq_check_limits(q, rq))
1640 return -EIO;
1642 #ifdef CONFIG_FAIL_MAKE_REQUEST
1643 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1644 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1645 return -EIO;
1646 #endif
1648 spin_lock_irqsave(q->queue_lock, flags);
1651 * Submitting request must be dequeued before calling this function
1652 * because it will be linked to another request_queue
1654 BUG_ON(blk_queued_rq(rq));
1656 drive_stat_acct(rq, 1);
1657 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1659 spin_unlock_irqrestore(q->queue_lock, flags);
1661 return 0;
1663 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1666 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1667 * @rq: request to examine
1669 * Description:
1670 * A request could be merge of IOs which require different failure
1671 * handling. This function determines the number of bytes which
1672 * can be failed from the beginning of the request without
1673 * crossing into area which need to be retried further.
1675 * Return:
1676 * The number of bytes to fail.
1678 * Context:
1679 * queue_lock must be held.
1681 unsigned int blk_rq_err_bytes(const struct request *rq)
1683 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1684 unsigned int bytes = 0;
1685 struct bio *bio;
1687 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1688 return blk_rq_bytes(rq);
1691 * Currently the only 'mixing' which can happen is between
1692 * different fastfail types. We can safely fail portions
1693 * which have all the failfast bits that the first one has -
1694 * the ones which are at least as eager to fail as the first
1695 * one.
1697 for (bio = rq->bio; bio; bio = bio->bi_next) {
1698 if ((bio->bi_rw & ff) != ff)
1699 break;
1700 bytes += bio->bi_size;
1703 /* this could lead to infinite loop */
1704 BUG_ON(blk_rq_bytes(rq) && !bytes);
1705 return bytes;
1707 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1709 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1711 if (blk_do_io_stat(req)) {
1712 const int rw = rq_data_dir(req);
1713 struct hd_struct *part;
1714 int cpu;
1716 cpu = part_stat_lock();
1717 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1718 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1719 part_stat_unlock();
1723 static void blk_account_io_done(struct request *req)
1726 * Account IO completion. bar_rq isn't accounted as a normal
1727 * IO on queueing nor completion. Accounting the containing
1728 * request is enough.
1730 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1731 unsigned long duration = jiffies - req->start_time;
1732 const int rw = rq_data_dir(req);
1733 struct hd_struct *part;
1734 int cpu;
1736 cpu = part_stat_lock();
1737 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1739 part_stat_inc(cpu, part, ios[rw]);
1740 part_stat_add(cpu, part, ticks[rw], duration);
1741 part_round_stats(cpu, part);
1742 part_dec_in_flight(part, rw);
1744 part_stat_unlock();
1749 * blk_peek_request - peek at the top of a request queue
1750 * @q: request queue to peek at
1752 * Description:
1753 * Return the request at the top of @q. The returned request
1754 * should be started using blk_start_request() before LLD starts
1755 * processing it.
1757 * Return:
1758 * Pointer to the request at the top of @q if available. Null
1759 * otherwise.
1761 * Context:
1762 * queue_lock must be held.
1764 struct request *blk_peek_request(struct request_queue *q)
1766 struct request *rq;
1767 int ret;
1769 while ((rq = __elv_next_request(q)) != NULL) {
1770 if (!(rq->cmd_flags & REQ_STARTED)) {
1772 * This is the first time the device driver
1773 * sees this request (possibly after
1774 * requeueing). Notify IO scheduler.
1776 if (blk_sorted_rq(rq))
1777 elv_activate_rq(q, rq);
1780 * just mark as started even if we don't start
1781 * it, a request that has been delayed should
1782 * not be passed by new incoming requests
1784 rq->cmd_flags |= REQ_STARTED;
1785 trace_block_rq_issue(q, rq);
1788 if (!q->boundary_rq || q->boundary_rq == rq) {
1789 q->end_sector = rq_end_sector(rq);
1790 q->boundary_rq = NULL;
1793 if (rq->cmd_flags & REQ_DONTPREP)
1794 break;
1796 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1798 * make sure space for the drain appears we
1799 * know we can do this because max_hw_segments
1800 * has been adjusted to be one fewer than the
1801 * device can handle
1803 rq->nr_phys_segments++;
1806 if (!q->prep_rq_fn)
1807 break;
1809 ret = q->prep_rq_fn(q, rq);
1810 if (ret == BLKPREP_OK) {
1811 break;
1812 } else if (ret == BLKPREP_DEFER) {
1814 * the request may have been (partially) prepped.
1815 * we need to keep this request in the front to
1816 * avoid resource deadlock. REQ_STARTED will
1817 * prevent other fs requests from passing this one.
1819 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1820 !(rq->cmd_flags & REQ_DONTPREP)) {
1822 * remove the space for the drain we added
1823 * so that we don't add it again
1825 --rq->nr_phys_segments;
1828 rq = NULL;
1829 break;
1830 } else if (ret == BLKPREP_KILL) {
1831 rq->cmd_flags |= REQ_QUIET;
1833 * Mark this request as started so we don't trigger
1834 * any debug logic in the end I/O path.
1836 blk_start_request(rq);
1837 __blk_end_request_all(rq, -EIO);
1838 } else {
1839 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1840 break;
1844 return rq;
1846 EXPORT_SYMBOL(blk_peek_request);
1848 void blk_dequeue_request(struct request *rq)
1850 struct request_queue *q = rq->q;
1852 BUG_ON(list_empty(&rq->queuelist));
1853 BUG_ON(ELV_ON_HASH(rq));
1855 list_del_init(&rq->queuelist);
1858 * the time frame between a request being removed from the lists
1859 * and to it is freed is accounted as io that is in progress at
1860 * the driver side.
1862 if (blk_account_rq(rq)) {
1863 q->in_flight[rq_is_sync(rq)]++;
1865 * Mark this device as supporting hardware queuing, if
1866 * we have more IOs in flight than 4.
1868 if (!blk_queue_queuing(q) && queue_in_flight(q) > 4)
1869 set_bit(QUEUE_FLAG_CQ, &q->queue_flags);
1874 * blk_start_request - start request processing on the driver
1875 * @req: request to dequeue
1877 * Description:
1878 * Dequeue @req and start timeout timer on it. This hands off the
1879 * request to the driver.
1881 * Block internal functions which don't want to start timer should
1882 * call blk_dequeue_request().
1884 * Context:
1885 * queue_lock must be held.
1887 void blk_start_request(struct request *req)
1889 blk_dequeue_request(req);
1892 * We are now handing the request to the hardware, initialize
1893 * resid_len to full count and add the timeout handler.
1895 req->resid_len = blk_rq_bytes(req);
1896 if (unlikely(blk_bidi_rq(req)))
1897 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1899 blk_add_timer(req);
1901 EXPORT_SYMBOL(blk_start_request);
1904 * blk_fetch_request - fetch a request from a request queue
1905 * @q: request queue to fetch a request from
1907 * Description:
1908 * Return the request at the top of @q. The request is started on
1909 * return and LLD can start processing it immediately.
1911 * Return:
1912 * Pointer to the request at the top of @q if available. Null
1913 * otherwise.
1915 * Context:
1916 * queue_lock must be held.
1918 struct request *blk_fetch_request(struct request_queue *q)
1920 struct request *rq;
1922 rq = blk_peek_request(q);
1923 if (rq)
1924 blk_start_request(rq);
1925 return rq;
1927 EXPORT_SYMBOL(blk_fetch_request);
1930 * blk_update_request - Special helper function for request stacking drivers
1931 * @req: the request being processed
1932 * @error: %0 for success, < %0 for error
1933 * @nr_bytes: number of bytes to complete @req
1935 * Description:
1936 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1937 * the request structure even if @req doesn't have leftover.
1938 * If @req has leftover, sets it up for the next range of segments.
1940 * This special helper function is only for request stacking drivers
1941 * (e.g. request-based dm) so that they can handle partial completion.
1942 * Actual device drivers should use blk_end_request instead.
1944 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1945 * %false return from this function.
1947 * Return:
1948 * %false - this request doesn't have any more data
1949 * %true - this request has more data
1951 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1953 int total_bytes, bio_nbytes, next_idx = 0;
1954 struct bio *bio;
1956 if (!req->bio)
1957 return false;
1959 trace_block_rq_complete(req->q, req);
1962 * For fs requests, rq is just carrier of independent bio's
1963 * and each partial completion should be handled separately.
1964 * Reset per-request error on each partial completion.
1966 * TODO: tj: This is too subtle. It would be better to let
1967 * low level drivers do what they see fit.
1969 if (blk_fs_request(req))
1970 req->errors = 0;
1972 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1973 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1974 req->rq_disk ? req->rq_disk->disk_name : "?",
1975 (unsigned long long)blk_rq_pos(req));
1978 blk_account_io_completion(req, nr_bytes);
1980 total_bytes = bio_nbytes = 0;
1981 while ((bio = req->bio) != NULL) {
1982 int nbytes;
1984 if (nr_bytes >= bio->bi_size) {
1985 req->bio = bio->bi_next;
1986 nbytes = bio->bi_size;
1987 req_bio_endio(req, bio, nbytes, error);
1988 next_idx = 0;
1989 bio_nbytes = 0;
1990 } else {
1991 int idx = bio->bi_idx + next_idx;
1993 if (unlikely(idx >= bio->bi_vcnt)) {
1994 blk_dump_rq_flags(req, "__end_that");
1995 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1996 __func__, idx, bio->bi_vcnt);
1997 break;
2000 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2001 BIO_BUG_ON(nbytes > bio->bi_size);
2004 * not a complete bvec done
2006 if (unlikely(nbytes > nr_bytes)) {
2007 bio_nbytes += nr_bytes;
2008 total_bytes += nr_bytes;
2009 break;
2013 * advance to the next vector
2015 next_idx++;
2016 bio_nbytes += nbytes;
2019 total_bytes += nbytes;
2020 nr_bytes -= nbytes;
2022 bio = req->bio;
2023 if (bio) {
2025 * end more in this run, or just return 'not-done'
2027 if (unlikely(nr_bytes <= 0))
2028 break;
2033 * completely done
2035 if (!req->bio) {
2037 * Reset counters so that the request stacking driver
2038 * can find how many bytes remain in the request
2039 * later.
2041 req->__data_len = 0;
2042 return false;
2046 * if the request wasn't completed, update state
2048 if (bio_nbytes) {
2049 req_bio_endio(req, bio, bio_nbytes, error);
2050 bio->bi_idx += next_idx;
2051 bio_iovec(bio)->bv_offset += nr_bytes;
2052 bio_iovec(bio)->bv_len -= nr_bytes;
2055 req->__data_len -= total_bytes;
2056 req->buffer = bio_data(req->bio);
2058 /* update sector only for requests with clear definition of sector */
2059 if (blk_fs_request(req) || blk_discard_rq(req))
2060 req->__sector += total_bytes >> 9;
2062 /* mixed attributes always follow the first bio */
2063 if (req->cmd_flags & REQ_MIXED_MERGE) {
2064 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2065 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2069 * If total number of sectors is less than the first segment
2070 * size, something has gone terribly wrong.
2072 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2073 printk(KERN_ERR "blk: request botched\n");
2074 req->__data_len = blk_rq_cur_bytes(req);
2077 /* recalculate the number of segments */
2078 blk_recalc_rq_segments(req);
2080 return true;
2082 EXPORT_SYMBOL_GPL(blk_update_request);
2084 static bool blk_update_bidi_request(struct request *rq, int error,
2085 unsigned int nr_bytes,
2086 unsigned int bidi_bytes)
2088 if (blk_update_request(rq, error, nr_bytes))
2089 return true;
2091 /* Bidi request must be completed as a whole */
2092 if (unlikely(blk_bidi_rq(rq)) &&
2093 blk_update_request(rq->next_rq, error, bidi_bytes))
2094 return true;
2096 add_disk_randomness(rq->rq_disk);
2098 return false;
2102 * queue lock must be held
2104 static void blk_finish_request(struct request *req, int error)
2106 if (blk_rq_tagged(req))
2107 blk_queue_end_tag(req->q, req);
2109 BUG_ON(blk_queued_rq(req));
2111 if (unlikely(laptop_mode) && blk_fs_request(req))
2112 laptop_io_completion();
2114 blk_delete_timer(req);
2116 blk_account_io_done(req);
2118 if (req->end_io)
2119 req->end_io(req, error);
2120 else {
2121 if (blk_bidi_rq(req))
2122 __blk_put_request(req->next_rq->q, req->next_rq);
2124 __blk_put_request(req->q, req);
2129 * blk_end_bidi_request - Complete a bidi request
2130 * @rq: the request to complete
2131 * @error: %0 for success, < %0 for error
2132 * @nr_bytes: number of bytes to complete @rq
2133 * @bidi_bytes: number of bytes to complete @rq->next_rq
2135 * Description:
2136 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2137 * Drivers that supports bidi can safely call this member for any
2138 * type of request, bidi or uni. In the later case @bidi_bytes is
2139 * just ignored.
2141 * Return:
2142 * %false - we are done with this request
2143 * %true - still buffers pending for this request
2145 static bool blk_end_bidi_request(struct request *rq, int error,
2146 unsigned int nr_bytes, unsigned int bidi_bytes)
2148 struct request_queue *q = rq->q;
2149 unsigned long flags;
2151 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2152 return true;
2154 spin_lock_irqsave(q->queue_lock, flags);
2155 blk_finish_request(rq, error);
2156 spin_unlock_irqrestore(q->queue_lock, flags);
2158 return false;
2162 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2163 * @rq: the request to complete
2164 * @error: %0 for success, < %0 for error
2165 * @nr_bytes: number of bytes to complete @rq
2166 * @bidi_bytes: number of bytes to complete @rq->next_rq
2168 * Description:
2169 * Identical to blk_end_bidi_request() except that queue lock is
2170 * assumed to be locked on entry and remains so on return.
2172 * Return:
2173 * %false - we are done with this request
2174 * %true - still buffers pending for this request
2176 static bool __blk_end_bidi_request(struct request *rq, int error,
2177 unsigned int nr_bytes, unsigned int bidi_bytes)
2179 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2180 return true;
2182 blk_finish_request(rq, error);
2184 return false;
2188 * blk_end_request - Helper function for drivers to complete the request.
2189 * @rq: the request being processed
2190 * @error: %0 for success, < %0 for error
2191 * @nr_bytes: number of bytes to complete
2193 * Description:
2194 * Ends I/O on a number of bytes attached to @rq.
2195 * If @rq has leftover, sets it up for the next range of segments.
2197 * Return:
2198 * %false - we are done with this request
2199 * %true - still buffers pending for this request
2201 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2203 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2205 EXPORT_SYMBOL(blk_end_request);
2208 * blk_end_request_all - Helper function for drives to finish the request.
2209 * @rq: the request to finish
2210 * @error: %0 for success, < %0 for error
2212 * Description:
2213 * Completely finish @rq.
2215 void blk_end_request_all(struct request *rq, int error)
2217 bool pending;
2218 unsigned int bidi_bytes = 0;
2220 if (unlikely(blk_bidi_rq(rq)))
2221 bidi_bytes = blk_rq_bytes(rq->next_rq);
2223 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2224 BUG_ON(pending);
2226 EXPORT_SYMBOL(blk_end_request_all);
2229 * blk_end_request_cur - Helper function to finish the current request chunk.
2230 * @rq: the request to finish the current chunk for
2231 * @error: %0 for success, < %0 for error
2233 * Description:
2234 * Complete the current consecutively mapped chunk from @rq.
2236 * Return:
2237 * %false - we are done with this request
2238 * %true - still buffers pending for this request
2240 bool blk_end_request_cur(struct request *rq, int error)
2242 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2244 EXPORT_SYMBOL(blk_end_request_cur);
2247 * blk_end_request_err - Finish a request till the next failure boundary.
2248 * @rq: the request to finish till the next failure boundary for
2249 * @error: must be negative errno
2251 * Description:
2252 * Complete @rq till the next failure boundary.
2254 * Return:
2255 * %false - we are done with this request
2256 * %true - still buffers pending for this request
2258 bool blk_end_request_err(struct request *rq, int error)
2260 WARN_ON(error >= 0);
2261 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2263 EXPORT_SYMBOL_GPL(blk_end_request_err);
2266 * __blk_end_request - Helper function for drivers to complete the request.
2267 * @rq: the request being processed
2268 * @error: %0 for success, < %0 for error
2269 * @nr_bytes: number of bytes to complete
2271 * Description:
2272 * Must be called with queue lock held unlike blk_end_request().
2274 * Return:
2275 * %false - we are done with this request
2276 * %true - still buffers pending for this request
2278 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2280 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2282 EXPORT_SYMBOL(__blk_end_request);
2285 * __blk_end_request_all - Helper function for drives to finish the request.
2286 * @rq: the request to finish
2287 * @error: %0 for success, < %0 for error
2289 * Description:
2290 * Completely finish @rq. Must be called with queue lock held.
2292 void __blk_end_request_all(struct request *rq, int error)
2294 bool pending;
2295 unsigned int bidi_bytes = 0;
2297 if (unlikely(blk_bidi_rq(rq)))
2298 bidi_bytes = blk_rq_bytes(rq->next_rq);
2300 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2301 BUG_ON(pending);
2303 EXPORT_SYMBOL(__blk_end_request_all);
2306 * __blk_end_request_cur - Helper function to finish the current request chunk.
2307 * @rq: the request to finish the current chunk for
2308 * @error: %0 for success, < %0 for error
2310 * Description:
2311 * Complete the current consecutively mapped chunk from @rq. Must
2312 * be called with queue lock held.
2314 * Return:
2315 * %false - we are done with this request
2316 * %true - still buffers pending for this request
2318 bool __blk_end_request_cur(struct request *rq, int error)
2320 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2322 EXPORT_SYMBOL(__blk_end_request_cur);
2325 * __blk_end_request_err - Finish a request till the next failure boundary.
2326 * @rq: the request to finish till the next failure boundary for
2327 * @error: must be negative errno
2329 * Description:
2330 * Complete @rq till the next failure boundary. Must be called
2331 * with queue lock held.
2333 * Return:
2334 * %false - we are done with this request
2335 * %true - still buffers pending for this request
2337 bool __blk_end_request_err(struct request *rq, int error)
2339 WARN_ON(error >= 0);
2340 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2342 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2344 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2345 struct bio *bio)
2347 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2348 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2350 if (bio_has_data(bio)) {
2351 rq->nr_phys_segments = bio_phys_segments(q, bio);
2352 rq->buffer = bio_data(bio);
2354 rq->__data_len = bio->bi_size;
2355 rq->bio = rq->biotail = bio;
2357 if (bio->bi_bdev)
2358 rq->rq_disk = bio->bi_bdev->bd_disk;
2362 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2363 * @q : the queue of the device being checked
2365 * Description:
2366 * Check if underlying low-level drivers of a device are busy.
2367 * If the drivers want to export their busy state, they must set own
2368 * exporting function using blk_queue_lld_busy() first.
2370 * Basically, this function is used only by request stacking drivers
2371 * to stop dispatching requests to underlying devices when underlying
2372 * devices are busy. This behavior helps more I/O merging on the queue
2373 * of the request stacking driver and prevents I/O throughput regression
2374 * on burst I/O load.
2376 * Return:
2377 * 0 - Not busy (The request stacking driver should dispatch request)
2378 * 1 - Busy (The request stacking driver should stop dispatching request)
2380 int blk_lld_busy(struct request_queue *q)
2382 if (q->lld_busy_fn)
2383 return q->lld_busy_fn(q);
2385 return 0;
2387 EXPORT_SYMBOL_GPL(blk_lld_busy);
2390 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2391 * @rq: the clone request to be cleaned up
2393 * Description:
2394 * Free all bios in @rq for a cloned request.
2396 void blk_rq_unprep_clone(struct request *rq)
2398 struct bio *bio;
2400 while ((bio = rq->bio) != NULL) {
2401 rq->bio = bio->bi_next;
2403 bio_put(bio);
2406 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2409 * Copy attributes of the original request to the clone request.
2410 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2412 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2414 dst->cpu = src->cpu;
2415 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2416 dst->cmd_type = src->cmd_type;
2417 dst->__sector = blk_rq_pos(src);
2418 dst->__data_len = blk_rq_bytes(src);
2419 dst->nr_phys_segments = src->nr_phys_segments;
2420 dst->ioprio = src->ioprio;
2421 dst->extra_len = src->extra_len;
2425 * blk_rq_prep_clone - Helper function to setup clone request
2426 * @rq: the request to be setup
2427 * @rq_src: original request to be cloned
2428 * @bs: bio_set that bios for clone are allocated from
2429 * @gfp_mask: memory allocation mask for bio
2430 * @bio_ctr: setup function to be called for each clone bio.
2431 * Returns %0 for success, non %0 for failure.
2432 * @data: private data to be passed to @bio_ctr
2434 * Description:
2435 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2436 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2437 * are not copied, and copying such parts is the caller's responsibility.
2438 * Also, pages which the original bios are pointing to are not copied
2439 * and the cloned bios just point same pages.
2440 * So cloned bios must be completed before original bios, which means
2441 * the caller must complete @rq before @rq_src.
2443 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2444 struct bio_set *bs, gfp_t gfp_mask,
2445 int (*bio_ctr)(struct bio *, struct bio *, void *),
2446 void *data)
2448 struct bio *bio, *bio_src;
2450 if (!bs)
2451 bs = fs_bio_set;
2453 blk_rq_init(NULL, rq);
2455 __rq_for_each_bio(bio_src, rq_src) {
2456 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2457 if (!bio)
2458 goto free_and_out;
2460 __bio_clone(bio, bio_src);
2462 if (bio_integrity(bio_src) &&
2463 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2464 goto free_and_out;
2466 if (bio_ctr && bio_ctr(bio, bio_src, data))
2467 goto free_and_out;
2469 if (rq->bio) {
2470 rq->biotail->bi_next = bio;
2471 rq->biotail = bio;
2472 } else
2473 rq->bio = rq->biotail = bio;
2476 __blk_rq_prep_clone(rq, rq_src);
2478 return 0;
2480 free_and_out:
2481 if (bio)
2482 bio_free(bio, bs);
2483 blk_rq_unprep_clone(rq);
2485 return -ENOMEM;
2487 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2489 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2491 return queue_work(kblockd_workqueue, work);
2493 EXPORT_SYMBOL(kblockd_schedule_work);
2495 int __init blk_dev_init(void)
2497 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2498 sizeof(((struct request *)0)->cmd_flags));
2500 kblockd_workqueue = create_workqueue("kblockd");
2501 if (!kblockd_workqueue)
2502 panic("Failed to create kblockd\n");
2504 request_cachep = kmem_cache_create("blkdev_requests",
2505 sizeof(struct request), 0, SLAB_PANIC, NULL);
2507 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2508 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2510 return 0;