2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
70 static unsigned int dbs_enable
; /* number of CPUs using this policy */
73 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
74 * lock and dbs_mutex. cpu_hotplug lock should always be held before
75 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
76 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
77 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
78 * is recursive for the same process. -Venki
79 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
80 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
81 * raceless workqueue teardown.
83 static DEFINE_MUTEX(dbs_mutex
);
85 static struct workqueue_struct
*kconservative_wq
;
87 static struct dbs_tuners
{
88 unsigned int sampling_rate
;
89 unsigned int sampling_down_factor
;
90 unsigned int up_threshold
;
91 unsigned int down_threshold
;
92 unsigned int ignore_nice
;
93 unsigned int freq_step
;
95 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
96 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
97 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
102 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
105 cputime64_t idle_time
;
106 cputime64_t cur_wall_time
;
107 cputime64_t busy_time
;
109 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
110 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
111 kstat_cpu(cpu
).cpustat
.system
);
113 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
114 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
115 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
116 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
118 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
120 *wall
= cur_wall_time
;
125 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
127 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
129 if (idle_time
== -1ULL)
130 return get_cpu_idle_time_jiffy(cpu
, wall
);
135 /* keep track of frequency transitions */
137 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
140 struct cpufreq_freqs
*freq
= data
;
141 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cpu_dbs_info
,
144 struct cpufreq_policy
*policy
;
146 if (!this_dbs_info
->enable
)
149 policy
= this_dbs_info
->cur_policy
;
152 * we only care if our internally tracked freq moves outside
153 * the 'valid' ranges of freqency available to us otherwise
154 * we do not change it
156 if (this_dbs_info
->requested_freq
> policy
->max
157 || this_dbs_info
->requested_freq
< policy
->min
)
158 this_dbs_info
->requested_freq
= freq
->new;
163 static struct notifier_block dbs_cpufreq_notifier_block
= {
164 .notifier_call
= dbs_cpufreq_notifier
167 /************************** sysfs interface ************************/
168 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
170 printk_once(KERN_INFO
"CPUFREQ: conservative sampling_rate_max "
171 "sysfs file is deprecated - used by: %s\n", current
->comm
);
172 return sprintf(buf
, "%u\n", -1U);
175 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
177 return sprintf(buf
, "%u\n", min_sampling_rate
);
180 #define define_one_ro(_name) \
181 static struct freq_attr _name = \
182 __ATTR(_name, 0444, show_##_name, NULL)
184 define_one_ro(sampling_rate_max
);
185 define_one_ro(sampling_rate_min
);
187 /* cpufreq_conservative Governor Tunables */
188 #define show_one(file_name, object) \
189 static ssize_t show_##file_name \
190 (struct cpufreq_policy *unused, char *buf) \
192 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
194 show_one(sampling_rate
, sampling_rate
);
195 show_one(sampling_down_factor
, sampling_down_factor
);
196 show_one(up_threshold
, up_threshold
);
197 show_one(down_threshold
, down_threshold
);
198 show_one(ignore_nice_load
, ignore_nice
);
199 show_one(freq_step
, freq_step
);
201 static ssize_t
store_sampling_down_factor(struct cpufreq_policy
*unused
,
202 const char *buf
, size_t count
)
206 ret
= sscanf(buf
, "%u", &input
);
208 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
211 mutex_lock(&dbs_mutex
);
212 dbs_tuners_ins
.sampling_down_factor
= input
;
213 mutex_unlock(&dbs_mutex
);
218 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
219 const char *buf
, size_t count
)
223 ret
= sscanf(buf
, "%u", &input
);
228 mutex_lock(&dbs_mutex
);
229 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
230 mutex_unlock(&dbs_mutex
);
235 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
236 const char *buf
, size_t count
)
240 ret
= sscanf(buf
, "%u", &input
);
242 mutex_lock(&dbs_mutex
);
243 if (ret
!= 1 || input
> 100 ||
244 input
<= dbs_tuners_ins
.down_threshold
) {
245 mutex_unlock(&dbs_mutex
);
249 dbs_tuners_ins
.up_threshold
= input
;
250 mutex_unlock(&dbs_mutex
);
255 static ssize_t
store_down_threshold(struct cpufreq_policy
*unused
,
256 const char *buf
, size_t count
)
260 ret
= sscanf(buf
, "%u", &input
);
262 mutex_lock(&dbs_mutex
);
263 /* cannot be lower than 11 otherwise freq will not fall */
264 if (ret
!= 1 || input
< 11 || input
> 100 ||
265 input
>= dbs_tuners_ins
.up_threshold
) {
266 mutex_unlock(&dbs_mutex
);
270 dbs_tuners_ins
.down_threshold
= input
;
271 mutex_unlock(&dbs_mutex
);
276 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
277 const char *buf
, size_t count
)
284 ret
= sscanf(buf
, "%u", &input
);
291 mutex_lock(&dbs_mutex
);
292 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
293 mutex_unlock(&dbs_mutex
);
296 dbs_tuners_ins
.ignore_nice
= input
;
298 /* we need to re-evaluate prev_cpu_idle */
299 for_each_online_cpu(j
) {
300 struct cpu_dbs_info_s
*dbs_info
;
301 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
302 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
303 &dbs_info
->prev_cpu_wall
);
304 if (dbs_tuners_ins
.ignore_nice
)
305 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
307 mutex_unlock(&dbs_mutex
);
312 static ssize_t
store_freq_step(struct cpufreq_policy
*policy
,
313 const char *buf
, size_t count
)
317 ret
= sscanf(buf
, "%u", &input
);
325 /* no need to test here if freq_step is zero as the user might actually
326 * want this, they would be crazy though :) */
327 mutex_lock(&dbs_mutex
);
328 dbs_tuners_ins
.freq_step
= input
;
329 mutex_unlock(&dbs_mutex
);
334 #define define_one_rw(_name) \
335 static struct freq_attr _name = \
336 __ATTR(_name, 0644, show_##_name, store_##_name)
338 define_one_rw(sampling_rate
);
339 define_one_rw(sampling_down_factor
);
340 define_one_rw(up_threshold
);
341 define_one_rw(down_threshold
);
342 define_one_rw(ignore_nice_load
);
343 define_one_rw(freq_step
);
345 static struct attribute
*dbs_attributes
[] = {
346 &sampling_rate_max
.attr
,
347 &sampling_rate_min
.attr
,
349 &sampling_down_factor
.attr
,
351 &down_threshold
.attr
,
352 &ignore_nice_load
.attr
,
357 static struct attribute_group dbs_attr_group
= {
358 .attrs
= dbs_attributes
,
359 .name
= "conservative",
362 /************************** sysfs end ************************/
364 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
366 unsigned int load
= 0;
367 unsigned int freq_target
;
369 struct cpufreq_policy
*policy
;
372 policy
= this_dbs_info
->cur_policy
;
375 * Every sampling_rate, we check, if current idle time is less
376 * than 20% (default), then we try to increase frequency
377 * Every sampling_rate*sampling_down_factor, we check, if current
378 * idle time is more than 80%, then we try to decrease frequency
380 * Any frequency increase takes it to the maximum frequency.
381 * Frequency reduction happens at minimum steps of
382 * 5% (default) of maximum frequency
385 /* Get Absolute Load */
386 for_each_cpu(j
, policy
->cpus
) {
387 struct cpu_dbs_info_s
*j_dbs_info
;
388 cputime64_t cur_wall_time
, cur_idle_time
;
389 unsigned int idle_time
, wall_time
;
391 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
393 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
395 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
396 j_dbs_info
->prev_cpu_wall
);
397 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
399 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
400 j_dbs_info
->prev_cpu_idle
);
401 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
403 if (dbs_tuners_ins
.ignore_nice
) {
404 cputime64_t cur_nice
;
405 unsigned long cur_nice_jiffies
;
407 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
408 j_dbs_info
->prev_cpu_nice
);
410 * Assumption: nice time between sampling periods will
411 * be less than 2^32 jiffies for 32 bit sys
413 cur_nice_jiffies
= (unsigned long)
414 cputime64_to_jiffies64(cur_nice
);
416 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
417 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
420 if (unlikely(!wall_time
|| wall_time
< idle_time
))
423 load
= 100 * (wall_time
- idle_time
) / wall_time
;
427 * break out if we 'cannot' reduce the speed as the user might
428 * want freq_step to be zero
430 if (dbs_tuners_ins
.freq_step
== 0)
433 /* Check for frequency increase */
434 if (load
> dbs_tuners_ins
.up_threshold
) {
435 this_dbs_info
->down_skip
= 0;
437 /* if we are already at full speed then break out early */
438 if (this_dbs_info
->requested_freq
== policy
->max
)
441 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
443 /* max freq cannot be less than 100. But who knows.... */
444 if (unlikely(freq_target
== 0))
447 this_dbs_info
->requested_freq
+= freq_target
;
448 if (this_dbs_info
->requested_freq
> policy
->max
)
449 this_dbs_info
->requested_freq
= policy
->max
;
451 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
457 * The optimal frequency is the frequency that is the lowest that
458 * can support the current CPU usage without triggering the up
459 * policy. To be safe, we focus 10 points under the threshold.
461 if (load
< (dbs_tuners_ins
.down_threshold
- 10)) {
462 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
464 this_dbs_info
->requested_freq
-= freq_target
;
465 if (this_dbs_info
->requested_freq
< policy
->min
)
466 this_dbs_info
->requested_freq
= policy
->min
;
469 * if we cannot reduce the frequency anymore, break out early
471 if (policy
->cur
== policy
->min
)
474 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
480 static void do_dbs_timer(struct work_struct
*work
)
482 struct cpu_dbs_info_s
*dbs_info
=
483 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
484 unsigned int cpu
= dbs_info
->cpu
;
486 /* We want all CPUs to do sampling nearly on same jiffy */
487 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
489 delay
-= jiffies
% delay
;
491 if (lock_policy_rwsem_write(cpu
) < 0)
494 if (!dbs_info
->enable
) {
495 unlock_policy_rwsem_write(cpu
);
499 dbs_check_cpu(dbs_info
);
501 queue_delayed_work_on(cpu
, kconservative_wq
, &dbs_info
->work
, delay
);
502 unlock_policy_rwsem_write(cpu
);
505 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
507 /* We want all CPUs to do sampling nearly on same jiffy */
508 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
509 delay
-= jiffies
% delay
;
511 dbs_info
->enable
= 1;
512 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
513 queue_delayed_work_on(dbs_info
->cpu
, kconservative_wq
, &dbs_info
->work
,
517 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
519 dbs_info
->enable
= 0;
520 cancel_delayed_work_sync(&dbs_info
->work
);
523 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
526 unsigned int cpu
= policy
->cpu
;
527 struct cpu_dbs_info_s
*this_dbs_info
;
531 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
534 case CPUFREQ_GOV_START
:
535 if ((!cpu_online(cpu
)) || (!policy
->cur
))
538 if (this_dbs_info
->enable
) /* Already enabled */
541 mutex_lock(&dbs_mutex
);
543 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
545 mutex_unlock(&dbs_mutex
);
549 for_each_cpu(j
, policy
->cpus
) {
550 struct cpu_dbs_info_s
*j_dbs_info
;
551 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
552 j_dbs_info
->cur_policy
= policy
;
554 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
555 &j_dbs_info
->prev_cpu_wall
);
556 if (dbs_tuners_ins
.ignore_nice
) {
557 j_dbs_info
->prev_cpu_nice
=
558 kstat_cpu(j
).cpustat
.nice
;
561 this_dbs_info
->down_skip
= 0;
562 this_dbs_info
->requested_freq
= policy
->cur
;
566 * Start the timerschedule work, when this governor
567 * is used for first time
569 if (dbs_enable
== 1) {
570 unsigned int latency
;
571 /* policy latency is in nS. Convert it to uS first */
572 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
577 * conservative does not implement micro like ondemand
578 * governor, thus we are bound to jiffes/HZ
581 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
582 /* Bring kernel and HW constraints together */
583 min_sampling_rate
= max(min_sampling_rate
,
584 MIN_LATENCY_MULTIPLIER
* latency
);
585 dbs_tuners_ins
.sampling_rate
=
586 max(min_sampling_rate
,
587 latency
* LATENCY_MULTIPLIER
);
589 cpufreq_register_notifier(
590 &dbs_cpufreq_notifier_block
,
591 CPUFREQ_TRANSITION_NOTIFIER
);
593 dbs_timer_init(this_dbs_info
);
595 mutex_unlock(&dbs_mutex
);
599 case CPUFREQ_GOV_STOP
:
600 mutex_lock(&dbs_mutex
);
601 dbs_timer_exit(this_dbs_info
);
602 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
606 * Stop the timerschedule work, when this governor
607 * is used for first time
610 cpufreq_unregister_notifier(
611 &dbs_cpufreq_notifier_block
,
612 CPUFREQ_TRANSITION_NOTIFIER
);
614 mutex_unlock(&dbs_mutex
);
618 case CPUFREQ_GOV_LIMITS
:
619 mutex_lock(&dbs_mutex
);
620 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
621 __cpufreq_driver_target(
622 this_dbs_info
->cur_policy
,
623 policy
->max
, CPUFREQ_RELATION_H
);
624 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
625 __cpufreq_driver_target(
626 this_dbs_info
->cur_policy
,
627 policy
->min
, CPUFREQ_RELATION_L
);
628 mutex_unlock(&dbs_mutex
);
635 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
638 struct cpufreq_governor cpufreq_gov_conservative
= {
639 .name
= "conservative",
640 .governor
= cpufreq_governor_dbs
,
641 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
642 .owner
= THIS_MODULE
,
645 static int __init
cpufreq_gov_dbs_init(void)
649 kconservative_wq
= create_workqueue("kconservative");
650 if (!kconservative_wq
) {
651 printk(KERN_ERR
"Creation of kconservative failed\n");
655 err
= cpufreq_register_governor(&cpufreq_gov_conservative
);
657 destroy_workqueue(kconservative_wq
);
662 static void __exit
cpufreq_gov_dbs_exit(void)
664 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
665 destroy_workqueue(kconservative_wq
);
669 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
670 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
671 "Low Latency Frequency Transition capable processors "
672 "optimised for use in a battery environment");
673 MODULE_LICENSE("GPL");
675 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
676 fs_initcall(cpufreq_gov_dbs_init
);
678 module_init(cpufreq_gov_dbs_init
);
680 module_exit(cpufreq_gov_dbs_exit
);