PRCM: OMAP3: Fix to wrongly modified omap2_clk_wait_ready
[linux-ginger.git] / include / linux / list.h
blob08cf4f6518892a4364ce1a84332b407eab2b122f
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
4 #include <linux/stddef.h>
5 #include <linux/poison.h>
6 #include <linux/prefetch.h>
7 #include <asm/system.h>
9 /*
10 * Simple doubly linked list implementation.
12 * Some of the internal functions ("__xxx") are useful when
13 * manipulating whole lists rather than single entries, as
14 * sometimes we already know the next/prev entries and we can
15 * generate better code by using them directly rather than
16 * using the generic single-entry routines.
19 struct list_head {
20 struct list_head *next, *prev;
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
25 #define LIST_HEAD(name) \
26 struct list_head name = LIST_HEAD_INIT(name)
28 static inline void INIT_LIST_HEAD(struct list_head *list)
30 list->next = list;
31 list->prev = list;
35 * Insert a new entry between two known consecutive entries.
37 * This is only for internal list manipulation where we know
38 * the prev/next entries already!
40 #ifndef CONFIG_DEBUG_LIST
41 static inline void __list_add(struct list_head *new,
42 struct list_head *prev,
43 struct list_head *next)
45 next->prev = new;
46 new->next = next;
47 new->prev = prev;
48 prev->next = new;
50 #else
51 extern void __list_add(struct list_head *new,
52 struct list_head *prev,
53 struct list_head *next);
54 #endif
56 /**
57 * list_add - add a new entry
58 * @new: new entry to be added
59 * @head: list head to add it after
61 * Insert a new entry after the specified head.
62 * This is good for implementing stacks.
64 #ifndef CONFIG_DEBUG_LIST
65 static inline void list_add(struct list_head *new, struct list_head *head)
67 __list_add(new, head, head->next);
69 #else
70 extern void list_add(struct list_head *new, struct list_head *head);
71 #endif
74 /**
75 * list_add_tail - add a new entry
76 * @new: new entry to be added
77 * @head: list head to add it before
79 * Insert a new entry before the specified head.
80 * This is useful for implementing queues.
82 static inline void list_add_tail(struct list_head *new, struct list_head *head)
84 __list_add(new, head->prev, head);
88 * Insert a new entry between two known consecutive entries.
90 * This is only for internal list manipulation where we know
91 * the prev/next entries already!
93 static inline void __list_add_rcu(struct list_head * new,
94 struct list_head * prev, struct list_head * next)
96 new->next = next;
97 new->prev = prev;
98 smp_wmb();
99 next->prev = new;
100 prev->next = new;
104 * list_add_rcu - add a new entry to rcu-protected list
105 * @new: new entry to be added
106 * @head: list head to add it after
108 * Insert a new entry after the specified head.
109 * This is good for implementing stacks.
111 * The caller must take whatever precautions are necessary
112 * (such as holding appropriate locks) to avoid racing
113 * with another list-mutation primitive, such as list_add_rcu()
114 * or list_del_rcu(), running on this same list.
115 * However, it is perfectly legal to run concurrently with
116 * the _rcu list-traversal primitives, such as
117 * list_for_each_entry_rcu().
119 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
121 __list_add_rcu(new, head, head->next);
125 * list_add_tail_rcu - add a new entry to rcu-protected list
126 * @new: new entry to be added
127 * @head: list head to add it before
129 * Insert a new entry before the specified head.
130 * This is useful for implementing queues.
132 * The caller must take whatever precautions are necessary
133 * (such as holding appropriate locks) to avoid racing
134 * with another list-mutation primitive, such as list_add_tail_rcu()
135 * or list_del_rcu(), running on this same list.
136 * However, it is perfectly legal to run concurrently with
137 * the _rcu list-traversal primitives, such as
138 * list_for_each_entry_rcu().
140 static inline void list_add_tail_rcu(struct list_head *new,
141 struct list_head *head)
143 __list_add_rcu(new, head->prev, head);
147 * Delete a list entry by making the prev/next entries
148 * point to each other.
150 * This is only for internal list manipulation where we know
151 * the prev/next entries already!
153 static inline void __list_del(struct list_head * prev, struct list_head * next)
155 next->prev = prev;
156 prev->next = next;
160 * list_del - deletes entry from list.
161 * @entry: the element to delete from the list.
162 * Note: list_empty() on entry does not return true after this, the entry is
163 * in an undefined state.
165 #ifndef CONFIG_DEBUG_LIST
166 static inline void list_del(struct list_head *entry)
168 __list_del(entry->prev, entry->next);
169 entry->next = LIST_POISON1;
170 entry->prev = LIST_POISON2;
172 #else
173 extern void list_del(struct list_head *entry);
174 #endif
177 * list_del_rcu - deletes entry from list without re-initialization
178 * @entry: the element to delete from the list.
180 * Note: list_empty() on entry does not return true after this,
181 * the entry is in an undefined state. It is useful for RCU based
182 * lockfree traversal.
184 * In particular, it means that we can not poison the forward
185 * pointers that may still be used for walking the list.
187 * The caller must take whatever precautions are necessary
188 * (such as holding appropriate locks) to avoid racing
189 * with another list-mutation primitive, such as list_del_rcu()
190 * or list_add_rcu(), running on this same list.
191 * However, it is perfectly legal to run concurrently with
192 * the _rcu list-traversal primitives, such as
193 * list_for_each_entry_rcu().
195 * Note that the caller is not permitted to immediately free
196 * the newly deleted entry. Instead, either synchronize_rcu()
197 * or call_rcu() must be used to defer freeing until an RCU
198 * grace period has elapsed.
200 static inline void list_del_rcu(struct list_head *entry)
202 __list_del(entry->prev, entry->next);
203 entry->prev = LIST_POISON2;
207 * list_replace - replace old entry by new one
208 * @old : the element to be replaced
209 * @new : the new element to insert
211 * If @old was empty, it will be overwritten.
213 static inline void list_replace(struct list_head *old,
214 struct list_head *new)
216 new->next = old->next;
217 new->next->prev = new;
218 new->prev = old->prev;
219 new->prev->next = new;
222 static inline void list_replace_init(struct list_head *old,
223 struct list_head *new)
225 list_replace(old, new);
226 INIT_LIST_HEAD(old);
230 * list_replace_rcu - replace old entry by new one
231 * @old : the element to be replaced
232 * @new : the new element to insert
234 * The @old entry will be replaced with the @new entry atomically.
235 * Note: @old should not be empty.
237 static inline void list_replace_rcu(struct list_head *old,
238 struct list_head *new)
240 new->next = old->next;
241 new->prev = old->prev;
242 smp_wmb();
243 new->next->prev = new;
244 new->prev->next = new;
245 old->prev = LIST_POISON2;
249 * list_del_init - deletes entry from list and reinitialize it.
250 * @entry: the element to delete from the list.
252 static inline void list_del_init(struct list_head *entry)
254 __list_del(entry->prev, entry->next);
255 INIT_LIST_HEAD(entry);
259 * list_move - delete from one list and add as another's head
260 * @list: the entry to move
261 * @head: the head that will precede our entry
263 static inline void list_move(struct list_head *list, struct list_head *head)
265 __list_del(list->prev, list->next);
266 list_add(list, head);
270 * list_move_tail - delete from one list and add as another's tail
271 * @list: the entry to move
272 * @head: the head that will follow our entry
274 static inline void list_move_tail(struct list_head *list,
275 struct list_head *head)
277 __list_del(list->prev, list->next);
278 list_add_tail(list, head);
282 * list_is_last - tests whether @list is the last entry in list @head
283 * @list: the entry to test
284 * @head: the head of the list
286 static inline int list_is_last(const struct list_head *list,
287 const struct list_head *head)
289 return list->next == head;
293 * list_empty - tests whether a list is empty
294 * @head: the list to test.
296 static inline int list_empty(const struct list_head *head)
298 return head->next == head;
302 * list_empty_careful - tests whether a list is empty and not being modified
303 * @head: the list to test
305 * Description:
306 * tests whether a list is empty _and_ checks that no other CPU might be
307 * in the process of modifying either member (next or prev)
309 * NOTE: using list_empty_careful() without synchronization
310 * can only be safe if the only activity that can happen
311 * to the list entry is list_del_init(). Eg. it cannot be used
312 * if another CPU could re-list_add() it.
314 static inline int list_empty_careful(const struct list_head *head)
316 struct list_head *next = head->next;
317 return (next == head) && (next == head->prev);
321 * list_is_singular - tests whether a list has just one entry.
322 * @head: the list to test.
324 static inline int list_is_singular(const struct list_head *head)
326 return !list_empty(head) && (head->next == head->prev);
329 static inline void __list_splice(const struct list_head *list,
330 struct list_head *head)
332 struct list_head *first = list->next;
333 struct list_head *last = list->prev;
334 struct list_head *at = head->next;
336 first->prev = head;
337 head->next = first;
339 last->next = at;
340 at->prev = last;
344 * list_splice - join two lists
345 * @list: the new list to add.
346 * @head: the place to add it in the first list.
348 static inline void list_splice(const struct list_head *list,
349 struct list_head *head)
351 if (!list_empty(list))
352 __list_splice(list, head);
356 * list_splice_init - join two lists and reinitialise the emptied list.
357 * @list: the new list to add.
358 * @head: the place to add it in the first list.
360 * The list at @list is reinitialised
362 static inline void list_splice_init(struct list_head *list,
363 struct list_head *head)
365 if (!list_empty(list)) {
366 __list_splice(list, head);
367 INIT_LIST_HEAD(list);
372 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
373 * @list: the RCU-protected list to splice
374 * @head: the place in the list to splice the first list into
375 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
377 * @head can be RCU-read traversed concurrently with this function.
379 * Note that this function blocks.
381 * Important note: the caller must take whatever action is necessary to
382 * prevent any other updates to @head. In principle, it is possible
383 * to modify the list as soon as sync() begins execution.
384 * If this sort of thing becomes necessary, an alternative version
385 * based on call_rcu() could be created. But only if -really-
386 * needed -- there is no shortage of RCU API members.
388 static inline void list_splice_init_rcu(struct list_head *list,
389 struct list_head *head,
390 void (*sync)(void))
392 struct list_head *first = list->next;
393 struct list_head *last = list->prev;
394 struct list_head *at = head->next;
396 if (list_empty(head))
397 return;
399 /* "first" and "last" tracking list, so initialize it. */
401 INIT_LIST_HEAD(list);
404 * At this point, the list body still points to the source list.
405 * Wait for any readers to finish using the list before splicing
406 * the list body into the new list. Any new readers will see
407 * an empty list.
410 sync();
413 * Readers are finished with the source list, so perform splice.
414 * The order is important if the new list is global and accessible
415 * to concurrent RCU readers. Note that RCU readers are not
416 * permitted to traverse the prev pointers without excluding
417 * this function.
420 last->next = at;
421 smp_wmb();
422 head->next = first;
423 first->prev = head;
424 at->prev = last;
428 * list_entry - get the struct for this entry
429 * @ptr: the &struct list_head pointer.
430 * @type: the type of the struct this is embedded in.
431 * @member: the name of the list_struct within the struct.
433 #define list_entry(ptr, type, member) \
434 container_of(ptr, type, member)
437 * list_first_entry - get the first element from a list
438 * @ptr: the list head to take the element from.
439 * @type: the type of the struct this is embedded in.
440 * @member: the name of the list_struct within the struct.
442 * Note, that list is expected to be not empty.
444 #define list_first_entry(ptr, type, member) \
445 list_entry((ptr)->next, type, member)
448 * list_for_each - iterate over a list
449 * @pos: the &struct list_head to use as a loop cursor.
450 * @head: the head for your list.
452 #define list_for_each(pos, head) \
453 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
454 pos = pos->next)
457 * __list_for_each - iterate over a list
458 * @pos: the &struct list_head to use as a loop cursor.
459 * @head: the head for your list.
461 * This variant differs from list_for_each() in that it's the
462 * simplest possible list iteration code, no prefetching is done.
463 * Use this for code that knows the list to be very short (empty
464 * or 1 entry) most of the time.
466 #define __list_for_each(pos, head) \
467 for (pos = (head)->next; pos != (head); pos = pos->next)
470 * list_for_each_prev - iterate over a list backwards
471 * @pos: the &struct list_head to use as a loop cursor.
472 * @head: the head for your list.
474 #define list_for_each_prev(pos, head) \
475 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
476 pos = pos->prev)
479 * list_for_each_safe - iterate over a list safe against removal of list entry
480 * @pos: the &struct list_head to use as a loop cursor.
481 * @n: another &struct list_head to use as temporary storage
482 * @head: the head for your list.
484 #define list_for_each_safe(pos, n, head) \
485 for (pos = (head)->next, n = pos->next; pos != (head); \
486 pos = n, n = pos->next)
489 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
490 * @pos: the &struct list_head to use as a loop cursor.
491 * @n: another &struct list_head to use as temporary storage
492 * @head: the head for your list.
494 #define list_for_each_prev_safe(pos, n, head) \
495 for (pos = (head)->prev, n = pos->prev; \
496 prefetch(pos->prev), pos != (head); \
497 pos = n, n = pos->prev)
500 * list_for_each_entry - iterate over list of given type
501 * @pos: the type * to use as a loop cursor.
502 * @head: the head for your list.
503 * @member: the name of the list_struct within the struct.
505 #define list_for_each_entry(pos, head, member) \
506 for (pos = list_entry((head)->next, typeof(*pos), member); \
507 prefetch(pos->member.next), &pos->member != (head); \
508 pos = list_entry(pos->member.next, typeof(*pos), member))
511 * list_for_each_entry_reverse - iterate backwards over list of given type.
512 * @pos: the type * to use as a loop cursor.
513 * @head: the head for your list.
514 * @member: the name of the list_struct within the struct.
516 #define list_for_each_entry_reverse(pos, head, member) \
517 for (pos = list_entry((head)->prev, typeof(*pos), member); \
518 prefetch(pos->member.prev), &pos->member != (head); \
519 pos = list_entry(pos->member.prev, typeof(*pos), member))
522 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
523 * @pos: the type * to use as a start point
524 * @head: the head of the list
525 * @member: the name of the list_struct within the struct.
527 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
529 #define list_prepare_entry(pos, head, member) \
530 ((pos) ? : list_entry(head, typeof(*pos), member))
533 * list_for_each_entry_continue - continue iteration over list of given type
534 * @pos: the type * to use as a loop cursor.
535 * @head: the head for your list.
536 * @member: the name of the list_struct within the struct.
538 * Continue to iterate over list of given type, continuing after
539 * the current position.
541 #define list_for_each_entry_continue(pos, head, member) \
542 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
543 prefetch(pos->member.next), &pos->member != (head); \
544 pos = list_entry(pos->member.next, typeof(*pos), member))
547 * list_for_each_entry_continue_reverse - iterate backwards from the given point
548 * @pos: the type * to use as a loop cursor.
549 * @head: the head for your list.
550 * @member: the name of the list_struct within the struct.
552 * Start to iterate over list of given type backwards, continuing after
553 * the current position.
555 #define list_for_each_entry_continue_reverse(pos, head, member) \
556 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
557 prefetch(pos->member.prev), &pos->member != (head); \
558 pos = list_entry(pos->member.prev, typeof(*pos), member))
561 * list_for_each_entry_from - iterate over list of given type from the current point
562 * @pos: the type * to use as a loop cursor.
563 * @head: the head for your list.
564 * @member: the name of the list_struct within the struct.
566 * Iterate over list of given type, continuing from current position.
568 #define list_for_each_entry_from(pos, head, member) \
569 for (; prefetch(pos->member.next), &pos->member != (head); \
570 pos = list_entry(pos->member.next, typeof(*pos), member))
573 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
574 * @pos: the type * to use as a loop cursor.
575 * @n: another type * to use as temporary storage
576 * @head: the head for your list.
577 * @member: the name of the list_struct within the struct.
579 #define list_for_each_entry_safe(pos, n, head, member) \
580 for (pos = list_entry((head)->next, typeof(*pos), member), \
581 n = list_entry(pos->member.next, typeof(*pos), member); \
582 &pos->member != (head); \
583 pos = n, n = list_entry(n->member.next, typeof(*n), member))
586 * list_for_each_entry_safe_continue
587 * @pos: the type * to use as a loop cursor.
588 * @n: another type * to use as temporary storage
589 * @head: the head for your list.
590 * @member: the name of the list_struct within the struct.
592 * Iterate over list of given type, continuing after current point,
593 * safe against removal of list entry.
595 #define list_for_each_entry_safe_continue(pos, n, head, member) \
596 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
597 n = list_entry(pos->member.next, typeof(*pos), member); \
598 &pos->member != (head); \
599 pos = n, n = list_entry(n->member.next, typeof(*n), member))
602 * list_for_each_entry_safe_from
603 * @pos: the type * to use as a loop cursor.
604 * @n: another type * to use as temporary storage
605 * @head: the head for your list.
606 * @member: the name of the list_struct within the struct.
608 * Iterate over list of given type from current point, safe against
609 * removal of list entry.
611 #define list_for_each_entry_safe_from(pos, n, head, member) \
612 for (n = list_entry(pos->member.next, typeof(*pos), member); \
613 &pos->member != (head); \
614 pos = n, n = list_entry(n->member.next, typeof(*n), member))
617 * list_for_each_entry_safe_reverse
618 * @pos: the type * to use as a loop cursor.
619 * @n: another type * to use as temporary storage
620 * @head: the head for your list.
621 * @member: the name of the list_struct within the struct.
623 * Iterate backwards over list of given type, safe against removal
624 * of list entry.
626 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
627 for (pos = list_entry((head)->prev, typeof(*pos), member), \
628 n = list_entry(pos->member.prev, typeof(*pos), member); \
629 &pos->member != (head); \
630 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
633 * list_for_each_rcu - iterate over an rcu-protected list
634 * @pos: the &struct list_head to use as a loop cursor.
635 * @head: the head for your list.
637 * This list-traversal primitive may safely run concurrently with
638 * the _rcu list-mutation primitives such as list_add_rcu()
639 * as long as the traversal is guarded by rcu_read_lock().
641 #define list_for_each_rcu(pos, head) \
642 for (pos = rcu_dereference((head)->next); \
643 prefetch(pos->next), pos != (head); \
644 pos = rcu_dereference(pos->next))
646 #define __list_for_each_rcu(pos, head) \
647 for (pos = rcu_dereference((head)->next); \
648 pos != (head); \
649 pos = rcu_dereference(pos->next))
652 * list_for_each_entry_rcu - iterate over rcu list of given type
653 * @pos: the type * to use as a loop cursor.
654 * @head: the head for your list.
655 * @member: the name of the list_struct within the struct.
657 * This list-traversal primitive may safely run concurrently with
658 * the _rcu list-mutation primitives such as list_add_rcu()
659 * as long as the traversal is guarded by rcu_read_lock().
661 #define list_for_each_entry_rcu(pos, head, member) \
662 for (pos = list_entry(rcu_dereference((head)->next), typeof(*pos), member); \
663 prefetch(pos->member.next), &pos->member != (head); \
664 pos = list_entry(rcu_dereference(pos->member.next), typeof(*pos), member))
668 * list_for_each_continue_rcu
669 * @pos: the &struct list_head to use as a loop cursor.
670 * @head: the head for your list.
672 * Iterate over an rcu-protected list, continuing after current point.
674 * This list-traversal primitive may safely run concurrently with
675 * the _rcu list-mutation primitives such as list_add_rcu()
676 * as long as the traversal is guarded by rcu_read_lock().
678 #define list_for_each_continue_rcu(pos, head) \
679 for ((pos) = rcu_dereference((pos)->next); \
680 prefetch((pos)->next), (pos) != (head); \
681 (pos) = rcu_dereference((pos)->next))
684 * Double linked lists with a single pointer list head.
685 * Mostly useful for hash tables where the two pointer list head is
686 * too wasteful.
687 * You lose the ability to access the tail in O(1).
690 struct hlist_head {
691 struct hlist_node *first;
694 struct hlist_node {
695 struct hlist_node *next, **pprev;
698 #define HLIST_HEAD_INIT { .first = NULL }
699 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
700 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
701 static inline void INIT_HLIST_NODE(struct hlist_node *h)
703 h->next = NULL;
704 h->pprev = NULL;
707 static inline int hlist_unhashed(const struct hlist_node *h)
709 return !h->pprev;
712 static inline int hlist_empty(const struct hlist_head *h)
714 return !h->first;
717 static inline void __hlist_del(struct hlist_node *n)
719 struct hlist_node *next = n->next;
720 struct hlist_node **pprev = n->pprev;
721 *pprev = next;
722 if (next)
723 next->pprev = pprev;
726 static inline void hlist_del(struct hlist_node *n)
728 __hlist_del(n);
729 n->next = LIST_POISON1;
730 n->pprev = LIST_POISON2;
734 * hlist_del_rcu - deletes entry from hash list without re-initialization
735 * @n: the element to delete from the hash list.
737 * Note: list_unhashed() on entry does not return true after this,
738 * the entry is in an undefined state. It is useful for RCU based
739 * lockfree traversal.
741 * In particular, it means that we can not poison the forward
742 * pointers that may still be used for walking the hash list.
744 * The caller must take whatever precautions are necessary
745 * (such as holding appropriate locks) to avoid racing
746 * with another list-mutation primitive, such as hlist_add_head_rcu()
747 * or hlist_del_rcu(), running on this same list.
748 * However, it is perfectly legal to run concurrently with
749 * the _rcu list-traversal primitives, such as
750 * hlist_for_each_entry().
752 static inline void hlist_del_rcu(struct hlist_node *n)
754 __hlist_del(n);
755 n->pprev = LIST_POISON2;
758 static inline void hlist_del_init(struct hlist_node *n)
760 if (!hlist_unhashed(n)) {
761 __hlist_del(n);
762 INIT_HLIST_NODE(n);
767 * hlist_replace_rcu - replace old entry by new one
768 * @old : the element to be replaced
769 * @new : the new element to insert
771 * The @old entry will be replaced with the @new entry atomically.
773 static inline void hlist_replace_rcu(struct hlist_node *old,
774 struct hlist_node *new)
776 struct hlist_node *next = old->next;
778 new->next = next;
779 new->pprev = old->pprev;
780 smp_wmb();
781 if (next)
782 new->next->pprev = &new->next;
783 *new->pprev = new;
784 old->pprev = LIST_POISON2;
787 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
789 struct hlist_node *first = h->first;
790 n->next = first;
791 if (first)
792 first->pprev = &n->next;
793 h->first = n;
794 n->pprev = &h->first;
799 * hlist_add_head_rcu
800 * @n: the element to add to the hash list.
801 * @h: the list to add to.
803 * Description:
804 * Adds the specified element to the specified hlist,
805 * while permitting racing traversals.
807 * The caller must take whatever precautions are necessary
808 * (such as holding appropriate locks) to avoid racing
809 * with another list-mutation primitive, such as hlist_add_head_rcu()
810 * or hlist_del_rcu(), running on this same list.
811 * However, it is perfectly legal to run concurrently with
812 * the _rcu list-traversal primitives, such as
813 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
814 * problems on Alpha CPUs. Regardless of the type of CPU, the
815 * list-traversal primitive must be guarded by rcu_read_lock().
817 static inline void hlist_add_head_rcu(struct hlist_node *n,
818 struct hlist_head *h)
820 struct hlist_node *first = h->first;
821 n->next = first;
822 n->pprev = &h->first;
823 smp_wmb();
824 if (first)
825 first->pprev = &n->next;
826 h->first = n;
829 /* next must be != NULL */
830 static inline void hlist_add_before(struct hlist_node *n,
831 struct hlist_node *next)
833 n->pprev = next->pprev;
834 n->next = next;
835 next->pprev = &n->next;
836 *(n->pprev) = n;
839 static inline void hlist_add_after(struct hlist_node *n,
840 struct hlist_node *next)
842 next->next = n->next;
843 n->next = next;
844 next->pprev = &n->next;
846 if(next->next)
847 next->next->pprev = &next->next;
851 * hlist_add_before_rcu
852 * @n: the new element to add to the hash list.
853 * @next: the existing element to add the new element before.
855 * Description:
856 * Adds the specified element to the specified hlist
857 * before the specified node while permitting racing traversals.
859 * The caller must take whatever precautions are necessary
860 * (such as holding appropriate locks) to avoid racing
861 * with another list-mutation primitive, such as hlist_add_head_rcu()
862 * or hlist_del_rcu(), running on this same list.
863 * However, it is perfectly legal to run concurrently with
864 * the _rcu list-traversal primitives, such as
865 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
866 * problems on Alpha CPUs.
868 static inline void hlist_add_before_rcu(struct hlist_node *n,
869 struct hlist_node *next)
871 n->pprev = next->pprev;
872 n->next = next;
873 smp_wmb();
874 next->pprev = &n->next;
875 *(n->pprev) = n;
879 * hlist_add_after_rcu
880 * @prev: the existing element to add the new element after.
881 * @n: the new element to add to the hash list.
883 * Description:
884 * Adds the specified element to the specified hlist
885 * after the specified node while permitting racing traversals.
887 * The caller must take whatever precautions are necessary
888 * (such as holding appropriate locks) to avoid racing
889 * with another list-mutation primitive, such as hlist_add_head_rcu()
890 * or hlist_del_rcu(), running on this same list.
891 * However, it is perfectly legal to run concurrently with
892 * the _rcu list-traversal primitives, such as
893 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
894 * problems on Alpha CPUs.
896 static inline void hlist_add_after_rcu(struct hlist_node *prev,
897 struct hlist_node *n)
899 n->next = prev->next;
900 n->pprev = &prev->next;
901 smp_wmb();
902 prev->next = n;
903 if (n->next)
904 n->next->pprev = &n->next;
907 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
909 #define hlist_for_each(pos, head) \
910 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
911 pos = pos->next)
913 #define hlist_for_each_safe(pos, n, head) \
914 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
915 pos = n)
918 * hlist_for_each_entry - iterate over list of given type
919 * @tpos: the type * to use as a loop cursor.
920 * @pos: the &struct hlist_node to use as a loop cursor.
921 * @head: the head for your list.
922 * @member: the name of the hlist_node within the struct.
924 #define hlist_for_each_entry(tpos, pos, head, member) \
925 for (pos = (head)->first; \
926 pos && ({ prefetch(pos->next); 1;}) && \
927 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
928 pos = pos->next)
931 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
932 * @tpos: the type * to use as a loop cursor.
933 * @pos: the &struct hlist_node to use as a loop cursor.
934 * @member: the name of the hlist_node within the struct.
936 #define hlist_for_each_entry_continue(tpos, pos, member) \
937 for (pos = (pos)->next; \
938 pos && ({ prefetch(pos->next); 1;}) && \
939 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
940 pos = pos->next)
943 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
944 * @tpos: the type * to use as a loop cursor.
945 * @pos: the &struct hlist_node to use as a loop cursor.
946 * @member: the name of the hlist_node within the struct.
948 #define hlist_for_each_entry_from(tpos, pos, member) \
949 for (; pos && ({ prefetch(pos->next); 1;}) && \
950 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
951 pos = pos->next)
954 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
955 * @tpos: the type * to use as a loop cursor.
956 * @pos: the &struct hlist_node to use as a loop cursor.
957 * @n: another &struct hlist_node to use as temporary storage
958 * @head: the head for your list.
959 * @member: the name of the hlist_node within the struct.
961 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
962 for (pos = (head)->first; \
963 pos && ({ n = pos->next; 1; }) && \
964 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
965 pos = n)
968 * hlist_for_each_entry_rcu - iterate over rcu list of given type
969 * @tpos: the type * to use as a loop cursor.
970 * @pos: the &struct hlist_node to use as a loop cursor.
971 * @head: the head for your list.
972 * @member: the name of the hlist_node within the struct.
974 * This list-traversal primitive may safely run concurrently with
975 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
976 * as long as the traversal is guarded by rcu_read_lock().
978 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
979 for (pos = rcu_dereference((head)->first); \
980 pos && ({ prefetch(pos->next); 1;}) && \
981 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
982 pos = rcu_dereference(pos->next))
984 #endif