4 ///////////////////////////////////////////////////////////////////////////////////////////////////
6 //*****************************************************************************
8 /*****************************************************************************
9 ; For MAXIM2825/6/7 Ver. 331 or more
10 ; Edited by Tiger, Sep-17-2003
11 ; revised by Ben, Sep-18-2003
18 ;channe1 01 ; 0x03 0x30142 ; 0x04 0x0b333;
19 ;channe1 02 ;0x03 0x32141 ;0x04 0x08444;
20 ;channe1 03 ;0x03 0x32143 ;0x04 0x0aeee;
21 ;channe1 04 ;0x03 0x32142 ;0x04 0x0b333;
22 ;channe1 05 ;0x03 0x31141 ;0x04 0x08444;
26 ;channe1 07 ;0x03 0x31142 ;0x04 0x0b333;
27 ;channe1 08 ;0x03 0x33141 ;0x04 0x08444;
28 ;channe1 09 ;0x03 0x33143 ;0x04 0x0aeee;
29 ;channe1 10 ;0x03 0x33142 ;0x04 0x0b333;
30 ;channe1 11 ;0x03 0x30941 ;0x04 0x08444;
31 ;channe1 12 ;0x03 0x30943 ;0x04 0x0aeee;
32 ;channe1 13 ;0x03 0x30942 ;0x04 0x0b333;
37 0x08 0x05100; 100 Hz DC
38 ;0x08 0x05900; 30 KHz DC
42 0x0c 0x0c900 // 0x0ca00 (lager power 9db than 0x0c000), 0x0c000
43 *****************************************************************************/
45 u32 max2825_rf_data
[] =
59 (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
62 u32 max2825_channel_data_24
[][3] =
64 {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
65 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
66 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
67 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
68 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
69 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
70 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
71 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
72 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
73 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
74 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
75 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
76 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
77 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
80 u32 max2825_power_data_24
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
82 /****************************************************************************/
84 u32 max2827_rf_data
[] =
98 (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
101 u32 max2827_channel_data_24
[][3] =
103 {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
104 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
105 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
106 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
107 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
108 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
109 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
110 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
111 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
112 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
113 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
114 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
115 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
116 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
119 u32 max2827_channel_data_50
[][3] =
121 {(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 36
122 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 40
123 {(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6}, // channel 44
124 {(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x2A9A6}, // channel 48
125 {(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x2A9A6}, // channel 52
126 {(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 56
127 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 60
128 {(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6} // channel 64
131 u32 max2827_power_data_24
[] = {(0x0C<<18)|0x0C000, (0x0C<<18)|0x0D600, (0x0C<<18)|0x0C100};
132 u32 max2827_power_data_50
[] = {(0x0C<<18)|0x0C400, (0x0C<<18)|0x0D500, (0x0C<<18)|0x0C300};
134 /****************************************************************************/
136 u32 max2828_rf_data
[] =
150 (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
153 u32 max2828_channel_data_24
[][3] =
155 {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
156 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
157 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
158 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
159 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
160 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
161 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
162 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
163 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
164 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
165 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
166 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
167 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
168 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
171 u32 max2828_channel_data_50
[][3] =
173 {(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 36
174 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 40
175 {(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channel 44
176 {(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x289A6}, // channel 48
177 {(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x289A6}, // channel 52
178 {(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 56
179 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 60
180 {(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6} // channel 64
183 u32 max2828_power_data_24
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
184 u32 max2828_power_data_50
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
186 /****************************************************************************/
189 u32 max2829_rf_data
[] =
203 (0x0C<<18)|0x0F300 //TXVGA=51, (MAX-6 dB)
206 u32 max2829_channel_data_24
[][3] =
208 {(3<<18)|0x30142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 01 (2412MHz)
209 {(3<<18)|0x32141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 02 (2417MHz)
210 {(3<<18)|0x32143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 03 (2422MHz)
211 {(3<<18)|0x32142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 04 (2427MHz)
212 {(3<<18)|0x31141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 05 (2432MHz)
213 {(3<<18)|0x31143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 06 (2437MHz)
214 {(3<<18)|0x31142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 07 (2442MHz)
215 {(3<<18)|0x33141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 08 (2447MHz)
216 {(3<<18)|0x33143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 09 (2452MHz)
217 {(3<<18)|0x33142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 10 (2457MHz)
218 {(3<<18)|0x30941, (4<<18)|0x08444, (5<<18)|0x289C6}, // 11 (2462MHz)
219 {(3<<18)|0x30943, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 12 (2467MHz)
220 {(3<<18)|0x30942, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 13 (2472MHz)
221 {(3<<18)|0x32941, (4<<18)|0x09999, (5<<18)|0x289C6}, // 14 (2484MHz) hh-modify
224 u32 max2829_channel_data_50
[][4] =
226 {36, (3<<18)|0x33cc3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 36 (5.180GHz)
227 {40, (3<<18)|0x302c0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 40 (5.200GHz)
228 {44, (3<<18)|0x302c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 44 (5.220GHz)
229 {48, (3<<18)|0x322c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 48 (5.240GHz)
230 {52, (3<<18)|0x312c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 52 (5.260GHz)
231 {56, (3<<18)|0x332c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 56 (5.280GHz)
232 {60, (3<<18)|0x30ac0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 60 (5.300GHz)
233 {64, (3<<18)|0x30ac2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 64 (5.320GHz)
235 {100, (3<<18)|0x30ec0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 100 (5.500GHz)
236 {104, (3<<18)|0x30ec2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 104 (5.520GHz)
237 {108, (3<<18)|0x32ec1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 108 (5.540GHz)
238 {112, (3<<18)|0x31ec1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 112 (5.560GHz)
239 {116, (3<<18)|0x33ec3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 116 (5.580GHz)
240 {120, (3<<18)|0x301c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 120 (5.600GHz)
241 {124, (3<<18)|0x301c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 124 (5.620GHz)
242 {128, (3<<18)|0x321c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 128 (5.640GHz)
243 {132, (3<<18)|0x311c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 132 (5.660GHz)
244 {136, (3<<18)|0x331c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 136 (5.680GHz)
245 {140, (3<<18)|0x309c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 140 (5.700GHz)
247 {149, (3<<18)|0x329c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 149 (5.745GHz)
248 {153, (3<<18)|0x319c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 153 (5.765GHz)
249 {157, (3<<18)|0x339c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 157 (5.785GHz)
250 {161, (3<<18)|0x305c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 161 (5.805GHz)
253 { 184, (3<<18)|0x308c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 184 (4.920GHz)
254 { 188, (3<<18)|0x328c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 188 (4.940GHz)
255 { 192, (3<<18)|0x318c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 192 (4.960GHz)
256 { 196, (3<<18)|0x338c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 196 (4.980GHz)
257 { 8, (3<<18)|0x324c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 8 (5.040GHz)
258 { 12, (3<<18)|0x314c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 12 (5.060GHz)
259 { 16, (3<<18)|0x334c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 16 (5.080GHz)
260 { 34, (3<<18)|0x31cc2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 34 (5.170GHz)
261 { 38, (3<<18)|0x33cc1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 38 (5.190GHz)
262 { 42, (3<<18)|0x302c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 42 (5.210GHz)
263 { 46, (3<<18)|0x322c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 46 (5.230GHz)
266 /*****************************************************************************
267 ; For MAXIM2825/6/7 Ver. 317 or less
268 ; Edited by Tiger, Sep-17-2003 for 2.4Ghz channels
269 ; Updated by Tiger, Sep-22-2003 for 5.0Ghz channels
270 ; Corrected by Tiger, Sep-23-2003, for 0x03 and 0x04 of 5.0Ghz channels
277 ;channe1 01 (2.412GHz); 0x03 0x30143 ;0x04 0x0accc
278 ;channe1 02 (2.417GHz); 0x03 0x32140 ;0x04 0x09111
279 ;channe1 03 (2.422GHz); 0x03 0x32142 ;0x04 0x0bbbb
280 ;channe1 04 (2.427GHz); 0x03 0x32143 ;0x04 0x0accc
281 ;channe1 05 (2.432GHz); 0x03 0x31140 ;0x04 0x09111
282 ;channe1 06 (2.437GHz); 0x03 0x31142 ;0x04 0x0bbbb
283 ;channe1 07 (2.442GHz); 0x03 0x31143 ;0x04 0x0accc
284 ;channe1 08 (2.447GHz); 0x03 0x33140 ;0x04 0x09111
285 ;channe1 09 (2.452GHz); 0x03 0x33142 ;0x04 0x0bbbb
286 ;channe1 10 (2.457GHz); 0x03 0x33143 ;0x04 0x0accc
287 ;channe1 11 (2.462GHz); 0x03 0x30940 ;0x04 0x09111
288 ;channe1 12 (2.467GHz); 0x03 0x30942 ;0x04 0x0bbbb
289 ;channe1 13 (2.472GHz); 0x03 0x30943 ;0x04 0x0accc
292 ;channel 36 (5.180GHz); 0x03 0x33cc0 ;0x04 0x0b333
293 ;channel 40 (5.200GHz); 0x03 0x302c0 ;0x04 0x08000
294 ;channel 44 (5.220GHz); 0x03 0x302c2 ;0x04 0x0b333
295 ;channel 48 (5.240GHz); 0x03 0x322c1 ;0x04 0x09999
296 ;channel 52 (5.260GHz); 0x03 0x312c1 ;0x04 0x0a666
297 ;channel 56 (5.280GHz); 0x03 0x332c3 ;0x04 0x08ccc
298 ;channel 60 (5.300GHz); 0x03 0x30ac0 ;0x04 0x08000
299 ;channel 64 (5.320GHz); 0x03 0x30ac2 ;0x04 0x08333
301 ;2.4GHz band ;0x05 0x28986;
312 *****************************************************************************/
313 u32 maxim_317_rf_data
[] =
330 u32 maxim_317_channel_data_24
[][3] =
332 {(0x03<<18)|0x30143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 01
333 {(0x03<<18)|0x32140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 02
334 {(0x03<<18)|0x32142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 03
335 {(0x03<<18)|0x32143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 04
336 {(0x03<<18)|0x31140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 05
337 {(0x03<<18)|0x31142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 06
338 {(0x03<<18)|0x31143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 07
339 {(0x03<<18)|0x33140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 08
340 {(0x03<<18)|0x33142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 09
341 {(0x03<<18)|0x33143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 10
342 {(0x03<<18)|0x30940, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 11
343 {(0x03<<18)|0x30942, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 12
344 {(0x03<<18)|0x30943, (0x04<<18)|0x0accc, (0x05<<18)|0x28986} // channe1 13
347 u32 maxim_317_channel_data_50
[][3] =
349 {(0x03<<18)|0x33cc0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a986}, // channel 36
350 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2a986}, // channel 40
351 {(0x03<<18)|0x302c3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a986}, // channel 44
352 {(0x03<<18)|0x322c1, (0x04<<18)|0x09666, (0x05<<18)|0x2a986}, // channel 48
353 {(0x03<<18)|0x312c2, (0x04<<18)|0x09999, (0x05<<18)|0x2a986}, // channel 52
354 {(0x03<<18)|0x332c0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a99e}, // channel 56
355 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2a99e}, // channel 60
356 {(0x03<<18)|0x30ac3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a99e} // channel 64
359 u32 maxim_317_power_data_24
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
360 u32 maxim_317_power_data_50
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
362 /*****************************************************************************
363 ;;AL2230 MP (Mass Production Version)
364 ;;RF Registers Setting for Airoha AL2230 silicon after June 1st, 2004
365 ;;Updated by Tiger Huang (June 1st, 2004)
366 ;;20-bit length and LSB first
368 ;;Ch01 (2412MHz) ;0x00 0x09EFC ;0x01 0x8CCCC;
369 ;;Ch02 (2417MHz) ;0x00 0x09EFC ;0x01 0x8CCCD;
370 ;;Ch03 (2422MHz) ;0x00 0x09E7C ;0x01 0x8CCCC;
371 ;;Ch04 (2427MHz) ;0x00 0x09E7C ;0x01 0x8CCCD;
372 ;;Ch05 (2432MHz) ;0x00 0x05EFC ;0x01 0x8CCCC;
373 ;;Ch06 (2437MHz) ;0x00 0x05EFC ;0x01 0x8CCCD;
374 ;;Ch07 (2442MHz) ;0x00 0x05E7C ;0x01 0x8CCCC;
375 ;;Ch08 (2447MHz) ;0x00 0x05E7C ;0x01 0x8CCCD;
376 ;;Ch09 (2452MHz) ;0x00 0x0DEFC ;0x01 0x8CCCC;
377 ;;Ch10 (2457MHz) ;0x00 0x0DEFC ;0x01 0x8CCCD;
378 ;;Ch11 (2462MHz) ;0x00 0x0DE7C ;0x01 0x8CCCC;
379 ;;Ch12 (2467MHz) ;0x00 0x0DE7C ;0x01 0x8CCCD;
380 ;;Ch13 (2472MHz) ;0x00 0x03EFC ;0x01 0x8CCCC;
381 ;;Ch14 (2484Mhz) ;0x00 0x03E7C ;0x01 0x86666;
383 0x02 0x401D8; RXDCOC BW 100Hz for RXHP low
384 ;;0x02 0x481DC; RXDCOC BW 30Khz for RXHP low
399 ;RF Calibration for Airoha AL2230
400 ;Edit by Ben Chang (01/30/04)
401 ;Updated by Tiger Huang (03/03/04)
402 0x0f 0xf00a0 ; Initial Setting
403 0x0f 0xf00b0 ; Activate TX DCC
404 0x0f 0xf02a0 ; Activate Phase Calibration
405 0x0f 0xf00e0 ; Activate Filter RC Calibration
406 0x0f 0xf00a0 ; Restore Initial Setting
407 *****************************************************************************/
409 u32 al2230_rf_data
[] =
413 (0x02<<20)|0x40058,// 20060627 Anson 0x401D8,
415 (0x04<<20)|0x24100,// 20060627 Anson 0x23800,
416 (0x05<<20)|0xA3B2F,// 20060627 Anson 0xA3B72
418 (0x07<<20)|0xE3628,// 20060627 Anson 0xE1688,
420 (0x09<<20)|0x9DC02,// 20060627 Anosn 0x97602,//0x99E02, //0x9AE02
421 (0x0A<<20)|0x5ddb0, // 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth
425 (0x0F<<20)|0xF01A0 // 20060627 Anson 0xF00A0
428 u32 al2230s_rf_data
[] =
432 (0x02<<20)|0x40058,// 20060419 0x401D8,
434 (0x04<<20)|0x24100,// 20060419 0x23800,
435 (0x05<<20)|0xA3B2F,// 20060419 0xA3B72,
437 (0x07<<20)|0xE3628,// 20060419 0xE1688,
439 (0x09<<20)|0x9DC02,// 20060419 0x97602,//0x99E02, //0x9AE02
440 (0x0A<<20)|0x5DDB0,// 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth
444 (0x0F<<20)|0xF01A0 // 20060419 0xF00A0
447 u32 al2230_channel_data_24
[][2] =
449 {(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCC}, // channe1 01
450 {(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCD}, // channe1 02
451 {(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCC}, // channe1 03
452 {(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCD}, // channe1 04
453 {(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCC}, // channe1 05
454 {(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCD}, // channe1 06
455 {(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCC}, // channe1 07
456 {(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCD}, // channe1 08
457 {(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCC}, // channe1 09
458 {(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCD}, // channe1 10
459 {(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCC}, // channe1 11
460 {(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCD}, // channe1 12
461 {(0x00<<20)|0x03EFC, (0x01<<20)|0x8CCCC}, // channe1 13
462 {(0x00<<20)|0x03E7C, (0x01<<20)|0x86666} // channe1 14
465 // Current setting. u32 airoha_power_data_24[] = {(0x09<<20)|0x90202, (0x09<<20)|0x96602, (0x09<<20)|0x97602};
466 #define AIROHA_TXVGA_LOW_INDEX 31 // Index for 0x90202
467 #define AIROHA_TXVGA_MIDDLE_INDEX 12 // Index for 0x96602
468 #define AIROHA_TXVGA_HIGH_INDEX 8 // Index for 0x97602 1.0.24.0 1.0.28.0
470 u32 airoha_power_data_24[] =
472 0x9FE02, // Max - 0 dB
473 0x9BE02, // Max - 1 dB
474 0x9DE02, // Max - 2 dB
475 0x99E02, // Max - 3 dB
476 0x9EE02, // Max - 4 dB
477 0x9AE02, // Max - 5 dB
478 0x9CE02, // Max - 6 dB
479 0x98E02, // Max - 7 dB
480 0x97602, // Max - 8 dB
481 0x93602, // Max - 9 dB
482 0x95602, // Max - 10 dB
483 0x91602, // Max - 11 dB
484 0x96602, // Max - 12 dB
485 0x92602, // Max - 13 dB
486 0x94602, // Max - 14 dB
487 0x90602, // Max - 15 dB
488 0x97A02, // Max - 16 dB
489 0x93A02, // Max - 17 dB
490 0x95A02, // Max - 18 dB
491 0x91A02, // Max - 19 dB
492 0x96A02, // Max - 20 dB
493 0x92A02, // Max - 21 dB
494 0x94A02, // Max - 22 dB
495 0x90A02, // Max - 23 dB
496 0x97202, // Max - 24 dB
497 0x93202, // Max - 25 dB
498 0x95202, // Max - 26 dB
499 0x91202, // Max - 27 dB
500 0x96202, // Max - 28 dB
501 0x92202, // Max - 29 dB
502 0x94202, // Max - 30 dB
503 0x90202 // Max - 31 dB
507 // 20040927 1.1.69.1000 ybjiang
509 u32 al2230_txvga_data
[][2] =
554 //--------------------------------
555 // For Airoha AL7230, 2.4Ghz band
556 // Edit by Tiger, (March, 9, 2005)
559 //channel independent registers:
560 u32 al7230_rf_data_24
[] =
580 u32 al7230_channel_data_24
[][2] =
582 {(0x00<<24)|0x003790, (0x01<<24)|0x133331}, // channe1 01
583 {(0x00<<24)|0x003790, (0x01<<24)|0x1B3331}, // channe1 02
584 {(0x00<<24)|0x003790, (0x01<<24)|0x033331}, // channe1 03
585 {(0x00<<24)|0x003790, (0x01<<24)|0x0B3331}, // channe1 04
586 {(0x00<<24)|0x0037A0, (0x01<<24)|0x133331}, // channe1 05
587 {(0x00<<24)|0x0037A0, (0x01<<24)|0x1B3331}, // channe1 06
588 {(0x00<<24)|0x0037A0, (0x01<<24)|0x033331}, // channe1 07
589 {(0x00<<24)|0x0037A0, (0x01<<24)|0x0B3331}, // channe1 08
590 {(0x00<<24)|0x0037B0, (0x01<<24)|0x133331}, // channe1 09
591 {(0x00<<24)|0x0037B0, (0x01<<24)|0x1B3331}, // channe1 10
592 {(0x00<<24)|0x0037B0, (0x01<<24)|0x033331}, // channe1 11
593 {(0x00<<24)|0x0037B0, (0x01<<24)|0x0B3331}, // channe1 12
594 {(0x00<<24)|0x0037C0, (0x01<<24)|0x133331}, // channe1 13
595 {(0x00<<24)|0x0037C0, (0x01<<24)|0x066661} // channel 14
598 //channel independent registers:
599 u32 al7230_rf_data_50
[] =
616 (0x0F<<24)|0x12BACF //5Ghz default state
619 u32 al7230_channel_data_5
[][4] =
621 //channel dependent registers: 0x00, 0x01 and 0x04
623 {184, (0x00<<24)|0x0FF520, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 184
624 {188, (0x00<<24)|0x0FF520, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 188
625 {192, (0x00<<24)|0x0FF530, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 192
626 {196, (0x00<<24)|0x0FF530, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 196
627 {8, (0x00<<24)|0x0FF540, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 008
628 {12, (0x00<<24)|0x0FF540, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 012
629 {16, (0x00<<24)|0x0FF550, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 016
630 {34, (0x00<<24)|0x0FF560, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 034
631 {38, (0x00<<24)|0x0FF570, (0x01<<24)|0x100001, (0x04<<24)|0x77F784}, // channel 038
632 {42, (0x00<<24)|0x0FF570, (0x01<<24)|0x1AAAA1, (0x04<<24)|0x77F784}, // channel 042
633 {46, (0x00<<24)|0x0FF570, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 046
635 {36, (0x00<<24)|0x0FF560, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 036
636 {40, (0x00<<24)|0x0FF570, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 040
637 {44, (0x00<<24)|0x0FF570, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 044
638 {48, (0x00<<24)|0x0FF570, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 048
639 {52, (0x00<<24)|0x0FF580, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 052
640 {56, (0x00<<24)|0x0FF580, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 056
641 {60, (0x00<<24)|0x0FF580, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 060
642 {64, (0x00<<24)|0x0FF590, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 064
643 {100, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 100
644 {104, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 104
645 {108, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 108
646 {112, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 112
647 {116, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 116
648 {120, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 120
649 {124, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 124
650 {128, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 128
651 {132, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 132
652 {136, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 136
653 {140, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 140
654 {149, (0x00<<24)|0x0FF600, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 149
655 {153, (0x00<<24)|0x0FF600, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784}, // channel 153
656 {157, (0x00<<24)|0x0FF600, (0x01<<24)|0x0D5551, (0x04<<24)|0x77F784}, // channel 157
657 {161, (0x00<<24)|0x0FF610, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 161
658 {165, (0x00<<24)|0x0FF610, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784} // channel 165
661 //; RF Calibration <=== Register 0x0F
662 //0x0F 0x1ABA8F; start from 2.4Ghz default state
663 //0x0F 0x9ABA8F; TXDC compensation
664 //0x0F 0x3ABA8F; RXFIL adjustment
665 //0x0F 0x1ABA8F; restore 2.4Ghz default state
667 //;TXVGA Mapping Table <=== Register 0x0B
668 u32 al7230_txvga_data
[][2] =
670 {0x08040B, 0}, //TXVGA=0;
671 {0x08041B, 1}, //TXVGA=1;
672 {0x08042B, 2}, //TXVGA=2;
673 {0x08043B, 3}, //TXVGA=3;
674 {0x08044B, 4}, //TXVGA=4;
675 {0x08045B, 5}, //TXVGA=5;
676 {0x08046B, 6}, //TXVGA=6;
677 {0x08047B, 7}, //TXVGA=7;
678 {0x08048B, 8}, //TXVGA=8;
679 {0x08049B, 9}, //TXVGA=9;
680 {0x0804AB, 10}, //TXVGA=10;
681 {0x0804BB, 11}, //TXVGA=11;
682 {0x0804CB, 12}, //TXVGA=12;
683 {0x0804DB, 13}, //TXVGA=13;
684 {0x0804EB, 14}, //TXVGA=14;
685 {0x0804FB, 15}, //TXVGA=15;
686 {0x08050B, 16}, //TXVGA=16;
687 {0x08051B, 17}, //TXVGA=17;
688 {0x08052B, 18}, //TXVGA=18;
689 {0x08053B, 19}, //TXVGA=19;
690 {0x08054B, 20}, //TXVGA=20;
691 {0x08055B, 21}, //TXVGA=21;
692 {0x08056B, 22}, //TXVGA=22;
693 {0x08057B, 23}, //TXVGA=23;
694 {0x08058B, 24}, //TXVGA=24;
695 {0x08059B, 25}, //TXVGA=25;
696 {0x0805AB, 26}, //TXVGA=26;
697 {0x0805BB, 27}, //TXVGA=27;
698 {0x0805CB, 28}, //TXVGA=28;
699 {0x0805DB, 29}, //TXVGA=29;
700 {0x0805EB, 30}, //TXVGA=30;
701 {0x0805FB, 31}, //TXVGA=31;
702 {0x08060B, 32}, //TXVGA=32;
703 {0x08061B, 33}, //TXVGA=33;
704 {0x08062B, 34}, //TXVGA=34;
705 {0x08063B, 35}, //TXVGA=35;
706 {0x08064B, 36}, //TXVGA=36;
707 {0x08065B, 37}, //TXVGA=37;
708 {0x08066B, 38}, //TXVGA=38;
709 {0x08067B, 39}, //TXVGA=39;
710 {0x08068B, 40}, //TXVGA=40;
711 {0x08069B, 41}, //TXVGA=41;
712 {0x0806AB, 42}, //TXVGA=42;
713 {0x0806BB, 43}, //TXVGA=43;
714 {0x0806CB, 44}, //TXVGA=44;
715 {0x0806DB, 45}, //TXVGA=45;
716 {0x0806EB, 46}, //TXVGA=46;
717 {0x0806FB, 47}, //TXVGA=47;
718 {0x08070B, 48}, //TXVGA=48;
719 {0x08071B, 49}, //TXVGA=49;
720 {0x08072B, 50}, //TXVGA=50;
721 {0x08073B, 51}, //TXVGA=51;
722 {0x08074B, 52}, //TXVGA=52;
723 {0x08075B, 53}, //TXVGA=53;
724 {0x08076B, 54}, //TXVGA=54;
725 {0x08077B, 55}, //TXVGA=55;
726 {0x08078B, 56}, //TXVGA=56;
727 {0x08079B, 57}, //TXVGA=57;
728 {0x0807AB, 58}, //TXVGA=58;
729 {0x0807BB, 59}, //TXVGA=59;
730 {0x0807CB, 60}, //TXVGA=60;
731 {0x0807DB, 61}, //TXVGA=61;
732 {0x0807EB, 62}, //TXVGA=62;
733 {0x0807FB, 63}, //TXVGA=63;
735 //--------------------------------
738 //; W89RF242 RFIC SPI programming initial data
739 //; Winbond WLAN 11g RFIC BB-SPI register -- version FA5976A rev 1.3b
740 //; Update Date: Ocotber 3, 2005 by PP10 Hsiang-Te Ho
742 //; Version 1.3b revision items: (Oct. 1, 2005 by HTHo) for FA5976A
743 u32 w89rf242_rf_data
[] =
745 (0x00<<24)|0xF86100, // 20060721 0xF86100, //; 3E184; MODA (0x00) -- Normal mode ; calibration off
746 (0x01<<24)|0xEFFFC2, //; 3BFFF; MODB (0x01) -- turn off RSSI, and other circuits are turned on
747 (0x02<<24)|0x102504, //; 04094; FSET (0x02) -- default 20MHz crystal ; Icmp=1.5mA
748 (0x03<<24)|0x026286, //; 0098A; FCHN (0x03) -- default CH7, 2442MHz
749 (0x04<<24)|0x000208, // 20060612.1.a 0x0002C8, // 20050818 // 20050816 0x000388
750 //; 02008; FCAL (0x04) -- XTAL Freq Trim=001000 (socket board#1); FA5976AYG_v1.3C
751 (0x05<<24)|0x24C60A, // 20060612.1.a 0x24C58A, // 941003 0x24C48A, // 20050818.2 0x24848A, // 20050818 // 20050816 0x24C48A
752 //; 09316; GANA (0x05) -- TX VGA default (TXVGA=0x18(12)) & TXGPK=110 ; FA5976A_1.3D
753 (0x06<<24)|0x3432CC, // 941003 0x26C34C, // 20050818 0x06B40C
754 //; 0D0CB; GANB (0x06) -- RXDC(DC offset) on; LNA=11; RXVGA=001011(11) ; RXFLSW=11(010001); RXGPK=00; RXGCF=00; -50dBm input
755 (0x07<<24)|0x0C68CE, // 20050818.2 0x0C66CE, // 20050818 // 20050816 0x0C68CE
756 //; 031A3; FILT (0x07) -- TX/RX filter with auto-tuning; TFLBW=011; RFLBW=100
757 (0x08<<24)|0x100010, //; 04000; TCAL (0x08) -- //for LO
758 (0x09<<24)|0x004012, // 20060612.1.a 0x6E4012, // 0x004012,
759 //; 1B900; RCALA (0x09) -- FASTS=11; HPDE=01 (100nsec); SEHP=1 (select B0 pin=RXHP); RXHP=1 (Turn on RXHP function)(FA5976A_1.3C)
760 (0x0A<<24)|0x704014, //; 1C100; RCALB (0x0A)
761 (0x0B<<24)|0x18BDD6, // 941003 0x1805D6, // 20050818.2 0x1801D6, // 20050818 // 20050816 0x1805D6
762 //; 062F7; IQCAL (0x0B) -- Turn on LO phase tuner=0111 & RX-LO phase = 0111; FA5976A_1.3B (2005/09/29)
763 (0x0C<<24)|0x575558, // 20050818.2 0x555558, // 20050818 // 20050816 0x575558
764 //; 15D55 ; IBSA (0x0C) -- IFPre =11 ; TC5376A_v1.3A for corner
765 (0x0D<<24)|0x55545A, // 20060612.1.a 0x55555A,
766 //; 15555 ; IBSB (0x0D)
767 (0x0E<<24)|0x5557DC, // 20060612.1.a 0x55555C, // 941003 0x5557DC,
768 //; 1555F ; IBSC (0x0E) -- IRLNA & IRLNB (PTAT & Const current)=01/01; FA5976B_1.3F (2005/11/25)
769 (0x10<<24)|0x000C20, // 941003 0x000020, // 20050818
770 //; 00030 ; TMODA (0x10) -- LNA_gain_step=0011 ; LNA=15/16dB
771 (0x11<<24)|0x0C0022, // 941003 0x030022 // 20050818.2 0x030022 // 20050818 // 20050816 0x0C0022
772 //; 03000 ; TMODB (0x11) -- Turn ON RX-Q path Test Switch; To improve IQ path group delay (FA5976A_1.3C)
773 (0x12<<24)|0x000024 // 20060612.1.a 0x001824 // 941003 add
774 //; TMODC (0x12) -- Turn OFF Tempearure sensor
777 u32 w89rf242_channel_data_24
[][2] =
779 {(0x03<<24)|0x025B06, (0x04<<24)|0x080408}, // channe1 01
780 {(0x03<<24)|0x025C46, (0x04<<24)|0x080408}, // channe1 02
781 {(0x03<<24)|0x025D86, (0x04<<24)|0x080408}, // channe1 03
782 {(0x03<<24)|0x025EC6, (0x04<<24)|0x080408}, // channe1 04
783 {(0x03<<24)|0x026006, (0x04<<24)|0x080408}, // channe1 05
784 {(0x03<<24)|0x026146, (0x04<<24)|0x080408}, // channe1 06
785 {(0x03<<24)|0x026286, (0x04<<24)|0x080408}, // channe1 07
786 {(0x03<<24)|0x0263C6, (0x04<<24)|0x080408}, // channe1 08
787 {(0x03<<24)|0x026506, (0x04<<24)|0x080408}, // channe1 09
788 {(0x03<<24)|0x026646, (0x04<<24)|0x080408}, // channe1 10
789 {(0x03<<24)|0x026786, (0x04<<24)|0x080408}, // channe1 11
790 {(0x03<<24)|0x0268C6, (0x04<<24)|0x080408}, // channe1 12
791 {(0x03<<24)|0x026A06, (0x04<<24)|0x080408}, // channe1 13
792 {(0x03<<24)|0x026D06, (0x04<<24)|0x080408} // channe1 14
795 u32 w89rf242_power_data_24
[] = {(0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A};
797 // 20060315.6 Enlarge for new scale
798 // 20060316.6 20060619.2.a add mapping array
799 u32 w89rf242_txvga_old_mapping
[][2] =
801 {0, 0} , // New <-> Old
825 // 20060619.3 modify from Bruce's mail
826 u32 w89rf242_txvga_data
[][5] =
829 { (0x05<<24)|0x24C00A, 0, 0x00292315, 0x0800FEFF, 0x52523131 },// ; min gain
830 { (0x05<<24)|0x24C80A, 1, 0x00292315, 0x0800FEFF, 0x52523131 },
831 { (0x05<<24)|0x24C04A, 2, 0x00292315, 0x0800FEFF, 0x52523131 },// (default) +14dBm (ANT)
832 { (0x05<<24)|0x24C84A, 3, 0x00292315, 0x0800FEFF, 0x52523131 },
835 { (0x05<<24)|0x24C40A, 4, 0x00292315, 0x0800FEFF, 0x60603838 },
836 { (0x05<<24)|0x24C40A, 5, 0x00262114, 0x0700FEFF, 0x65653B3B },
839 { (0x05<<24)|0x24C44A, 6, 0x00241F13, 0x0700FFFF, 0x58583333 },
840 { (0x05<<24)|0x24C44A, 7, 0x00292315, 0x0800FEFF, 0x5E5E3737 },
843 { (0x05<<24)|0x24C48A, 8, 0x00262114, 0x0700FEFF, 0x53533030 },
844 { (0x05<<24)|0x24C48A, 9, 0x00241F13, 0x0700FFFF, 0x59593434 },
847 { (0x05<<24)|0x24C4CA, 10, 0x00292315, 0x0800FEFF, 0x52523030 },
848 { (0x05<<24)|0x24C4CA, 11, 0x00262114, 0x0700FEFF, 0x56563232 },
851 { (0x05<<24)|0x24C50A, 12, 0x00292315, 0x0800FEFF, 0x54543131 },
852 { (0x05<<24)|0x24C50A, 13, 0x00262114, 0x0700FEFF, 0x58583434 },
855 { (0x05<<24)|0x24C54A, 14, 0x00292315, 0x0800FEFF, 0x54543131 },
856 { (0x05<<24)|0x24C54A, 15, 0x00262114, 0x0700FEFF, 0x59593434 },
859 { (0x05<<24)|0x24C58A, 16, 0x00292315, 0x0800FEFF, 0x55553131 },
860 { (0x05<<24)|0x24C58A, 17, 0x00292315, 0x0800FEFF, 0x5B5B3535 },
863 { (0x05<<24)|0x24C5CA, 18, 0x00262114, 0x0700FEFF, 0x51512F2F },
864 { (0x05<<24)|0x24C5CA, 19, 0x00241F13, 0x0700FFFF, 0x55553131 },
867 { (0x05<<24)|0x24C60A, 20, 0x00292315, 0x0800FEFF, 0x4F4F2E2E },
868 { (0x05<<24)|0x24C60A, 21, 0x00262114, 0x0700FEFF, 0x53533030 },
871 { (0x05<<24)|0x24C64A, 22, 0x00292315, 0x0800FEFF, 0x4E4E2D2D },
872 { (0x05<<24)|0x24C64A, 23, 0x00262114, 0x0700FEFF, 0x53533030 },
875 { (0x05<<24)|0x24C68A, 24, 0x00292315, 0x0800FEFF, 0x50502E2E },
876 { (0x05<<24)|0x24C68A, 25, 0x00262114, 0x0700FEFF, 0x55553131 },
879 { (0x05<<24)|0x24C6CA, 26, 0x00262114, 0x0700FEFF, 0x53533030 },
880 { (0x05<<24)|0x24C6CA, 27, 0x00292315, 0x0800FEFF, 0x5A5A3434 },
883 { (0x05<<24)|0x24C70A, 28, 0x00292315, 0x0800FEFF, 0x55553131 },
884 { (0x05<<24)|0x24C70A, 29, 0x00292315, 0x0800FEFF, 0x5D5D3636 },
887 { (0x05<<24)|0x24C74A, 30, 0x00292315, 0x0800FEFF, 0x5F5F3737 },
888 { (0x05<<24)|0x24C74A, 31, 0x00262114, 0x0700FEFF, 0x65653B3B },
891 { (0x05<<24)|0x24C78A, 32, 0x00292315, 0x0800FEFF, 0x66663B3B },
892 { (0x05<<24)|0x24C78A, 33, 0x00262114, 0x0700FEFF, 0x70704141 },
895 { (0x05<<24)|0x24C7CA, 34, 0x00292315, 0x0800FEFF, 0x72724242 }
898 ///////////////////////////////////////////////////////////////////////////////////////////////////
899 ///////////////////////////////////////////////////////////////////////////////////////////////////
900 ///////////////////////////////////////////////////////////////////////////////////////////////////
904 //=============================================================================================================
905 // Uxx_ReadEthernetAddress --
907 // Routine Description:
908 // Reads in the Ethernet address from the IC.
911 // pHwData - The pHwData structure
915 // The address is stored in EthernetIDAddr.
916 //=============================================================================================================
918 Uxx_ReadEthernetAddress( phw_data_t pHwData
)
922 // Reading Ethernet address from EEPROM and set into hardware due to MAC address maybe change.
923 // Only unplug and plug again can make hardware read EEPROM again. 20060727
924 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08000000 ); // Start EEPROM access + Read + address(0x0d)
925 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
926 *(u16
*)pHwData
->PermanentMacAddress
= cpu_to_le16((u16
)ltmp
); //20060926 anson's endian
927 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08010000 ); // Start EEPROM access + Read + address(0x0d)
928 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
929 *(u16
*)(pHwData
->PermanentMacAddress
+ 2) = cpu_to_le16((u16
)ltmp
); //20060926 anson's endian
930 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08020000 ); // Start EEPROM access + Read + address(0x0d)
931 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
932 *(u16
*)(pHwData
->PermanentMacAddress
+ 4) = cpu_to_le16((u16
)ltmp
); //20060926 anson's endian
933 *(u16
*)(pHwData
->PermanentMacAddress
+ 6) = 0;
934 Wb35Reg_WriteSync( pHwData
, 0x03e8, cpu_to_le32(*(u32
*)pHwData
->PermanentMacAddress
) ); //20060926 anson's endian
935 Wb35Reg_WriteSync( pHwData
, 0x03ec, cpu_to_le32(*(u32
*)(pHwData
->PermanentMacAddress
+4)) ); //20060926 anson's endian
939 //===============================================================================================================
940 // CardGetMulticastBit --
942 // For a given multicast address, returns the byte and bit in the card multicast registers that it hashes to.
943 // Calls CardComputeCrc() to determine the CRC value.
945 // Address - the address
946 // Byte - the byte that it hashes to
947 // Value - will have a 1 in the relevant bit
950 //==============================================================================================================
951 void CardGetMulticastBit( u8 Address
[ETH_LENGTH_OF_ADDRESS
],
952 u8
*Byte
, u8
*Value
)
957 // First compute the CRC.
958 Crc
= CardComputeCrc(Address
, ETH_LENGTH_OF_ADDRESS
);
960 // The computed CRC is bit0~31 from left to right
961 //At first we should do right shift 25bits, and read 7bits by using '&', 2^7=128
962 BitNumber
= (u32
) ((Crc
>> 26) & 0x3f);
964 *Byte
= (u8
) (BitNumber
>> 3);// 900514 original (BitNumber / 8)
965 *Value
= (u8
) ((u8
)1 << (BitNumber
% 8));
968 void Uxx_power_on_procedure( phw_data_t pHwData
)
972 if( pHwData
->phy_type
<= RF_MAXIM_V1
)
973 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xffffff38 );
976 Wb35Reg_WriteSync( pHwData
, 0x03f4, 0xFF5807FF );// 20060721 For NEW IC 0xFF5807FF
978 // 20060511.1 Fix the following 4 steps for Rx of RF 2230 initial fail
979 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0x80 );// regulator on only
980 msleep(10); // Modify 20051221.1.b
981 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xb8 );// REG_ON RF_RSTN on, and
982 msleep(10); // Modify 20051221.1.b
985 if( (pHwData
->phy_type
== RF_WB_242
) ||
986 (RF_WB_242_1
== pHwData
->phy_type
) ) // 20060619.5 Add
988 Wb35Reg_WriteSync( pHwData
, 0x03d0, ltmp
);
990 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0
992 msleep(20); // Modify 20051221.1.b
993 Wb35Reg_ReadSync( pHwData
, 0x03d0, <mp
);
994 loop
= 500; // Wait for 5 second 20061101
995 while( !(ltmp
& 0x20) && loop
-- )
997 msleep(10); // Modify 20051221.1.b
998 if( !Wb35Reg_ReadSync( pHwData
, 0x03d0, <mp
) )
1002 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xe0 );// MLK_EN
1005 Wb35Reg_WriteSync( pHwData
, 0x03b0, 1 );// Reset hardware first
1006 msleep(10); // Add this 20051221.1.b
1008 // Set burst write delay
1009 Wb35Reg_WriteSync( pHwData
, 0x03f8, 0x7ff );
1012 void Set_ChanIndep_RfData_al7230_24( phw_data_t pHwData
, u32
*pltmp
,char number
)
1016 for( i
=0; i
<number
; i
++ )
1018 pHwData
->phy_para
[i
] = al7230_rf_data_24
[i
];
1019 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_24
[i
]&0xffffff);
1023 void Set_ChanIndep_RfData_al7230_50( phw_data_t pHwData
, u32
*pltmp
, char number
)
1027 for( i
=0; i
<number
; i
++ )
1029 pHwData
->phy_para
[i
] = al7230_rf_data_50
[i
];
1030 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_50
[i
]&0xffffff);
1035 //=============================================================================================================
1036 // RFSynthesizer_initial --
1037 //=============================================================================================================
1039 RFSynthesizer_initial(phw_data_t pHwData
)
1042 u32
* pltmp
= altmp
;
1044 u8 number
=0x00; // The number of register vale
1048 // bit[31] SPI Enable.
1049 // 1=perform synthesizer program operation. This bit will
1050 // cleared automatically after the operation is completed.
1051 // bit[30] SPI R/W Control
1053 // bit[29:24] SPI Data Format Length
1054 // bit[17:4 ] RF Data bits.
1055 // bit[3 :0 ] RF address.
1056 switch( pHwData
->phy_type
)
1059 case RF_MAXIM_V1
: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
1060 number
= sizeof(max2825_rf_data
)/sizeof(max2825_rf_data
[0]);
1061 for( i
=0; i
<number
; i
++ )
1063 pHwData
->phy_para
[i
] = max2825_rf_data
[i
];// Backup Rf parameter
1064 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_rf_data
[i
], 18);
1069 number
= sizeof(max2827_rf_data
)/sizeof(max2827_rf_data
[0]);
1070 for( i
=0; i
<number
; i
++ )
1072 pHwData
->phy_para
[i
] = max2827_rf_data
[i
];
1073 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_rf_data
[i
], 18);
1078 number
= sizeof(max2828_rf_data
)/sizeof(max2828_rf_data
[0]);
1079 for( i
=0; i
<number
; i
++ )
1081 pHwData
->phy_para
[i
] = max2828_rf_data
[i
];
1082 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_rf_data
[i
], 18);
1087 number
= sizeof(max2829_rf_data
)/sizeof(max2829_rf_data
[0]);
1088 for( i
=0; i
<number
; i
++ )
1090 pHwData
->phy_para
[i
] = max2829_rf_data
[i
];
1091 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_rf_data
[i
], 18);
1095 case RF_AIROHA_2230
:
1096 number
= sizeof(al2230_rf_data
)/sizeof(al2230_rf_data
[0]);
1097 for( i
=0; i
<number
; i
++ )
1099 pHwData
->phy_para
[i
] = al2230_rf_data
[i
];
1100 pltmp
[i
] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data
[i
], 20);
1104 case RF_AIROHA_2230S
:
1105 number
= sizeof(al2230s_rf_data
)/sizeof(al2230s_rf_data
[0]);
1106 for( i
=0; i
<number
; i
++ )
1108 pHwData
->phy_para
[i
] = al2230s_rf_data
[i
];
1109 pltmp
[i
] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230s_rf_data
[i
], 20);
1113 case RF_AIROHA_7230
:
1115 //Start to fill RF parameters, PLL_ON should be pulled low.
1116 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000000 );
1117 #ifdef _PE_STATE_DUMP_
1118 WBDEBUG(("* PLL_ON low\n"));
1121 number
= sizeof(al7230_rf_data_24
)/sizeof(al7230_rf_data_24
[0]);
1122 Set_ChanIndep_RfData_al7230_24(pHwData
, pltmp
, number
);
1126 case RF_WB_242_1
: // 20060619.5 Add
1127 number
= sizeof(w89rf242_rf_data
)/sizeof(w89rf242_rf_data
[0]);
1128 for( i
=0; i
<number
; i
++ )
1130 ltmp
= w89rf242_rf_data
[i
];
1131 if( i
== 4 ) // Update the VCO trim from EEPROM
1133 ltmp
&= ~0xff0; // Mask bit4 ~bit11
1134 ltmp
|= pHwData
->VCO_trim
<<4;
1137 pHwData
->phy_para
[i
] = ltmp
;
1138 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( ltmp
, 24);
1143 pHwData
->phy_number
= number
;
1145 // The 16 is the maximum capability of hardware. Here use 12
1147 //Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 12, NO_INCREMENT );
1148 for( i
=0; i
<12; i
++ ) // For Al2230
1149 Wb35Reg_WriteSync( pHwData
, 0x0864, pltmp
[i
] );
1155 // Write to register. number must less and equal than 16
1156 for( i
=0; i
<number
; i
++ )
1157 Wb35Reg_WriteSync( pHwData
, 0x864, pltmp
[i
] );
1159 // 20060630.1 Calibration only 1 time
1160 if( pHwData
->CalOneTime
)
1162 pHwData
->CalOneTime
= 1;
1164 switch( pHwData
->phy_type
)
1166 case RF_AIROHA_2230
:
1168 // 20060511.1 --- Modifying the follow step for Rx issue-----------------
1169 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x07<<20)|0xE168E, 20);
1170 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1172 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data
[7], 20);
1173 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1176 case RF_AIROHA_2230S
: // 20060420 Add this
1178 // 20060511.1 --- Modifying the follow step for Rx issue-----------------
1179 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0x80 );// regulator on only
1180 msleep(10); // Modify 20051221.1.b
1182 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0
1183 msleep(10); // Modify 20051221.1.b
1185 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xe0 );// MLK_EN
1186 Wb35Reg_WriteSync( pHwData
, 0x03b0, 1 );// Reset hardware first
1187 msleep(10); // Add this 20051221.1.b
1188 //------------------------------------------------------------------------
1190 // The follow code doesn't use the burst-write mode
1191 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Raise Initial Setting
1192 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20);
1193 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1195 ltmp
= pHwData
->reg
.BB5C
& 0xfffff000;
1196 Wb35Reg_WriteSync( pHwData
, 0x105c, ltmp
);
1197 pHwData
->reg
.BB50
|= 0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060315.1 modify
1198 Wb35Reg_WriteSync(pHwData
, 0x1050, pHwData
->reg
.BB50
);
1201 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01B0); //Activate Filter Cal.
1202 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01B0, 20);
1203 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1206 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01e0); //Activate TX DCC
1207 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01E0, 20);
1208 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1211 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Resotre Initial Setting
1212 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20);
1213 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1215 // //Force TXI(Q)P(N) to normal control
1216 Wb35Reg_WriteSync( pHwData
, 0x105c, pHwData
->reg
.BB5C
);
1217 pHwData
->reg
.BB50
&= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);
1218 Wb35Reg_WriteSync( pHwData
, 0x1050, pHwData
->reg
.BB50
);
1221 case RF_AIROHA_7230
:
1223 //RF parameters have filled completely, PLL_ON should be
1225 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000080 );
1226 #ifdef _PE_STATE_DUMP_
1227 WBDEBUG(("* PLL_ON high\n"));
1231 //ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F;
1232 //Wb35Reg_WriteSync pHwData, 0x0864, ltmp );
1233 //msleep(1); // Sleep 1 ms
1234 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F;
1235 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1237 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F;
1238 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1240 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F;
1241 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1245 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000000 );
1246 #ifdef _PE_STATE_DUMP_
1247 WBDEBUG(("* PLL_ON low\n"));
1250 number
= sizeof(al7230_rf_data_50
)/sizeof(al7230_rf_data_50
[0]);
1251 Set_ChanIndep_RfData_al7230_50(pHwData
, pltmp
, number
);
1252 // Write to register. number must less and equal than 16
1253 for( i
=0; i
<number
; i
++ )
1254 Wb35Reg_WriteSync( pHwData
, 0x0864, pltmp
[i
] );
1257 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000080 );
1258 #ifdef _PE_STATE_DUMP_
1259 WBDEBUG(("* PLL_ON high\n"));
1262 //ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x12BACF;
1263 //Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
1264 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F;
1265 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1267 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F;
1268 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1270 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x12BACF;
1271 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1274 //Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000080 );
1275 //WBDEBUG(("* PLL_ON high\n"));
1279 case RF_WB_242_1
: // 20060619.5 Add
1282 // ; Version 1.3B revision items: for FA5976A , October 3, 2005 by HTHo
1284 ltmp
= pHwData
->reg
.BB5C
& 0xfffff000;
1285 Wb35Reg_WriteSync( pHwData
, 0x105c, ltmp
);
1286 Wb35Reg_WriteSync( pHwData
, 0x1058, 0 );
1287 pHwData
->reg
.BB50
|= 0x3;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060630
1288 Wb35Reg_WriteSync(pHwData
, 0x1050, pHwData
->reg
.BB50
);
1290 //----- Calibration (1). VCO frequency calibration
1291 //Calibration (1a.0). Synthesizer reset (HTHo corrected 2005/05/10)
1292 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00101E, 24);
1293 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1294 msleep(5); // Sleep 5ms
1295 //Calibration (1a). VCO frequency calibration mode ; waiting 2msec VCO calibration time
1296 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFE69c0, 24);
1297 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1298 msleep(2); // Sleep 2ms
1300 //----- Calibration (2). TX baseband Gm-C filter auto-tuning
1301 //Calibration (2a). turn off ENCAL signal
1302 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24);
1303 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1304 //Calibration (2b.0). TX filter auto-tuning BW: TFLBW=101 (TC5376A default)
1305 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24);
1306 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1307 //Calibration (2b). send TX reset signal (HTHo corrected May 10, 2005)
1308 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00201E, 24);
1309 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1310 //Calibration (2c). turn-on TX Gm-C filter auto-tuning
1311 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFCEBC0, 24);
1312 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1313 udelay(150); // Sleep 150 us
1314 //turn off ENCAL signal
1315 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24);
1316 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1318 //----- Calibration (3). RX baseband Gm-C filter auto-tuning
1319 //Calibration (3a). turn off ENCAL signal
1320 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1321 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1322 //Calibration (3b.0). RX filter auto-tuning BW: RFLBW=100 (TC5376A+corner default; July 26, 2005)
1323 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24);
1324 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1325 //Calibration (3b). send RX reset signal (HTHo corrected May 10, 2005)
1326 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00401E, 24);
1327 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1328 //Calibration (3c). turn-on RX Gm-C filter auto-tuning
1329 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFEEDC0, 24);
1330 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1331 udelay(150); // Sleep 150 us
1332 //Calibration (3e). turn off ENCAL signal
1333 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1334 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1336 //----- Calibration (4). TX LO leakage calibration
1337 //Calibration (4a). TX LO leakage calibration
1338 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFD6BC0, 24);
1339 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1340 udelay(150); // Sleep 150 us
1342 //----- Calibration (5). RX DC offset calibration
1343 //Calibration (5a). turn off ENCAL signal and set to RX SW DC caliration mode
1344 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1345 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1346 //Calibration (5b). turn off AGC servo-loop & RSSI
1347 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEBFFC2, 24);
1348 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1350 //; for LNA=11 --------
1351 //Calibration (5c-h). RX DC offset current bias ON; & LNA=11; RXVGA=111111
1352 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x343FCC, 24);
1353 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1354 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1355 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1356 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1357 msleep(2); // Sleep 2ms
1358 //Calibration (5f). turn off ENCAL signal
1359 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1360 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1362 //; for LNA=10 --------
1363 //Calibration (5c-m). RX DC offset current bias ON; & LNA=10; RXVGA=111111
1364 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x342FCC, 24);
1365 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1366 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1367 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1368 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1369 msleep(2); // Sleep 2ms
1370 //Calibration (5f). turn off ENCAL signal
1371 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1372 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1374 //; for LNA=01 --------
1375 //Calibration (5c-m). RX DC offset current bias ON; & LNA=01; RXVGA=111111
1376 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x341FCC, 24);
1377 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1378 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1379 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1380 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1381 msleep(2); // Sleep 2ms
1382 //Calibration (5f). turn off ENCAL signal
1383 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1384 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1386 //; for LNA=00 --------
1387 //Calibration (5c-l). RX DC offset current bias ON; & LNA=00; RXVGA=111111
1388 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x340FCC, 24);
1389 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1390 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1391 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1392 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1393 msleep(2); // Sleep 2ms
1394 //Calibration (5f). turn off ENCAL signal
1395 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1396 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1397 //Calibration (5g). turn on AGC servo-loop
1398 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEFFFC2, 24);
1399 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1401 //; ----- Calibration (7). Switch RF chip to normal mode
1402 //0x00 0xF86100 ; 3E184 ; Switch RF chip to normal mode
1403 // msleep(10); // @@ 20060721
1404 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF86100, 24);
1405 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1406 msleep(5); // Sleep 5 ms
1409 // Wb35Reg_WriteSync(pHwData, 0x105c, pHwData->reg.BB5C);
1410 // pHwData->reg.BB50 &= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START); // 20060315.1 fix
1411 // Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50);
1412 // msleep(1); // Sleep 1 ms
1417 void BBProcessor_AL7230_2400( phw_data_t pHwData
)
1419 struct wb35_reg
*reg
= &pHwData
->reg
;
1422 pltmp
[0] = 0x16A8337A; // 0x16a5215f; // 0x1000 AGC_Ctrl1
1423 pltmp
[1] = 0x9AFF9AA6; // 0x9aff9ca6; // 0x1004 AGC_Ctrl2
1424 pltmp
[2] = 0x55D00A04; // 0x55d00a04; // 0x1008 AGC_Ctrl3
1425 pltmp
[3] = 0xFFF72031; // 0xFfFf2138; // 0x100c AGC_Ctrl4
1426 reg
->BB0C
= 0xFFF72031;
1427 pltmp
[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7
1428 pltmp
[5] = 0x00CAA333; // 0x00eaa333; // 0x1014 AGC_Ctrl6
1429 pltmp
[6] = 0xF2211111; // 0x11111111; // 0x1018 AGC_Ctrl7
1430 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1431 pltmp
[8] = 0x06443440; // 0x1020 AGC_Ctrl9
1432 pltmp
[9] = 0xA8002A79; // 0xa9002A79; // 0x1024 AGC_Ctrl10
1433 pltmp
[10] = 0x40000528; // 20050927 0x40000228
1434 pltmp
[11] = 0x232D7F30; // 0x23457f30;// 0x102c A_ACQ_Ctrl
1435 reg
->BB2C
= 0x232D7F30;
1436 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1438 pltmp
[0] = 0x00002c54; // 0x1030 B_ACQ_Ctrl
1439 reg
->BB30
= 0x00002c54;
1440 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1441 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1442 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1443 reg
->BB3C
= 0x00000000;
1444 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1445 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1446 pltmp
[6] = 0x00332C1B; // 0x00453B24; // 0x1048 11b TX RC filter
1447 pltmp
[7] = 0x0A00FEFF; // 0x0E00FEFF; // 0x104c 11b TX RC filter
1448 pltmp
[8] = 0x2B106208; // 0x1050 MODE_Ctrl
1449 reg
->BB50
= 0x2B106208;
1450 pltmp
[9] = 0; // 0x1054
1451 reg
->BB54
= 0x00000000;
1452 pltmp
[10] = 0x52524242; // 0x64645252; // 0x1058 IQ_Alpha
1453 reg
->BB58
= 0x52524242;
1454 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1455 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1459 void BBProcessor_AL7230_5000( phw_data_t pHwData
)
1461 struct wb35_reg
*reg
= &pHwData
->reg
;
1464 pltmp
[0] = 0x16AA6678; // 0x1000 AGC_Ctrl1
1465 pltmp
[1] = 0x9AFFA0B2; // 0x1004 AGC_Ctrl2
1466 pltmp
[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
1467 pltmp
[3] = 0xEFFF233E; // 0x100c AGC_Ctrl4
1468 reg
->BB0C
= 0xEFFF233E;
1469 pltmp
[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7
1470 pltmp
[5] = 0x00CAA333; // 0x1014 AGC_Ctrl6
1471 pltmp
[6] = 0xF2432111; // 0x1018 AGC_Ctrl7
1472 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1473 pltmp
[8] = 0x05C43440; // 0x1020 AGC_Ctrl9
1474 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1475 pltmp
[10] = 0x40000528; // 20050927 0x40000228
1476 pltmp
[11] = 0x232FDF30;// 0x102c A_ACQ_Ctrl
1477 reg
->BB2C
= 0x232FDF30;
1478 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1480 pltmp
[0] = 0x80002C7C; // 0x1030 B_ACQ_Ctrl
1481 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1482 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1483 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1484 reg
->BB3C
= 0x00000000;
1485 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1486 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1487 pltmp
[6] = 0x00332C1B; // 0x1048 11b TX RC filter
1488 pltmp
[7] = 0x0A00FEFF; // 0x104c 11b TX RC filter
1489 pltmp
[8] = 0x2B107208; // 0x1050 MODE_Ctrl
1490 reg
->BB50
= 0x2B107208;
1491 pltmp
[9] = 0; // 0x1054
1492 reg
->BB54
= 0x00000000;
1493 pltmp
[10] = 0x52524242; // 0x1058 IQ_Alpha
1494 reg
->BB58
= 0x52524242;
1495 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1496 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1500 //=============================================================================================================
1501 // BBProcessorPowerupInit --
1504 // Initialize the Baseband processor.
1507 // pHwData - Handle of the USB Device.
1511 //=============================================================================================================
1513 BBProcessor_initial( phw_data_t pHwData
)
1515 struct wb35_reg
*reg
= &pHwData
->reg
;
1518 switch( pHwData
->phy_type
)
1520 case RF_MAXIM_V1
: // Initializng the Winbond 2nd BB(with Phy board (v1) + Maxim 331)
1522 pltmp
[0] = 0x16F47E77; // 0x1000 AGC_Ctrl1
1523 pltmp
[1] = 0x9AFFAEA4; // 0x1004 AGC_Ctrl2
1524 pltmp
[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
1525 pltmp
[3] = 0xEFFF1A34; // 0x100c AGC_Ctrl4
1526 reg
->BB0C
= 0xEFFF1A34;
1527 pltmp
[4] = 0x0FABE0B7; // 0x1010 AGC_Ctrl5
1528 pltmp
[5] = 0x00CAA332; // 0x1014 AGC_Ctrl6
1529 pltmp
[6] = 0xF6632111; // 0x1018 AGC_Ctrl7
1530 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1531 pltmp
[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
1532 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1533 pltmp
[10] = (pHwData
->phy_type
==3) ? 0x40000a28 : 0x40000228; // 0x1028 MAXIM_331(b31=0) + WBRF_V1(b11=1) : MAXIM_331(b31=0) + WBRF_V2(b11=0)
1534 pltmp
[11] = 0x232FDF30; // 0x102c A_ACQ_Ctrl
1535 reg
->BB2C
= 0x232FDF30; //Modify for 33's 1.0.95.xxx version, antenna 1
1536 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1538 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1539 reg
->BB30
= 0x00002C54;
1540 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1541 pltmp
[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl
1542 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1543 reg
->BB3C
= 0x00000000;
1544 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1545 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1546 pltmp
[6] = 0x00453B24; // 0x1048 11b TX RC filter
1547 pltmp
[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter
1548 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1549 reg
->BB50
= 0x27106208;
1550 pltmp
[9] = 0; // 0x1054
1551 reg
->BB54
= 0x00000000;
1552 pltmp
[10] = 0x64646464; // 0x1058 IQ_Alpha
1553 reg
->BB58
= 0x64646464;
1554 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1555 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1557 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1560 //------------------------------------------------------------------
1562 //Only for baseband version 2
1563 // case RF_MAXIM_317:
1568 pltmp
[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1
1569 pltmp
[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2
1570 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1571 pltmp
[3] = 0xefff1a34; // 0x100c AGC_Ctrl4
1572 reg
->BB0C
= 0xefff1a34;
1573 pltmp
[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5
1574 pltmp
[5] = 0x00caa332; // 0x1014 AGC_Ctrl6
1575 pltmp
[6] = 0xf6632111; // 0x1018 AGC_Ctrl7
1576 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1577 pltmp
[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
1578 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1579 pltmp
[10] = 0x40000528; // 0x40000128; Modify for 33's 1.0.95
1580 pltmp
[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl
1581 reg
->BB2C
= 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1
1582 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1584 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1585 reg
->BB30
= 0x00002C54;
1586 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1587 pltmp
[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl
1588 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1589 reg
->BB3C
= 0x00000000;
1590 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1591 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1592 pltmp
[6] = 0x00453B24; // 0x1048 11b TX RC filter
1593 pltmp
[7] = 0x0D00FDFF; // 0x104c 11b TX RC filter
1594 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1595 reg
->BB50
= 0x27106208;
1596 pltmp
[9] = 0; // 0x1054
1597 reg
->BB54
= 0x00000000;
1598 pltmp
[10] = 0x64646464; // 0x1058 IQ_Alpha
1599 reg
->BB58
= 0x64646464;
1600 pltmp
[11] = 0xAA28C000; // 0x105c DC_Cancel
1601 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1603 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1608 pltmp
[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1
1609 pltmp
[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2
1610 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1611 pltmp
[3] = 0xf4ff1632; // 0xefff1a34; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95
1612 reg
->BB0C
= 0xf4ff1632; // 0xefff1a34; Modify for 33's 1.0.95
1613 pltmp
[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5
1614 pltmp
[5] = 0x00caa332; // 0x1014 AGC_Ctrl6
1615 pltmp
[6] = 0xf8632112; // 0xf6632111; // 0x1018 AGC_Ctrl7 Modify for 33's 1.0.95
1616 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1617 pltmp
[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
1618 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1619 pltmp
[10] = 0x40000528; // 0x40000128; modify for 33's 1.0.95
1620 pltmp
[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl
1621 reg
->BB2C
= 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1
1622 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1624 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1625 reg
->BB30
= 0x00002C54;
1626 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1627 pltmp
[2] = 0x5b2c8769; // 0x5B6C8769; // 0x1038 B_TXRX_Ctrl Modify for 33's 1.0.95
1628 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1629 reg
->BB3C
= 0x00000000;
1630 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1631 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1632 pltmp
[6] = 0x002c2617; // 0x00453B24; // 0x1048 11b TX RC filter Modify for 33's 1.0.95
1633 pltmp
[7] = 0x0800feff; // 0x0D00FDFF; // 0x104c 11b TX RC filter Modify for 33's 1.0.95
1634 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1635 reg
->BB50
= 0x27106208;
1636 pltmp
[9] = 0; // 0x1054
1637 reg
->BB54
= 0x00000000;
1638 pltmp
[10] = 0x64644a4a; // 0x64646464; // 0x1058 IQ_Alpha Modify for 33's 1.0.95
1639 reg
->BB58
= 0x64646464;
1640 pltmp
[11] = 0xAA28C000; // 0x105c DC_Cancel
1641 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1643 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1646 case RF_AIROHA_2230
:
1648 pltmp
[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77
1649 pltmp
[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
1650 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1651 pltmp
[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version
1652 reg
->BB0C
= 0xFFFd203c;
1653 pltmp
[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version
1654 pltmp
[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version
1655 pltmp
[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version
1656 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1657 pltmp
[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
1658 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1659 pltmp
[10] = 0X40000528; //0x40000228
1660 pltmp
[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730
1661 reg
->BB2C
= 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1
1662 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1664 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1665 reg
->BB30
= 0x00002C54;
1666 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1667 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769
1668 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1669 reg
->BB3C
= 0x00000000;
1670 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1671 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1672 pltmp
[6] = BB48_DEFAULT_AL2230_11G
; // 0x1048 11b TX RC filter 20060613.2
1673 reg
->BB48
= BB48_DEFAULT_AL2230_11G
; // 20051221 ch14 20060613.2
1674 pltmp
[7] = BB4C_DEFAULT_AL2230_11G
; // 0x104c 11b TX RC filter 20060613.2
1675 reg
->BB4C
= BB4C_DEFAULT_AL2230_11G
; // 20060613.1 20060613.2
1676 pltmp
[8] = 0x27106200; // 0x1050 MODE_Ctrl
1677 reg
->BB50
= 0x27106200;
1678 pltmp
[9] = 0; // 0x1054
1679 reg
->BB54
= 0x00000000;
1680 pltmp
[10] = 0x52524242; // 0x1058 IQ_Alpha
1681 reg
->BB58
= 0x52524242;
1682 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1683 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1685 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1688 case RF_AIROHA_2230S
: // 20060420 Add this
1690 pltmp
[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77
1691 pltmp
[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
1692 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1693 pltmp
[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version
1694 reg
->BB0C
= 0xFFFd203c;
1695 pltmp
[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version
1696 pltmp
[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version
1697 pltmp
[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version
1698 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1699 pltmp
[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
1700 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1701 pltmp
[10] = 0X40000528; //0x40000228
1702 pltmp
[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730
1703 reg
->BB2C
= 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1
1704 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1706 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1707 reg
->BB30
= 0x00002C54;
1708 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1709 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769
1710 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1711 reg
->BB3C
= 0x00000000;
1712 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1713 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1714 pltmp
[6] = BB48_DEFAULT_AL2230_11G
; // 0x1048 11b TX RC filter 20060613.2
1715 reg
->BB48
= BB48_DEFAULT_AL2230_11G
; // 20051221 ch14 20060613.2
1716 pltmp
[7] = BB4C_DEFAULT_AL2230_11G
; // 0x104c 11b TX RC filter 20060613.2
1717 reg
->BB4C
= BB4C_DEFAULT_AL2230_11G
; // 20060613.1
1718 pltmp
[8] = 0x27106200; // 0x1050 MODE_Ctrl
1719 reg
->BB50
= 0x27106200;
1720 pltmp
[9] = 0; // 0x1054
1721 reg
->BB54
= 0x00000000;
1722 pltmp
[10] = 0x52523232; // 20060419 0x52524242; // 0x1058 IQ_Alpha
1723 reg
->BB58
= 0x52523232; // 20060419 0x52524242;
1724 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1725 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1727 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1730 case RF_AIROHA_7230
:
1732 pltmp[0] = 0x16a84a77; // 0x1000 AGC_Ctrl1
1733 pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
1734 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1735 pltmp[3] = 0xFFFb203a; // 0x100c AGC_Ctrl4
1736 reg->BB0c = 0xFFFb203a;
1737 pltmp[4] = 0x0FBFDCB7; // 0x1010 AGC_Ctrl5
1738 pltmp[5] = 0x00caa333; // 0x1014 AGC_Ctrl6
1739 pltmp[6] = 0xf6632112; // 0x1018 AGC_Ctrl7
1740 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1741 pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
1742 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1743 pltmp[10] = 0x40000228;
1744 pltmp[11] = 0x232A9F30;// 0x102c A_ACQ_Ctrl
1745 reg->BB2c = 0x232A9F30;
1746 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
1748 pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1749 reg->BB30 = 0x00002C54;
1750 pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1751 pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1752 pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
1753 reg->BB3c = 0x00000000;
1754 pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
1755 pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1756 pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter
1757 pltmp[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter
1758 pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl
1759 reg->BB50 = 0x27106200;
1760 pltmp[9] = 0; // 0x1054
1761 reg->BB54 = 0x00000000;
1762 pltmp[10] = 0x64645252; // 0x1058 IQ_Alpha
1763 reg->BB58 = 0x64645252;
1764 pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
1765 Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
1767 BBProcessor_AL7230_2400( pHwData
);
1769 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1773 case RF_WB_242_1
: // 20060619.5 Add
1775 pltmp
[0] = 0x16A8525D; // 0x1000 AGC_Ctrl1
1776 pltmp
[1] = 0x9AFF9ABA; // 0x1004 AGC_Ctrl2
1777 pltmp
[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
1778 pltmp
[3] = 0xEEE91C32; // 0x100c AGC_Ctrl4
1779 reg
->BB0C
= 0xEEE91C32;
1780 pltmp
[4] = 0x0FACDCC5; // 0x1010 AGC_Ctrl5
1781 pltmp
[5] = 0x000AA344; // 0x1014 AGC_Ctrl6
1782 pltmp
[6] = 0x22222221; // 0x1018 AGC_Ctrl7
1783 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1784 pltmp
[8] = 0x04CC3440; // 20051018 0x03CB3440; // 0x1020 AGC_Ctrl9 20051014 0x03C33440
1785 pltmp
[9] = 0xA9002A79; // 0x1024 AGC_Ctrl10
1786 pltmp
[10] = 0x40000528; // 0x1028
1787 pltmp
[11] = 0x23457F30; // 0x102c A_ACQ_Ctrl
1788 reg
->BB2C
= 0x23457F30;
1789 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1791 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1792 reg
->BB30
= 0x00002C54;
1793 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1794 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1795 pltmp
[3] = pHwData
->BB3c_cal
; // 0x103c 11a TX LS filter
1796 reg
->BB3C
= pHwData
->BB3c_cal
;
1797 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1798 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1799 pltmp
[6] = BB48_DEFAULT_WB242_11G
; // 0x1048 11b TX RC filter 20060613.2
1800 reg
->BB48
= BB48_DEFAULT_WB242_11G
; // 20060613.1 20060613.2
1801 pltmp
[7] = BB4C_DEFAULT_WB242_11G
; // 0x104c 11b TX RC filter 20060613.2
1802 reg
->BB4C
= BB4C_DEFAULT_WB242_11G
; // 20060613.1 20060613.2
1803 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1804 reg
->BB50
= 0x27106208;
1805 pltmp
[9] = pHwData
->BB54_cal
; // 0x1054
1806 reg
->BB54
= pHwData
->BB54_cal
;
1807 pltmp
[10] = 0x52523131; // 0x1058 IQ_Alpha
1808 reg
->BB58
= 0x52523131;
1809 pltmp
[11] = 0xAA0AC000; // 20060825 0xAA2AC000; // 0x105c DC_Cancel
1810 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1812 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1816 // Fill the LNA table
1817 reg
->LNAValue
[0] = (u8
)(reg
->BB0C
& 0xff);
1818 reg
->LNAValue
[1] = 0;
1819 reg
->LNAValue
[2] = (u8
)((reg
->BB0C
& 0xff00)>>8);
1820 reg
->LNAValue
[3] = 0;
1823 for( i
=0; i
<MAX_SQ3_FILTER_SIZE
; i
++ )
1824 reg
->SQ3_filter
[i
] = 0x2f; // half of Bit 0 ~ 6
1827 void set_tx_power_per_channel_max2829( phw_data_t pHwData
, ChanInfo Channel
)
1829 RFSynthesizer_SetPowerIndex( pHwData
, 100 ); // 20060620.1 Modify
1832 void set_tx_power_per_channel_al2230( phw_data_t pHwData
, ChanInfo Channel
)
1836 if (pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1] != 0xff) // 20060620.1 Add
1837 index
= pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1];
1839 RFSynthesizer_SetPowerIndex( pHwData
, index
);
1842 void set_tx_power_per_channel_al7230( phw_data_t pHwData
, ChanInfo Channel
)
1846 switch ( Channel
.band
)
1848 case BAND_TYPE_DSSS
:
1849 case BAND_TYPE_OFDM_24
:
1851 if (pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1] != 0xff)
1852 index
= pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1];
1855 case BAND_TYPE_OFDM_5
:
1857 for (i
=0; i
<35; i
++)
1859 if (Channel
.ChanNo
== pHwData
->TxVgaFor50
[i
].ChanNo
)
1861 if (pHwData
->TxVgaFor50
[i
].TxVgaValue
!= 0xff)
1862 index
= pHwData
->TxVgaFor50
[i
].TxVgaValue
;
1869 RFSynthesizer_SetPowerIndex( pHwData
, index
);
1872 void set_tx_power_per_channel_wb242( phw_data_t pHwData
, ChanInfo Channel
)
1876 switch ( Channel
.band
)
1878 case BAND_TYPE_DSSS
:
1879 case BAND_TYPE_OFDM_24
:
1881 if (pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1] != 0xff)
1882 index
= pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1];
1885 case BAND_TYPE_OFDM_5
:
1888 RFSynthesizer_SetPowerIndex( pHwData
, index
);
1891 //=============================================================================================================
1892 // RFSynthesizer_SwitchingChannel --
1895 // Swithch the RF channel.
1898 // pHwData - Handle of the USB Device.
1899 // Channel - The channel no.
1903 //=============================================================================================================
1905 RFSynthesizer_SwitchingChannel( phw_data_t pHwData
, ChanInfo Channel
)
1907 struct wb35_reg
*reg
= &pHwData
->reg
;
1908 u32 pltmp
[16]; // The 16 is the maximum capability of hardware
1913 switch( pHwData
->phy_type
)
1916 case RF_MAXIM_V1
: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
1918 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 13
1920 for( i
=0; i
<3; i
++ )
1921 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1922 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1924 RFSynthesizer_SetPowerIndex( pHwData
, 100 );
1929 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 13
1931 for( i
=0; i
<3; i
++ )
1932 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1933 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1935 else if( Channel
.band
== BAND_TYPE_OFDM_5
) // channel 36 ~ 64
1937 ChnlTmp
= (Channel
.ChanNo
- 36) / 4;
1938 for( i
=0; i
<3; i
++ )
1939 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_50
[ChnlTmp
][i
], 18);
1940 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1942 RFSynthesizer_SetPowerIndex( pHwData
, 100 );
1947 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 13
1949 for( i
=0; i
<3; i
++ )
1950 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1951 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1953 else if( Channel
.band
== BAND_TYPE_OFDM_5
) // channel 36 ~ 64
1955 ChnlTmp
= (Channel
.ChanNo
- 36) / 4;
1956 for ( i
= 0; i
< 3; i
++)
1957 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_50
[ChnlTmp
][i
], 18);
1958 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1960 RFSynthesizer_SetPowerIndex( pHwData
, 100 );
1965 if( Channel
.band
<= BAND_TYPE_OFDM_24
)
1967 for( i
=0; i
<3; i
++ )
1968 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1969 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1971 else if( Channel
.band
== BAND_TYPE_OFDM_5
)
1973 count
= sizeof(max2829_channel_data_50
) / sizeof(max2829_channel_data_50
[0]);
1975 for( i
=0; i
<count
; i
++ )
1977 if( max2829_channel_data_50
[i
][0] == Channel
.ChanNo
)
1979 for( j
=0; j
<3; j
++ )
1980 pltmp
[j
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_50
[i
][j
+1], 18);
1981 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1983 if( (max2829_channel_data_50
[i
][3] & 0x3FFFF) == 0x2A946 )
1985 ltmp
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( (5<<18)|0x2A906, 18);
1986 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
1990 ltmp
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( (5<<18)|0x2A986, 18);
1991 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
1996 set_tx_power_per_channel_max2829( pHwData
, Channel
);
1999 case RF_AIROHA_2230
:
2000 case RF_AIROHA_2230S
: // 20060420 Add this
2002 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 14
2004 for( i
=0; i
<2; i
++ )
2005 pltmp
[i
] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_channel_data_24
[Channel
.ChanNo
-1][i
], 20);
2006 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 2, NO_INCREMENT
);
2008 set_tx_power_per_channel_al2230( pHwData
, Channel
);
2011 case RF_AIROHA_7230
:
2013 //Start to fill RF parameters, PLL_ON should be pulled low.
2014 //Wb35Reg_Write( pHwData, 0x03dc, 0x00000000 );
2015 //WBDEBUG(("* PLL_ON low\n"));
2017 //Channel independent registers
2018 if( Channel
.band
!= pHwData
->band
)
2020 if (Channel
.band
<= BAND_TYPE_OFDM_24
)
2022 //Update BB register
2023 BBProcessor_AL7230_2400(pHwData
);
2025 number
= sizeof(al7230_rf_data_24
)/sizeof(al7230_rf_data_24
[0]);
2026 Set_ChanIndep_RfData_al7230_24(pHwData
, pltmp
, number
);
2030 //Update BB register
2031 BBProcessor_AL7230_5000(pHwData
);
2033 number
= sizeof(al7230_rf_data_50
)/sizeof(al7230_rf_data_50
[0]);
2034 Set_ChanIndep_RfData_al7230_50(pHwData
, pltmp
, number
);
2037 // Write to register. number must less and equal than 16
2038 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, number
, NO_INCREMENT
);
2039 #ifdef _PE_STATE_DUMP_
2040 WBDEBUG(("Band changed\n"));
2044 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 14
2046 for( i
=0; i
<2; i
++ )
2047 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_channel_data_24
[Channel
.ChanNo
-1][i
]&0xffffff);
2048 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 2, NO_INCREMENT
);
2050 else if( Channel
.band
== BAND_TYPE_OFDM_5
)
2053 if ((Channel
.ChanNo
> 64) && (Channel
.ChanNo
<= 165))
2055 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x00143c;
2056 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
2058 else //reg12 = 0x00147c at Channel 4920 ~ 5320
2060 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x00147c;
2061 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
2064 count
= sizeof(al7230_channel_data_5
) / sizeof(al7230_channel_data_5
[0]);
2066 for (i
=0; i
<count
; i
++)
2068 if (al7230_channel_data_5
[i
][0] == Channel
.ChanNo
)
2070 for( j
=0; j
<3; j
++ )
2071 pltmp
[j
] = (1 << 31) | (0 << 30) | (24 << 24) | ( al7230_channel_data_5
[i
][j
+1]&0xffffff);
2072 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
2076 set_tx_power_per_channel_al7230(pHwData
, Channel
);
2080 case RF_WB_242_1
: // 20060619.5 Add
2082 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 14
2084 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_channel_data_24
[Channel
.ChanNo
-1][0], 24);
2085 Wb35Reg_Write( pHwData
, 0x864, ltmp
);
2087 set_tx_power_per_channel_wb242(pHwData
, Channel
);
2091 if( Channel
.band
<= BAND_TYPE_OFDM_24
)
2093 // BB: select 2.4 GHz, bit[12-11]=00
2094 reg
->BB50
&= ~(BIT(11)|BIT(12));
2095 Wb35Reg_Write( pHwData
, 0x1050, reg
->BB50
); // MODE_Ctrl
2096 // MAC: select 2.4 GHz, bit[5]=0
2097 reg
->M78_ERPInformation
&= ~BIT(5);
2098 Wb35Reg_Write( pHwData
, 0x0878, reg
->M78_ERPInformation
);
2099 // enable 11b Baseband
2100 reg
->BB30
&= ~BIT(31);
2101 Wb35Reg_Write( pHwData
, 0x1030, reg
->BB30
);
2103 else if( (Channel
.band
== BAND_TYPE_OFDM_5
) )
2106 reg
->BB50
&= ~(BIT(11)|BIT(12));
2107 if (Channel
.ChanNo
<=64 )
2108 reg
->BB50
|= BIT(12); // 10-5.25GHz
2109 else if ((Channel
.ChanNo
>= 100) && (Channel
.ChanNo
<= 124))
2110 reg
->BB50
|= BIT(11); // 01-5.48GHz
2111 else if ((Channel
.ChanNo
>=128) && (Channel
.ChanNo
<= 161))
2112 reg
->BB50
|= (BIT(12)|BIT(11)); // 11-5.775GHz
2113 else //Chan 184 ~ 196 will use bit[12-11] = 10 in version sh-src-1.2.25
2114 reg
->BB50
|= BIT(12);
2115 Wb35Reg_Write( pHwData
, 0x1050, reg
->BB50
); // MODE_Ctrl
2117 //(1) M78 should alway use 2.4G setting when using RF_AIROHA_7230
2118 //(2) BB30 has been updated previously.
2119 if (pHwData
->phy_type
!= RF_AIROHA_7230
)
2121 // MAC: select 5 GHz, bit[5]=1
2122 reg
->M78_ERPInformation
|= BIT(5);
2123 Wb35Reg_Write( pHwData
, 0x0878, reg
->M78_ERPInformation
);
2125 // disable 11b Baseband
2126 reg
->BB30
|= BIT(31);
2127 Wb35Reg_Write( pHwData
, 0x1030, reg
->BB30
);
2132 //Set the tx power directly from DUT GUI, not from the EEPROM. Return the current setting
2133 u8
RFSynthesizer_SetPowerIndex( phw_data_t pHwData
, u8 PowerIndex
)
2135 u32 Band
= pHwData
->band
;
2138 if( pHwData
->power_index
== PowerIndex
) // 20060620.1 Add
2141 if (RF_MAXIM_2825
== pHwData
->phy_type
)
2144 index
= RFSynthesizer_SetMaxim2825Power( pHwData
, PowerIndex
);
2146 else if (RF_MAXIM_2827
== pHwData
->phy_type
)
2148 if( Band
<= BAND_TYPE_OFDM_24
) // Channel 1 - 13
2149 index
= RFSynthesizer_SetMaxim2827_24Power( pHwData
, PowerIndex
);
2150 else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64
2151 index
= RFSynthesizer_SetMaxim2827_50Power( pHwData
, PowerIndex
);
2153 else if (RF_MAXIM_2828
== pHwData
->phy_type
)
2155 if( Band
<= BAND_TYPE_OFDM_24
) // Channel 1 - 13
2156 index
= RFSynthesizer_SetMaxim2828_24Power( pHwData
, PowerIndex
);
2157 else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64
2158 index
= RFSynthesizer_SetMaxim2828_50Power( pHwData
, PowerIndex
);
2160 else if( RF_AIROHA_2230
== pHwData
->phy_type
)
2162 //Power index: 0 ~ 63 // Channel 1 - 14
2163 index
= RFSynthesizer_SetAiroha2230Power( pHwData
, PowerIndex
);
2164 index
= (u8
)al2230_txvga_data
[index
][1];
2166 else if( RF_AIROHA_2230S
== pHwData
->phy_type
) // 20060420 Add this
2168 //Power index: 0 ~ 63 // Channel 1 - 14
2169 index
= RFSynthesizer_SetAiroha2230Power( pHwData
, PowerIndex
);
2170 index
= (u8
)al2230_txvga_data
[index
][1];
2172 else if( RF_AIROHA_7230
== pHwData
->phy_type
)
2174 //Power index: 0 ~ 63
2175 index
= RFSynthesizer_SetAiroha7230Power( pHwData
, PowerIndex
);
2176 index
= (u8
)al7230_txvga_data
[index
][1];
2178 else if( (RF_WB_242
== pHwData
->phy_type
) ||
2179 (RF_WB_242_1
== pHwData
->phy_type
) ) // 20060619.5 Add
2181 //Power index: 0 ~ 19 for original. New range is 0 ~ 33
2182 index
= RFSynthesizer_SetWinbond242Power( pHwData
, PowerIndex
);
2183 index
= (u8
)w89rf242_txvga_data
[index
][1];
2186 pHwData
->power_index
= index
; // Backup current
2191 u8
RFSynthesizer_SetMaxim2828_24Power( phw_data_t pHwData
, u8 index
)
2194 if( index
> 1 ) index
= 1;
2195 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_24
[index
], 18);
2196 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2200 u8
RFSynthesizer_SetMaxim2828_50Power( phw_data_t pHwData
, u8 index
)
2203 if( index
> 1 ) index
= 1;
2204 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_50
[index
], 18);
2205 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2209 u8
RFSynthesizer_SetMaxim2827_24Power( phw_data_t pHwData
, u8 index
)
2212 if( index
> 1 ) index
= 1;
2213 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_24
[index
], 18);
2214 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2218 u8
RFSynthesizer_SetMaxim2827_50Power( phw_data_t pHwData
, u8 index
)
2221 if( index
> 1 ) index
= 1;
2222 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_50
[index
], 18);
2223 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2227 u8
RFSynthesizer_SetMaxim2825Power( phw_data_t pHwData
, u8 index
)
2230 if( index
> 1 ) index
= 1;
2231 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_power_data_24
[index
], 18);
2232 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2236 u8
RFSynthesizer_SetAiroha2230Power( phw_data_t pHwData
, u8 index
)
2241 count
= sizeof(al2230_txvga_data
) / sizeof(al2230_txvga_data
[0]);
2242 for (i
=0; i
<count
; i
++)
2244 if (al2230_txvga_data
[i
][1] >= index
)
2250 PowerData
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_txvga_data
[i
][0], 20);
2251 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2255 u8
RFSynthesizer_SetAiroha7230Power( phw_data_t pHwData
, u8 index
)
2260 //PowerData = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( airoha_power_data_24[index], 20);
2261 count
= sizeof(al7230_txvga_data
) / sizeof(al7230_txvga_data
[0]);
2262 for (i
=0; i
<count
; i
++)
2264 if (al7230_txvga_data
[i
][1] >= index
)
2269 PowerData
= (1 << 31) | (0 << 30) | (24 << 24) | (al7230_txvga_data
[i
][0]&0xffffff);
2270 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2274 u8
RFSynthesizer_SetWinbond242Power( phw_data_t pHwData
, u8 index
)
2279 count
= sizeof(w89rf242_txvga_data
) / sizeof(w89rf242_txvga_data
[0]);
2280 for (i
=0; i
<count
; i
++)
2282 if (w89rf242_txvga_data
[i
][1] >= index
)
2288 // Set TxVga into RF
2289 PowerData
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_txvga_data
[i
][0], 24);
2290 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2292 // Update BB48 BB4C BB58 for high precision txvga
2293 Wb35Reg_Write( pHwData
, 0x1048, w89rf242_txvga_data
[i
][2] );
2294 Wb35Reg_Write( pHwData
, 0x104c, w89rf242_txvga_data
[i
][3] );
2295 Wb35Reg_Write( pHwData
, 0x1058, w89rf242_txvga_data
[i
][4] );
2297 // Rf vga 0 ~ 3 for temperature compensate. It will affect the scan Bss.
2298 // The i value equals to 8 or 7 usually. So It's not necessary to setup this RF register.
2300 // PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x000024, 24 );
2302 // PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x001824, 24 );
2303 // Wb35Reg_Write( pHwData, 0x0864, PowerData );
2307 //===========================================================================================================
2311 // Routine Description:
2312 // Initial the hardware setting and module variable
2314 //===========================================================================================================
2315 void Dxx_initial( phw_data_t pHwData
)
2317 struct wb35_reg
*reg
= &pHwData
->reg
;
2319 // Old IC:Single mode only.
2320 // New IC: operation decide by Software set bit[4]. 1:multiple 0: single
2321 reg
->D00_DmaControl
= 0xc0000004; //Txon, Rxon, multiple Rx for new 4k DMA
2322 //Txon, Rxon, single Rx for old 8k ASIC
2323 if( !HAL_USB_MODE_BURST( pHwData
) )
2324 reg
->D00_DmaControl
= 0xc0000000;//Txon, Rxon, single Rx for new 4k DMA
2326 Wb35Reg_WriteSync( pHwData
, 0x0400, reg
->D00_DmaControl
);
2329 void Mxx_initial( phw_data_t pHwData
)
2331 struct wb35_reg
*reg
= &pHwData
->reg
;
2337 //======================================================
2338 // Initial Mxx register
2339 //======================================================
2342 #ifdef _IBSS_BEACON_SEQ_STICK_
2343 reg
->M00_MacControl
= 0; // Solve beacon sequence number stop by software
2345 reg
->M00_MacControl
= 0x80000000; // Solve beacon sequence number stop by hardware
2348 // M24 disable enter power save, BB RxOn and enable NAV attack
2349 reg
->M24_MacControl
= 0x08040042;
2350 pltmp
[0] = reg
->M24_MacControl
;
2352 pltmp
[1] = 0; // Skip M28, because no initialize value is required.
2354 // M2C CWmin and CWmax setting
2355 pHwData
->cwmin
= DEFAULT_CWMIN
;
2356 pHwData
->cwmax
= DEFAULT_CWMAX
;
2357 reg
->M2C_MacControl
= DEFAULT_CWMIN
<< 10;
2358 reg
->M2C_MacControl
|= DEFAULT_CWMAX
;
2359 pltmp
[2] = reg
->M2C_MacControl
;
2362 pltmp
[3] = *(u32
*)pHwData
->bssid
;
2365 pHwData
->AID
= DEFAULT_AID
;
2366 tmp
= *(u16
*)(pHwData
->bssid
+4);
2367 tmp
|= DEFAULT_AID
<< 16;
2371 reg
->M38_MacControl
= (DEFAULT_RATE_RETRY_LIMIT
<<8) | (DEFAULT_LONG_RETRY_LIMIT
<< 4) | DEFAULT_SHORT_RETRY_LIMIT
;
2372 pltmp
[5] = reg
->M38_MacControl
;
2375 tmp
= (DEFAULT_PIFST
<< 26) | (DEFAULT_EIFST
<< 16) | (DEFAULT_DIFST
<< 8) | (DEFAULT_SIFST
<< 4) | DEFAULT_OSIFST
;
2376 reg
->M3C_MacControl
= tmp
;
2380 pHwData
->slot_time_select
= DEFAULT_SLOT_TIME
;
2381 tmp
= (DEFAULT_ATIMWD
<< 16) | DEFAULT_SLOT_TIME
;
2382 reg
->M40_MacControl
= tmp
;
2386 tmp
= DEFAULT_MAX_TX_MSDU_LIFE_TIME
<< 10; // *1024
2387 reg
->M44_MacControl
= tmp
;
2391 pHwData
->BeaconPeriod
= DEFAULT_BEACON_INTERVAL
;
2392 pHwData
->ProbeDelay
= DEFAULT_PROBE_DELAY_TIME
;
2393 tmp
= (DEFAULT_BEACON_INTERVAL
<< 16) | DEFAULT_PROBE_DELAY_TIME
;
2394 reg
->M48_MacControl
= tmp
;
2398 reg
->M4C_MacStatus
= (DEFAULT_PROTOCOL_VERSION
<< 30) | (DEFAULT_MAC_POWER_STATE
<< 28) | (DEFAULT_DTIM_ALERT_TIME
<< 24);
2399 pltmp
[10] = reg
->M4C_MacStatus
;
2402 //Wb35Reg_BurstWrite( pHwData, 0x0824, pltmp, 11, AUTO_INCREMENT );
2403 for( i
=0; i
<11; i
++ )
2404 Wb35Reg_WriteSync( pHwData
, 0x0824 + i
*4, pltmp
[i
] );
2407 Wb35Reg_WriteSync( pHwData
, 0x0860, 0x12481248 );
2408 reg
->M60_MacControl
= 0x12481248;
2411 Wb35Reg_WriteSync( pHwData
, 0x0868, 0x00050900 ); // 20051018 0x000F0F00 ); // 940930 0x00131300
2412 reg
->M68_MacControl
= 0x00050900;
2415 Wb35Reg_WriteSync( pHwData
, 0x0898, 0xffff8888 );
2416 reg
->M98_MacControl
= 0xffff8888;
2420 void Uxx_power_off_procedure( phw_data_t pHwData
)
2422 // SW, PMU reset and turn off clock
2423 Wb35Reg_WriteSync( pHwData
, 0x03b0, 3 );
2424 Wb35Reg_WriteSync( pHwData
, 0x03f0, 0xf9 );
2427 //Decide the TxVga of every channel
2428 void GetTxVgaFromEEPROM( phw_data_t pHwData
)
2431 u16 Value
[MAX_TXVGA_EEPROM
];
2435 // Get the entire TxVga setting in EEPROM
2436 for( i
=0; i
<MAX_TXVGA_EEPROM
; i
++ )
2438 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08100000 + 0x00010000*i
);
2439 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
2440 Value
[i
] = (u16
)( ltmp
& 0xffff ); // Get 16 bit available
2441 Value
[i
] = cpu_to_le16( Value
[i
] ); // [7:0]2412 [7:0]2417 ....
2444 // Adjust the filed which fills with reserved value.
2445 pctmp
= (u8
*)Value
;
2446 for( i
=0; i
<(MAX_TXVGA_EEPROM
*2); i
++ )
2448 if( pctmp
[i
] != 0xff )
2454 // Adjust WB_242 to WB_242_1 TxVga scale
2455 if( pHwData
->phy_type
== RF_WB_242
)
2457 for( i
=0; i
<4; i
++ ) // Only 2412 2437 2462 2484 case must be modified
2459 for( j
=0; j
<(sizeof(w89rf242_txvga_old_mapping
)/sizeof(w89rf242_txvga_old_mapping
[0])); j
++ )
2461 if( pctmp
[i
] < (u8
)w89rf242_txvga_old_mapping
[j
][1] )
2463 pctmp
[i
] = (u8
)w89rf242_txvga_old_mapping
[j
][0];
2468 if( j
== (sizeof(w89rf242_txvga_old_mapping
)/sizeof(w89rf242_txvga_old_mapping
[0])) )
2469 pctmp
[i
] = (u8
)w89rf242_txvga_old_mapping
[j
-1][0];
2474 memcpy( pHwData
->TxVgaSettingInEEPROM
, pctmp
, MAX_TXVGA_EEPROM
*2 ); //MAX_TXVGA_EEPROM is u16 count
2475 EEPROMTxVgaAdjust( pHwData
);
2478 // This function will affect the TxVga parameter in HAL. If hal_set_current_channel
2479 // or RFSynthesizer_SetPowerIndex be called, new TxVga will take effect.
2480 // TxVgaSettingInEEPROM of sHwData is an u8 array point to EEPROM contain for IS89C35
2481 // This function will use default TxVgaSettingInEEPROM data to calculate new TxVga.
2482 void EEPROMTxVgaAdjust( phw_data_t pHwData
) // 20060619.5 Add
2484 u8
* pTxVga
= pHwData
->TxVgaSettingInEEPROM
;
2487 //-- 2.4G -- 20060704.2 Request from Tiger
2489 stmp
= pTxVga
[1] - pTxVga
[0];
2490 for( i
=0; i
<5; i
++ )
2491 pHwData
->TxVgaFor24
[i
] = pTxVga
[0] + stmp
*i
/4;
2493 stmp
= pTxVga
[2] - pTxVga
[1];
2494 for( i
=5; i
<10; i
++ )
2495 pHwData
->TxVgaFor24
[i
] = pTxVga
[1] + stmp
*(i
-5)/4;
2497 stmp
= pTxVga
[3] - pTxVga
[2];
2498 for( i
=10; i
<13; i
++ )
2499 pHwData
->TxVgaFor24
[i
] = pTxVga
[2] + stmp
*(i
-10)/2;
2501 pHwData
->TxVgaFor24
[13] = pTxVga
[3];
2504 if( pHwData
->phy_type
== RF_AIROHA_7230
)
2507 pHwData
->TxVgaFor50
[0].ChanNo
= 184;
2508 pHwData
->TxVgaFor50
[0].TxVgaValue
= pTxVga
[4];
2510 pHwData
->TxVgaFor50
[3].ChanNo
= 196;
2511 pHwData
->TxVgaFor50
[3].TxVgaValue
= pTxVga
[5];
2513 pHwData
->TxVgaFor50
[1].ChanNo
= 188;
2514 pHwData
->TxVgaFor50
[2].ChanNo
= 192;
2515 stmp
= pTxVga
[5] - pTxVga
[4];
2516 pHwData
->TxVgaFor50
[2].TxVgaValue
= pTxVga
[5] - stmp
/3;
2517 pHwData
->TxVgaFor50
[1].TxVgaValue
= pTxVga
[5] - stmp
*2/3;
2520 pHwData
->TxVgaFor50
[6].ChanNo
= 16;
2521 pHwData
->TxVgaFor50
[6].TxVgaValue
= pTxVga
[6];
2522 pHwData
->TxVgaFor50
[4].ChanNo
= 8;
2523 pHwData
->TxVgaFor50
[4].TxVgaValue
= pTxVga
[6];
2524 pHwData
->TxVgaFor50
[5].ChanNo
= 12;
2525 pHwData
->TxVgaFor50
[5].TxVgaValue
= pTxVga
[6];
2528 pHwData
->TxVgaFor50
[8].ChanNo
= 36;
2529 pHwData
->TxVgaFor50
[8].TxVgaValue
= pTxVga
[7];
2530 pHwData
->TxVgaFor50
[7].ChanNo
= 34;
2531 pHwData
->TxVgaFor50
[7].TxVgaValue
= pTxVga
[7];
2532 pHwData
->TxVgaFor50
[9].ChanNo
= 38;
2533 pHwData
->TxVgaFor50
[9].TxVgaValue
= pTxVga
[7];
2536 pHwData
->TxVgaFor50
[10].ChanNo
= 40;
2537 pHwData
->TxVgaFor50
[10].TxVgaValue
= pTxVga
[8];
2539 pHwData
->TxVgaFor50
[14].ChanNo
= 48;
2540 pHwData
->TxVgaFor50
[14].TxVgaValue
= pTxVga
[9];
2542 pHwData
->TxVgaFor50
[11].ChanNo
= 42;
2543 pHwData
->TxVgaFor50
[12].ChanNo
= 44;
2544 pHwData
->TxVgaFor50
[13].ChanNo
= 46;
2545 stmp
= pTxVga
[9] - pTxVga
[8];
2546 pHwData
->TxVgaFor50
[13].TxVgaValue
= pTxVga
[9] - stmp
/4;
2547 pHwData
->TxVgaFor50
[12].TxVgaValue
= pTxVga
[9] - stmp
*2/4;
2548 pHwData
->TxVgaFor50
[11].TxVgaValue
= pTxVga
[9] - stmp
*3/4;
2551 pHwData
->TxVgaFor50
[15].ChanNo
= 52;
2552 pHwData
->TxVgaFor50
[15].TxVgaValue
= pTxVga
[10];
2554 pHwData
->TxVgaFor50
[18].ChanNo
= 64;
2555 pHwData
->TxVgaFor50
[18].TxVgaValue
= pTxVga
[11];
2557 pHwData
->TxVgaFor50
[16].ChanNo
= 56;
2558 pHwData
->TxVgaFor50
[17].ChanNo
= 60;
2559 stmp
= pTxVga
[11] - pTxVga
[10];
2560 pHwData
->TxVgaFor50
[17].TxVgaValue
= pTxVga
[11] - stmp
/3;
2561 pHwData
->TxVgaFor50
[16].TxVgaValue
= pTxVga
[11] - stmp
*2/3;
2564 pHwData
->TxVgaFor50
[19].ChanNo
= 100;
2565 pHwData
->TxVgaFor50
[19].TxVgaValue
= pTxVga
[12];
2567 pHwData
->TxVgaFor50
[22].ChanNo
= 112;
2568 pHwData
->TxVgaFor50
[22].TxVgaValue
= pTxVga
[13];
2570 pHwData
->TxVgaFor50
[20].ChanNo
= 104;
2571 pHwData
->TxVgaFor50
[21].ChanNo
= 108;
2572 stmp
= pTxVga
[13] - pTxVga
[12];
2573 pHwData
->TxVgaFor50
[21].TxVgaValue
= pTxVga
[13] - stmp
/3;
2574 pHwData
->TxVgaFor50
[20].TxVgaValue
= pTxVga
[13] - stmp
*2/3;
2577 pHwData
->TxVgaFor50
[26].ChanNo
= 128;
2578 pHwData
->TxVgaFor50
[26].TxVgaValue
= pTxVga
[14];
2580 pHwData
->TxVgaFor50
[23].ChanNo
= 116;
2581 pHwData
->TxVgaFor50
[24].ChanNo
= 120;
2582 pHwData
->TxVgaFor50
[25].ChanNo
= 124;
2583 stmp
= pTxVga
[14] - pTxVga
[13];
2584 pHwData
->TxVgaFor50
[25].TxVgaValue
= pTxVga
[14] - stmp
/4;
2585 pHwData
->TxVgaFor50
[24].TxVgaValue
= pTxVga
[14] - stmp
*2/4;
2586 pHwData
->TxVgaFor50
[23].TxVgaValue
= pTxVga
[14] - stmp
*3/4;
2589 pHwData
->TxVgaFor50
[29].ChanNo
= 140;
2590 pHwData
->TxVgaFor50
[29].TxVgaValue
= pTxVga
[15];
2592 pHwData
->TxVgaFor50
[27].ChanNo
= 132;
2593 pHwData
->TxVgaFor50
[28].ChanNo
= 136;
2594 stmp
= pTxVga
[15] - pTxVga
[14];
2595 pHwData
->TxVgaFor50
[28].TxVgaValue
= pTxVga
[15] - stmp
/3;
2596 pHwData
->TxVgaFor50
[27].TxVgaValue
= pTxVga
[15] - stmp
*2/3;
2599 pHwData
->TxVgaFor50
[30].ChanNo
= 149;
2600 pHwData
->TxVgaFor50
[30].TxVgaValue
= pTxVga
[16];
2602 pHwData
->TxVgaFor50
[34].ChanNo
= 165;
2603 pHwData
->TxVgaFor50
[34].TxVgaValue
= pTxVga
[17];
2605 pHwData
->TxVgaFor50
[31].ChanNo
= 153;
2606 pHwData
->TxVgaFor50
[32].ChanNo
= 157;
2607 pHwData
->TxVgaFor50
[33].ChanNo
= 161;
2608 stmp
= pTxVga
[17] - pTxVga
[16];
2609 pHwData
->TxVgaFor50
[33].TxVgaValue
= pTxVga
[17] - stmp
/4;
2610 pHwData
->TxVgaFor50
[32].TxVgaValue
= pTxVga
[17] - stmp
*2/4;
2611 pHwData
->TxVgaFor50
[31].TxVgaValue
= pTxVga
[17] - stmp
*3/4;
2614 #ifdef _PE_STATE_DUMP_
2615 WBDEBUG((" TxVgaFor24 : \n"));
2616 DataDmp((u8
*)pHwData
->TxVgaFor24
, 14 ,0);
2617 WBDEBUG((" TxVgaFor50 : \n"));
2618 DataDmp((u8
*)pHwData
->TxVgaFor50
, 70 ,0);
2622 void BBProcessor_RateChanging( phw_data_t pHwData
, u8 rate
) // 20060613.1
2624 struct wb35_reg
*reg
= &pHwData
->reg
;
2625 unsigned char Is11bRate
;
2627 Is11bRate
= (rate
% 6) ? 1 : 0;
2628 switch( pHwData
->phy_type
)
2630 case RF_AIROHA_2230
:
2631 case RF_AIROHA_2230S
: // 20060420 Add this
2634 if( (reg
->BB48
!= BB48_DEFAULT_AL2230_11B
) &&
2635 (reg
->BB4C
!= BB4C_DEFAULT_AL2230_11B
) )
2637 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_AL2230_11B
);
2638 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_AL2230_11B
);
2643 if( (reg
->BB48
!= BB48_DEFAULT_AL2230_11G
) &&
2644 (reg
->BB4C
!= BB4C_DEFAULT_AL2230_11G
) )
2646 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_AL2230_11G
);
2647 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_AL2230_11G
);
2652 case RF_WB_242
: // 20060623 The fix only for old TxVGA setting
2655 if( (reg
->BB48
!= BB48_DEFAULT_WB242_11B
) &&
2656 (reg
->BB4C
!= BB4C_DEFAULT_WB242_11B
) )
2658 reg
->BB48
= BB48_DEFAULT_WB242_11B
;
2659 reg
->BB4C
= BB4C_DEFAULT_WB242_11B
;
2660 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_WB242_11B
);
2661 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_WB242_11B
);
2666 if( (reg
->BB48
!= BB48_DEFAULT_WB242_11G
) &&
2667 (reg
->BB4C
!= BB4C_DEFAULT_WB242_11G
) )
2669 reg
->BB48
= BB48_DEFAULT_WB242_11G
;
2670 reg
->BB4C
= BB4C_DEFAULT_WB242_11G
;
2671 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_WB242_11G
);
2672 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_WB242_11G
);