OMAP3: PM: move context-loss counting into OMAP PM
[linux-ginger.git] / fs / ocfs2 / blockcheck.c
bloba1163b8b417c5cbf4ac5e1dcaf522f34a300a22b
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * blockcheck.c
6 * Checksum and ECC codes for the OCFS2 userspace library.
8 * Copyright (C) 2006, 2008 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License, version 2, as published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/crc32.h>
23 #include <linux/buffer_head.h>
24 #include <linux/bitops.h>
25 #include <linux/debugfs.h>
26 #include <linux/module.h>
27 #include <linux/fs.h>
28 #include <asm/byteorder.h>
30 #include <cluster/masklog.h>
32 #include "ocfs2.h"
34 #include "blockcheck.h"
38 * We use the following conventions:
40 * d = # data bits
41 * p = # parity bits
42 * c = # total code bits (d + p)
47 * Calculate the bit offset in the hamming code buffer based on the bit's
48 * offset in the data buffer. Since the hamming code reserves all
49 * power-of-two bits for parity, the data bit number and the code bit
50 * number are offest by all the parity bits beforehand.
52 * Recall that bit numbers in hamming code are 1-based. This function
53 * takes the 0-based data bit from the caller.
55 * An example. Take bit 1 of the data buffer. 1 is a power of two (2^0),
56 * so it's a parity bit. 2 is a power of two (2^1), so it's a parity bit.
57 * 3 is not a power of two. So bit 1 of the data buffer ends up as bit 3
58 * in the code buffer.
60 * The caller can pass in *p if it wants to keep track of the most recent
61 * number of parity bits added. This allows the function to start the
62 * calculation at the last place.
64 static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
66 unsigned int b, p = 0;
69 * Data bits are 0-based, but we're talking code bits, which
70 * are 1-based.
72 b = i + 1;
74 /* Use the cache if it is there */
75 if (p_cache)
76 p = *p_cache;
77 b += p;
80 * For every power of two below our bit number, bump our bit.
82 * We compare with (b + 1) because we have to compare with what b
83 * would be _if_ it were bumped up by the parity bit. Capice?
85 * p is set above.
87 for (; (1 << p) < (b + 1); p++)
88 b++;
90 if (p_cache)
91 *p_cache = p;
93 return b;
97 * This is the low level encoder function. It can be called across
98 * multiple hunks just like the crc32 code. 'd' is the number of bits
99 * _in_this_hunk_. nr is the bit offset of this hunk. So, if you had
100 * two 512B buffers, you would do it like so:
102 * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
103 * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
105 * If you just have one buffer, use ocfs2_hamming_encode_block().
107 u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
109 unsigned int i, b, p = 0;
111 BUG_ON(!d);
114 * b is the hamming code bit number. Hamming code specifies a
115 * 1-based array, but C uses 0-based. So 'i' is for C, and 'b' is
116 * for the algorithm.
118 * The i++ in the for loop is so that the start offset passed
119 * to ocfs2_find_next_bit_set() is one greater than the previously
120 * found bit.
122 for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
125 * i is the offset in this hunk, nr + i is the total bit
126 * offset.
128 b = calc_code_bit(nr + i, &p);
131 * Data bits in the resultant code are checked by
132 * parity bits that are part of the bit number
133 * representation. Huh?
135 * <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
136 * In other words, the parity bit at position 2^k
137 * checks bits in positions having bit k set in
138 * their binary representation. Conversely, for
139 * instance, bit 13, i.e. 1101(2), is checked by
140 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
141 * </wikipedia>
143 * Note that 'k' is the _code_ bit number. 'b' in
144 * our loop.
146 parity ^= b;
149 /* While the data buffer was treated as little endian, the
150 * return value is in host endian. */
151 return parity;
154 u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
156 return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
160 * Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit
161 * offset of the current hunk. If bit to be fixed is not part of the
162 * current hunk, this does nothing.
164 * If you only have one hunk, use ocfs2_hamming_fix_block().
166 void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
167 unsigned int fix)
169 unsigned int i, b;
171 BUG_ON(!d);
174 * If the bit to fix has an hweight of 1, it's a parity bit. One
175 * busted parity bit is its own error. Nothing to do here.
177 if (hweight32(fix) == 1)
178 return;
181 * nr + d is the bit right past the data hunk we're looking at.
182 * If fix after that, nothing to do
184 if (fix >= calc_code_bit(nr + d, NULL))
185 return;
188 * nr is the offset in the data hunk we're starting at. Let's
189 * start b at the offset in the code buffer. See hamming_encode()
190 * for a more detailed description of 'b'.
192 b = calc_code_bit(nr, NULL);
193 /* If the fix is before this hunk, nothing to do */
194 if (fix < b)
195 return;
197 for (i = 0; i < d; i++, b++)
199 /* Skip past parity bits */
200 while (hweight32(b) == 1)
201 b++;
204 * i is the offset in this data hunk.
205 * nr + i is the offset in the total data buffer.
206 * b is the offset in the total code buffer.
208 * Thus, when b == fix, bit i in the current hunk needs
209 * fixing.
211 if (b == fix)
213 if (ocfs2_test_bit(i, data))
214 ocfs2_clear_bit(i, data);
215 else
216 ocfs2_set_bit(i, data);
217 break;
222 void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
223 unsigned int fix)
225 ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
230 * Debugfs handling.
233 #ifdef CONFIG_DEBUG_FS
235 static int blockcheck_u64_get(void *data, u64 *val)
237 *val = *(u64 *)data;
238 return 0;
240 DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
242 static struct dentry *blockcheck_debugfs_create(const char *name,
243 struct dentry *parent,
244 u64 *value)
246 return debugfs_create_file(name, S_IFREG | S_IRUSR, parent, value,
247 &blockcheck_fops);
250 static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
252 if (stats) {
253 debugfs_remove(stats->b_debug_check);
254 stats->b_debug_check = NULL;
255 debugfs_remove(stats->b_debug_failure);
256 stats->b_debug_failure = NULL;
257 debugfs_remove(stats->b_debug_recover);
258 stats->b_debug_recover = NULL;
259 debugfs_remove(stats->b_debug_dir);
260 stats->b_debug_dir = NULL;
264 static int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
265 struct dentry *parent)
267 int rc = -EINVAL;
269 if (!stats)
270 goto out;
272 stats->b_debug_dir = debugfs_create_dir("blockcheck", parent);
273 if (!stats->b_debug_dir)
274 goto out;
276 stats->b_debug_check =
277 blockcheck_debugfs_create("blocks_checked",
278 stats->b_debug_dir,
279 &stats->b_check_count);
281 stats->b_debug_failure =
282 blockcheck_debugfs_create("checksums_failed",
283 stats->b_debug_dir,
284 &stats->b_failure_count);
286 stats->b_debug_recover =
287 blockcheck_debugfs_create("ecc_recoveries",
288 stats->b_debug_dir,
289 &stats->b_recover_count);
290 if (stats->b_debug_check && stats->b_debug_failure &&
291 stats->b_debug_recover)
292 rc = 0;
294 out:
295 if (rc)
296 ocfs2_blockcheck_debug_remove(stats);
297 return rc;
299 #else
300 static inline int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
301 struct dentry *parent)
303 return 0;
306 static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
309 #endif /* CONFIG_DEBUG_FS */
311 /* Always-called wrappers for starting and stopping the debugfs files */
312 int ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
313 struct dentry *parent)
315 return ocfs2_blockcheck_debug_install(stats, parent);
318 void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
320 ocfs2_blockcheck_debug_remove(stats);
323 static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
325 u64 new_count;
327 if (!stats)
328 return;
330 spin_lock(&stats->b_lock);
331 stats->b_check_count++;
332 new_count = stats->b_check_count;
333 spin_unlock(&stats->b_lock);
335 if (!new_count)
336 mlog(ML_NOTICE, "Block check count has wrapped\n");
339 static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
341 u64 new_count;
343 if (!stats)
344 return;
346 spin_lock(&stats->b_lock);
347 stats->b_failure_count++;
348 new_count = stats->b_failure_count;
349 spin_unlock(&stats->b_lock);
351 if (!new_count)
352 mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
355 static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
357 u64 new_count;
359 if (!stats)
360 return;
362 spin_lock(&stats->b_lock);
363 stats->b_recover_count++;
364 new_count = stats->b_recover_count;
365 spin_unlock(&stats->b_lock);
367 if (!new_count)
368 mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
374 * These are the low-level APIs for using the ocfs2_block_check structure.
378 * This function generates check information for a block.
379 * data is the block to be checked. bc is a pointer to the
380 * ocfs2_block_check structure describing the crc32 and the ecc.
382 * bc should be a pointer inside data, as the function will
383 * take care of zeroing it before calculating the check information. If
384 * bc does not point inside data, the caller must make sure any inline
385 * ocfs2_block_check structures are zeroed.
387 * The data buffer must be in on-disk endian (little endian for ocfs2).
388 * bc will be filled with little-endian values and will be ready to go to
389 * disk.
391 void ocfs2_block_check_compute(void *data, size_t blocksize,
392 struct ocfs2_block_check *bc)
394 u32 crc;
395 u32 ecc;
397 memset(bc, 0, sizeof(struct ocfs2_block_check));
399 crc = crc32_le(~0, data, blocksize);
400 ecc = ocfs2_hamming_encode_block(data, blocksize);
403 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
404 * larger than 16 bits.
406 BUG_ON(ecc > USHORT_MAX);
408 bc->bc_crc32e = cpu_to_le32(crc);
409 bc->bc_ecc = cpu_to_le16((u16)ecc);
413 * This function validates existing check information. Like _compute,
414 * the function will take care of zeroing bc before calculating check codes.
415 * If bc is not a pointer inside data, the caller must have zeroed any
416 * inline ocfs2_block_check structures.
418 * Again, the data passed in should be the on-disk endian.
420 int ocfs2_block_check_validate(void *data, size_t blocksize,
421 struct ocfs2_block_check *bc,
422 struct ocfs2_blockcheck_stats *stats)
424 int rc = 0;
425 struct ocfs2_block_check check;
426 u32 crc, ecc;
428 ocfs2_blockcheck_inc_check(stats);
430 check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
431 check.bc_ecc = le16_to_cpu(bc->bc_ecc);
433 memset(bc, 0, sizeof(struct ocfs2_block_check));
435 /* Fast path - if the crc32 validates, we're good to go */
436 crc = crc32_le(~0, data, blocksize);
437 if (crc == check.bc_crc32e)
438 goto out;
440 ocfs2_blockcheck_inc_failure(stats);
441 mlog(ML_ERROR,
442 "CRC32 failed: stored: %u, computed %u. Applying ECC.\n",
443 (unsigned int)check.bc_crc32e, (unsigned int)crc);
445 /* Ok, try ECC fixups */
446 ecc = ocfs2_hamming_encode_block(data, blocksize);
447 ocfs2_hamming_fix_block(data, blocksize, ecc ^ check.bc_ecc);
449 /* And check the crc32 again */
450 crc = crc32_le(~0, data, blocksize);
451 if (crc == check.bc_crc32e) {
452 ocfs2_blockcheck_inc_recover(stats);
453 goto out;
456 mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
457 (unsigned int)check.bc_crc32e, (unsigned int)crc);
459 rc = -EIO;
461 out:
462 bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
463 bc->bc_ecc = cpu_to_le16(check.bc_ecc);
465 return rc;
469 * This function generates check information for a list of buffer_heads.
470 * bhs is the blocks to be checked. bc is a pointer to the
471 * ocfs2_block_check structure describing the crc32 and the ecc.
473 * bc should be a pointer inside data, as the function will
474 * take care of zeroing it before calculating the check information. If
475 * bc does not point inside data, the caller must make sure any inline
476 * ocfs2_block_check structures are zeroed.
478 * The data buffer must be in on-disk endian (little endian for ocfs2).
479 * bc will be filled with little-endian values and will be ready to go to
480 * disk.
482 void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
483 struct ocfs2_block_check *bc)
485 int i;
486 u32 crc, ecc;
488 BUG_ON(nr < 0);
490 if (!nr)
491 return;
493 memset(bc, 0, sizeof(struct ocfs2_block_check));
495 for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
496 crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
498 * The number of bits in a buffer is obviously b_size*8.
499 * The offset of this buffer is b_size*i, so the bit offset
500 * of this buffer is b_size*8*i.
502 ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
503 bhs[i]->b_size * 8,
504 bhs[i]->b_size * 8 * i);
508 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
509 * larger than 16 bits.
511 BUG_ON(ecc > USHORT_MAX);
513 bc->bc_crc32e = cpu_to_le32(crc);
514 bc->bc_ecc = cpu_to_le16((u16)ecc);
518 * This function validates existing check information on a list of
519 * buffer_heads. Like _compute_bhs, the function will take care of
520 * zeroing bc before calculating check codes. If bc is not a pointer
521 * inside data, the caller must have zeroed any inline
522 * ocfs2_block_check structures.
524 * Again, the data passed in should be the on-disk endian.
526 int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
527 struct ocfs2_block_check *bc,
528 struct ocfs2_blockcheck_stats *stats)
530 int i, rc = 0;
531 struct ocfs2_block_check check;
532 u32 crc, ecc, fix;
534 BUG_ON(nr < 0);
536 if (!nr)
537 return 0;
539 ocfs2_blockcheck_inc_check(stats);
541 check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
542 check.bc_ecc = le16_to_cpu(bc->bc_ecc);
544 memset(bc, 0, sizeof(struct ocfs2_block_check));
546 /* Fast path - if the crc32 validates, we're good to go */
547 for (i = 0, crc = ~0; i < nr; i++)
548 crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
549 if (crc == check.bc_crc32e)
550 goto out;
552 ocfs2_blockcheck_inc_failure(stats);
553 mlog(ML_ERROR,
554 "CRC32 failed: stored: %u, computed %u. Applying ECC.\n",
555 (unsigned int)check.bc_crc32e, (unsigned int)crc);
557 /* Ok, try ECC fixups */
558 for (i = 0, ecc = 0; i < nr; i++) {
560 * The number of bits in a buffer is obviously b_size*8.
561 * The offset of this buffer is b_size*i, so the bit offset
562 * of this buffer is b_size*8*i.
564 ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
565 bhs[i]->b_size * 8,
566 bhs[i]->b_size * 8 * i);
568 fix = ecc ^ check.bc_ecc;
569 for (i = 0; i < nr; i++) {
571 * Try the fix against each buffer. It will only affect
572 * one of them.
574 ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
575 bhs[i]->b_size * 8 * i, fix);
578 /* And check the crc32 again */
579 for (i = 0, crc = ~0; i < nr; i++)
580 crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
581 if (crc == check.bc_crc32e) {
582 ocfs2_blockcheck_inc_recover(stats);
583 goto out;
586 mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
587 (unsigned int)check.bc_crc32e, (unsigned int)crc);
589 rc = -EIO;
591 out:
592 bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
593 bc->bc_ecc = cpu_to_le16(check.bc_ecc);
595 return rc;
599 * These are the main API. They check the superblock flag before
600 * calling the underlying operations.
602 * They expect the buffer(s) to be in disk format.
604 void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
605 struct ocfs2_block_check *bc)
607 if (ocfs2_meta_ecc(OCFS2_SB(sb)))
608 ocfs2_block_check_compute(data, sb->s_blocksize, bc);
611 int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
612 struct ocfs2_block_check *bc)
614 int rc = 0;
615 struct ocfs2_super *osb = OCFS2_SB(sb);
617 if (ocfs2_meta_ecc(osb))
618 rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
619 &osb->osb_ecc_stats);
621 return rc;
624 void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
625 struct buffer_head **bhs, int nr,
626 struct ocfs2_block_check *bc)
628 if (ocfs2_meta_ecc(OCFS2_SB(sb)))
629 ocfs2_block_check_compute_bhs(bhs, nr, bc);
632 int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
633 struct buffer_head **bhs, int nr,
634 struct ocfs2_block_check *bc)
636 int rc = 0;
637 struct ocfs2_super *osb = OCFS2_SB(sb);
639 if (ocfs2_meta_ecc(osb))
640 rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
641 &osb->osb_ecc_stats);
643 return rc;