2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__
void ip_send_check(struct iphdr
*iph
)
89 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 int __ip_local_out(struct sk_buff
*skb
)
94 struct iphdr
*iph
= ip_hdr(skb
);
96 iph
->tot_len
= htons(skb
->len
);
98 return nf_hook(PF_INET
, NF_INET_LOCAL_OUT
, skb
, NULL
, skb_dst(skb
)->dev
,
102 int ip_local_out(struct sk_buff
*skb
)
106 err
= __ip_local_out(skb
);
107 if (likely(err
== 1))
108 err
= dst_output(skb
);
112 EXPORT_SYMBOL_GPL(ip_local_out
);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
117 skb_reset_mac_header(newskb
);
118 __skb_pull(newskb
, skb_network_offset(newskb
));
119 newskb
->pkt_type
= PACKET_LOOPBACK
;
120 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
121 WARN_ON(!skb_dst(newskb
));
126 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
128 int ttl
= inet
->uc_ttl
;
131 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
140 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
142 struct inet_sock
*inet
= inet_sk(sk
);
143 struct rtable
*rt
= skb_rtable(skb
);
146 /* Build the IP header. */
147 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
148 skb_reset_network_header(skb
);
152 iph
->tos
= inet
->tos
;
153 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
154 iph
->frag_off
= htons(IP_DF
);
157 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
158 iph
->daddr
= rt
->rt_dst
;
159 iph
->saddr
= rt
->rt_src
;
160 iph
->protocol
= sk
->sk_protocol
;
161 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
163 if (opt
&& opt
->optlen
) {
164 iph
->ihl
+= opt
->optlen
>>2;
165 ip_options_build(skb
, opt
, daddr
, rt
, 0);
168 skb
->priority
= sk
->sk_priority
;
169 skb
->mark
= sk
->sk_mark
;
172 return ip_local_out(skb
);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
177 static inline int ip_finish_output2(struct sk_buff
*skb
)
179 struct dst_entry
*dst
= skb_dst(skb
);
180 struct rtable
*rt
= (struct rtable
*)dst
;
181 struct net_device
*dev
= dst
->dev
;
182 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
184 if (rt
->rt_type
== RTN_MULTICAST
) {
185 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
186 } else if (rt
->rt_type
== RTN_BROADCAST
)
187 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
191 struct sk_buff
*skb2
;
193 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
199 skb_set_owner_w(skb2
, skb
->sk
);
205 return neigh_hh_output(dst
->hh
, skb
);
206 else if (dst
->neighbour
)
207 return dst
->neighbour
->output(skb
);
210 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
215 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
217 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
219 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
220 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
223 static int ip_finish_output(struct sk_buff
*skb
)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb_dst(skb
)->xfrm
!= NULL
) {
228 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
229 return dst_output(skb
);
232 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
233 return ip_fragment(skb
, ip_finish_output2
);
235 return ip_finish_output2(skb
);
238 int ip_mc_output(struct sk_buff
*skb
)
240 struct sock
*sk
= skb
->sk
;
241 struct rtable
*rt
= skb_rtable(skb
);
242 struct net_device
*dev
= rt
->u
.dst
.dev
;
245 * If the indicated interface is up and running, send the packet.
247 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
250 skb
->protocol
= htons(ETH_P_IP
);
253 * Multicasts are looped back for other local users
256 if (rt
->rt_flags
&RTCF_MULTICAST
) {
257 if ((!sk
|| inet_sk(sk
)->mc_loop
)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt
->rt_flags
&RTCF_LOCAL
) || !(IPCB(skb
)->flags
&IPSKB_FORWARDED
))
270 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
272 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
,
274 ip_dev_loopback_xmit
);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb
)->ttl
== 0) {
285 if (rt
->rt_flags
&RTCF_BROADCAST
) {
286 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
288 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
, NULL
,
289 newskb
->dev
, ip_dev_loopback_xmit
);
292 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, skb
->dev
,
294 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
297 int ip_output(struct sk_buff
*skb
)
299 struct net_device
*dev
= skb_dst(skb
)->dev
;
301 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
304 skb
->protocol
= htons(ETH_P_IP
);
306 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
308 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
311 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
313 struct sock
*sk
= skb
->sk
;
314 struct inet_sock
*inet
= inet_sk(sk
);
315 struct ip_options
*opt
= inet
->opt
;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
322 rt
= skb_rtable(skb
);
326 /* Make sure we can route this packet. */
327 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
331 /* Use correct destination address if we have options. */
337 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
340 .saddr
= inet
->saddr
,
341 .tos
= RT_CONN_FLAGS(sk
) } },
342 .proto
= sk
->sk_protocol
,
343 .flags
= inet_sk_flowi_flags(sk
),
345 { .sport
= inet
->sport
,
346 .dport
= inet
->dport
} } };
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
352 security_sk_classify_flow(sk
, &fl
);
353 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
, 0))
356 sk_setup_caps(sk
, &rt
->u
.dst
);
358 skb_dst_set(skb
, dst_clone(&rt
->u
.dst
));
361 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
364 /* OK, we know where to send it, allocate and build IP header. */
365 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
366 skb_reset_network_header(skb
);
368 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
369 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
370 iph
->frag_off
= htons(IP_DF
);
373 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
374 iph
->protocol
= sk
->sk_protocol
;
375 iph
->saddr
= rt
->rt_src
;
376 iph
->daddr
= rt
->rt_dst
;
377 /* Transport layer set skb->h.foo itself. */
379 if (opt
&& opt
->optlen
) {
380 iph
->ihl
+= opt
->optlen
>> 2;
381 ip_options_build(skb
, opt
, inet
->daddr
, rt
, 0);
384 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
,
385 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
387 skb
->priority
= sk
->sk_priority
;
388 skb
->mark
= sk
->sk_mark
;
390 return ip_local_out(skb
);
393 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
395 return -EHOSTUNREACH
;
399 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
401 to
->pkt_type
= from
->pkt_type
;
402 to
->priority
= from
->priority
;
403 to
->protocol
= from
->protocol
;
405 skb_dst_set(to
, dst_clone(skb_dst(from
)));
407 to
->mark
= from
->mark
;
409 /* Copy the flags to each fragment. */
410 IPCB(to
)->flags
= IPCB(from
)->flags
;
412 #ifdef CONFIG_NET_SCHED
413 to
->tc_index
= from
->tc_index
;
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 to
->nf_trace
= from
->nf_trace
;
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 to
->ipvs_property
= from
->ipvs_property
;
423 skb_copy_secmark(to
, from
);
427 * This IP datagram is too large to be sent in one piece. Break it up into
428 * smaller pieces (each of size equal to IP header plus
429 * a block of the data of the original IP data part) that will yet fit in a
430 * single device frame, and queue such a frame for sending.
433 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
438 struct net_device
*dev
;
439 struct sk_buff
*skb2
;
440 unsigned int mtu
, hlen
, left
, len
, ll_rs
, pad
;
442 __be16 not_last_frag
;
443 struct rtable
*rt
= skb_rtable(skb
);
449 * Point into the IP datagram header.
454 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
455 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
456 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
457 htonl(ip_skb_dst_mtu(skb
)));
463 * Setup starting values.
467 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
468 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
470 /* When frag_list is given, use it. First, check its validity:
471 * some transformers could create wrong frag_list or break existing
472 * one, it is not prohibited. In this case fall back to copying.
474 * LATER: this step can be merged to real generation of fragments,
475 * we can switch to copy when see the first bad fragment.
477 if (skb_has_frags(skb
)) {
478 struct sk_buff
*frag
;
479 int first_len
= skb_pagelen(skb
);
482 if (first_len
- hlen
> mtu
||
483 ((first_len
- hlen
) & 7) ||
484 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
488 skb_walk_frags(skb
, frag
) {
489 /* Correct geometry. */
490 if (frag
->len
> mtu
||
491 ((frag
->len
& 7) && frag
->next
) ||
492 skb_headroom(frag
) < hlen
)
495 /* Partially cloned skb? */
496 if (skb_shared(frag
))
502 frag
->destructor
= sock_wfree
;
503 truesizes
+= frag
->truesize
;
507 /* Everything is OK. Generate! */
511 frag
= skb_shinfo(skb
)->frag_list
;
512 skb_frag_list_init(skb
);
513 skb
->data_len
= first_len
- skb_headlen(skb
);
514 skb
->truesize
-= truesizes
;
515 skb
->len
= first_len
;
516 iph
->tot_len
= htons(first_len
);
517 iph
->frag_off
= htons(IP_MF
);
521 /* Prepare header of the next frame,
522 * before previous one went down. */
524 frag
->ip_summed
= CHECKSUM_NONE
;
525 skb_reset_transport_header(frag
);
526 __skb_push(frag
, hlen
);
527 skb_reset_network_header(frag
);
528 memcpy(skb_network_header(frag
), iph
, hlen
);
530 iph
->tot_len
= htons(frag
->len
);
531 ip_copy_metadata(frag
, skb
);
533 ip_options_fragment(frag
);
534 offset
+= skb
->len
- hlen
;
535 iph
->frag_off
= htons(offset
>>3);
536 if (frag
->next
!= NULL
)
537 iph
->frag_off
|= htons(IP_MF
);
538 /* Ready, complete checksum */
545 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
555 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
564 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
569 left
= skb
->len
- hlen
; /* Space per frame */
570 ptr
= raw
+ hlen
; /* Where to start from */
572 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
573 * we need to make room for the encapsulating header
575 pad
= nf_bridge_pad(skb
);
576 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, pad
);
580 * Fragment the datagram.
583 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
584 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
587 * Keep copying data until we run out.
592 /* IF: it doesn't fit, use 'mtu' - the data space left */
595 /* IF: we are not sending upto and including the packet end
596 then align the next start on an eight byte boundary */
604 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
605 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
611 * Set up data on packet
614 ip_copy_metadata(skb2
, skb
);
615 skb_reserve(skb2
, ll_rs
);
616 skb_put(skb2
, len
+ hlen
);
617 skb_reset_network_header(skb2
);
618 skb2
->transport_header
= skb2
->network_header
+ hlen
;
621 * Charge the memory for the fragment to any owner
626 skb_set_owner_w(skb2
, skb
->sk
);
629 * Copy the packet header into the new buffer.
632 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
635 * Copy a block of the IP datagram.
637 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
642 * Fill in the new header fields.
645 iph
->frag_off
= htons((offset
>> 3));
647 /* ANK: dirty, but effective trick. Upgrade options only if
648 * the segment to be fragmented was THE FIRST (otherwise,
649 * options are already fixed) and make it ONCE
650 * on the initial skb, so that all the following fragments
651 * will inherit fixed options.
654 ip_options_fragment(skb
);
657 * Added AC : If we are fragmenting a fragment that's not the
658 * last fragment then keep MF on each bit
660 if (left
> 0 || not_last_frag
)
661 iph
->frag_off
|= htons(IP_MF
);
666 * Put this fragment into the sending queue.
668 iph
->tot_len
= htons(len
+ hlen
);
676 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
679 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
684 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
688 EXPORT_SYMBOL(ip_fragment
);
691 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
693 struct iovec
*iov
= from
;
695 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
696 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
700 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
702 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
708 csum_page(struct page
*page
, int offset
, int copy
)
713 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
718 static inline int ip_ufo_append_data(struct sock
*sk
,
719 int getfrag(void *from
, char *to
, int offset
, int len
,
720 int odd
, struct sk_buff
*skb
),
721 void *from
, int length
, int hh_len
, int fragheaderlen
,
722 int transhdrlen
, int mtu
, unsigned int flags
)
727 /* There is support for UDP fragmentation offload by network
728 * device, so create one single skb packet containing complete
731 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
) {
732 skb
= sock_alloc_send_skb(sk
,
733 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
734 (flags
& MSG_DONTWAIT
), &err
);
739 /* reserve space for Hardware header */
740 skb_reserve(skb
, hh_len
);
742 /* create space for UDP/IP header */
743 skb_put(skb
, fragheaderlen
+ transhdrlen
);
745 /* initialize network header pointer */
746 skb_reset_network_header(skb
);
748 /* initialize protocol header pointer */
749 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
751 skb
->ip_summed
= CHECKSUM_PARTIAL
;
753 sk
->sk_sndmsg_off
= 0;
755 /* specify the length of each IP datagram fragment */
756 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
757 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
758 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
761 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
762 (length
- transhdrlen
));
766 * ip_append_data() and ip_append_page() can make one large IP datagram
767 * from many pieces of data. Each pieces will be holded on the socket
768 * until ip_push_pending_frames() is called. Each piece can be a page
771 * Not only UDP, other transport protocols - e.g. raw sockets - can use
772 * this interface potentially.
774 * LATER: length must be adjusted by pad at tail, when it is required.
776 int ip_append_data(struct sock
*sk
,
777 int getfrag(void *from
, char *to
, int offset
, int len
,
778 int odd
, struct sk_buff
*skb
),
779 void *from
, int length
, int transhdrlen
,
780 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
783 struct inet_sock
*inet
= inet_sk(sk
);
786 struct ip_options
*opt
= NULL
;
793 unsigned int maxfraglen
, fragheaderlen
;
794 int csummode
= CHECKSUM_NONE
;
800 if (skb_queue_empty(&sk
->sk_write_queue
)) {
806 if (inet
->cork
.opt
== NULL
) {
807 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
808 if (unlikely(inet
->cork
.opt
== NULL
))
811 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
812 inet
->cork
.flags
|= IPCORK_OPT
;
813 inet
->cork
.addr
= ipc
->addr
;
817 * We steal reference to this route, caller should not release it
820 inet
->cork
.fragsize
= mtu
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
822 dst_mtu(rt
->u
.dst
.path
);
823 inet
->cork
.dst
= &rt
->u
.dst
;
824 inet
->cork
.length
= 0;
825 sk
->sk_sndmsg_page
= NULL
;
826 sk
->sk_sndmsg_off
= 0;
827 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
829 transhdrlen
+= exthdrlen
;
832 rt
= (struct rtable
*)inet
->cork
.dst
;
833 if (inet
->cork
.flags
& IPCORK_OPT
)
834 opt
= inet
->cork
.opt
;
838 mtu
= inet
->cork
.fragsize
;
840 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
842 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
843 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
845 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
846 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
-exthdrlen
);
851 * transhdrlen > 0 means that this is the first fragment and we wish
852 * it won't be fragmented in the future.
855 length
+ fragheaderlen
<= mtu
&&
856 rt
->u
.dst
.dev
->features
& NETIF_F_V4_CSUM
&&
858 csummode
= CHECKSUM_PARTIAL
;
860 inet
->cork
.length
+= length
;
861 if (((length
> mtu
) || !skb_queue_empty(&sk
->sk_write_queue
)) &&
862 (sk
->sk_protocol
== IPPROTO_UDP
) &&
863 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
864 err
= ip_ufo_append_data(sk
, getfrag
, from
, length
, hh_len
,
865 fragheaderlen
, transhdrlen
, mtu
,
872 /* So, what's going on in the loop below?
874 * We use calculated fragment length to generate chained skb,
875 * each of segments is IP fragment ready for sending to network after
876 * adding appropriate IP header.
879 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
883 /* Check if the remaining data fits into current packet. */
884 copy
= mtu
- skb
->len
;
886 copy
= maxfraglen
- skb
->len
;
889 unsigned int datalen
;
890 unsigned int fraglen
;
891 unsigned int fraggap
;
892 unsigned int alloclen
;
893 struct sk_buff
*skb_prev
;
897 fraggap
= skb_prev
->len
- maxfraglen
;
902 * If remaining data exceeds the mtu,
903 * we know we need more fragment(s).
905 datalen
= length
+ fraggap
;
906 if (datalen
> mtu
- fragheaderlen
)
907 datalen
= maxfraglen
- fragheaderlen
;
908 fraglen
= datalen
+ fragheaderlen
;
910 if ((flags
& MSG_MORE
) &&
911 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
914 alloclen
= datalen
+ fragheaderlen
;
916 /* The last fragment gets additional space at tail.
917 * Note, with MSG_MORE we overallocate on fragments,
918 * because we have no idea what fragment will be
921 if (datalen
== length
+ fraggap
)
922 alloclen
+= rt
->u
.dst
.trailer_len
;
925 skb
= sock_alloc_send_skb(sk
,
926 alloclen
+ hh_len
+ 15,
927 (flags
& MSG_DONTWAIT
), &err
);
930 if (atomic_read(&sk
->sk_wmem_alloc
) <=
932 skb
= sock_wmalloc(sk
,
933 alloclen
+ hh_len
+ 15, 1,
935 if (unlikely(skb
== NULL
))
938 /* only the initial fragment is
946 * Fill in the control structures
948 skb
->ip_summed
= csummode
;
950 skb_reserve(skb
, hh_len
);
951 *skb_tx(skb
) = ipc
->shtx
;
954 * Find where to start putting bytes.
956 data
= skb_put(skb
, fraglen
);
957 skb_set_network_header(skb
, exthdrlen
);
958 skb
->transport_header
= (skb
->network_header
+
960 data
+= fragheaderlen
;
963 skb
->csum
= skb_copy_and_csum_bits(
964 skb_prev
, maxfraglen
,
965 data
+ transhdrlen
, fraggap
, 0);
966 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
969 pskb_trim_unique(skb_prev
, maxfraglen
);
972 copy
= datalen
- transhdrlen
- fraggap
;
973 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
980 length
-= datalen
- fraggap
;
983 csummode
= CHECKSUM_NONE
;
986 * Put the packet on the pending queue.
988 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
995 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
999 if (getfrag(from
, skb_put(skb
, copy
),
1000 offset
, copy
, off
, skb
) < 0) {
1001 __skb_trim(skb
, off
);
1006 int i
= skb_shinfo(skb
)->nr_frags
;
1007 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
1008 struct page
*page
= sk
->sk_sndmsg_page
;
1009 int off
= sk
->sk_sndmsg_off
;
1012 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1015 if (page
!= frag
->page
) {
1016 if (i
== MAX_SKB_FRAGS
) {
1021 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
1022 frag
= &skb_shinfo(skb
)->frags
[i
];
1024 } else if (i
< MAX_SKB_FRAGS
) {
1025 if (copy
> PAGE_SIZE
)
1027 page
= alloc_pages(sk
->sk_allocation
, 0);
1032 sk
->sk_sndmsg_page
= page
;
1033 sk
->sk_sndmsg_off
= 0;
1035 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1036 frag
= &skb_shinfo(skb
)->frags
[i
];
1041 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1045 sk
->sk_sndmsg_off
+= copy
;
1048 skb
->data_len
+= copy
;
1049 skb
->truesize
+= copy
;
1050 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1059 inet
->cork
.length
-= length
;
1060 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1064 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1065 int offset
, size_t size
, int flags
)
1067 struct inet_sock
*inet
= inet_sk(sk
);
1068 struct sk_buff
*skb
;
1070 struct ip_options
*opt
= NULL
;
1075 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1080 if (flags
&MSG_PROBE
)
1083 if (skb_queue_empty(&sk
->sk_write_queue
))
1086 rt
= (struct rtable
*)inet
->cork
.dst
;
1087 if (inet
->cork
.flags
& IPCORK_OPT
)
1088 opt
= inet
->cork
.opt
;
1090 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
1093 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
1094 mtu
= inet
->cork
.fragsize
;
1096 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1097 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1099 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1100 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
);
1104 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1107 inet
->cork
.length
+= size
;
1108 if ((sk
->sk_protocol
== IPPROTO_UDP
) &&
1109 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
1110 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1111 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1118 if (skb_is_gso(skb
))
1122 /* Check if the remaining data fits into current packet. */
1123 len
= mtu
- skb
->len
;
1125 len
= maxfraglen
- skb
->len
;
1128 struct sk_buff
*skb_prev
;
1132 fraggap
= skb_prev
->len
- maxfraglen
;
1134 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1135 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1136 if (unlikely(!skb
)) {
1142 * Fill in the control structures
1144 skb
->ip_summed
= CHECKSUM_NONE
;
1146 skb_reserve(skb
, hh_len
);
1149 * Find where to start putting bytes.
1151 skb_put(skb
, fragheaderlen
+ fraggap
);
1152 skb_reset_network_header(skb
);
1153 skb
->transport_header
= (skb
->network_header
+
1156 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1158 skb_transport_header(skb
),
1160 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1162 pskb_trim_unique(skb_prev
, maxfraglen
);
1166 * Put the packet on the pending queue.
1168 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1172 i
= skb_shinfo(skb
)->nr_frags
;
1175 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1176 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1177 } else if (i
< MAX_SKB_FRAGS
) {
1179 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1185 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1187 csum
= csum_page(page
, offset
, len
);
1188 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1192 skb
->data_len
+= len
;
1193 skb
->truesize
+= len
;
1194 atomic_add(len
, &sk
->sk_wmem_alloc
);
1201 inet
->cork
.length
-= size
;
1202 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1206 static void ip_cork_release(struct inet_sock
*inet
)
1208 inet
->cork
.flags
&= ~IPCORK_OPT
;
1209 kfree(inet
->cork
.opt
);
1210 inet
->cork
.opt
= NULL
;
1211 dst_release(inet
->cork
.dst
);
1212 inet
->cork
.dst
= NULL
;
1216 * Combined all pending IP fragments on the socket as one IP datagram
1217 * and push them out.
1219 int ip_push_pending_frames(struct sock
*sk
)
1221 struct sk_buff
*skb
, *tmp_skb
;
1222 struct sk_buff
**tail_skb
;
1223 struct inet_sock
*inet
= inet_sk(sk
);
1224 struct net
*net
= sock_net(sk
);
1225 struct ip_options
*opt
= NULL
;
1226 struct rtable
*rt
= (struct rtable
*)inet
->cork
.dst
;
1232 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1234 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1236 /* move skb->data to ip header from ext header */
1237 if (skb
->data
< skb_network_header(skb
))
1238 __skb_pull(skb
, skb_network_offset(skb
));
1239 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1240 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1241 *tail_skb
= tmp_skb
;
1242 tail_skb
= &(tmp_skb
->next
);
1243 skb
->len
+= tmp_skb
->len
;
1244 skb
->data_len
+= tmp_skb
->len
;
1245 skb
->truesize
+= tmp_skb
->truesize
;
1246 tmp_skb
->destructor
= NULL
;
1250 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1251 * to fragment the frame generated here. No matter, what transforms
1252 * how transforms change size of the packet, it will come out.
1254 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1257 /* DF bit is set when we want to see DF on outgoing frames.
1258 * If local_df is set too, we still allow to fragment this frame
1260 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1261 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1262 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1265 if (inet
->cork
.flags
& IPCORK_OPT
)
1266 opt
= inet
->cork
.opt
;
1268 if (rt
->rt_type
== RTN_MULTICAST
)
1271 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1273 iph
= (struct iphdr
*)skb
->data
;
1277 iph
->ihl
+= opt
->optlen
>>2;
1278 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1280 iph
->tos
= inet
->tos
;
1282 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
1284 iph
->protocol
= sk
->sk_protocol
;
1285 iph
->saddr
= rt
->rt_src
;
1286 iph
->daddr
= rt
->rt_dst
;
1288 skb
->priority
= sk
->sk_priority
;
1289 skb
->mark
= sk
->sk_mark
;
1291 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1294 inet
->cork
.dst
= NULL
;
1295 skb_dst_set(skb
, &rt
->u
.dst
);
1297 if (iph
->protocol
== IPPROTO_ICMP
)
1298 icmp_out_count(net
, ((struct icmphdr
*)
1299 skb_transport_header(skb
))->type
);
1301 /* Netfilter gets whole the not fragmented skb. */
1302 err
= ip_local_out(skb
);
1305 err
= inet
->recverr
? net_xmit_errno(err
) : 0;
1311 ip_cork_release(inet
);
1315 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1320 * Throw away all pending data on the socket.
1322 void ip_flush_pending_frames(struct sock
*sk
)
1324 struct sk_buff
*skb
;
1326 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1329 ip_cork_release(inet_sk(sk
));
1334 * Fetch data from kernel space and fill in checksum if needed.
1336 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1337 int len
, int odd
, struct sk_buff
*skb
)
1341 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1342 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1347 * Generic function to send a packet as reply to another packet.
1348 * Used to send TCP resets so far. ICMP should use this function too.
1350 * Should run single threaded per socket because it uses the sock
1351 * structure to pass arguments.
1353 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1356 struct inet_sock
*inet
= inet_sk(sk
);
1358 struct ip_options opt
;
1361 struct ipcm_cookie ipc
;
1363 struct rtable
*rt
= skb_rtable(skb
);
1365 if (ip_options_echo(&replyopts
.opt
, skb
))
1368 daddr
= ipc
.addr
= rt
->rt_src
;
1372 if (replyopts
.opt
.optlen
) {
1373 ipc
.opt
= &replyopts
.opt
;
1376 daddr
= replyopts
.opt
.faddr
;
1380 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1383 .saddr
= rt
->rt_spec_dst
,
1384 .tos
= RT_TOS(ip_hdr(skb
)->tos
) } },
1385 /* Not quite clean, but right. */
1387 { .sport
= tcp_hdr(skb
)->dest
,
1388 .dport
= tcp_hdr(skb
)->source
} },
1389 .proto
= sk
->sk_protocol
,
1390 .flags
= ip_reply_arg_flowi_flags(arg
) };
1391 security_skb_classify_flow(skb
, &fl
);
1392 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1396 /* And let IP do all the hard work.
1398 This chunk is not reenterable, hence spinlock.
1399 Note that it uses the fact, that this function is called
1400 with locally disabled BH and that sk cannot be already spinlocked.
1403 inet
->tos
= ip_hdr(skb
)->tos
;
1404 sk
->sk_priority
= skb
->priority
;
1405 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1406 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1407 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1408 &ipc
, &rt
, MSG_DONTWAIT
);
1409 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1410 if (arg
->csumoffset
>= 0)
1411 *((__sum16
*)skb_transport_header(skb
) +
1412 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1414 skb
->ip_summed
= CHECKSUM_NONE
;
1415 ip_push_pending_frames(sk
);
1423 void __init
ip_init(void)
1428 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1429 igmp_mc_proc_init();
1433 EXPORT_SYMBOL(ip_generic_getfrag
);
1434 EXPORT_SYMBOL(ip_queue_xmit
);
1435 EXPORT_SYMBOL(ip_send_check
);