Save sram context after changing MPU, DSP or core clocks
[linux-ginger.git] / drivers / net / ixgbe / ixgbe_phy.c
blob9ecad17522c33285fd7b8755cd1eaa3d4d6015bc
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
50 /**
51 * ixgbe_identify_phy_generic - Get physical layer module
52 * @hw: pointer to hardware structure
54 * Determines the physical layer module found on the current adapter.
55 **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
61 if (hw->phy.type == ixgbe_phy_unknown) {
62 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63 hw->phy.mdio.prtad = phy_addr;
64 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65 ixgbe_get_phy_id(hw);
66 hw->phy.type =
67 ixgbe_get_phy_type_from_id(hw->phy.id);
68 status = 0;
69 break;
72 /* clear value if nothing found */
73 hw->phy.mdio.prtad = 0;
74 } else {
75 status = 0;
78 return status;
81 /**
82 * ixgbe_get_phy_id - Get the phy type
83 * @hw: pointer to hardware structure
85 **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
88 u32 status;
89 u16 phy_id_high = 0;
90 u16 phy_id_low = 0;
92 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93 &phy_id_high);
95 if (status == 0) {
96 hw->phy.id = (u32)(phy_id_high << 16);
97 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98 &phy_id_low);
99 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
102 return status;
106 * ixgbe_get_phy_type_from_id - Get the phy type
107 * @hw: pointer to hardware structure
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
112 enum ixgbe_phy_type phy_type;
114 switch (phy_id) {
115 case TN1010_PHY_ID:
116 phy_type = ixgbe_phy_tn;
117 break;
118 case QT2022_PHY_ID:
119 phy_type = ixgbe_phy_qt;
120 break;
121 case ATH_PHY_ID:
122 phy_type = ixgbe_phy_nl;
123 break;
124 default:
125 phy_type = ixgbe_phy_unknown;
126 break;
129 return phy_type;
133 * ixgbe_reset_phy_generic - Performs a PHY reset
134 * @hw: pointer to hardware structure
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
139 * Perform soft PHY reset to the PHY_XS.
140 * This will cause a soft reset to the PHY
142 return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
143 MDIO_CTRL1_RESET);
147 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
148 * @hw: pointer to hardware structure
149 * @reg_addr: 32 bit address of PHY register to read
150 * @phy_data: Pointer to read data from PHY register
152 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
153 u32 device_type, u16 *phy_data)
155 u32 command;
156 u32 i;
157 u32 data;
158 s32 status = 0;
159 u16 gssr;
161 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
162 gssr = IXGBE_GSSR_PHY1_SM;
163 else
164 gssr = IXGBE_GSSR_PHY0_SM;
166 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
167 status = IXGBE_ERR_SWFW_SYNC;
169 if (status == 0) {
170 /* Setup and write the address cycle command */
171 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
172 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
173 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
174 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
176 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
179 * Check every 10 usec to see if the address cycle completed.
180 * The MDI Command bit will clear when the operation is
181 * complete
183 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
184 udelay(10);
186 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
188 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
189 break;
192 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
193 hw_dbg(hw, "PHY address command did not complete.\n");
194 status = IXGBE_ERR_PHY;
197 if (status == 0) {
199 * Address cycle complete, setup and write the read
200 * command
202 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
203 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
204 (hw->phy.mdio.prtad <<
205 IXGBE_MSCA_PHY_ADDR_SHIFT) |
206 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
208 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
211 * Check every 10 usec to see if the address cycle
212 * completed. The MDI Command bit will clear when the
213 * operation is complete
215 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
216 udelay(10);
218 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
220 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
221 break;
224 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
225 hw_dbg(hw, "PHY read command didn't complete\n");
226 status = IXGBE_ERR_PHY;
227 } else {
229 * Read operation is complete. Get the data
230 * from MSRWD
232 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
233 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
234 *phy_data = (u16)(data);
238 ixgbe_release_swfw_sync(hw, gssr);
241 return status;
245 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
246 * @hw: pointer to hardware structure
247 * @reg_addr: 32 bit PHY register to write
248 * @device_type: 5 bit device type
249 * @phy_data: Data to write to the PHY register
251 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
252 u32 device_type, u16 phy_data)
254 u32 command;
255 u32 i;
256 s32 status = 0;
257 u16 gssr;
259 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
260 gssr = IXGBE_GSSR_PHY1_SM;
261 else
262 gssr = IXGBE_GSSR_PHY0_SM;
264 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
265 status = IXGBE_ERR_SWFW_SYNC;
267 if (status == 0) {
268 /* Put the data in the MDI single read and write data register*/
269 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
271 /* Setup and write the address cycle command */
272 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
273 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
274 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
275 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
277 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
280 * Check every 10 usec to see if the address cycle completed.
281 * The MDI Command bit will clear when the operation is
282 * complete
284 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
285 udelay(10);
287 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
289 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
290 break;
293 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
294 hw_dbg(hw, "PHY address cmd didn't complete\n");
295 status = IXGBE_ERR_PHY;
298 if (status == 0) {
300 * Address cycle complete, setup and write the write
301 * command
303 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
304 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
305 (hw->phy.mdio.prtad <<
306 IXGBE_MSCA_PHY_ADDR_SHIFT) |
307 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
309 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
312 * Check every 10 usec to see if the address cycle
313 * completed. The MDI Command bit will clear when the
314 * operation is complete
316 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
317 udelay(10);
319 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
321 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
322 break;
325 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
326 hw_dbg(hw, "PHY address cmd didn't complete\n");
327 status = IXGBE_ERR_PHY;
331 ixgbe_release_swfw_sync(hw, gssr);
334 return status;
338 * ixgbe_setup_phy_link_generic - Set and restart autoneg
339 * @hw: pointer to hardware structure
341 * Restart autonegotiation and PHY and waits for completion.
343 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
345 s32 status = IXGBE_NOT_IMPLEMENTED;
346 u32 time_out;
347 u32 max_time_out = 10;
348 u16 autoneg_reg;
351 * Set advertisement settings in PHY based on autoneg_advertised
352 * settings. If autoneg_advertised = 0, then advertise default values
353 * tnx devices cannot be "forced" to a autoneg 10G and fail. But can
354 * for a 1G.
356 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
358 if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
359 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
360 else
361 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
363 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
365 /* Restart PHY autonegotiation and wait for completion */
366 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
368 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
370 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
372 /* Wait for autonegotiation to finish */
373 for (time_out = 0; time_out < max_time_out; time_out++) {
374 udelay(10);
375 /* Restart PHY autonegotiation and wait for completion */
376 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
377 &autoneg_reg);
379 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
380 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
381 status = 0;
382 break;
386 if (time_out == max_time_out)
387 status = IXGBE_ERR_LINK_SETUP;
389 return status;
393 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
394 * @hw: pointer to hardware structure
395 * @speed: new link speed
396 * @autoneg: true if autonegotiation enabled
398 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
399 ixgbe_link_speed speed,
400 bool autoneg,
401 bool autoneg_wait_to_complete)
405 * Clear autoneg_advertised and set new values based on input link
406 * speed.
408 hw->phy.autoneg_advertised = 0;
410 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
411 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
413 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
414 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
416 /* Setup link based on the new speed settings */
417 hw->phy.ops.setup_link(hw);
419 return 0;
423 * ixgbe_reset_phy_nl - Performs a PHY reset
424 * @hw: pointer to hardware structure
426 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
428 u16 phy_offset, control, eword, edata, block_crc;
429 bool end_data = false;
430 u16 list_offset, data_offset;
431 u16 phy_data = 0;
432 s32 ret_val = 0;
433 u32 i;
435 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
437 /* reset the PHY and poll for completion */
438 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
439 (phy_data | MDIO_CTRL1_RESET));
441 for (i = 0; i < 100; i++) {
442 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
443 &phy_data);
444 if ((phy_data & MDIO_CTRL1_RESET) == 0)
445 break;
446 msleep(10);
449 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
450 hw_dbg(hw, "PHY reset did not complete.\n");
451 ret_val = IXGBE_ERR_PHY;
452 goto out;
455 /* Get init offsets */
456 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
457 &data_offset);
458 if (ret_val != 0)
459 goto out;
461 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
462 data_offset++;
463 while (!end_data) {
465 * Read control word from PHY init contents offset
467 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
468 control = (eword & IXGBE_CONTROL_MASK_NL) >>
469 IXGBE_CONTROL_SHIFT_NL;
470 edata = eword & IXGBE_DATA_MASK_NL;
471 switch (control) {
472 case IXGBE_DELAY_NL:
473 data_offset++;
474 hw_dbg(hw, "DELAY: %d MS\n", edata);
475 msleep(edata);
476 break;
477 case IXGBE_DATA_NL:
478 hw_dbg(hw, "DATA: \n");
479 data_offset++;
480 hw->eeprom.ops.read(hw, data_offset++,
481 &phy_offset);
482 for (i = 0; i < edata; i++) {
483 hw->eeprom.ops.read(hw, data_offset, &eword);
484 hw->phy.ops.write_reg(hw, phy_offset,
485 MDIO_MMD_PMAPMD, eword);
486 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
487 phy_offset);
488 data_offset++;
489 phy_offset++;
491 break;
492 case IXGBE_CONTROL_NL:
493 data_offset++;
494 hw_dbg(hw, "CONTROL: \n");
495 if (edata == IXGBE_CONTROL_EOL_NL) {
496 hw_dbg(hw, "EOL\n");
497 end_data = true;
498 } else if (edata == IXGBE_CONTROL_SOL_NL) {
499 hw_dbg(hw, "SOL\n");
500 } else {
501 hw_dbg(hw, "Bad control value\n");
502 ret_val = IXGBE_ERR_PHY;
503 goto out;
505 break;
506 default:
507 hw_dbg(hw, "Bad control type\n");
508 ret_val = IXGBE_ERR_PHY;
509 goto out;
513 out:
514 return ret_val;
518 * ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
519 * the PHY type.
520 * @hw: pointer to hardware structure
522 * Searches for and indentifies the SFP module. Assings appropriate PHY type.
524 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
526 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
527 u32 vendor_oui = 0;
528 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
529 u8 identifier = 0;
530 u8 comp_codes_1g = 0;
531 u8 comp_codes_10g = 0;
532 u8 oui_bytes[3] = {0, 0, 0};
533 u8 cable_tech = 0;
534 u16 enforce_sfp = 0;
536 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
537 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
538 status = IXGBE_ERR_SFP_NOT_PRESENT;
539 goto out;
542 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
543 &identifier);
545 if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
546 status = IXGBE_ERR_SFP_NOT_PRESENT;
547 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
548 if (hw->phy.type != ixgbe_phy_nl) {
549 hw->phy.id = 0;
550 hw->phy.type = ixgbe_phy_unknown;
552 goto out;
555 if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
556 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
557 &comp_codes_1g);
558 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
559 &comp_codes_10g);
560 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
561 &cable_tech);
563 /* ID Module
564 * =========
565 * 0 SFP_DA_CU
566 * 1 SFP_SR
567 * 2 SFP_LR
568 * 3 SFP_DA_CORE0 - 82599-specific
569 * 4 SFP_DA_CORE1 - 82599-specific
570 * 5 SFP_SR/LR_CORE0 - 82599-specific
571 * 6 SFP_SR/LR_CORE1 - 82599-specific
573 if (hw->mac.type == ixgbe_mac_82598EB) {
574 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
575 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
576 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
577 hw->phy.sfp_type = ixgbe_sfp_type_sr;
578 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
579 hw->phy.sfp_type = ixgbe_sfp_type_lr;
580 else
581 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
582 } else if (hw->mac.type == ixgbe_mac_82599EB) {
583 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
584 if (hw->bus.lan_id == 0)
585 hw->phy.sfp_type =
586 ixgbe_sfp_type_da_cu_core0;
587 else
588 hw->phy.sfp_type =
589 ixgbe_sfp_type_da_cu_core1;
590 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
591 if (hw->bus.lan_id == 0)
592 hw->phy.sfp_type =
593 ixgbe_sfp_type_srlr_core0;
594 else
595 hw->phy.sfp_type =
596 ixgbe_sfp_type_srlr_core1;
597 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
598 if (hw->bus.lan_id == 0)
599 hw->phy.sfp_type =
600 ixgbe_sfp_type_srlr_core0;
601 else
602 hw->phy.sfp_type =
603 ixgbe_sfp_type_srlr_core1;
604 else
605 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
608 if (hw->phy.sfp_type != stored_sfp_type)
609 hw->phy.sfp_setup_needed = true;
611 /* Determine if the SFP+ PHY is dual speed or not. */
612 hw->phy.multispeed_fiber = false;
613 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
614 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
615 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
616 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
617 hw->phy.multispeed_fiber = true;
619 /* Determine PHY vendor */
620 if (hw->phy.type != ixgbe_phy_nl) {
621 hw->phy.id = identifier;
622 hw->phy.ops.read_i2c_eeprom(hw,
623 IXGBE_SFF_VENDOR_OUI_BYTE0,
624 &oui_bytes[0]);
625 hw->phy.ops.read_i2c_eeprom(hw,
626 IXGBE_SFF_VENDOR_OUI_BYTE1,
627 &oui_bytes[1]);
628 hw->phy.ops.read_i2c_eeprom(hw,
629 IXGBE_SFF_VENDOR_OUI_BYTE2,
630 &oui_bytes[2]);
632 vendor_oui =
633 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
634 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
635 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
637 switch (vendor_oui) {
638 case IXGBE_SFF_VENDOR_OUI_TYCO:
639 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
640 hw->phy.type = ixgbe_phy_tw_tyco;
641 break;
642 case IXGBE_SFF_VENDOR_OUI_FTL:
643 hw->phy.type = ixgbe_phy_sfp_ftl;
644 break;
645 case IXGBE_SFF_VENDOR_OUI_AVAGO:
646 hw->phy.type = ixgbe_phy_sfp_avago;
647 break;
648 case IXGBE_SFF_VENDOR_OUI_INTEL:
649 hw->phy.type = ixgbe_phy_sfp_intel;
650 break;
651 default:
652 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
653 hw->phy.type = ixgbe_phy_tw_unknown;
654 else
655 hw->phy.type = ixgbe_phy_sfp_unknown;
656 break;
660 /* All passive DA cables are supported */
661 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
662 status = 0;
663 goto out;
666 /* 1G SFP modules are not supported */
667 if (comp_codes_10g == 0) {
668 hw->phy.type = ixgbe_phy_sfp_unsupported;
669 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
670 goto out;
673 /* Anything else 82598-based is supported */
674 if (hw->mac.type == ixgbe_mac_82598EB) {
675 status = 0;
676 goto out;
679 /* This is guaranteed to be 82599, no need to check for NULL */
680 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
681 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
682 /* Make sure we're a supported PHY type */
683 if (hw->phy.type == ixgbe_phy_sfp_intel) {
684 status = 0;
685 } else {
686 hw_dbg(hw, "SFP+ module not supported\n");
687 hw->phy.type = ixgbe_phy_sfp_unsupported;
688 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
690 } else {
691 status = 0;
695 out:
696 return status;
700 * ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
701 * if it supports a given SFP+ module type, if so it returns the offsets to the
702 * phy init sequence block.
703 * @hw: pointer to hardware structure
704 * @list_offset: offset to the SFP ID list
705 * @data_offset: offset to the SFP data block
707 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
708 u16 *list_offset,
709 u16 *data_offset)
711 u16 sfp_id;
713 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
714 return IXGBE_ERR_SFP_NOT_SUPPORTED;
716 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
717 return IXGBE_ERR_SFP_NOT_PRESENT;
719 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
720 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
721 return IXGBE_ERR_SFP_NOT_SUPPORTED;
723 /* Read offset to PHY init contents */
724 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
726 if ((!*list_offset) || (*list_offset == 0xFFFF))
727 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
729 /* Shift offset to first ID word */
730 (*list_offset)++;
733 * Find the matching SFP ID in the EEPROM
734 * and program the init sequence
736 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
738 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
739 if (sfp_id == hw->phy.sfp_type) {
740 (*list_offset)++;
741 hw->eeprom.ops.read(hw, *list_offset, data_offset);
742 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
743 hw_dbg(hw, "SFP+ module not supported\n");
744 return IXGBE_ERR_SFP_NOT_SUPPORTED;
745 } else {
746 break;
748 } else {
749 (*list_offset) += 2;
750 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
751 return IXGBE_ERR_PHY;
755 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
756 hw_dbg(hw, "No matching SFP+ module found\n");
757 return IXGBE_ERR_SFP_NOT_SUPPORTED;
760 return 0;
764 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
765 * @hw: pointer to hardware structure
766 * @byte_offset: EEPROM byte offset to read
767 * @eeprom_data: value read
769 * Performs byte read operation to SFP module's EEPROM over I2C interface.
771 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
772 u8 *eeprom_data)
774 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
775 IXGBE_I2C_EEPROM_DEV_ADDR,
776 eeprom_data);
780 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
781 * @hw: pointer to hardware structure
782 * @byte_offset: EEPROM byte offset to write
783 * @eeprom_data: value to write
785 * Performs byte write operation to SFP module's EEPROM over I2C interface.
787 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
788 u8 eeprom_data)
790 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
791 IXGBE_I2C_EEPROM_DEV_ADDR,
792 eeprom_data);
796 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
797 * @hw: pointer to hardware structure
798 * @byte_offset: byte offset to read
799 * @data: value read
801 * Performs byte read operation to SFP module's EEPROM over I2C interface at
802 * a specified deivce address.
804 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
805 u8 dev_addr, u8 *data)
807 s32 status = 0;
808 u32 max_retry = 1;
809 u32 retry = 0;
810 bool nack = 1;
812 do {
813 ixgbe_i2c_start(hw);
815 /* Device Address and write indication */
816 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
817 if (status != 0)
818 goto fail;
820 status = ixgbe_get_i2c_ack(hw);
821 if (status != 0)
822 goto fail;
824 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
825 if (status != 0)
826 goto fail;
828 status = ixgbe_get_i2c_ack(hw);
829 if (status != 0)
830 goto fail;
832 ixgbe_i2c_start(hw);
834 /* Device Address and read indication */
835 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
836 if (status != 0)
837 goto fail;
839 status = ixgbe_get_i2c_ack(hw);
840 if (status != 0)
841 goto fail;
843 status = ixgbe_clock_in_i2c_byte(hw, data);
844 if (status != 0)
845 goto fail;
847 status = ixgbe_clock_out_i2c_bit(hw, nack);
848 if (status != 0)
849 goto fail;
851 ixgbe_i2c_stop(hw);
852 break;
854 fail:
855 ixgbe_i2c_bus_clear(hw);
856 retry++;
857 if (retry < max_retry)
858 hw_dbg(hw, "I2C byte read error - Retrying.\n");
859 else
860 hw_dbg(hw, "I2C byte read error.\n");
862 } while (retry < max_retry);
864 return status;
868 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
869 * @hw: pointer to hardware structure
870 * @byte_offset: byte offset to write
871 * @data: value to write
873 * Performs byte write operation to SFP module's EEPROM over I2C interface at
874 * a specified device address.
876 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
877 u8 dev_addr, u8 data)
879 s32 status = 0;
880 u32 max_retry = 1;
881 u32 retry = 0;
883 do {
884 ixgbe_i2c_start(hw);
886 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
887 if (status != 0)
888 goto fail;
890 status = ixgbe_get_i2c_ack(hw);
891 if (status != 0)
892 goto fail;
894 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
895 if (status != 0)
896 goto fail;
898 status = ixgbe_get_i2c_ack(hw);
899 if (status != 0)
900 goto fail;
902 status = ixgbe_clock_out_i2c_byte(hw, data);
903 if (status != 0)
904 goto fail;
906 status = ixgbe_get_i2c_ack(hw);
907 if (status != 0)
908 goto fail;
910 ixgbe_i2c_stop(hw);
911 break;
913 fail:
914 ixgbe_i2c_bus_clear(hw);
915 retry++;
916 if (retry < max_retry)
917 hw_dbg(hw, "I2C byte write error - Retrying.\n");
918 else
919 hw_dbg(hw, "I2C byte write error.\n");
920 } while (retry < max_retry);
922 return status;
926 * ixgbe_i2c_start - Sets I2C start condition
927 * @hw: pointer to hardware structure
929 * Sets I2C start condition (High -> Low on SDA while SCL is High)
931 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
933 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
935 /* Start condition must begin with data and clock high */
936 ixgbe_set_i2c_data(hw, &i2cctl, 1);
937 ixgbe_raise_i2c_clk(hw, &i2cctl);
939 /* Setup time for start condition (4.7us) */
940 udelay(IXGBE_I2C_T_SU_STA);
942 ixgbe_set_i2c_data(hw, &i2cctl, 0);
944 /* Hold time for start condition (4us) */
945 udelay(IXGBE_I2C_T_HD_STA);
947 ixgbe_lower_i2c_clk(hw, &i2cctl);
949 /* Minimum low period of clock is 4.7 us */
950 udelay(IXGBE_I2C_T_LOW);
955 * ixgbe_i2c_stop - Sets I2C stop condition
956 * @hw: pointer to hardware structure
958 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
960 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
962 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
964 /* Stop condition must begin with data low and clock high */
965 ixgbe_set_i2c_data(hw, &i2cctl, 0);
966 ixgbe_raise_i2c_clk(hw, &i2cctl);
968 /* Setup time for stop condition (4us) */
969 udelay(IXGBE_I2C_T_SU_STO);
971 ixgbe_set_i2c_data(hw, &i2cctl, 1);
973 /* bus free time between stop and start (4.7us)*/
974 udelay(IXGBE_I2C_T_BUF);
978 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
979 * @hw: pointer to hardware structure
980 * @data: data byte to clock in
982 * Clocks in one byte data via I2C data/clock
984 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
986 s32 status = 0;
987 s32 i;
988 bool bit = 0;
990 for (i = 7; i >= 0; i--) {
991 status = ixgbe_clock_in_i2c_bit(hw, &bit);
992 *data |= bit << i;
994 if (status != 0)
995 break;
998 return status;
1002 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1003 * @hw: pointer to hardware structure
1004 * @data: data byte clocked out
1006 * Clocks out one byte data via I2C data/clock
1008 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1010 s32 status = 0;
1011 s32 i;
1012 u32 i2cctl;
1013 bool bit = 0;
1015 for (i = 7; i >= 0; i--) {
1016 bit = (data >> i) & 0x1;
1017 status = ixgbe_clock_out_i2c_bit(hw, bit);
1019 if (status != 0)
1020 break;
1023 /* Release SDA line (set high) */
1024 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1025 i2cctl |= IXGBE_I2C_DATA_OUT;
1026 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1028 return status;
1032 * ixgbe_get_i2c_ack - Polls for I2C ACK
1033 * @hw: pointer to hardware structure
1035 * Clocks in/out one bit via I2C data/clock
1037 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1039 s32 status;
1040 u32 i = 0;
1041 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1042 u32 timeout = 10;
1043 bool ack = 1;
1045 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1047 if (status != 0)
1048 goto out;
1050 /* Minimum high period of clock is 4us */
1051 udelay(IXGBE_I2C_T_HIGH);
1053 /* Poll for ACK. Note that ACK in I2C spec is
1054 * transition from 1 to 0 */
1055 for (i = 0; i < timeout; i++) {
1056 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1057 ack = ixgbe_get_i2c_data(&i2cctl);
1059 udelay(1);
1060 if (ack == 0)
1061 break;
1064 if (ack == 1) {
1065 hw_dbg(hw, "I2C ack was not received.\n");
1066 status = IXGBE_ERR_I2C;
1069 ixgbe_lower_i2c_clk(hw, &i2cctl);
1071 /* Minimum low period of clock is 4.7 us */
1072 udelay(IXGBE_I2C_T_LOW);
1074 out:
1075 return status;
1079 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1080 * @hw: pointer to hardware structure
1081 * @data: read data value
1083 * Clocks in one bit via I2C data/clock
1085 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1087 s32 status;
1088 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1090 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1092 /* Minimum high period of clock is 4us */
1093 udelay(IXGBE_I2C_T_HIGH);
1095 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1096 *data = ixgbe_get_i2c_data(&i2cctl);
1098 ixgbe_lower_i2c_clk(hw, &i2cctl);
1100 /* Minimum low period of clock is 4.7 us */
1101 udelay(IXGBE_I2C_T_LOW);
1103 return status;
1107 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1108 * @hw: pointer to hardware structure
1109 * @data: data value to write
1111 * Clocks out one bit via I2C data/clock
1113 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1115 s32 status;
1116 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1118 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1119 if (status == 0) {
1120 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1122 /* Minimum high period of clock is 4us */
1123 udelay(IXGBE_I2C_T_HIGH);
1125 ixgbe_lower_i2c_clk(hw, &i2cctl);
1127 /* Minimum low period of clock is 4.7 us.
1128 * This also takes care of the data hold time.
1130 udelay(IXGBE_I2C_T_LOW);
1131 } else {
1132 status = IXGBE_ERR_I2C;
1133 hw_dbg(hw, "I2C data was not set to %X\n", data);
1136 return status;
1139 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1140 * @hw: pointer to hardware structure
1141 * @i2cctl: Current value of I2CCTL register
1143 * Raises the I2C clock line '0'->'1'
1145 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1147 s32 status = 0;
1149 *i2cctl |= IXGBE_I2C_CLK_OUT;
1151 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1153 /* SCL rise time (1000ns) */
1154 udelay(IXGBE_I2C_T_RISE);
1156 return status;
1160 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1161 * @hw: pointer to hardware structure
1162 * @i2cctl: Current value of I2CCTL register
1164 * Lowers the I2C clock line '1'->'0'
1166 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1169 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1171 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1173 /* SCL fall time (300ns) */
1174 udelay(IXGBE_I2C_T_FALL);
1178 * ixgbe_set_i2c_data - Sets the I2C data bit
1179 * @hw: pointer to hardware structure
1180 * @i2cctl: Current value of I2CCTL register
1181 * @data: I2C data value (0 or 1) to set
1183 * Sets the I2C data bit
1185 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1187 s32 status = 0;
1189 if (data)
1190 *i2cctl |= IXGBE_I2C_DATA_OUT;
1191 else
1192 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1194 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1196 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1197 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1199 /* Verify data was set correctly */
1200 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1201 if (data != ixgbe_get_i2c_data(i2cctl)) {
1202 status = IXGBE_ERR_I2C;
1203 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1206 return status;
1210 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1211 * @hw: pointer to hardware structure
1212 * @i2cctl: Current value of I2CCTL register
1214 * Returns the I2C data bit value
1216 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1218 bool data;
1220 if (*i2cctl & IXGBE_I2C_DATA_IN)
1221 data = 1;
1222 else
1223 data = 0;
1225 return data;
1229 * ixgbe_i2c_bus_clear - Clears the I2C bus
1230 * @hw: pointer to hardware structure
1232 * Clears the I2C bus by sending nine clock pulses.
1233 * Used when data line is stuck low.
1235 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1237 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1238 u32 i;
1240 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1242 for (i = 0; i < 9; i++) {
1243 ixgbe_raise_i2c_clk(hw, &i2cctl);
1245 /* Min high period of clock is 4us */
1246 udelay(IXGBE_I2C_T_HIGH);
1248 ixgbe_lower_i2c_clk(hw, &i2cctl);
1250 /* Min low period of clock is 4.7us*/
1251 udelay(IXGBE_I2C_T_LOW);
1254 /* Put the i2c bus back to default state */
1255 ixgbe_i2c_stop(hw);
1259 * ixgbe_check_phy_link_tnx - Determine link and speed status
1260 * @hw: pointer to hardware structure
1262 * Reads the VS1 register to determine if link is up and the current speed for
1263 * the PHY.
1265 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1266 bool *link_up)
1268 s32 status = 0;
1269 u32 time_out;
1270 u32 max_time_out = 10;
1271 u16 phy_link = 0;
1272 u16 phy_speed = 0;
1273 u16 phy_data = 0;
1275 /* Initialize speed and link to default case */
1276 *link_up = false;
1277 *speed = IXGBE_LINK_SPEED_10GB_FULL;
1280 * Check current speed and link status of the PHY register.
1281 * This is a vendor specific register and may have to
1282 * be changed for other copper PHYs.
1284 for (time_out = 0; time_out < max_time_out; time_out++) {
1285 udelay(10);
1286 status = hw->phy.ops.read_reg(hw,
1287 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1288 MDIO_MMD_VEND1,
1289 &phy_data);
1290 phy_link = phy_data &
1291 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1292 phy_speed = phy_data &
1293 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1294 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1295 *link_up = true;
1296 if (phy_speed ==
1297 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1298 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1299 break;
1303 return status;
1307 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1308 * @hw: pointer to hardware structure
1309 * @firmware_version: pointer to the PHY Firmware Version
1311 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1312 u16 *firmware_version)
1314 s32 status = 0;
1316 status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1317 firmware_version);
1319 return status;