2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
63 * - fix missed txok introduced during performance
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/ip.h> /* for iph */
110 #include <linux/in.h> /* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/sched.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
121 #include <asm/uaccess.h>
122 #include <asm/system.h>
124 #define DRV_NAME "ns83820"
126 /* Global parameters. See module_param near the bottom. */
128 static int reset_phy
= 0;
129 static int lnksts
= 0; /* CFG_LNKSTS bit polarity */
131 /* Dprintk is used for more interesting debug events */
133 #define Dprintk dprintk
136 #define RX_BUF_SIZE 1500 /* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC 64
143 #define NR_TX_DESC 128
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 #define MIN_TX_DESC_FREE 8
150 /* register defines */
153 #define CR_TXE 0x00000001
154 #define CR_TXD 0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156 * The Receive engine skips one descriptor and moves
157 * onto the next one!! */
158 #define CR_RXE 0x00000004
159 #define CR_RXD 0x00000008
160 #define CR_TXR 0x00000010
161 #define CR_RXR 0x00000020
162 #define CR_SWI 0x00000080
163 #define CR_RST 0x00000100
165 #define PTSCR_EEBIST_FAIL 0x00000001
166 #define PTSCR_EEBIST_EN 0x00000002
167 #define PTSCR_EELOAD_EN 0x00000004
168 #define PTSCR_RBIST_FAIL 0x000001b8
169 #define PTSCR_RBIST_DONE 0x00000200
170 #define PTSCR_RBIST_EN 0x00000400
171 #define PTSCR_RBIST_RST 0x00002000
173 #define MEAR_EEDI 0x00000001
174 #define MEAR_EEDO 0x00000002
175 #define MEAR_EECLK 0x00000004
176 #define MEAR_EESEL 0x00000008
177 #define MEAR_MDIO 0x00000010
178 #define MEAR_MDDIR 0x00000020
179 #define MEAR_MDC 0x00000040
181 #define ISR_TXDESC3 0x40000000
182 #define ISR_TXDESC2 0x20000000
183 #define ISR_TXDESC1 0x10000000
184 #define ISR_TXDESC0 0x08000000
185 #define ISR_RXDESC3 0x04000000
186 #define ISR_RXDESC2 0x02000000
187 #define ISR_RXDESC1 0x01000000
188 #define ISR_RXDESC0 0x00800000
189 #define ISR_TXRCMP 0x00400000
190 #define ISR_RXRCMP 0x00200000
191 #define ISR_DPERR 0x00100000
192 #define ISR_SSERR 0x00080000
193 #define ISR_RMABT 0x00040000
194 #define ISR_RTABT 0x00020000
195 #define ISR_RXSOVR 0x00010000
196 #define ISR_HIBINT 0x00008000
197 #define ISR_PHY 0x00004000
198 #define ISR_PME 0x00002000
199 #define ISR_SWI 0x00001000
200 #define ISR_MIB 0x00000800
201 #define ISR_TXURN 0x00000400
202 #define ISR_TXIDLE 0x00000200
203 #define ISR_TXERR 0x00000100
204 #define ISR_TXDESC 0x00000080
205 #define ISR_TXOK 0x00000040
206 #define ISR_RXORN 0x00000020
207 #define ISR_RXIDLE 0x00000010
208 #define ISR_RXEARLY 0x00000008
209 #define ISR_RXERR 0x00000004
210 #define ISR_RXDESC 0x00000002
211 #define ISR_RXOK 0x00000001
213 #define TXCFG_CSI 0x80000000
214 #define TXCFG_HBI 0x40000000
215 #define TXCFG_MLB 0x20000000
216 #define TXCFG_ATP 0x10000000
217 #define TXCFG_ECRETRY 0x00800000
218 #define TXCFG_BRST_DIS 0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512 0x00700000
221 #define TXCFG_MXDMA256 0x00600000
222 #define TXCFG_MXDMA128 0x00500000
223 #define TXCFG_MXDMA64 0x00400000
224 #define TXCFG_MXDMA32 0x00300000
225 #define TXCFG_MXDMA16 0x00200000
226 #define TXCFG_MXDMA8 0x00100000
228 #define CFG_LNKSTS 0x80000000
229 #define CFG_SPDSTS 0x60000000
230 #define CFG_SPDSTS1 0x40000000
231 #define CFG_SPDSTS0 0x20000000
232 #define CFG_DUPSTS 0x10000000
233 #define CFG_TBI_EN 0x01000000
234 #define CFG_MODE_1000 0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236 * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000 0x00200000
238 #define CFG_PINT_CTL 0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST 0x00020000
243 #define CFG_MRM_DIS 0x00010000
244 #define CFG_MWI_DIS 0x00008000
245 #define CFG_T64ADDR 0x00004000
246 #define CFG_PCI64_DET 0x00002000
247 #define CFG_DATA64_EN 0x00001000
248 #define CFG_M64ADDR 0x00000800
249 #define CFG_PHY_RST 0x00000400
250 #define CFG_PHY_DIS 0x00000200
251 #define CFG_EXTSTS_EN 0x00000100
252 #define CFG_REQALG 0x00000080
253 #define CFG_SB 0x00000040
254 #define CFG_POW 0x00000020
255 #define CFG_EXD 0x00000010
256 #define CFG_PESEL 0x00000008
257 #define CFG_BROM_DIS 0x00000004
258 #define CFG_EXT_125 0x00000002
259 #define CFG_BEM 0x00000001
261 #define EXTSTS_UDPPKT 0x00200000
262 #define EXTSTS_TCPPKT 0x00080000
263 #define EXTSTS_IPPKT 0x00020000
264 #define EXTSTS_VPKT 0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 #define MIBC_MIBS 0x00000008
270 #define MIBC_ACLR 0x00000004
271 #define MIBC_FRZ 0x00000002
272 #define MIBC_WRN 0x00000001
274 #define PCR_PSEN (1 << 31)
275 #define PCR_PS_MCAST (1 << 30)
276 #define PCR_PS_DA (1 << 29)
277 #define PCR_STHI_8 (3 << 23)
278 #define PCR_STLO_4 (1 << 23)
279 #define PCR_FFHI_8K (3 << 21)
280 #define PCR_FFLO_4K (1 << 21)
281 #define PCR_PAUSE_CNT 0xFFFE
283 #define RXCFG_AEP 0x80000000
284 #define RXCFG_ARP 0x40000000
285 #define RXCFG_STRIPCRC 0x20000000
286 #define RXCFG_RX_FD 0x10000000
287 #define RXCFG_ALP 0x08000000
288 #define RXCFG_AIRL 0x04000000
289 #define RXCFG_MXDMA512 0x00700000
290 #define RXCFG_DRTH 0x0000003e
291 #define RXCFG_DRTH0 0x00000002
293 #define RFCR_RFEN 0x80000000
294 #define RFCR_AAB 0x40000000
295 #define RFCR_AAM 0x20000000
296 #define RFCR_AAU 0x10000000
297 #define RFCR_APM 0x08000000
298 #define RFCR_APAT 0x07800000
299 #define RFCR_APAT3 0x04000000
300 #define RFCR_APAT2 0x02000000
301 #define RFCR_APAT1 0x01000000
302 #define RFCR_APAT0 0x00800000
303 #define RFCR_AARP 0x00400000
304 #define RFCR_MHEN 0x00200000
305 #define RFCR_UHEN 0x00100000
306 #define RFCR_ULM 0x00080000
308 #define VRCR_RUDPE 0x00000080
309 #define VRCR_RTCPE 0x00000040
310 #define VRCR_RIPE 0x00000020
311 #define VRCR_IPEN 0x00000010
312 #define VRCR_DUTF 0x00000008
313 #define VRCR_DVTF 0x00000004
314 #define VRCR_VTREN 0x00000002
315 #define VRCR_VTDEN 0x00000001
317 #define VTCR_PPCHK 0x00000008
318 #define VTCR_GCHK 0x00000004
319 #define VTCR_VPPTI 0x00000002
320 #define VTCR_VGTI 0x00000001
357 #define TBICR_MR_AN_ENABLE 0x00001000
358 #define TBICR_MR_RESTART_AN 0x00000200
360 #define TBISR_MR_LINK_STATUS 0x00000020
361 #define TBISR_MR_AN_COMPLETE 0x00000004
363 #define TANAR_PS2 0x00000100
364 #define TANAR_PS1 0x00000080
365 #define TANAR_HALF_DUP 0x00000040
366 #define TANAR_FULL_DUP 0x00000020
368 #define GPIOR_GP5_OE 0x00000200
369 #define GPIOR_GP4_OE 0x00000100
370 #define GPIOR_GP3_OE 0x00000080
371 #define GPIOR_GP2_OE 0x00000040
372 #define GPIOR_GP1_OE 0x00000020
373 #define GPIOR_GP3_OUT 0x00000004
374 #define GPIOR_GP1_OUT 0x00000001
376 #define LINK_AUTONEGOTIATE 0x01
377 #define LINK_DOWN 0x02
380 #define HW_ADDR_LEN sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr) \
383 ((desc)[0] = cpu_to_le32(addr)); \
384 if (HW_ADDR_LEN == 8) \
385 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387 #define desc_addr_get(desc) \
388 (le32_to_cpu((desc)[0]) | \
389 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 #define CMDSTS_OWN 0x80000000
397 #define CMDSTS_MORE 0x40000000
398 #define CMDSTS_INTR 0x20000000
399 #define CMDSTS_ERR 0x10000000
400 #define CMDSTS_OK 0x08000000
401 #define CMDSTS_RUNT 0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
404 #define CMDSTS_DEST_MASK 0x01800000
405 #define CMDSTS_DEST_SELF 0x00800000
406 #define CMDSTS_DEST_MULTI 0x01000000
408 #define DESC_SIZE 8 /* Should be cache line sized */
415 struct sk_buff
*skbs
[NR_RX_DESC
];
417 __le32
*next_rx_desc
;
418 u16 next_rx
, next_empty
;
421 dma_addr_t phy_descs
;
426 struct net_device_stats stats
;
429 struct pci_dev
*pci_dev
;
430 struct net_device
*ndev
;
432 #ifdef NS83820_VLAN_ACCEL_SUPPORT
433 struct vlan_group
*vlgrp
;
436 struct rx_info rx_info
;
437 struct tasklet_struct rx_tasklet
;
440 struct work_struct tq_refill
;
442 /* protects everything below. irqsave when using. */
443 spinlock_t misc_lock
;
456 volatile u16 tx_free_idx
; /* idx of free desc chain */
460 struct sk_buff
*tx_skbs
[NR_TX_DESC
];
462 char pad
[16] __attribute__((aligned(16)));
464 dma_addr_t tx_phy_descs
;
466 struct timer_list tx_watchdog
;
469 static inline struct ns83820
*PRIV(struct net_device
*dev
)
471 return netdev_priv(dev
);
474 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
476 static inline void kick_rx(struct net_device
*ndev
)
478 struct ns83820
*dev
= PRIV(ndev
);
479 dprintk("kick_rx: maybe kicking\n");
480 if (test_and_clear_bit(0, &dev
->rx_info
.idle
)) {
481 dprintk("actually kicking\n");
482 writel(dev
->rx_info
.phy_descs
+
483 (4 * DESC_SIZE
* dev
->rx_info
.next_rx
),
485 if (dev
->rx_info
.next_rx
== dev
->rx_info
.next_empty
)
486 printk(KERN_DEBUG
"%s: uh-oh: next_rx == next_empty???\n",
492 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
493 #define start_tx_okay(dev) \
494 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
497 #ifdef NS83820_VLAN_ACCEL_SUPPORT
498 static void ns83820_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
500 struct ns83820
*dev
= PRIV(ndev
);
502 spin_lock_irq(&dev
->misc_lock
);
503 spin_lock(&dev
->tx_lock
);
507 spin_unlock(&dev
->tx_lock
);
508 spin_unlock_irq(&dev
->misc_lock
);
514 * The hardware supports linked lists of receive descriptors for
515 * which ownership is transfered back and forth by means of an
516 * ownership bit. While the hardware does support the use of a
517 * ring for receive descriptors, we only make use of a chain in
518 * an attempt to reduce bus traffic under heavy load scenarios.
519 * This will also make bugs a bit more obvious. The current code
520 * only makes use of a single rx chain; I hope to implement
521 * priority based rx for version 1.0. Goal: even under overload
522 * conditions, still route realtime traffic with as low jitter as
525 static inline void build_rx_desc(struct ns83820
*dev
, __le32
*desc
, dma_addr_t link
, dma_addr_t buf
, u32 cmdsts
, u32 extsts
)
527 desc_addr_set(desc
+ DESC_LINK
, link
);
528 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
529 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
531 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
534 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
535 static inline int ns83820_add_rx_skb(struct ns83820
*dev
, struct sk_buff
*skb
)
542 next_empty
= dev
->rx_info
.next_empty
;
544 /* don't overrun last rx marker */
545 if (unlikely(nr_rx_empty(dev
) <= 2)) {
551 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
552 dev
->rx_info
.next_empty
,
553 dev
->rx_info
.nr_used
,
558 sg
= dev
->rx_info
.descs
+ (next_empty
* DESC_SIZE
);
559 BUG_ON(NULL
!= dev
->rx_info
.skbs
[next_empty
]);
560 dev
->rx_info
.skbs
[next_empty
] = skb
;
562 dev
->rx_info
.next_empty
= (next_empty
+ 1) % NR_RX_DESC
;
563 cmdsts
= REAL_RX_BUF_SIZE
| CMDSTS_INTR
;
564 buf
= pci_map_single(dev
->pci_dev
, skb
->data
,
565 REAL_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
566 build_rx_desc(dev
, sg
, 0, buf
, cmdsts
, 0);
567 /* update link of previous rx */
568 if (likely(next_empty
!= dev
->rx_info
.next_rx
))
569 dev
->rx_info
.descs
[((NR_RX_DESC
+ next_empty
- 1) % NR_RX_DESC
) * DESC_SIZE
] = cpu_to_le32(dev
->rx_info
.phy_descs
+ (next_empty
* DESC_SIZE
* 4));
574 static inline int rx_refill(struct net_device
*ndev
, gfp_t gfp
)
576 struct ns83820
*dev
= PRIV(ndev
);
578 unsigned long flags
= 0;
580 if (unlikely(nr_rx_empty(dev
) <= 2))
583 dprintk("rx_refill(%p)\n", ndev
);
584 if (gfp
== GFP_ATOMIC
)
585 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
586 for (i
=0; i
<NR_RX_DESC
; i
++) {
590 /* extra 16 bytes for alignment */
591 skb
= __netdev_alloc_skb(ndev
, REAL_RX_BUF_SIZE
+16, gfp
);
595 skb_reserve(skb
, skb
->data
- PTR_ALIGN(skb
->data
, 16));
596 if (gfp
!= GFP_ATOMIC
)
597 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
598 res
= ns83820_add_rx_skb(dev
, skb
);
599 if (gfp
!= GFP_ATOMIC
)
600 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
606 if (gfp
== GFP_ATOMIC
)
607 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
609 return i
? 0 : -ENOMEM
;
612 static void rx_refill_atomic(struct net_device
*ndev
)
614 rx_refill(ndev
, GFP_ATOMIC
);
618 static inline void queue_refill(struct work_struct
*work
)
620 struct ns83820
*dev
= container_of(work
, struct ns83820
, tq_refill
);
621 struct net_device
*ndev
= dev
->ndev
;
623 rx_refill(ndev
, GFP_KERNEL
);
628 static inline void clear_rx_desc(struct ns83820
*dev
, unsigned i
)
630 build_rx_desc(dev
, dev
->rx_info
.descs
+ (DESC_SIZE
* i
), 0, 0, CMDSTS_OWN
, 0);
633 static void phy_intr(struct net_device
*ndev
)
635 struct ns83820
*dev
= PRIV(ndev
);
636 static const char *speeds
[] = { "10", "100", "1000", "1000(?)", "1000F" };
638 u32 tbisr
, tanar
, tanlpar
;
639 int speed
, fullduplex
, newlinkstate
;
641 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
643 if (dev
->CFG_cache
& CFG_TBI_EN
) {
644 /* we have an optical transceiver */
645 tbisr
= readl(dev
->base
+ TBISR
);
646 tanar
= readl(dev
->base
+ TANAR
);
647 tanlpar
= readl(dev
->base
+ TANLPAR
);
648 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
649 tbisr
, tanar
, tanlpar
);
651 if ( (fullduplex
= (tanlpar
& TANAR_FULL_DUP
)
652 && (tanar
& TANAR_FULL_DUP
)) ) {
654 /* both of us are full duplex */
655 writel(readl(dev
->base
+ TXCFG
)
656 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
658 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
660 /* Light up full duplex LED */
661 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
664 } else if(((tanlpar
& TANAR_HALF_DUP
)
665 && (tanar
& TANAR_HALF_DUP
))
666 || ((tanlpar
& TANAR_FULL_DUP
)
667 && (tanar
& TANAR_HALF_DUP
))
668 || ((tanlpar
& TANAR_HALF_DUP
)
669 && (tanar
& TANAR_FULL_DUP
))) {
671 /* one or both of us are half duplex */
672 writel((readl(dev
->base
+ TXCFG
)
673 & ~(TXCFG_CSI
| TXCFG_HBI
)) | TXCFG_ATP
,
675 writel(readl(dev
->base
+ RXCFG
) & ~RXCFG_RX_FD
,
677 /* Turn off full duplex LED */
678 writel(readl(dev
->base
+ GPIOR
) & ~GPIOR_GP1_OUT
,
682 speed
= 4; /* 1000F */
685 /* we have a copper transceiver */
686 new_cfg
= dev
->CFG_cache
& ~(CFG_SB
| CFG_MODE_1000
| CFG_SPDSTS
);
688 if (cfg
& CFG_SPDSTS1
)
689 new_cfg
|= CFG_MODE_1000
;
691 new_cfg
&= ~CFG_MODE_1000
;
693 speed
= ((cfg
/ CFG_SPDSTS0
) & 3);
694 fullduplex
= (cfg
& CFG_DUPSTS
);
698 writel(readl(dev
->base
+ TXCFG
)
699 | TXCFG_CSI
| TXCFG_HBI
,
701 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
704 writel(readl(dev
->base
+ TXCFG
)
705 & ~(TXCFG_CSI
| TXCFG_HBI
),
707 writel(readl(dev
->base
+ RXCFG
) & ~(RXCFG_RX_FD
),
711 if ((cfg
& CFG_LNKSTS
) &&
712 ((new_cfg
^ dev
->CFG_cache
) != 0)) {
713 writel(new_cfg
, dev
->base
+ CFG
);
714 dev
->CFG_cache
= new_cfg
;
717 dev
->CFG_cache
&= ~CFG_SPDSTS
;
718 dev
->CFG_cache
|= cfg
& CFG_SPDSTS
;
721 newlinkstate
= (cfg
& CFG_LNKSTS
) ? LINK_UP
: LINK_DOWN
;
723 if (newlinkstate
& LINK_UP
724 && dev
->linkstate
!= newlinkstate
) {
725 netif_start_queue(ndev
);
726 netif_wake_queue(ndev
);
727 printk(KERN_INFO
"%s: link now %s mbps, %s duplex and up.\n",
730 fullduplex
? "full" : "half");
731 } else if (newlinkstate
& LINK_DOWN
732 && dev
->linkstate
!= newlinkstate
) {
733 netif_stop_queue(ndev
);
734 printk(KERN_INFO
"%s: link now down.\n", ndev
->name
);
737 dev
->linkstate
= newlinkstate
;
740 static int ns83820_setup_rx(struct net_device
*ndev
)
742 struct ns83820
*dev
= PRIV(ndev
);
746 dprintk("ns83820_setup_rx(%p)\n", ndev
);
748 dev
->rx_info
.idle
= 1;
749 dev
->rx_info
.next_rx
= 0;
750 dev
->rx_info
.next_rx_desc
= dev
->rx_info
.descs
;
751 dev
->rx_info
.next_empty
= 0;
753 for (i
=0; i
<NR_RX_DESC
; i
++)
754 clear_rx_desc(dev
, i
);
756 writel(0, dev
->base
+ RXDP_HI
);
757 writel(dev
->rx_info
.phy_descs
, dev
->base
+ RXDP
);
759 ret
= rx_refill(ndev
, GFP_KERNEL
);
761 dprintk("starting receiver\n");
762 /* prevent the interrupt handler from stomping on us */
763 spin_lock_irq(&dev
->rx_info
.lock
);
765 writel(0x0001, dev
->base
+ CCSR
);
766 writel(0, dev
->base
+ RFCR
);
767 writel(0x7fc00000, dev
->base
+ RFCR
);
768 writel(0xffc00000, dev
->base
+ RFCR
);
774 /* Okay, let it rip */
775 spin_lock_irq(&dev
->misc_lock
);
776 dev
->IMR_cache
|= ISR_PHY
;
777 dev
->IMR_cache
|= ISR_RXRCMP
;
778 //dev->IMR_cache |= ISR_RXERR;
779 //dev->IMR_cache |= ISR_RXOK;
780 dev
->IMR_cache
|= ISR_RXORN
;
781 dev
->IMR_cache
|= ISR_RXSOVR
;
782 dev
->IMR_cache
|= ISR_RXDESC
;
783 dev
->IMR_cache
|= ISR_RXIDLE
;
784 dev
->IMR_cache
|= ISR_TXDESC
;
785 dev
->IMR_cache
|= ISR_TXIDLE
;
787 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
788 writel(1, dev
->base
+ IER
);
789 spin_unlock(&dev
->misc_lock
);
793 spin_unlock_irq(&dev
->rx_info
.lock
);
798 static void ns83820_cleanup_rx(struct ns83820
*dev
)
803 dprintk("ns83820_cleanup_rx(%p)\n", dev
);
805 /* disable receive interrupts */
806 spin_lock_irqsave(&dev
->misc_lock
, flags
);
807 dev
->IMR_cache
&= ~(ISR_RXOK
| ISR_RXDESC
| ISR_RXERR
| ISR_RXEARLY
| ISR_RXIDLE
);
808 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
809 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
811 /* synchronize with the interrupt handler and kill it */
813 synchronize_irq(dev
->pci_dev
->irq
);
815 /* touch the pci bus... */
816 readl(dev
->base
+ IMR
);
818 /* assumes the transmitter is already disabled and reset */
819 writel(0, dev
->base
+ RXDP_HI
);
820 writel(0, dev
->base
+ RXDP
);
822 for (i
=0; i
<NR_RX_DESC
; i
++) {
823 struct sk_buff
*skb
= dev
->rx_info
.skbs
[i
];
824 dev
->rx_info
.skbs
[i
] = NULL
;
825 clear_rx_desc(dev
, i
);
830 static void ns83820_rx_kick(struct net_device
*ndev
)
832 struct ns83820
*dev
= PRIV(ndev
);
833 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
834 if (dev
->rx_info
.up
) {
835 rx_refill_atomic(ndev
);
840 if (dev
->rx_info
.up
&& nr_rx_empty(dev
) > NR_RX_DESC
*3/4)
841 schedule_work(&dev
->tq_refill
);
844 if (dev
->rx_info
.idle
)
845 printk(KERN_DEBUG
"%s: BAD\n", ndev
->name
);
851 static void rx_irq(struct net_device
*ndev
)
853 struct ns83820
*dev
= PRIV(ndev
);
854 struct rx_info
*info
= &dev
->rx_info
;
862 dprintk("rx_irq(%p)\n", ndev
);
863 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
864 readl(dev
->base
+ RXDP
),
865 (long)(dev
->rx_info
.phy_descs
),
866 (int)dev
->rx_info
.next_rx
,
867 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_rx
)),
868 (int)dev
->rx_info
.next_empty
,
869 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_empty
))
872 spin_lock_irqsave(&info
->lock
, flags
);
876 dprintk("walking descs\n");
877 next_rx
= info
->next_rx
;
878 desc
= info
->next_rx_desc
;
879 while ((CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) &&
880 (cmdsts
!= CMDSTS_OWN
)) {
882 u32 extsts
= le32_to_cpu(desc
[DESC_EXTSTS
]);
883 dma_addr_t bufptr
= desc_addr_get(desc
+ DESC_BUFPTR
);
885 dprintk("cmdsts: %08x\n", cmdsts
);
886 dprintk("link: %08x\n", cpu_to_le32(desc
[DESC_LINK
]));
887 dprintk("extsts: %08x\n", extsts
);
889 skb
= info
->skbs
[next_rx
];
890 info
->skbs
[next_rx
] = NULL
;
891 info
->next_rx
= (next_rx
+ 1) % NR_RX_DESC
;
894 clear_rx_desc(dev
, next_rx
);
896 pci_unmap_single(dev
->pci_dev
, bufptr
,
897 RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
898 len
= cmdsts
& CMDSTS_LEN_MASK
;
899 #ifdef NS83820_VLAN_ACCEL_SUPPORT
900 /* NH: As was mentioned below, this chip is kinda
901 * brain dead about vlan tag stripping. Frames
902 * that are 64 bytes with a vlan header appended
903 * like arp frames, or pings, are flagged as Runts
904 * when the tag is stripped and hardware. This
905 * also means that the OK bit in the descriptor
906 * is cleared when the frame comes in so we have
907 * to do a specific length check here to make sure
908 * the frame would have been ok, had we not stripped
911 if (likely((CMDSTS_OK
& cmdsts
) ||
912 ((cmdsts
& CMDSTS_RUNT
) && len
>= 56))) {
914 if (likely(CMDSTS_OK
& cmdsts
)) {
918 goto netdev_mangle_me_harder_failed
;
919 if (cmdsts
& CMDSTS_DEST_MULTI
)
920 dev
->stats
.multicast
++;
921 dev
->stats
.rx_packets
++;
922 dev
->stats
.rx_bytes
+= len
;
923 if ((extsts
& 0x002a0000) && !(extsts
& 0x00540000)) {
924 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
926 skb
->ip_summed
= CHECKSUM_NONE
;
928 skb
->protocol
= eth_type_trans(skb
, ndev
);
929 #ifdef NS83820_VLAN_ACCEL_SUPPORT
930 if(extsts
& EXTSTS_VPKT
) {
932 tag
= ntohs(extsts
& EXTSTS_VTG_MASK
);
933 rx_rc
= vlan_hwaccel_rx(skb
,dev
->vlgrp
,tag
);
935 rx_rc
= netif_rx(skb
);
938 rx_rc
= netif_rx(skb
);
940 if (NET_RX_DROP
== rx_rc
) {
941 netdev_mangle_me_harder_failed
:
942 dev
->stats
.rx_dropped
++;
949 next_rx
= info
->next_rx
;
950 desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
952 info
->next_rx
= next_rx
;
953 info
->next_rx_desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
957 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts
);
960 spin_unlock_irqrestore(&info
->lock
, flags
);
963 static void rx_action(unsigned long _dev
)
965 struct net_device
*ndev
= (void *)_dev
;
966 struct ns83820
*dev
= PRIV(ndev
);
968 writel(ihr
, dev
->base
+ IHR
);
970 spin_lock_irq(&dev
->misc_lock
);
971 dev
->IMR_cache
|= ISR_RXDESC
;
972 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
973 spin_unlock_irq(&dev
->misc_lock
);
976 ns83820_rx_kick(ndev
);
979 /* Packet Transmit code
981 static inline void kick_tx(struct ns83820
*dev
)
983 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
984 dev
, dev
->tx_idx
, dev
->tx_free_idx
);
985 writel(CR_TXE
, dev
->base
+ CR
);
988 /* No spinlock needed on the transmit irq path as the interrupt handler is
991 static void do_tx_done(struct net_device
*ndev
)
993 struct ns83820
*dev
= PRIV(ndev
);
994 u32 cmdsts
, tx_done_idx
;
997 dprintk("do_tx_done(%p)\n", ndev
);
998 tx_done_idx
= dev
->tx_done_idx
;
999 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1001 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1002 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1003 while ((tx_done_idx
!= dev
->tx_free_idx
) &&
1004 !(CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) ) {
1005 struct sk_buff
*skb
;
1009 if (cmdsts
& CMDSTS_ERR
)
1010 dev
->stats
.tx_errors
++;
1011 if (cmdsts
& CMDSTS_OK
)
1012 dev
->stats
.tx_packets
++;
1013 if (cmdsts
& CMDSTS_OK
)
1014 dev
->stats
.tx_bytes
+= cmdsts
& 0xffff;
1016 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1017 tx_done_idx
, dev
->tx_free_idx
, cmdsts
);
1018 skb
= dev
->tx_skbs
[tx_done_idx
];
1019 dev
->tx_skbs
[tx_done_idx
] = NULL
;
1020 dprintk("done(%p)\n", skb
);
1022 len
= cmdsts
& CMDSTS_LEN_MASK
;
1023 addr
= desc_addr_get(desc
+ DESC_BUFPTR
);
1025 pci_unmap_single(dev
->pci_dev
,
1029 dev_kfree_skb_irq(skb
);
1030 atomic_dec(&dev
->nr_tx_skbs
);
1032 pci_unmap_page(dev
->pci_dev
,
1037 tx_done_idx
= (tx_done_idx
+ 1) % NR_TX_DESC
;
1038 dev
->tx_done_idx
= tx_done_idx
;
1039 desc
[DESC_CMDSTS
] = cpu_to_le32(0);
1041 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1044 /* Allow network stack to resume queueing packets after we've
1045 * finished transmitting at least 1/4 of the packets in the queue.
1047 if (netif_queue_stopped(ndev
) && start_tx_okay(dev
)) {
1048 dprintk("start_queue(%p)\n", ndev
);
1049 netif_start_queue(ndev
);
1050 netif_wake_queue(ndev
);
1054 static void ns83820_cleanup_tx(struct ns83820
*dev
)
1058 for (i
=0; i
<NR_TX_DESC
; i
++) {
1059 struct sk_buff
*skb
= dev
->tx_skbs
[i
];
1060 dev
->tx_skbs
[i
] = NULL
;
1062 __le32
*desc
= dev
->tx_descs
+ (i
* DESC_SIZE
);
1063 pci_unmap_single(dev
->pci_dev
,
1064 desc_addr_get(desc
+ DESC_BUFPTR
),
1065 le32_to_cpu(desc
[DESC_CMDSTS
]) & CMDSTS_LEN_MASK
,
1067 dev_kfree_skb_irq(skb
);
1068 atomic_dec(&dev
->nr_tx_skbs
);
1072 memset(dev
->tx_descs
, 0, NR_TX_DESC
* DESC_SIZE
* 4);
1075 /* transmit routine. This code relies on the network layer serializing
1076 * its calls in, but will run happily in parallel with the interrupt
1077 * handler. This code currently has provisions for fragmenting tx buffers
1078 * while trying to track down a bug in either the zero copy code or
1079 * the tx fifo (hence the MAX_FRAG_LEN).
1081 static netdev_tx_t
ns83820_hard_start_xmit(struct sk_buff
*skb
,
1082 struct net_device
*ndev
)
1084 struct ns83820
*dev
= PRIV(ndev
);
1085 u32 free_idx
, cmdsts
, extsts
;
1086 int nr_free
, nr_frags
;
1087 unsigned tx_done_idx
, last_idx
;
1093 volatile __le32
*first_desc
;
1095 dprintk("ns83820_hard_start_xmit\n");
1097 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1099 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
)) {
1100 netif_stop_queue(ndev
);
1101 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
))
1102 return NETDEV_TX_BUSY
;
1103 netif_start_queue(ndev
);
1106 last_idx
= free_idx
= dev
->tx_free_idx
;
1107 tx_done_idx
= dev
->tx_done_idx
;
1108 nr_free
= (tx_done_idx
+ NR_TX_DESC
-2 - free_idx
) % NR_TX_DESC
;
1110 if (nr_free
<= nr_frags
) {
1111 dprintk("stop_queue - not enough(%p)\n", ndev
);
1112 netif_stop_queue(ndev
);
1114 /* Check again: we may have raced with a tx done irq */
1115 if (dev
->tx_done_idx
!= tx_done_idx
) {
1116 dprintk("restart queue(%p)\n", ndev
);
1117 netif_start_queue(ndev
);
1120 return NETDEV_TX_BUSY
;
1123 if (free_idx
== dev
->tx_intr_idx
) {
1125 dev
->tx_intr_idx
= (dev
->tx_intr_idx
+ NR_TX_DESC
/4) % NR_TX_DESC
;
1128 nr_free
-= nr_frags
;
1129 if (nr_free
< MIN_TX_DESC_FREE
) {
1130 dprintk("stop_queue - last entry(%p)\n", ndev
);
1131 netif_stop_queue(ndev
);
1135 frag
= skb_shinfo(skb
)->frags
;
1139 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1140 extsts
|= EXTSTS_IPPKT
;
1141 if (IPPROTO_TCP
== ip_hdr(skb
)->protocol
)
1142 extsts
|= EXTSTS_TCPPKT
;
1143 else if (IPPROTO_UDP
== ip_hdr(skb
)->protocol
)
1144 extsts
|= EXTSTS_UDPPKT
;
1147 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1148 if(vlan_tx_tag_present(skb
)) {
1149 /* fetch the vlan tag info out of the
1150 * ancilliary data if the vlan code
1151 * is using hw vlan acceleration
1153 short tag
= vlan_tx_tag_get(skb
);
1154 extsts
|= (EXTSTS_VPKT
| htons(tag
));
1160 len
-= skb
->data_len
;
1161 buf
= pci_map_single(dev
->pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1163 first_desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1166 volatile __le32
*desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1168 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx
, len
,
1169 (unsigned long long)buf
);
1170 last_idx
= free_idx
;
1171 free_idx
= (free_idx
+ 1) % NR_TX_DESC
;
1172 desc
[DESC_LINK
] = cpu_to_le32(dev
->tx_phy_descs
+ (free_idx
* DESC_SIZE
* 4));
1173 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
1174 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
1176 cmdsts
= ((nr_frags
) ? CMDSTS_MORE
: do_intr
? CMDSTS_INTR
: 0);
1177 cmdsts
|= (desc
== first_desc
) ? 0 : CMDSTS_OWN
;
1179 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
1184 buf
= pci_map_page(dev
->pci_dev
, frag
->page
,
1186 frag
->size
, PCI_DMA_TODEVICE
);
1187 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1188 (long long)buf
, (long) page_to_pfn(frag
->page
),
1194 dprintk("done pkt\n");
1196 spin_lock_irq(&dev
->tx_lock
);
1197 dev
->tx_skbs
[last_idx
] = skb
;
1198 first_desc
[DESC_CMDSTS
] |= cpu_to_le32(CMDSTS_OWN
);
1199 dev
->tx_free_idx
= free_idx
;
1200 atomic_inc(&dev
->nr_tx_skbs
);
1201 spin_unlock_irq(&dev
->tx_lock
);
1205 /* Check again: we may have raced with a tx done irq */
1206 if (stopped
&& (dev
->tx_done_idx
!= tx_done_idx
) && start_tx_okay(dev
))
1207 netif_start_queue(ndev
);
1209 return NETDEV_TX_OK
;
1212 static void ns83820_update_stats(struct ns83820
*dev
)
1214 u8 __iomem
*base
= dev
->base
;
1216 /* the DP83820 will freeze counters, so we need to read all of them */
1217 dev
->stats
.rx_errors
+= readl(base
+ 0x60) & 0xffff;
1218 dev
->stats
.rx_crc_errors
+= readl(base
+ 0x64) & 0xffff;
1219 dev
->stats
.rx_missed_errors
+= readl(base
+ 0x68) & 0xffff;
1220 dev
->stats
.rx_frame_errors
+= readl(base
+ 0x6c) & 0xffff;
1221 /*dev->stats.rx_symbol_errors +=*/ readl(base
+ 0x70);
1222 dev
->stats
.rx_length_errors
+= readl(base
+ 0x74) & 0xffff;
1223 dev
->stats
.rx_length_errors
+= readl(base
+ 0x78) & 0xffff;
1224 /*dev->stats.rx_badopcode_errors += */ readl(base
+ 0x7c);
1225 /*dev->stats.rx_pause_count += */ readl(base
+ 0x80);
1226 /*dev->stats.tx_pause_count += */ readl(base
+ 0x84);
1227 dev
->stats
.tx_carrier_errors
+= readl(base
+ 0x88) & 0xff;
1230 static struct net_device_stats
*ns83820_get_stats(struct net_device
*ndev
)
1232 struct ns83820
*dev
= PRIV(ndev
);
1234 /* somewhat overkill */
1235 spin_lock_irq(&dev
->misc_lock
);
1236 ns83820_update_stats(dev
);
1237 spin_unlock_irq(&dev
->misc_lock
);
1242 /* Let ethtool retrieve info */
1243 static int ns83820_get_settings(struct net_device
*ndev
,
1244 struct ethtool_cmd
*cmd
)
1246 struct ns83820
*dev
= PRIV(ndev
);
1247 u32 cfg
, tanar
, tbicr
;
1248 int have_optical
= 0;
1252 * Here's the list of available ethtool commands from other drivers:
1253 * cmd->advertising =
1257 * cmd->phy_address =
1258 * cmd->transceiver = 0;
1260 * cmd->maxtxpkt = 0;
1261 * cmd->maxrxpkt = 0;
1264 /* read current configuration */
1265 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1266 tanar
= readl(dev
->base
+ TANAR
);
1267 tbicr
= readl(dev
->base
+ TBICR
);
1269 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1270 /* we have an optical interface */
1272 fullduplex
= (cfg
& CFG_DUPSTS
) ? 1 : 0;
1275 /* We have copper */
1276 fullduplex
= (cfg
& CFG_DUPSTS
) ? 1 : 0;
1279 cmd
->supported
= SUPPORTED_Autoneg
;
1281 /* we have optical interface */
1282 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1283 cmd
->supported
|= SUPPORTED_1000baseT_Half
|
1284 SUPPORTED_1000baseT_Full
|
1286 cmd
->port
= PORT_FIBRE
;
1287 } /* TODO: else copper related support */
1289 cmd
->duplex
= fullduplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1290 switch (cfg
/ CFG_SPDSTS0
& 3) {
1292 cmd
->speed
= SPEED_1000
;
1295 cmd
->speed
= SPEED_100
;
1298 cmd
->speed
= SPEED_10
;
1301 cmd
->autoneg
= (tbicr
& TBICR_MR_AN_ENABLE
) ? 1: 0;
1305 /* Let ethool change settings*/
1306 static int ns83820_set_settings(struct net_device
*ndev
,
1307 struct ethtool_cmd
*cmd
)
1309 struct ns83820
*dev
= PRIV(ndev
);
1311 int have_optical
= 0;
1314 /* read current configuration */
1315 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1316 tanar
= readl(dev
->base
+ TANAR
);
1318 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1319 /* we have optical */
1321 fullduplex
= (tanar
& TANAR_FULL_DUP
);
1324 /* we have copper */
1325 fullduplex
= cfg
& CFG_DUPSTS
;
1328 spin_lock_irq(&dev
->misc_lock
);
1329 spin_lock(&dev
->tx_lock
);
1332 if (cmd
->duplex
!= fullduplex
) {
1335 if (cmd
->duplex
== DUPLEX_FULL
) {
1336 /* force full duplex */
1337 writel(readl(dev
->base
+ TXCFG
)
1338 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
1340 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
1342 /* Light up full duplex LED */
1343 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
1346 /*TODO: set half duplex */
1351 /* TODO: Set duplex for copper cards */
1353 printk(KERN_INFO
"%s: Duplex set via ethtool\n",
1357 /* Set autonegotiation */
1359 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1360 /* restart auto negotiation */
1361 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
1363 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
1364 dev
->linkstate
= LINK_AUTONEGOTIATE
;
1366 printk(KERN_INFO
"%s: autoneg enabled via ethtool\n",
1369 /* disable auto negotiation */
1370 writel(0x00000000, dev
->base
+ TBICR
);
1373 printk(KERN_INFO
"%s: autoneg %s via ethtool\n", ndev
->name
,
1374 cmd
->autoneg
? "ENABLED" : "DISABLED");
1378 spin_unlock(&dev
->tx_lock
);
1379 spin_unlock_irq(&dev
->misc_lock
);
1383 /* end ethtool get/set support -df */
1385 static void ns83820_get_drvinfo(struct net_device
*ndev
, struct ethtool_drvinfo
*info
)
1387 struct ns83820
*dev
= PRIV(ndev
);
1388 strcpy(info
->driver
, "ns83820");
1389 strcpy(info
->version
, VERSION
);
1390 strcpy(info
->bus_info
, pci_name(dev
->pci_dev
));
1393 static u32
ns83820_get_link(struct net_device
*ndev
)
1395 struct ns83820
*dev
= PRIV(ndev
);
1396 u32 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1397 return cfg
& CFG_LNKSTS
? 1 : 0;
1400 static const struct ethtool_ops ops
= {
1401 .get_settings
= ns83820_get_settings
,
1402 .set_settings
= ns83820_set_settings
,
1403 .get_drvinfo
= ns83820_get_drvinfo
,
1404 .get_link
= ns83820_get_link
1407 /* this function is called in irq context from the ISR */
1408 static void ns83820_mib_isr(struct ns83820
*dev
)
1410 unsigned long flags
;
1411 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1412 ns83820_update_stats(dev
);
1413 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1416 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
);
1417 static irqreturn_t
ns83820_irq(int foo
, void *data
)
1419 struct net_device
*ndev
= data
;
1420 struct ns83820
*dev
= PRIV(ndev
);
1422 dprintk("ns83820_irq(%p)\n", ndev
);
1426 isr
= readl(dev
->base
+ ISR
);
1427 dprintk("irq: %08x\n", isr
);
1428 ns83820_do_isr(ndev
, isr
);
1432 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
)
1434 struct ns83820
*dev
= PRIV(ndev
);
1435 unsigned long flags
;
1438 if (isr
& ~(ISR_PHY
| ISR_RXDESC
| ISR_RXEARLY
| ISR_RXOK
| ISR_RXERR
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXDESC
))
1439 Dprintk("odd isr? 0x%08x\n", isr
);
1442 if (ISR_RXIDLE
& isr
) {
1443 dev
->rx_info
.idle
= 1;
1444 Dprintk("oh dear, we are idle\n");
1445 ns83820_rx_kick(ndev
);
1448 if ((ISR_RXDESC
| ISR_RXOK
) & isr
) {
1449 prefetch(dev
->rx_info
.next_rx_desc
);
1451 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1452 dev
->IMR_cache
&= ~(ISR_RXDESC
| ISR_RXOK
);
1453 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1454 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1456 tasklet_schedule(&dev
->rx_tasklet
);
1458 //writel(4, dev->base + IHR);
1461 if ((ISR_RXIDLE
| ISR_RXORN
| ISR_RXDESC
| ISR_RXOK
| ISR_RXERR
) & isr
)
1462 ns83820_rx_kick(ndev
);
1464 if (unlikely(ISR_RXSOVR
& isr
)) {
1465 //printk("overrun: rxsovr\n");
1466 dev
->stats
.rx_fifo_errors
++;
1469 if (unlikely(ISR_RXORN
& isr
)) {
1470 //printk("overrun: rxorn\n");
1471 dev
->stats
.rx_fifo_errors
++;
1474 if ((ISR_RXRCMP
& isr
) && dev
->rx_info
.up
)
1475 writel(CR_RXE
, dev
->base
+ CR
);
1477 if (ISR_TXIDLE
& isr
) {
1479 txdp
= readl(dev
->base
+ TXDP
);
1480 dprintk("txdp: %08x\n", txdp
);
1481 txdp
-= dev
->tx_phy_descs
;
1482 dev
->tx_idx
= txdp
/ (DESC_SIZE
* 4);
1483 if (dev
->tx_idx
>= NR_TX_DESC
) {
1484 printk(KERN_ALERT
"%s: BUG -- txdp out of range\n", ndev
->name
);
1487 /* The may have been a race between a pci originated read
1488 * and the descriptor update from the cpu. Just in case,
1489 * kick the transmitter if the hardware thinks it is on a
1490 * different descriptor than we are.
1492 if (dev
->tx_idx
!= dev
->tx_free_idx
)
1496 /* Defer tx ring processing until more than a minimum amount of
1497 * work has accumulated
1499 if ((ISR_TXDESC
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXERR
) & isr
) {
1500 spin_lock_irqsave(&dev
->tx_lock
, flags
);
1502 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
1504 /* Disable TxOk if there are no outstanding tx packets.
1506 if ((dev
->tx_done_idx
== dev
->tx_free_idx
) &&
1507 (dev
->IMR_cache
& ISR_TXOK
)) {
1508 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1509 dev
->IMR_cache
&= ~ISR_TXOK
;
1510 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1511 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1515 /* The TxIdle interrupt can come in before the transmit has
1516 * completed. Normally we reap packets off of the combination
1517 * of TxDesc and TxIdle and leave TxOk disabled (since it
1518 * occurs on every packet), but when no further irqs of this
1519 * nature are expected, we must enable TxOk.
1521 if ((ISR_TXIDLE
& isr
) && (dev
->tx_done_idx
!= dev
->tx_free_idx
)) {
1522 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1523 dev
->IMR_cache
|= ISR_TXOK
;
1524 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1525 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1528 /* MIB interrupt: one of the statistics counters is about to overflow */
1529 if (unlikely(ISR_MIB
& isr
))
1530 ns83820_mib_isr(dev
);
1532 /* PHY: Link up/down/negotiation state change */
1533 if (unlikely(ISR_PHY
& isr
))
1536 #if 0 /* Still working on the interrupt mitigation strategy */
1538 writel(dev
->ihr
, dev
->base
+ IHR
);
1542 static void ns83820_do_reset(struct ns83820
*dev
, u32 which
)
1544 Dprintk("resetting chip...\n");
1545 writel(which
, dev
->base
+ CR
);
1548 } while (readl(dev
->base
+ CR
) & which
);
1552 static int ns83820_stop(struct net_device
*ndev
)
1554 struct ns83820
*dev
= PRIV(ndev
);
1556 /* FIXME: protect against interrupt handler? */
1557 del_timer_sync(&dev
->tx_watchdog
);
1559 /* disable interrupts */
1560 writel(0, dev
->base
+ IMR
);
1561 writel(0, dev
->base
+ IER
);
1562 readl(dev
->base
+ IER
);
1564 dev
->rx_info
.up
= 0;
1565 synchronize_irq(dev
->pci_dev
->irq
);
1567 ns83820_do_reset(dev
, CR_RST
);
1569 synchronize_irq(dev
->pci_dev
->irq
);
1571 spin_lock_irq(&dev
->misc_lock
);
1572 dev
->IMR_cache
&= ~(ISR_TXURN
| ISR_TXIDLE
| ISR_TXERR
| ISR_TXDESC
| ISR_TXOK
);
1573 spin_unlock_irq(&dev
->misc_lock
);
1575 ns83820_cleanup_rx(dev
);
1576 ns83820_cleanup_tx(dev
);
1581 static void ns83820_tx_timeout(struct net_device
*ndev
)
1583 struct ns83820
*dev
= PRIV(ndev
);
1586 unsigned long flags
;
1588 spin_lock_irqsave(&dev
->tx_lock
, flags
);
1590 tx_done_idx
= dev
->tx_done_idx
;
1591 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1593 printk(KERN_INFO
"%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1595 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1600 isr
= readl(dev
->base
+ ISR
);
1601 printk("irq: %08x imr: %08x\n", isr
, dev
->IMR_cache
);
1602 ns83820_do_isr(ndev
, isr
);
1608 tx_done_idx
= dev
->tx_done_idx
;
1609 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1611 printk(KERN_INFO
"%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1613 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1615 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
1618 static void ns83820_tx_watch(unsigned long data
)
1620 struct net_device
*ndev
= (void *)data
;
1621 struct ns83820
*dev
= PRIV(ndev
);
1624 printk("ns83820_tx_watch: %u %u %d\n",
1625 dev
->tx_done_idx
, dev
->tx_free_idx
, atomic_read(&dev
->nr_tx_skbs
)
1629 if (time_after(jiffies
, dev_trans_start(ndev
) + 1*HZ
) &&
1630 dev
->tx_done_idx
!= dev
->tx_free_idx
) {
1631 printk(KERN_DEBUG
"%s: ns83820_tx_watch: %u %u %d\n",
1633 dev
->tx_done_idx
, dev
->tx_free_idx
,
1634 atomic_read(&dev
->nr_tx_skbs
));
1635 ns83820_tx_timeout(ndev
);
1638 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1641 static int ns83820_open(struct net_device
*ndev
)
1643 struct ns83820
*dev
= PRIV(ndev
);
1648 dprintk("ns83820_open\n");
1650 writel(0, dev
->base
+ PQCR
);
1652 ret
= ns83820_setup_rx(ndev
);
1656 memset(dev
->tx_descs
, 0, 4 * NR_TX_DESC
* DESC_SIZE
);
1657 for (i
=0; i
<NR_TX_DESC
; i
++) {
1658 dev
->tx_descs
[(i
* DESC_SIZE
) + DESC_LINK
]
1661 + ((i
+1) % NR_TX_DESC
) * DESC_SIZE
* 4);
1665 dev
->tx_done_idx
= 0;
1666 desc
= dev
->tx_phy_descs
;
1667 writel(0, dev
->base
+ TXDP_HI
);
1668 writel(desc
, dev
->base
+ TXDP
);
1670 init_timer(&dev
->tx_watchdog
);
1671 dev
->tx_watchdog
.data
= (unsigned long)ndev
;
1672 dev
->tx_watchdog
.function
= ns83820_tx_watch
;
1673 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1675 netif_start_queue(ndev
); /* FIXME: wait for phy to come up */
1684 static void ns83820_getmac(struct ns83820
*dev
, u8
*mac
)
1687 for (i
=0; i
<3; i
++) {
1690 /* Read from the perfect match memory: this is loaded by
1691 * the chip from the EEPROM via the EELOAD self test.
1693 writel(i
*2, dev
->base
+ RFCR
);
1694 data
= readl(dev
->base
+ RFDR
);
1701 static int ns83820_change_mtu(struct net_device
*ndev
, int new_mtu
)
1703 if (new_mtu
> RX_BUF_SIZE
)
1705 ndev
->mtu
= new_mtu
;
1709 static void ns83820_set_multicast(struct net_device
*ndev
)
1711 struct ns83820
*dev
= PRIV(ndev
);
1712 u8 __iomem
*rfcr
= dev
->base
+ RFCR
;
1713 u32 and_mask
= 0xffffffff;
1717 if (ndev
->flags
& IFF_PROMISC
)
1718 or_mask
|= RFCR_AAU
| RFCR_AAM
;
1720 and_mask
&= ~(RFCR_AAU
| RFCR_AAM
);
1722 if (ndev
->flags
& IFF_ALLMULTI
|| ndev
->mc_count
)
1723 or_mask
|= RFCR_AAM
;
1725 and_mask
&= ~RFCR_AAM
;
1727 spin_lock_irq(&dev
->misc_lock
);
1728 val
= (readl(rfcr
) & and_mask
) | or_mask
;
1729 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1730 writel(val
& ~RFCR_RFEN
, rfcr
);
1732 spin_unlock_irq(&dev
->misc_lock
);
1735 static void ns83820_run_bist(struct net_device
*ndev
, const char *name
, u32 enable
, u32 done
, u32 fail
)
1737 struct ns83820
*dev
= PRIV(ndev
);
1739 unsigned long start
;
1743 dprintk("%s: start %s\n", ndev
->name
, name
);
1747 writel(enable
, dev
->base
+ PTSCR
);
1750 status
= readl(dev
->base
+ PTSCR
);
1751 if (!(status
& enable
))
1757 if (time_after_eq(jiffies
, start
+ HZ
)) {
1761 schedule_timeout_uninterruptible(1);
1765 printk(KERN_INFO
"%s: %s failed! (0x%08x & 0x%08x)\n",
1766 ndev
->name
, name
, status
, fail
);
1768 printk(KERN_INFO
"%s: run_bist %s timed out! (%08x)\n",
1769 ndev
->name
, name
, status
);
1771 dprintk("%s: done %s in %d loops\n", ndev
->name
, name
, loops
);
1774 #ifdef PHY_CODE_IS_FINISHED
1775 static void ns83820_mii_write_bit(struct ns83820
*dev
, int bit
)
1778 dev
->MEAR_cache
&= ~MEAR_MDC
;
1779 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1780 readl(dev
->base
+ MEAR
);
1782 /* enable output, set bit */
1783 dev
->MEAR_cache
|= MEAR_MDDIR
;
1785 dev
->MEAR_cache
|= MEAR_MDIO
;
1787 dev
->MEAR_cache
&= ~MEAR_MDIO
;
1789 /* set the output bit */
1790 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1791 readl(dev
->base
+ MEAR
);
1793 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1796 /* drive MDC high causing the data bit to be latched */
1797 dev
->MEAR_cache
|= MEAR_MDC
;
1798 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1799 readl(dev
->base
+ MEAR
);
1805 static int ns83820_mii_read_bit(struct ns83820
*dev
)
1809 /* drive MDC low, disable output */
1810 dev
->MEAR_cache
&= ~MEAR_MDC
;
1811 dev
->MEAR_cache
&= ~MEAR_MDDIR
;
1812 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1813 readl(dev
->base
+ MEAR
);
1815 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1818 /* drive MDC high causing the data bit to be latched */
1819 bit
= (readl(dev
->base
+ MEAR
) & MEAR_MDIO
) ? 1 : 0;
1820 dev
->MEAR_cache
|= MEAR_MDC
;
1821 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1829 static unsigned ns83820_mii_read_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
)
1834 /* read some garbage so that we eventually sync up */
1835 for (i
=0; i
<64; i
++)
1836 ns83820_mii_read_bit(dev
);
1838 ns83820_mii_write_bit(dev
, 0); /* start */
1839 ns83820_mii_write_bit(dev
, 1);
1840 ns83820_mii_write_bit(dev
, 1); /* opcode read */
1841 ns83820_mii_write_bit(dev
, 0);
1843 /* write out the phy address: 5 bits, msb first */
1845 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1847 /* write out the register address, 5 bits, msb first */
1849 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1851 ns83820_mii_read_bit(dev
); /* turn around cycles */
1852 ns83820_mii_read_bit(dev
);
1854 /* read in the register data, 16 bits msb first */
1855 for (i
=0; i
<16; i
++) {
1857 data
|= ns83820_mii_read_bit(dev
);
1863 static unsigned ns83820_mii_write_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
, unsigned data
)
1867 /* read some garbage so that we eventually sync up */
1868 for (i
=0; i
<64; i
++)
1869 ns83820_mii_read_bit(dev
);
1871 ns83820_mii_write_bit(dev
, 0); /* start */
1872 ns83820_mii_write_bit(dev
, 1);
1873 ns83820_mii_write_bit(dev
, 0); /* opcode read */
1874 ns83820_mii_write_bit(dev
, 1);
1876 /* write out the phy address: 5 bits, msb first */
1878 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1880 /* write out the register address, 5 bits, msb first */
1882 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1884 ns83820_mii_read_bit(dev
); /* turn around cycles */
1885 ns83820_mii_read_bit(dev
);
1887 /* read in the register data, 16 bits msb first */
1888 for (i
=0; i
<16; i
++)
1889 ns83820_mii_write_bit(dev
, (data
>> (15 - i
)) & 1);
1894 static void ns83820_probe_phy(struct net_device
*ndev
)
1896 struct ns83820
*dev
= PRIV(ndev
);
1899 #define MII_PHYIDR1 0x02
1900 #define MII_PHYIDR2 0x03
1905 ns83820_mii_read_reg(dev
, 1, 0x09);
1906 ns83820_mii_write_reg(dev
, 1, 0x10, 0x0d3e);
1908 tmp
= ns83820_mii_read_reg(dev
, 1, 0x00);
1909 ns83820_mii_write_reg(dev
, 1, 0x00, tmp
| 0x8000);
1911 ns83820_mii_read_reg(dev
, 1, 0x09);
1916 for (i
=1; i
<2; i
++) {
1919 a
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR1
);
1920 b
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR2
);
1922 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1923 // ndev->name, i, a, b);
1925 for (j
=0; j
<0x16; j
+=4) {
1926 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1928 ns83820_mii_read_reg(dev
, i
, 0 + j
),
1929 ns83820_mii_read_reg(dev
, i
, 1 + j
),
1930 ns83820_mii_read_reg(dev
, i
, 2 + j
),
1931 ns83820_mii_read_reg(dev
, i
, 3 + j
)
1937 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1938 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1939 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1940 a
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1942 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1943 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1944 b
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1945 dprintk("version: 0x%04x 0x%04x\n", a
, b
);
1950 static const struct net_device_ops netdev_ops
= {
1951 .ndo_open
= ns83820_open
,
1952 .ndo_stop
= ns83820_stop
,
1953 .ndo_start_xmit
= ns83820_hard_start_xmit
,
1954 .ndo_get_stats
= ns83820_get_stats
,
1955 .ndo_change_mtu
= ns83820_change_mtu
,
1956 .ndo_set_multicast_list
= ns83820_set_multicast
,
1957 .ndo_validate_addr
= eth_validate_addr
,
1958 .ndo_set_mac_address
= eth_mac_addr
,
1959 .ndo_tx_timeout
= ns83820_tx_timeout
,
1960 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1961 .ndo_vlan_rx_register
= ns83820_vlan_rx_register
,
1965 static int __devinit
ns83820_init_one(struct pci_dev
*pci_dev
,
1966 const struct pci_device_id
*id
)
1968 struct net_device
*ndev
;
1969 struct ns83820
*dev
;
1974 /* See if we can set the dma mask early on; failure is fatal. */
1975 if (sizeof(dma_addr_t
) == 8 &&
1976 !pci_set_dma_mask(pci_dev
, DMA_BIT_MASK(64))) {
1978 } else if (!pci_set_dma_mask(pci_dev
, DMA_BIT_MASK(32))) {
1981 dev_warn(&pci_dev
->dev
, "pci_set_dma_mask failed!\n");
1985 ndev
= alloc_etherdev(sizeof(struct ns83820
));
1994 spin_lock_init(&dev
->rx_info
.lock
);
1995 spin_lock_init(&dev
->tx_lock
);
1996 spin_lock_init(&dev
->misc_lock
);
1997 dev
->pci_dev
= pci_dev
;
1999 SET_NETDEV_DEV(ndev
, &pci_dev
->dev
);
2001 INIT_WORK(&dev
->tq_refill
, queue_refill
);
2002 tasklet_init(&dev
->rx_tasklet
, rx_action
, (unsigned long)ndev
);
2004 err
= pci_enable_device(pci_dev
);
2006 dev_info(&pci_dev
->dev
, "pci_enable_dev failed: %d\n", err
);
2010 pci_set_master(pci_dev
);
2011 addr
= pci_resource_start(pci_dev
, 1);
2012 dev
->base
= ioremap_nocache(addr
, PAGE_SIZE
);
2013 dev
->tx_descs
= pci_alloc_consistent(pci_dev
,
2014 4 * DESC_SIZE
* NR_TX_DESC
, &dev
->tx_phy_descs
);
2015 dev
->rx_info
.descs
= pci_alloc_consistent(pci_dev
,
2016 4 * DESC_SIZE
* NR_RX_DESC
, &dev
->rx_info
.phy_descs
);
2018 if (!dev
->base
|| !dev
->tx_descs
|| !dev
->rx_info
.descs
)
2021 dprintk("%p: %08lx %p: %08lx\n",
2022 dev
->tx_descs
, (long)dev
->tx_phy_descs
,
2023 dev
->rx_info
.descs
, (long)dev
->rx_info
.phy_descs
);
2025 /* disable interrupts */
2026 writel(0, dev
->base
+ IMR
);
2027 writel(0, dev
->base
+ IER
);
2028 readl(dev
->base
+ IER
);
2032 err
= request_irq(pci_dev
->irq
, ns83820_irq
, IRQF_SHARED
,
2035 dev_info(&pci_dev
->dev
, "unable to register irq %d, err %d\n",
2041 * FIXME: we are holding rtnl_lock() over obscenely long area only
2042 * because some of the setup code uses dev->name. It's Wrong(tm) -
2043 * we should be using driver-specific names for all that stuff.
2044 * For now that will do, but we really need to come back and kill
2045 * most of the dev_alloc_name() users later.
2048 err
= dev_alloc_name(ndev
, ndev
->name
);
2050 dev_info(&pci_dev
->dev
, "unable to get netdev name: %d\n", err
);
2054 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2055 ndev
->name
, le32_to_cpu(readl(dev
->base
+ 0x22c)),
2056 pci_dev
->subsystem_vendor
, pci_dev
->subsystem_device
);
2058 ndev
->netdev_ops
= &netdev_ops
;
2059 SET_ETHTOOL_OPS(ndev
, &ops
);
2060 ndev
->watchdog_timeo
= 5 * HZ
;
2061 pci_set_drvdata(pci_dev
, ndev
);
2063 ns83820_do_reset(dev
, CR_RST
);
2065 /* Must reset the ram bist before running it */
2066 writel(PTSCR_RBIST_RST
, dev
->base
+ PTSCR
);
2067 ns83820_run_bist(ndev
, "sram bist", PTSCR_RBIST_EN
,
2068 PTSCR_RBIST_DONE
, PTSCR_RBIST_FAIL
);
2069 ns83820_run_bist(ndev
, "eeprom bist", PTSCR_EEBIST_EN
, 0,
2071 ns83820_run_bist(ndev
, "eeprom load", PTSCR_EELOAD_EN
, 0, 0);
2073 /* I love config registers */
2074 dev
->CFG_cache
= readl(dev
->base
+ CFG
);
2076 if ((dev
->CFG_cache
& CFG_PCI64_DET
)) {
2077 printk(KERN_INFO
"%s: detected 64 bit PCI data bus.\n",
2079 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2080 if (!(dev
->CFG_cache
& CFG_DATA64_EN
))
2081 printk(KERN_INFO
"%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2084 dev
->CFG_cache
&= ~(CFG_DATA64_EN
);
2086 dev
->CFG_cache
&= (CFG_TBI_EN
| CFG_MRM_DIS
| CFG_MWI_DIS
|
2087 CFG_T64ADDR
| CFG_DATA64_EN
| CFG_EXT_125
|
2089 dev
->CFG_cache
|= CFG_PINT_DUPSTS
| CFG_PINT_LNKSTS
| CFG_PINT_SPDSTS
|
2090 CFG_EXTSTS_EN
| CFG_EXD
| CFG_PESEL
;
2091 dev
->CFG_cache
|= CFG_REQALG
;
2092 dev
->CFG_cache
|= CFG_POW
;
2093 dev
->CFG_cache
|= CFG_TMRTEST
;
2095 /* When compiled with 64 bit addressing, we must always enable
2096 * the 64 bit descriptor format.
2098 if (sizeof(dma_addr_t
) == 8)
2099 dev
->CFG_cache
|= CFG_M64ADDR
;
2101 dev
->CFG_cache
|= CFG_T64ADDR
;
2103 /* Big endian mode does not seem to do what the docs suggest */
2104 dev
->CFG_cache
&= ~CFG_BEM
;
2106 /* setup optical transceiver if we have one */
2107 if (dev
->CFG_cache
& CFG_TBI_EN
) {
2108 printk(KERN_INFO
"%s: enabling optical transceiver\n",
2110 writel(readl(dev
->base
+ GPIOR
) | 0x3e8, dev
->base
+ GPIOR
);
2112 /* setup auto negotiation feature advertisement */
2113 writel(readl(dev
->base
+ TANAR
)
2114 | TANAR_HALF_DUP
| TANAR_FULL_DUP
,
2117 /* start auto negotiation */
2118 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
2120 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
2121 dev
->linkstate
= LINK_AUTONEGOTIATE
;
2123 dev
->CFG_cache
|= CFG_MODE_1000
;
2126 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2127 dprintk("CFG: %08x\n", dev
->CFG_cache
);
2130 printk(KERN_INFO
"%s: resetting phy\n", ndev
->name
);
2131 writel(dev
->CFG_cache
| CFG_PHY_RST
, dev
->base
+ CFG
);
2133 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2136 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2137 * the PCI layer. FIXME.
2139 if (readl(dev
->base
+ SRR
))
2140 writel(readl(dev
->base
+0x20c) | 0xfe00, dev
->base
+ 0x20c);
2143 /* Note! The DMA burst size interacts with packet
2144 * transmission, such that the largest packet that
2145 * can be transmitted is 8192 - FLTH - burst size.
2146 * If only the transmit fifo was larger...
2148 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2149 * some DELL and COMPAQ SMP systems */
2150 writel(TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
| TXCFG_MXDMA512
2151 | ((1600 / 32) * 0x100),
2154 /* Flush the interrupt holdoff timer */
2155 writel(0x000, dev
->base
+ IHR
);
2156 writel(0x100, dev
->base
+ IHR
);
2157 writel(0x000, dev
->base
+ IHR
);
2159 /* Set Rx to full duplex, don't accept runt, errored, long or length
2160 * range errored packets. Use 512 byte DMA.
2162 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2163 * some DELL and COMPAQ SMP systems
2164 * Turn on ALP, only we are accpeting Jumbo Packets */
2165 writel(RXCFG_AEP
| RXCFG_ARP
| RXCFG_AIRL
| RXCFG_RX_FD
2168 | (RXCFG_MXDMA512
) | 0, dev
->base
+ RXCFG
);
2170 /* Disable priority queueing */
2171 writel(0, dev
->base
+ PQCR
);
2173 /* Enable IP checksum validation and detetion of VLAN headers.
2174 * Note: do not set the reject options as at least the 0x102
2175 * revision of the chip does not properly accept IP fragments
2178 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2179 * the MAC it calculates the packetsize AFTER stripping the VLAN
2180 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2181 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2182 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2183 * it discrards it!. These guys......
2184 * also turn on tag stripping if hardware acceleration is enabled
2186 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2187 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2189 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2191 writel(VRCR_INIT_VALUE
, dev
->base
+ VRCR
);
2193 /* Enable per-packet TCP/UDP/IP checksumming
2194 * and per packet vlan tag insertion if
2195 * vlan hardware acceleration is enabled
2197 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2198 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2200 #define VTCR_INIT_VALUE VTCR_PPCHK
2202 writel(VTCR_INIT_VALUE
, dev
->base
+ VTCR
);
2204 /* Ramit : Enable async and sync pause frames */
2205 /* writel(0, dev->base + PCR); */
2206 writel((PCR_PS_MCAST
| PCR_PS_DA
| PCR_PSEN
| PCR_FFLO_4K
|
2207 PCR_FFHI_8K
| PCR_STLO_4
| PCR_STHI_8
| PCR_PAUSE_CNT
),
2210 /* Disable Wake On Lan */
2211 writel(0, dev
->base
+ WCSR
);
2213 ns83820_getmac(dev
, ndev
->dev_addr
);
2215 /* Yes, we support dumb IP checksum on transmit */
2216 ndev
->features
|= NETIF_F_SG
;
2217 ndev
->features
|= NETIF_F_IP_CSUM
;
2219 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2220 /* We also support hardware vlan acceleration */
2221 ndev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
2225 printk(KERN_INFO
"%s: using 64 bit addressing.\n",
2227 ndev
->features
|= NETIF_F_HIGHDMA
;
2230 printk(KERN_INFO
"%s: ns83820 v" VERSION
": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2232 (unsigned)readl(dev
->base
+ SRR
) >> 8,
2233 (unsigned)readl(dev
->base
+ SRR
) & 0xff,
2234 ndev
->dev_addr
, addr
, pci_dev
->irq
,
2235 (ndev
->features
& NETIF_F_HIGHDMA
) ? "h,sg" : "sg"
2238 #ifdef PHY_CODE_IS_FINISHED
2239 ns83820_probe_phy(ndev
);
2242 err
= register_netdevice(ndev
);
2244 printk(KERN_INFO
"ns83820: unable to register netdev: %d\n", err
);
2252 writel(0, dev
->base
+ IMR
); /* paranoia */
2253 writel(0, dev
->base
+ IER
);
2254 readl(dev
->base
+ IER
);
2257 free_irq(pci_dev
->irq
, ndev
);
2261 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
, dev
->tx_descs
, dev
->tx_phy_descs
);
2262 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
, dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2263 pci_disable_device(pci_dev
);
2266 pci_set_drvdata(pci_dev
, NULL
);
2271 static void __devexit
ns83820_remove_one(struct pci_dev
*pci_dev
)
2273 struct net_device
*ndev
= pci_get_drvdata(pci_dev
);
2274 struct ns83820
*dev
= PRIV(ndev
); /* ok even if NULL */
2276 if (!ndev
) /* paranoia */
2279 writel(0, dev
->base
+ IMR
); /* paranoia */
2280 writel(0, dev
->base
+ IER
);
2281 readl(dev
->base
+ IER
);
2283 unregister_netdev(ndev
);
2284 free_irq(dev
->pci_dev
->irq
, ndev
);
2286 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
,
2287 dev
->tx_descs
, dev
->tx_phy_descs
);
2288 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
,
2289 dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2290 pci_disable_device(dev
->pci_dev
);
2292 pci_set_drvdata(pci_dev
, NULL
);
2295 static struct pci_device_id ns83820_pci_tbl
[] = {
2296 { 0x100b, 0x0022, PCI_ANY_ID
, PCI_ANY_ID
, 0, .driver_data
= 0, },
2300 static struct pci_driver driver
= {
2302 .id_table
= ns83820_pci_tbl
,
2303 .probe
= ns83820_init_one
,
2304 .remove
= __devexit_p(ns83820_remove_one
),
2305 #if 0 /* FIXME: implement */
2312 static int __init
ns83820_init(void)
2314 printk(KERN_INFO
"ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2315 return pci_register_driver(&driver
);
2318 static void __exit
ns83820_exit(void)
2320 pci_unregister_driver(&driver
);
2323 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2324 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2325 MODULE_LICENSE("GPL");
2327 MODULE_DEVICE_TABLE(pci
, ns83820_pci_tbl
);
2329 module_param(lnksts
, int, 0);
2330 MODULE_PARM_DESC(lnksts
, "Polarity of LNKSTS bit");
2332 module_param(ihr
, int, 0);
2333 MODULE_PARM_DESC(ihr
, "Time in 100 us increments to delay interrupts (range 0-127)");
2335 module_param(reset_phy
, int, 0);
2336 MODULE_PARM_DESC(reset_phy
, "Set to 1 to reset the PHY on startup");
2338 module_init(ns83820_init
);
2339 module_exit(ns83820_exit
);