Save sram context after changing MPU, DSP or core clocks
[linux-ginger.git] / drivers / net / ns83820.c
blob57fd483dbb1f91f4b3e6440d9d30d2255ede4d57
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * ChangeLog
30 * =========
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
38 * fiddling with TXCFG
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
46 * - fix >> 32 bugs
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
62 * - gmii bus probing
63 * - fix missed txok introduced during performance
64 * tuning
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
71 * Driver Overview
72 * ===============
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * D-Link DGE-500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
90 * Netgear GA621
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/ip.h> /* for iph */
110 #include <linux/in.h> /* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/sched.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
120 #include <asm/io.h>
121 #include <asm/uaccess.h>
122 #include <asm/system.h>
124 #define DRV_NAME "ns83820"
126 /* Global parameters. See module_param near the bottom. */
127 static int ihr = 2;
128 static int reset_phy = 0;
129 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
131 /* Dprintk is used for more interesting debug events */
132 #undef Dprintk
133 #define Dprintk dprintk
135 /* tunables */
136 #define RX_BUF_SIZE 1500 /* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
139 #endif
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC 64
143 #define NR_TX_DESC 128
145 /* not tunable */
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 #define MIN_TX_DESC_FREE 8
150 /* register defines */
151 #define CFGCS 0x04
153 #define CR_TXE 0x00000001
154 #define CR_TXD 0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156 * The Receive engine skips one descriptor and moves
157 * onto the next one!! */
158 #define CR_RXE 0x00000004
159 #define CR_RXD 0x00000008
160 #define CR_TXR 0x00000010
161 #define CR_RXR 0x00000020
162 #define CR_SWI 0x00000080
163 #define CR_RST 0x00000100
165 #define PTSCR_EEBIST_FAIL 0x00000001
166 #define PTSCR_EEBIST_EN 0x00000002
167 #define PTSCR_EELOAD_EN 0x00000004
168 #define PTSCR_RBIST_FAIL 0x000001b8
169 #define PTSCR_RBIST_DONE 0x00000200
170 #define PTSCR_RBIST_EN 0x00000400
171 #define PTSCR_RBIST_RST 0x00002000
173 #define MEAR_EEDI 0x00000001
174 #define MEAR_EEDO 0x00000002
175 #define MEAR_EECLK 0x00000004
176 #define MEAR_EESEL 0x00000008
177 #define MEAR_MDIO 0x00000010
178 #define MEAR_MDDIR 0x00000020
179 #define MEAR_MDC 0x00000040
181 #define ISR_TXDESC3 0x40000000
182 #define ISR_TXDESC2 0x20000000
183 #define ISR_TXDESC1 0x10000000
184 #define ISR_TXDESC0 0x08000000
185 #define ISR_RXDESC3 0x04000000
186 #define ISR_RXDESC2 0x02000000
187 #define ISR_RXDESC1 0x01000000
188 #define ISR_RXDESC0 0x00800000
189 #define ISR_TXRCMP 0x00400000
190 #define ISR_RXRCMP 0x00200000
191 #define ISR_DPERR 0x00100000
192 #define ISR_SSERR 0x00080000
193 #define ISR_RMABT 0x00040000
194 #define ISR_RTABT 0x00020000
195 #define ISR_RXSOVR 0x00010000
196 #define ISR_HIBINT 0x00008000
197 #define ISR_PHY 0x00004000
198 #define ISR_PME 0x00002000
199 #define ISR_SWI 0x00001000
200 #define ISR_MIB 0x00000800
201 #define ISR_TXURN 0x00000400
202 #define ISR_TXIDLE 0x00000200
203 #define ISR_TXERR 0x00000100
204 #define ISR_TXDESC 0x00000080
205 #define ISR_TXOK 0x00000040
206 #define ISR_RXORN 0x00000020
207 #define ISR_RXIDLE 0x00000010
208 #define ISR_RXEARLY 0x00000008
209 #define ISR_RXERR 0x00000004
210 #define ISR_RXDESC 0x00000002
211 #define ISR_RXOK 0x00000001
213 #define TXCFG_CSI 0x80000000
214 #define TXCFG_HBI 0x40000000
215 #define TXCFG_MLB 0x20000000
216 #define TXCFG_ATP 0x10000000
217 #define TXCFG_ECRETRY 0x00800000
218 #define TXCFG_BRST_DIS 0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512 0x00700000
221 #define TXCFG_MXDMA256 0x00600000
222 #define TXCFG_MXDMA128 0x00500000
223 #define TXCFG_MXDMA64 0x00400000
224 #define TXCFG_MXDMA32 0x00300000
225 #define TXCFG_MXDMA16 0x00200000
226 #define TXCFG_MXDMA8 0x00100000
228 #define CFG_LNKSTS 0x80000000
229 #define CFG_SPDSTS 0x60000000
230 #define CFG_SPDSTS1 0x40000000
231 #define CFG_SPDSTS0 0x20000000
232 #define CFG_DUPSTS 0x10000000
233 #define CFG_TBI_EN 0x01000000
234 #define CFG_MODE_1000 0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236 * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000 0x00200000
238 #define CFG_PINT_CTL 0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST 0x00020000
243 #define CFG_MRM_DIS 0x00010000
244 #define CFG_MWI_DIS 0x00008000
245 #define CFG_T64ADDR 0x00004000
246 #define CFG_PCI64_DET 0x00002000
247 #define CFG_DATA64_EN 0x00001000
248 #define CFG_M64ADDR 0x00000800
249 #define CFG_PHY_RST 0x00000400
250 #define CFG_PHY_DIS 0x00000200
251 #define CFG_EXTSTS_EN 0x00000100
252 #define CFG_REQALG 0x00000080
253 #define CFG_SB 0x00000040
254 #define CFG_POW 0x00000020
255 #define CFG_EXD 0x00000010
256 #define CFG_PESEL 0x00000008
257 #define CFG_BROM_DIS 0x00000004
258 #define CFG_EXT_125 0x00000002
259 #define CFG_BEM 0x00000001
261 #define EXTSTS_UDPPKT 0x00200000
262 #define EXTSTS_TCPPKT 0x00080000
263 #define EXTSTS_IPPKT 0x00020000
264 #define EXTSTS_VPKT 0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 #define MIBC_MIBS 0x00000008
270 #define MIBC_ACLR 0x00000004
271 #define MIBC_FRZ 0x00000002
272 #define MIBC_WRN 0x00000001
274 #define PCR_PSEN (1 << 31)
275 #define PCR_PS_MCAST (1 << 30)
276 #define PCR_PS_DA (1 << 29)
277 #define PCR_STHI_8 (3 << 23)
278 #define PCR_STLO_4 (1 << 23)
279 #define PCR_FFHI_8K (3 << 21)
280 #define PCR_FFLO_4K (1 << 21)
281 #define PCR_PAUSE_CNT 0xFFFE
283 #define RXCFG_AEP 0x80000000
284 #define RXCFG_ARP 0x40000000
285 #define RXCFG_STRIPCRC 0x20000000
286 #define RXCFG_RX_FD 0x10000000
287 #define RXCFG_ALP 0x08000000
288 #define RXCFG_AIRL 0x04000000
289 #define RXCFG_MXDMA512 0x00700000
290 #define RXCFG_DRTH 0x0000003e
291 #define RXCFG_DRTH0 0x00000002
293 #define RFCR_RFEN 0x80000000
294 #define RFCR_AAB 0x40000000
295 #define RFCR_AAM 0x20000000
296 #define RFCR_AAU 0x10000000
297 #define RFCR_APM 0x08000000
298 #define RFCR_APAT 0x07800000
299 #define RFCR_APAT3 0x04000000
300 #define RFCR_APAT2 0x02000000
301 #define RFCR_APAT1 0x01000000
302 #define RFCR_APAT0 0x00800000
303 #define RFCR_AARP 0x00400000
304 #define RFCR_MHEN 0x00200000
305 #define RFCR_UHEN 0x00100000
306 #define RFCR_ULM 0x00080000
308 #define VRCR_RUDPE 0x00000080
309 #define VRCR_RTCPE 0x00000040
310 #define VRCR_RIPE 0x00000020
311 #define VRCR_IPEN 0x00000010
312 #define VRCR_DUTF 0x00000008
313 #define VRCR_DVTF 0x00000004
314 #define VRCR_VTREN 0x00000002
315 #define VRCR_VTDEN 0x00000001
317 #define VTCR_PPCHK 0x00000008
318 #define VTCR_GCHK 0x00000004
319 #define VTCR_VPPTI 0x00000002
320 #define VTCR_VGTI 0x00000001
322 #define CR 0x00
323 #define CFG 0x04
324 #define MEAR 0x08
325 #define PTSCR 0x0c
326 #define ISR 0x10
327 #define IMR 0x14
328 #define IER 0x18
329 #define IHR 0x1c
330 #define TXDP 0x20
331 #define TXDP_HI 0x24
332 #define TXCFG 0x28
333 #define GPIOR 0x2c
334 #define RXDP 0x30
335 #define RXDP_HI 0x34
336 #define RXCFG 0x38
337 #define PQCR 0x3c
338 #define WCSR 0x40
339 #define PCR 0x44
340 #define RFCR 0x48
341 #define RFDR 0x4c
343 #define SRR 0x58
345 #define VRCR 0xbc
346 #define VTCR 0xc0
347 #define VDR 0xc4
348 #define CCSR 0xcc
350 #define TBICR 0xe0
351 #define TBISR 0xe4
352 #define TANAR 0xe8
353 #define TANLPAR 0xec
354 #define TANER 0xf0
355 #define TESR 0xf4
357 #define TBICR_MR_AN_ENABLE 0x00001000
358 #define TBICR_MR_RESTART_AN 0x00000200
360 #define TBISR_MR_LINK_STATUS 0x00000020
361 #define TBISR_MR_AN_COMPLETE 0x00000004
363 #define TANAR_PS2 0x00000100
364 #define TANAR_PS1 0x00000080
365 #define TANAR_HALF_DUP 0x00000040
366 #define TANAR_FULL_DUP 0x00000020
368 #define GPIOR_GP5_OE 0x00000200
369 #define GPIOR_GP4_OE 0x00000100
370 #define GPIOR_GP3_OE 0x00000080
371 #define GPIOR_GP2_OE 0x00000040
372 #define GPIOR_GP1_OE 0x00000020
373 #define GPIOR_GP3_OUT 0x00000004
374 #define GPIOR_GP1_OUT 0x00000001
376 #define LINK_AUTONEGOTIATE 0x01
377 #define LINK_DOWN 0x02
378 #define LINK_UP 0x04
380 #define HW_ADDR_LEN sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr) \
382 do { \
383 ((desc)[0] = cpu_to_le32(addr)); \
384 if (HW_ADDR_LEN == 8) \
385 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
386 } while(0)
387 #define desc_addr_get(desc) \
388 (le32_to_cpu((desc)[0]) | \
389 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
391 #define DESC_LINK 0
392 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 #define CMDSTS_OWN 0x80000000
397 #define CMDSTS_MORE 0x40000000
398 #define CMDSTS_INTR 0x20000000
399 #define CMDSTS_ERR 0x10000000
400 #define CMDSTS_OK 0x08000000
401 #define CMDSTS_RUNT 0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
404 #define CMDSTS_DEST_MASK 0x01800000
405 #define CMDSTS_DEST_SELF 0x00800000
406 #define CMDSTS_DEST_MULTI 0x01000000
408 #define DESC_SIZE 8 /* Should be cache line sized */
410 struct rx_info {
411 spinlock_t lock;
412 int up;
413 unsigned long idle;
415 struct sk_buff *skbs[NR_RX_DESC];
417 __le32 *next_rx_desc;
418 u16 next_rx, next_empty;
420 __le32 *descs;
421 dma_addr_t phy_descs;
425 struct ns83820 {
426 struct net_device_stats stats;
427 u8 __iomem *base;
429 struct pci_dev *pci_dev;
430 struct net_device *ndev;
432 #ifdef NS83820_VLAN_ACCEL_SUPPORT
433 struct vlan_group *vlgrp;
434 #endif
436 struct rx_info rx_info;
437 struct tasklet_struct rx_tasklet;
439 unsigned ihr;
440 struct work_struct tq_refill;
442 /* protects everything below. irqsave when using. */
443 spinlock_t misc_lock;
445 u32 CFG_cache;
447 u32 MEAR_cache;
448 u32 IMR_cache;
450 unsigned linkstate;
452 spinlock_t tx_lock;
454 u16 tx_done_idx;
455 u16 tx_idx;
456 volatile u16 tx_free_idx; /* idx of free desc chain */
457 u16 tx_intr_idx;
459 atomic_t nr_tx_skbs;
460 struct sk_buff *tx_skbs[NR_TX_DESC];
462 char pad[16] __attribute__((aligned(16)));
463 __le32 *tx_descs;
464 dma_addr_t tx_phy_descs;
466 struct timer_list tx_watchdog;
469 static inline struct ns83820 *PRIV(struct net_device *dev)
471 return netdev_priv(dev);
474 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
476 static inline void kick_rx(struct net_device *ndev)
478 struct ns83820 *dev = PRIV(ndev);
479 dprintk("kick_rx: maybe kicking\n");
480 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
481 dprintk("actually kicking\n");
482 writel(dev->rx_info.phy_descs +
483 (4 * DESC_SIZE * dev->rx_info.next_rx),
484 dev->base + RXDP);
485 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
486 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
487 ndev->name);
488 __kick_rx(dev);
492 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
493 #define start_tx_okay(dev) \
494 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
497 #ifdef NS83820_VLAN_ACCEL_SUPPORT
498 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
500 struct ns83820 *dev = PRIV(ndev);
502 spin_lock_irq(&dev->misc_lock);
503 spin_lock(&dev->tx_lock);
505 dev->vlgrp = grp;
507 spin_unlock(&dev->tx_lock);
508 spin_unlock_irq(&dev->misc_lock);
510 #endif
512 /* Packet Receiver
514 * The hardware supports linked lists of receive descriptors for
515 * which ownership is transfered back and forth by means of an
516 * ownership bit. While the hardware does support the use of a
517 * ring for receive descriptors, we only make use of a chain in
518 * an attempt to reduce bus traffic under heavy load scenarios.
519 * This will also make bugs a bit more obvious. The current code
520 * only makes use of a single rx chain; I hope to implement
521 * priority based rx for version 1.0. Goal: even under overload
522 * conditions, still route realtime traffic with as low jitter as
523 * possible.
525 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
527 desc_addr_set(desc + DESC_LINK, link);
528 desc_addr_set(desc + DESC_BUFPTR, buf);
529 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
530 mb();
531 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
534 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
535 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
537 unsigned next_empty;
538 u32 cmdsts;
539 __le32 *sg;
540 dma_addr_t buf;
542 next_empty = dev->rx_info.next_empty;
544 /* don't overrun last rx marker */
545 if (unlikely(nr_rx_empty(dev) <= 2)) {
546 kfree_skb(skb);
547 return 1;
550 #if 0
551 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
552 dev->rx_info.next_empty,
553 dev->rx_info.nr_used,
554 dev->rx_info.next_rx
556 #endif
558 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
559 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
560 dev->rx_info.skbs[next_empty] = skb;
562 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
563 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
564 buf = pci_map_single(dev->pci_dev, skb->data,
565 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
566 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
567 /* update link of previous rx */
568 if (likely(next_empty != dev->rx_info.next_rx))
569 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
571 return 0;
574 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
576 struct ns83820 *dev = PRIV(ndev);
577 unsigned i;
578 unsigned long flags = 0;
580 if (unlikely(nr_rx_empty(dev) <= 2))
581 return 0;
583 dprintk("rx_refill(%p)\n", ndev);
584 if (gfp == GFP_ATOMIC)
585 spin_lock_irqsave(&dev->rx_info.lock, flags);
586 for (i=0; i<NR_RX_DESC; i++) {
587 struct sk_buff *skb;
588 long res;
590 /* extra 16 bytes for alignment */
591 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
592 if (unlikely(!skb))
593 break;
595 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
596 if (gfp != GFP_ATOMIC)
597 spin_lock_irqsave(&dev->rx_info.lock, flags);
598 res = ns83820_add_rx_skb(dev, skb);
599 if (gfp != GFP_ATOMIC)
600 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
601 if (res) {
602 i = 1;
603 break;
606 if (gfp == GFP_ATOMIC)
607 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
609 return i ? 0 : -ENOMEM;
612 static void rx_refill_atomic(struct net_device *ndev)
614 rx_refill(ndev, GFP_ATOMIC);
617 /* REFILL */
618 static inline void queue_refill(struct work_struct *work)
620 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
621 struct net_device *ndev = dev->ndev;
623 rx_refill(ndev, GFP_KERNEL);
624 if (dev->rx_info.up)
625 kick_rx(ndev);
628 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
630 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
633 static void phy_intr(struct net_device *ndev)
635 struct ns83820 *dev = PRIV(ndev);
636 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
637 u32 cfg, new_cfg;
638 u32 tbisr, tanar, tanlpar;
639 int speed, fullduplex, newlinkstate;
641 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
643 if (dev->CFG_cache & CFG_TBI_EN) {
644 /* we have an optical transceiver */
645 tbisr = readl(dev->base + TBISR);
646 tanar = readl(dev->base + TANAR);
647 tanlpar = readl(dev->base + TANLPAR);
648 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
649 tbisr, tanar, tanlpar);
651 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
652 && (tanar & TANAR_FULL_DUP)) ) {
654 /* both of us are full duplex */
655 writel(readl(dev->base + TXCFG)
656 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
657 dev->base + TXCFG);
658 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
659 dev->base + RXCFG);
660 /* Light up full duplex LED */
661 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
662 dev->base + GPIOR);
664 } else if(((tanlpar & TANAR_HALF_DUP)
665 && (tanar & TANAR_HALF_DUP))
666 || ((tanlpar & TANAR_FULL_DUP)
667 && (tanar & TANAR_HALF_DUP))
668 || ((tanlpar & TANAR_HALF_DUP)
669 && (tanar & TANAR_FULL_DUP))) {
671 /* one or both of us are half duplex */
672 writel((readl(dev->base + TXCFG)
673 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
674 dev->base + TXCFG);
675 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
676 dev->base + RXCFG);
677 /* Turn off full duplex LED */
678 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
679 dev->base + GPIOR);
682 speed = 4; /* 1000F */
684 } else {
685 /* we have a copper transceiver */
686 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
688 if (cfg & CFG_SPDSTS1)
689 new_cfg |= CFG_MODE_1000;
690 else
691 new_cfg &= ~CFG_MODE_1000;
693 speed = ((cfg / CFG_SPDSTS0) & 3);
694 fullduplex = (cfg & CFG_DUPSTS);
696 if (fullduplex) {
697 new_cfg |= CFG_SB;
698 writel(readl(dev->base + TXCFG)
699 | TXCFG_CSI | TXCFG_HBI,
700 dev->base + TXCFG);
701 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
702 dev->base + RXCFG);
703 } else {
704 writel(readl(dev->base + TXCFG)
705 & ~(TXCFG_CSI | TXCFG_HBI),
706 dev->base + TXCFG);
707 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
708 dev->base + RXCFG);
711 if ((cfg & CFG_LNKSTS) &&
712 ((new_cfg ^ dev->CFG_cache) != 0)) {
713 writel(new_cfg, dev->base + CFG);
714 dev->CFG_cache = new_cfg;
717 dev->CFG_cache &= ~CFG_SPDSTS;
718 dev->CFG_cache |= cfg & CFG_SPDSTS;
721 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
723 if (newlinkstate & LINK_UP
724 && dev->linkstate != newlinkstate) {
725 netif_start_queue(ndev);
726 netif_wake_queue(ndev);
727 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
728 ndev->name,
729 speeds[speed],
730 fullduplex ? "full" : "half");
731 } else if (newlinkstate & LINK_DOWN
732 && dev->linkstate != newlinkstate) {
733 netif_stop_queue(ndev);
734 printk(KERN_INFO "%s: link now down.\n", ndev->name);
737 dev->linkstate = newlinkstate;
740 static int ns83820_setup_rx(struct net_device *ndev)
742 struct ns83820 *dev = PRIV(ndev);
743 unsigned i;
744 int ret;
746 dprintk("ns83820_setup_rx(%p)\n", ndev);
748 dev->rx_info.idle = 1;
749 dev->rx_info.next_rx = 0;
750 dev->rx_info.next_rx_desc = dev->rx_info.descs;
751 dev->rx_info.next_empty = 0;
753 for (i=0; i<NR_RX_DESC; i++)
754 clear_rx_desc(dev, i);
756 writel(0, dev->base + RXDP_HI);
757 writel(dev->rx_info.phy_descs, dev->base + RXDP);
759 ret = rx_refill(ndev, GFP_KERNEL);
760 if (!ret) {
761 dprintk("starting receiver\n");
762 /* prevent the interrupt handler from stomping on us */
763 spin_lock_irq(&dev->rx_info.lock);
765 writel(0x0001, dev->base + CCSR);
766 writel(0, dev->base + RFCR);
767 writel(0x7fc00000, dev->base + RFCR);
768 writel(0xffc00000, dev->base + RFCR);
770 dev->rx_info.up = 1;
772 phy_intr(ndev);
774 /* Okay, let it rip */
775 spin_lock_irq(&dev->misc_lock);
776 dev->IMR_cache |= ISR_PHY;
777 dev->IMR_cache |= ISR_RXRCMP;
778 //dev->IMR_cache |= ISR_RXERR;
779 //dev->IMR_cache |= ISR_RXOK;
780 dev->IMR_cache |= ISR_RXORN;
781 dev->IMR_cache |= ISR_RXSOVR;
782 dev->IMR_cache |= ISR_RXDESC;
783 dev->IMR_cache |= ISR_RXIDLE;
784 dev->IMR_cache |= ISR_TXDESC;
785 dev->IMR_cache |= ISR_TXIDLE;
787 writel(dev->IMR_cache, dev->base + IMR);
788 writel(1, dev->base + IER);
789 spin_unlock(&dev->misc_lock);
791 kick_rx(ndev);
793 spin_unlock_irq(&dev->rx_info.lock);
795 return ret;
798 static void ns83820_cleanup_rx(struct ns83820 *dev)
800 unsigned i;
801 unsigned long flags;
803 dprintk("ns83820_cleanup_rx(%p)\n", dev);
805 /* disable receive interrupts */
806 spin_lock_irqsave(&dev->misc_lock, flags);
807 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
808 writel(dev->IMR_cache, dev->base + IMR);
809 spin_unlock_irqrestore(&dev->misc_lock, flags);
811 /* synchronize with the interrupt handler and kill it */
812 dev->rx_info.up = 0;
813 synchronize_irq(dev->pci_dev->irq);
815 /* touch the pci bus... */
816 readl(dev->base + IMR);
818 /* assumes the transmitter is already disabled and reset */
819 writel(0, dev->base + RXDP_HI);
820 writel(0, dev->base + RXDP);
822 for (i=0; i<NR_RX_DESC; i++) {
823 struct sk_buff *skb = dev->rx_info.skbs[i];
824 dev->rx_info.skbs[i] = NULL;
825 clear_rx_desc(dev, i);
826 kfree_skb(skb);
830 static void ns83820_rx_kick(struct net_device *ndev)
832 struct ns83820 *dev = PRIV(ndev);
833 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
834 if (dev->rx_info.up) {
835 rx_refill_atomic(ndev);
836 kick_rx(ndev);
840 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
841 schedule_work(&dev->tq_refill);
842 else
843 kick_rx(ndev);
844 if (dev->rx_info.idle)
845 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
848 /* rx_irq
851 static void rx_irq(struct net_device *ndev)
853 struct ns83820 *dev = PRIV(ndev);
854 struct rx_info *info = &dev->rx_info;
855 unsigned next_rx;
856 int rx_rc, len;
857 u32 cmdsts;
858 __le32 *desc;
859 unsigned long flags;
860 int nr = 0;
862 dprintk("rx_irq(%p)\n", ndev);
863 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
864 readl(dev->base + RXDP),
865 (long)(dev->rx_info.phy_descs),
866 (int)dev->rx_info.next_rx,
867 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
868 (int)dev->rx_info.next_empty,
869 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
872 spin_lock_irqsave(&info->lock, flags);
873 if (!info->up)
874 goto out;
876 dprintk("walking descs\n");
877 next_rx = info->next_rx;
878 desc = info->next_rx_desc;
879 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
880 (cmdsts != CMDSTS_OWN)) {
881 struct sk_buff *skb;
882 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
883 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
885 dprintk("cmdsts: %08x\n", cmdsts);
886 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
887 dprintk("extsts: %08x\n", extsts);
889 skb = info->skbs[next_rx];
890 info->skbs[next_rx] = NULL;
891 info->next_rx = (next_rx + 1) % NR_RX_DESC;
893 mb();
894 clear_rx_desc(dev, next_rx);
896 pci_unmap_single(dev->pci_dev, bufptr,
897 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
898 len = cmdsts & CMDSTS_LEN_MASK;
899 #ifdef NS83820_VLAN_ACCEL_SUPPORT
900 /* NH: As was mentioned below, this chip is kinda
901 * brain dead about vlan tag stripping. Frames
902 * that are 64 bytes with a vlan header appended
903 * like arp frames, or pings, are flagged as Runts
904 * when the tag is stripped and hardware. This
905 * also means that the OK bit in the descriptor
906 * is cleared when the frame comes in so we have
907 * to do a specific length check here to make sure
908 * the frame would have been ok, had we not stripped
909 * the tag.
911 if (likely((CMDSTS_OK & cmdsts) ||
912 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
913 #else
914 if (likely(CMDSTS_OK & cmdsts)) {
915 #endif
916 skb_put(skb, len);
917 if (unlikely(!skb))
918 goto netdev_mangle_me_harder_failed;
919 if (cmdsts & CMDSTS_DEST_MULTI)
920 dev->stats.multicast ++;
921 dev->stats.rx_packets ++;
922 dev->stats.rx_bytes += len;
923 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
924 skb->ip_summed = CHECKSUM_UNNECESSARY;
925 } else {
926 skb->ip_summed = CHECKSUM_NONE;
928 skb->protocol = eth_type_trans(skb, ndev);
929 #ifdef NS83820_VLAN_ACCEL_SUPPORT
930 if(extsts & EXTSTS_VPKT) {
931 unsigned short tag;
932 tag = ntohs(extsts & EXTSTS_VTG_MASK);
933 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
934 } else {
935 rx_rc = netif_rx(skb);
937 #else
938 rx_rc = netif_rx(skb);
939 #endif
940 if (NET_RX_DROP == rx_rc) {
941 netdev_mangle_me_harder_failed:
942 dev->stats.rx_dropped ++;
944 } else {
945 kfree_skb(skb);
948 nr++;
949 next_rx = info->next_rx;
950 desc = info->descs + (DESC_SIZE * next_rx);
952 info->next_rx = next_rx;
953 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
955 out:
956 if (0 && !nr) {
957 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
960 spin_unlock_irqrestore(&info->lock, flags);
963 static void rx_action(unsigned long _dev)
965 struct net_device *ndev = (void *)_dev;
966 struct ns83820 *dev = PRIV(ndev);
967 rx_irq(ndev);
968 writel(ihr, dev->base + IHR);
970 spin_lock_irq(&dev->misc_lock);
971 dev->IMR_cache |= ISR_RXDESC;
972 writel(dev->IMR_cache, dev->base + IMR);
973 spin_unlock_irq(&dev->misc_lock);
975 rx_irq(ndev);
976 ns83820_rx_kick(ndev);
979 /* Packet Transmit code
981 static inline void kick_tx(struct ns83820 *dev)
983 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
984 dev, dev->tx_idx, dev->tx_free_idx);
985 writel(CR_TXE, dev->base + CR);
988 /* No spinlock needed on the transmit irq path as the interrupt handler is
989 * serialized.
991 static void do_tx_done(struct net_device *ndev)
993 struct ns83820 *dev = PRIV(ndev);
994 u32 cmdsts, tx_done_idx;
995 __le32 *desc;
997 dprintk("do_tx_done(%p)\n", ndev);
998 tx_done_idx = dev->tx_done_idx;
999 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1001 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1002 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1003 while ((tx_done_idx != dev->tx_free_idx) &&
1004 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1005 struct sk_buff *skb;
1006 unsigned len;
1007 dma_addr_t addr;
1009 if (cmdsts & CMDSTS_ERR)
1010 dev->stats.tx_errors ++;
1011 if (cmdsts & CMDSTS_OK)
1012 dev->stats.tx_packets ++;
1013 if (cmdsts & CMDSTS_OK)
1014 dev->stats.tx_bytes += cmdsts & 0xffff;
1016 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1017 tx_done_idx, dev->tx_free_idx, cmdsts);
1018 skb = dev->tx_skbs[tx_done_idx];
1019 dev->tx_skbs[tx_done_idx] = NULL;
1020 dprintk("done(%p)\n", skb);
1022 len = cmdsts & CMDSTS_LEN_MASK;
1023 addr = desc_addr_get(desc + DESC_BUFPTR);
1024 if (skb) {
1025 pci_unmap_single(dev->pci_dev,
1026 addr,
1027 len,
1028 PCI_DMA_TODEVICE);
1029 dev_kfree_skb_irq(skb);
1030 atomic_dec(&dev->nr_tx_skbs);
1031 } else
1032 pci_unmap_page(dev->pci_dev,
1033 addr,
1034 len,
1035 PCI_DMA_TODEVICE);
1037 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1038 dev->tx_done_idx = tx_done_idx;
1039 desc[DESC_CMDSTS] = cpu_to_le32(0);
1040 mb();
1041 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1044 /* Allow network stack to resume queueing packets after we've
1045 * finished transmitting at least 1/4 of the packets in the queue.
1047 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1048 dprintk("start_queue(%p)\n", ndev);
1049 netif_start_queue(ndev);
1050 netif_wake_queue(ndev);
1054 static void ns83820_cleanup_tx(struct ns83820 *dev)
1056 unsigned i;
1058 for (i=0; i<NR_TX_DESC; i++) {
1059 struct sk_buff *skb = dev->tx_skbs[i];
1060 dev->tx_skbs[i] = NULL;
1061 if (skb) {
1062 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1063 pci_unmap_single(dev->pci_dev,
1064 desc_addr_get(desc + DESC_BUFPTR),
1065 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1066 PCI_DMA_TODEVICE);
1067 dev_kfree_skb_irq(skb);
1068 atomic_dec(&dev->nr_tx_skbs);
1072 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1075 /* transmit routine. This code relies on the network layer serializing
1076 * its calls in, but will run happily in parallel with the interrupt
1077 * handler. This code currently has provisions for fragmenting tx buffers
1078 * while trying to track down a bug in either the zero copy code or
1079 * the tx fifo (hence the MAX_FRAG_LEN).
1081 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1082 struct net_device *ndev)
1084 struct ns83820 *dev = PRIV(ndev);
1085 u32 free_idx, cmdsts, extsts;
1086 int nr_free, nr_frags;
1087 unsigned tx_done_idx, last_idx;
1088 dma_addr_t buf;
1089 unsigned len;
1090 skb_frag_t *frag;
1091 int stopped = 0;
1092 int do_intr = 0;
1093 volatile __le32 *first_desc;
1095 dprintk("ns83820_hard_start_xmit\n");
1097 nr_frags = skb_shinfo(skb)->nr_frags;
1098 again:
1099 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1100 netif_stop_queue(ndev);
1101 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1102 return NETDEV_TX_BUSY;
1103 netif_start_queue(ndev);
1106 last_idx = free_idx = dev->tx_free_idx;
1107 tx_done_idx = dev->tx_done_idx;
1108 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1109 nr_free -= 1;
1110 if (nr_free <= nr_frags) {
1111 dprintk("stop_queue - not enough(%p)\n", ndev);
1112 netif_stop_queue(ndev);
1114 /* Check again: we may have raced with a tx done irq */
1115 if (dev->tx_done_idx != tx_done_idx) {
1116 dprintk("restart queue(%p)\n", ndev);
1117 netif_start_queue(ndev);
1118 goto again;
1120 return NETDEV_TX_BUSY;
1123 if (free_idx == dev->tx_intr_idx) {
1124 do_intr = 1;
1125 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1128 nr_free -= nr_frags;
1129 if (nr_free < MIN_TX_DESC_FREE) {
1130 dprintk("stop_queue - last entry(%p)\n", ndev);
1131 netif_stop_queue(ndev);
1132 stopped = 1;
1135 frag = skb_shinfo(skb)->frags;
1136 if (!nr_frags)
1137 frag = NULL;
1138 extsts = 0;
1139 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1140 extsts |= EXTSTS_IPPKT;
1141 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1142 extsts |= EXTSTS_TCPPKT;
1143 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1144 extsts |= EXTSTS_UDPPKT;
1147 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1148 if(vlan_tx_tag_present(skb)) {
1149 /* fetch the vlan tag info out of the
1150 * ancilliary data if the vlan code
1151 * is using hw vlan acceleration
1153 short tag = vlan_tx_tag_get(skb);
1154 extsts |= (EXTSTS_VPKT | htons(tag));
1156 #endif
1158 len = skb->len;
1159 if (nr_frags)
1160 len -= skb->data_len;
1161 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1163 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1165 for (;;) {
1166 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1168 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1169 (unsigned long long)buf);
1170 last_idx = free_idx;
1171 free_idx = (free_idx + 1) % NR_TX_DESC;
1172 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1173 desc_addr_set(desc + DESC_BUFPTR, buf);
1174 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1176 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1177 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1178 cmdsts |= len;
1179 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1181 if (!nr_frags)
1182 break;
1184 buf = pci_map_page(dev->pci_dev, frag->page,
1185 frag->page_offset,
1186 frag->size, PCI_DMA_TODEVICE);
1187 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1188 (long long)buf, (long) page_to_pfn(frag->page),
1189 frag->page_offset);
1190 len = frag->size;
1191 frag++;
1192 nr_frags--;
1194 dprintk("done pkt\n");
1196 spin_lock_irq(&dev->tx_lock);
1197 dev->tx_skbs[last_idx] = skb;
1198 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1199 dev->tx_free_idx = free_idx;
1200 atomic_inc(&dev->nr_tx_skbs);
1201 spin_unlock_irq(&dev->tx_lock);
1203 kick_tx(dev);
1205 /* Check again: we may have raced with a tx done irq */
1206 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1207 netif_start_queue(ndev);
1209 return NETDEV_TX_OK;
1212 static void ns83820_update_stats(struct ns83820 *dev)
1214 u8 __iomem *base = dev->base;
1216 /* the DP83820 will freeze counters, so we need to read all of them */
1217 dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1218 dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1219 dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1220 dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1221 /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1222 dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1223 dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1224 /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1225 /*dev->stats.rx_pause_count += */ readl(base + 0x80);
1226 /*dev->stats.tx_pause_count += */ readl(base + 0x84);
1227 dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1230 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1232 struct ns83820 *dev = PRIV(ndev);
1234 /* somewhat overkill */
1235 spin_lock_irq(&dev->misc_lock);
1236 ns83820_update_stats(dev);
1237 spin_unlock_irq(&dev->misc_lock);
1239 return &dev->stats;
1242 /* Let ethtool retrieve info */
1243 static int ns83820_get_settings(struct net_device *ndev,
1244 struct ethtool_cmd *cmd)
1246 struct ns83820 *dev = PRIV(ndev);
1247 u32 cfg, tanar, tbicr;
1248 int have_optical = 0;
1249 int fullduplex = 0;
1252 * Here's the list of available ethtool commands from other drivers:
1253 * cmd->advertising =
1254 * cmd->speed =
1255 * cmd->duplex =
1256 * cmd->port = 0;
1257 * cmd->phy_address =
1258 * cmd->transceiver = 0;
1259 * cmd->autoneg =
1260 * cmd->maxtxpkt = 0;
1261 * cmd->maxrxpkt = 0;
1264 /* read current configuration */
1265 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1266 tanar = readl(dev->base + TANAR);
1267 tbicr = readl(dev->base + TBICR);
1269 if (dev->CFG_cache & CFG_TBI_EN) {
1270 /* we have an optical interface */
1271 have_optical = 1;
1272 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1274 } else {
1275 /* We have copper */
1276 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1279 cmd->supported = SUPPORTED_Autoneg;
1281 /* we have optical interface */
1282 if (dev->CFG_cache & CFG_TBI_EN) {
1283 cmd->supported |= SUPPORTED_1000baseT_Half |
1284 SUPPORTED_1000baseT_Full |
1285 SUPPORTED_FIBRE;
1286 cmd->port = PORT_FIBRE;
1287 } /* TODO: else copper related support */
1289 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1290 switch (cfg / CFG_SPDSTS0 & 3) {
1291 case 2:
1292 cmd->speed = SPEED_1000;
1293 break;
1294 case 1:
1295 cmd->speed = SPEED_100;
1296 break;
1297 default:
1298 cmd->speed = SPEED_10;
1299 break;
1301 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1302 return 0;
1305 /* Let ethool change settings*/
1306 static int ns83820_set_settings(struct net_device *ndev,
1307 struct ethtool_cmd *cmd)
1309 struct ns83820 *dev = PRIV(ndev);
1310 u32 cfg, tanar;
1311 int have_optical = 0;
1312 int fullduplex = 0;
1314 /* read current configuration */
1315 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1316 tanar = readl(dev->base + TANAR);
1318 if (dev->CFG_cache & CFG_TBI_EN) {
1319 /* we have optical */
1320 have_optical = 1;
1321 fullduplex = (tanar & TANAR_FULL_DUP);
1323 } else {
1324 /* we have copper */
1325 fullduplex = cfg & CFG_DUPSTS;
1328 spin_lock_irq(&dev->misc_lock);
1329 spin_lock(&dev->tx_lock);
1331 /* Set duplex */
1332 if (cmd->duplex != fullduplex) {
1333 if (have_optical) {
1334 /*set full duplex*/
1335 if (cmd->duplex == DUPLEX_FULL) {
1336 /* force full duplex */
1337 writel(readl(dev->base + TXCFG)
1338 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1339 dev->base + TXCFG);
1340 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1341 dev->base + RXCFG);
1342 /* Light up full duplex LED */
1343 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1344 dev->base + GPIOR);
1345 } else {
1346 /*TODO: set half duplex */
1349 } else {
1350 /*we have copper*/
1351 /* TODO: Set duplex for copper cards */
1353 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1354 ndev->name);
1357 /* Set autonegotiation */
1358 if (1) {
1359 if (cmd->autoneg == AUTONEG_ENABLE) {
1360 /* restart auto negotiation */
1361 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1362 dev->base + TBICR);
1363 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1364 dev->linkstate = LINK_AUTONEGOTIATE;
1366 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1367 ndev->name);
1368 } else {
1369 /* disable auto negotiation */
1370 writel(0x00000000, dev->base + TBICR);
1373 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1374 cmd->autoneg ? "ENABLED" : "DISABLED");
1377 phy_intr(ndev);
1378 spin_unlock(&dev->tx_lock);
1379 spin_unlock_irq(&dev->misc_lock);
1381 return 0;
1383 /* end ethtool get/set support -df */
1385 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1387 struct ns83820 *dev = PRIV(ndev);
1388 strcpy(info->driver, "ns83820");
1389 strcpy(info->version, VERSION);
1390 strcpy(info->bus_info, pci_name(dev->pci_dev));
1393 static u32 ns83820_get_link(struct net_device *ndev)
1395 struct ns83820 *dev = PRIV(ndev);
1396 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1397 return cfg & CFG_LNKSTS ? 1 : 0;
1400 static const struct ethtool_ops ops = {
1401 .get_settings = ns83820_get_settings,
1402 .set_settings = ns83820_set_settings,
1403 .get_drvinfo = ns83820_get_drvinfo,
1404 .get_link = ns83820_get_link
1407 /* this function is called in irq context from the ISR */
1408 static void ns83820_mib_isr(struct ns83820 *dev)
1410 unsigned long flags;
1411 spin_lock_irqsave(&dev->misc_lock, flags);
1412 ns83820_update_stats(dev);
1413 spin_unlock_irqrestore(&dev->misc_lock, flags);
1416 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1417 static irqreturn_t ns83820_irq(int foo, void *data)
1419 struct net_device *ndev = data;
1420 struct ns83820 *dev = PRIV(ndev);
1421 u32 isr;
1422 dprintk("ns83820_irq(%p)\n", ndev);
1424 dev->ihr = 0;
1426 isr = readl(dev->base + ISR);
1427 dprintk("irq: %08x\n", isr);
1428 ns83820_do_isr(ndev, isr);
1429 return IRQ_HANDLED;
1432 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1434 struct ns83820 *dev = PRIV(ndev);
1435 unsigned long flags;
1437 #ifdef DEBUG
1438 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1439 Dprintk("odd isr? 0x%08x\n", isr);
1440 #endif
1442 if (ISR_RXIDLE & isr) {
1443 dev->rx_info.idle = 1;
1444 Dprintk("oh dear, we are idle\n");
1445 ns83820_rx_kick(ndev);
1448 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1449 prefetch(dev->rx_info.next_rx_desc);
1451 spin_lock_irqsave(&dev->misc_lock, flags);
1452 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1453 writel(dev->IMR_cache, dev->base + IMR);
1454 spin_unlock_irqrestore(&dev->misc_lock, flags);
1456 tasklet_schedule(&dev->rx_tasklet);
1457 //rx_irq(ndev);
1458 //writel(4, dev->base + IHR);
1461 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1462 ns83820_rx_kick(ndev);
1464 if (unlikely(ISR_RXSOVR & isr)) {
1465 //printk("overrun: rxsovr\n");
1466 dev->stats.rx_fifo_errors ++;
1469 if (unlikely(ISR_RXORN & isr)) {
1470 //printk("overrun: rxorn\n");
1471 dev->stats.rx_fifo_errors ++;
1474 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1475 writel(CR_RXE, dev->base + CR);
1477 if (ISR_TXIDLE & isr) {
1478 u32 txdp;
1479 txdp = readl(dev->base + TXDP);
1480 dprintk("txdp: %08x\n", txdp);
1481 txdp -= dev->tx_phy_descs;
1482 dev->tx_idx = txdp / (DESC_SIZE * 4);
1483 if (dev->tx_idx >= NR_TX_DESC) {
1484 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1485 dev->tx_idx = 0;
1487 /* The may have been a race between a pci originated read
1488 * and the descriptor update from the cpu. Just in case,
1489 * kick the transmitter if the hardware thinks it is on a
1490 * different descriptor than we are.
1492 if (dev->tx_idx != dev->tx_free_idx)
1493 kick_tx(dev);
1496 /* Defer tx ring processing until more than a minimum amount of
1497 * work has accumulated
1499 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1500 spin_lock_irqsave(&dev->tx_lock, flags);
1501 do_tx_done(ndev);
1502 spin_unlock_irqrestore(&dev->tx_lock, flags);
1504 /* Disable TxOk if there are no outstanding tx packets.
1506 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1507 (dev->IMR_cache & ISR_TXOK)) {
1508 spin_lock_irqsave(&dev->misc_lock, flags);
1509 dev->IMR_cache &= ~ISR_TXOK;
1510 writel(dev->IMR_cache, dev->base + IMR);
1511 spin_unlock_irqrestore(&dev->misc_lock, flags);
1515 /* The TxIdle interrupt can come in before the transmit has
1516 * completed. Normally we reap packets off of the combination
1517 * of TxDesc and TxIdle and leave TxOk disabled (since it
1518 * occurs on every packet), but when no further irqs of this
1519 * nature are expected, we must enable TxOk.
1521 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1522 spin_lock_irqsave(&dev->misc_lock, flags);
1523 dev->IMR_cache |= ISR_TXOK;
1524 writel(dev->IMR_cache, dev->base + IMR);
1525 spin_unlock_irqrestore(&dev->misc_lock, flags);
1528 /* MIB interrupt: one of the statistics counters is about to overflow */
1529 if (unlikely(ISR_MIB & isr))
1530 ns83820_mib_isr(dev);
1532 /* PHY: Link up/down/negotiation state change */
1533 if (unlikely(ISR_PHY & isr))
1534 phy_intr(ndev);
1536 #if 0 /* Still working on the interrupt mitigation strategy */
1537 if (dev->ihr)
1538 writel(dev->ihr, dev->base + IHR);
1539 #endif
1542 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1544 Dprintk("resetting chip...\n");
1545 writel(which, dev->base + CR);
1546 do {
1547 schedule();
1548 } while (readl(dev->base + CR) & which);
1549 Dprintk("okay!\n");
1552 static int ns83820_stop(struct net_device *ndev)
1554 struct ns83820 *dev = PRIV(ndev);
1556 /* FIXME: protect against interrupt handler? */
1557 del_timer_sync(&dev->tx_watchdog);
1559 /* disable interrupts */
1560 writel(0, dev->base + IMR);
1561 writel(0, dev->base + IER);
1562 readl(dev->base + IER);
1564 dev->rx_info.up = 0;
1565 synchronize_irq(dev->pci_dev->irq);
1567 ns83820_do_reset(dev, CR_RST);
1569 synchronize_irq(dev->pci_dev->irq);
1571 spin_lock_irq(&dev->misc_lock);
1572 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1573 spin_unlock_irq(&dev->misc_lock);
1575 ns83820_cleanup_rx(dev);
1576 ns83820_cleanup_tx(dev);
1578 return 0;
1581 static void ns83820_tx_timeout(struct net_device *ndev)
1583 struct ns83820 *dev = PRIV(ndev);
1584 u32 tx_done_idx;
1585 __le32 *desc;
1586 unsigned long flags;
1588 spin_lock_irqsave(&dev->tx_lock, flags);
1590 tx_done_idx = dev->tx_done_idx;
1591 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1593 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1594 ndev->name,
1595 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1597 #if defined(DEBUG)
1599 u32 isr;
1600 isr = readl(dev->base + ISR);
1601 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1602 ns83820_do_isr(ndev, isr);
1604 #endif
1606 do_tx_done(ndev);
1608 tx_done_idx = dev->tx_done_idx;
1609 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1611 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1612 ndev->name,
1613 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1615 spin_unlock_irqrestore(&dev->tx_lock, flags);
1618 static void ns83820_tx_watch(unsigned long data)
1620 struct net_device *ndev = (void *)data;
1621 struct ns83820 *dev = PRIV(ndev);
1623 #if defined(DEBUG)
1624 printk("ns83820_tx_watch: %u %u %d\n",
1625 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1627 #endif
1629 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1630 dev->tx_done_idx != dev->tx_free_idx) {
1631 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1632 ndev->name,
1633 dev->tx_done_idx, dev->tx_free_idx,
1634 atomic_read(&dev->nr_tx_skbs));
1635 ns83820_tx_timeout(ndev);
1638 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1641 static int ns83820_open(struct net_device *ndev)
1643 struct ns83820 *dev = PRIV(ndev);
1644 unsigned i;
1645 u32 desc;
1646 int ret;
1648 dprintk("ns83820_open\n");
1650 writel(0, dev->base + PQCR);
1652 ret = ns83820_setup_rx(ndev);
1653 if (ret)
1654 goto failed;
1656 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1657 for (i=0; i<NR_TX_DESC; i++) {
1658 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1659 = cpu_to_le32(
1660 dev->tx_phy_descs
1661 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1664 dev->tx_idx = 0;
1665 dev->tx_done_idx = 0;
1666 desc = dev->tx_phy_descs;
1667 writel(0, dev->base + TXDP_HI);
1668 writel(desc, dev->base + TXDP);
1670 init_timer(&dev->tx_watchdog);
1671 dev->tx_watchdog.data = (unsigned long)ndev;
1672 dev->tx_watchdog.function = ns83820_tx_watch;
1673 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1675 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1677 return 0;
1679 failed:
1680 ns83820_stop(ndev);
1681 return ret;
1684 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1686 unsigned i;
1687 for (i=0; i<3; i++) {
1688 u32 data;
1690 /* Read from the perfect match memory: this is loaded by
1691 * the chip from the EEPROM via the EELOAD self test.
1693 writel(i*2, dev->base + RFCR);
1694 data = readl(dev->base + RFDR);
1696 *mac++ = data;
1697 *mac++ = data >> 8;
1701 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1703 if (new_mtu > RX_BUF_SIZE)
1704 return -EINVAL;
1705 ndev->mtu = new_mtu;
1706 return 0;
1709 static void ns83820_set_multicast(struct net_device *ndev)
1711 struct ns83820 *dev = PRIV(ndev);
1712 u8 __iomem *rfcr = dev->base + RFCR;
1713 u32 and_mask = 0xffffffff;
1714 u32 or_mask = 0;
1715 u32 val;
1717 if (ndev->flags & IFF_PROMISC)
1718 or_mask |= RFCR_AAU | RFCR_AAM;
1719 else
1720 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1722 if (ndev->flags & IFF_ALLMULTI || ndev->mc_count)
1723 or_mask |= RFCR_AAM;
1724 else
1725 and_mask &= ~RFCR_AAM;
1727 spin_lock_irq(&dev->misc_lock);
1728 val = (readl(rfcr) & and_mask) | or_mask;
1729 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1730 writel(val & ~RFCR_RFEN, rfcr);
1731 writel(val, rfcr);
1732 spin_unlock_irq(&dev->misc_lock);
1735 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1737 struct ns83820 *dev = PRIV(ndev);
1738 int timed_out = 0;
1739 unsigned long start;
1740 u32 status;
1741 int loops = 0;
1743 dprintk("%s: start %s\n", ndev->name, name);
1745 start = jiffies;
1747 writel(enable, dev->base + PTSCR);
1748 for (;;) {
1749 loops++;
1750 status = readl(dev->base + PTSCR);
1751 if (!(status & enable))
1752 break;
1753 if (status & done)
1754 break;
1755 if (status & fail)
1756 break;
1757 if (time_after_eq(jiffies, start + HZ)) {
1758 timed_out = 1;
1759 break;
1761 schedule_timeout_uninterruptible(1);
1764 if (status & fail)
1765 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1766 ndev->name, name, status, fail);
1767 else if (timed_out)
1768 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1769 ndev->name, name, status);
1771 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1774 #ifdef PHY_CODE_IS_FINISHED
1775 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1777 /* drive MDC low */
1778 dev->MEAR_cache &= ~MEAR_MDC;
1779 writel(dev->MEAR_cache, dev->base + MEAR);
1780 readl(dev->base + MEAR);
1782 /* enable output, set bit */
1783 dev->MEAR_cache |= MEAR_MDDIR;
1784 if (bit)
1785 dev->MEAR_cache |= MEAR_MDIO;
1786 else
1787 dev->MEAR_cache &= ~MEAR_MDIO;
1789 /* set the output bit */
1790 writel(dev->MEAR_cache, dev->base + MEAR);
1791 readl(dev->base + MEAR);
1793 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1794 udelay(1);
1796 /* drive MDC high causing the data bit to be latched */
1797 dev->MEAR_cache |= MEAR_MDC;
1798 writel(dev->MEAR_cache, dev->base + MEAR);
1799 readl(dev->base + MEAR);
1801 /* Wait again... */
1802 udelay(1);
1805 static int ns83820_mii_read_bit(struct ns83820 *dev)
1807 int bit;
1809 /* drive MDC low, disable output */
1810 dev->MEAR_cache &= ~MEAR_MDC;
1811 dev->MEAR_cache &= ~MEAR_MDDIR;
1812 writel(dev->MEAR_cache, dev->base + MEAR);
1813 readl(dev->base + MEAR);
1815 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1816 udelay(1);
1818 /* drive MDC high causing the data bit to be latched */
1819 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1820 dev->MEAR_cache |= MEAR_MDC;
1821 writel(dev->MEAR_cache, dev->base + MEAR);
1823 /* Wait again... */
1824 udelay(1);
1826 return bit;
1829 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1831 unsigned data = 0;
1832 int i;
1834 /* read some garbage so that we eventually sync up */
1835 for (i=0; i<64; i++)
1836 ns83820_mii_read_bit(dev);
1838 ns83820_mii_write_bit(dev, 0); /* start */
1839 ns83820_mii_write_bit(dev, 1);
1840 ns83820_mii_write_bit(dev, 1); /* opcode read */
1841 ns83820_mii_write_bit(dev, 0);
1843 /* write out the phy address: 5 bits, msb first */
1844 for (i=0; i<5; i++)
1845 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1847 /* write out the register address, 5 bits, msb first */
1848 for (i=0; i<5; i++)
1849 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1851 ns83820_mii_read_bit(dev); /* turn around cycles */
1852 ns83820_mii_read_bit(dev);
1854 /* read in the register data, 16 bits msb first */
1855 for (i=0; i<16; i++) {
1856 data <<= 1;
1857 data |= ns83820_mii_read_bit(dev);
1860 return data;
1863 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1865 int i;
1867 /* read some garbage so that we eventually sync up */
1868 for (i=0; i<64; i++)
1869 ns83820_mii_read_bit(dev);
1871 ns83820_mii_write_bit(dev, 0); /* start */
1872 ns83820_mii_write_bit(dev, 1);
1873 ns83820_mii_write_bit(dev, 0); /* opcode read */
1874 ns83820_mii_write_bit(dev, 1);
1876 /* write out the phy address: 5 bits, msb first */
1877 for (i=0; i<5; i++)
1878 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1880 /* write out the register address, 5 bits, msb first */
1881 for (i=0; i<5; i++)
1882 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1884 ns83820_mii_read_bit(dev); /* turn around cycles */
1885 ns83820_mii_read_bit(dev);
1887 /* read in the register data, 16 bits msb first */
1888 for (i=0; i<16; i++)
1889 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1891 return data;
1894 static void ns83820_probe_phy(struct net_device *ndev)
1896 struct ns83820 *dev = PRIV(ndev);
1897 static int first;
1898 int i;
1899 #define MII_PHYIDR1 0x02
1900 #define MII_PHYIDR2 0x03
1902 #if 0
1903 if (!first) {
1904 unsigned tmp;
1905 ns83820_mii_read_reg(dev, 1, 0x09);
1906 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1908 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1909 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1910 udelay(1300);
1911 ns83820_mii_read_reg(dev, 1, 0x09);
1913 #endif
1914 first = 1;
1916 for (i=1; i<2; i++) {
1917 int j;
1918 unsigned a, b;
1919 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1920 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1922 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1923 // ndev->name, i, a, b);
1925 for (j=0; j<0x16; j+=4) {
1926 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1927 ndev->name, j,
1928 ns83820_mii_read_reg(dev, i, 0 + j),
1929 ns83820_mii_read_reg(dev, i, 1 + j),
1930 ns83820_mii_read_reg(dev, i, 2 + j),
1931 ns83820_mii_read_reg(dev, i, 3 + j)
1936 unsigned a, b;
1937 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1938 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1939 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1940 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1942 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1943 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1944 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1945 dprintk("version: 0x%04x 0x%04x\n", a, b);
1948 #endif
1950 static const struct net_device_ops netdev_ops = {
1951 .ndo_open = ns83820_open,
1952 .ndo_stop = ns83820_stop,
1953 .ndo_start_xmit = ns83820_hard_start_xmit,
1954 .ndo_get_stats = ns83820_get_stats,
1955 .ndo_change_mtu = ns83820_change_mtu,
1956 .ndo_set_multicast_list = ns83820_set_multicast,
1957 .ndo_validate_addr = eth_validate_addr,
1958 .ndo_set_mac_address = eth_mac_addr,
1959 .ndo_tx_timeout = ns83820_tx_timeout,
1960 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1961 .ndo_vlan_rx_register = ns83820_vlan_rx_register,
1962 #endif
1965 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1966 const struct pci_device_id *id)
1968 struct net_device *ndev;
1969 struct ns83820 *dev;
1970 long addr;
1971 int err;
1972 int using_dac = 0;
1974 /* See if we can set the dma mask early on; failure is fatal. */
1975 if (sizeof(dma_addr_t) == 8 &&
1976 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1977 using_dac = 1;
1978 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1979 using_dac = 0;
1980 } else {
1981 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1982 return -ENODEV;
1985 ndev = alloc_etherdev(sizeof(struct ns83820));
1986 dev = PRIV(ndev);
1988 err = -ENOMEM;
1989 if (!dev)
1990 goto out;
1992 dev->ndev = ndev;
1994 spin_lock_init(&dev->rx_info.lock);
1995 spin_lock_init(&dev->tx_lock);
1996 spin_lock_init(&dev->misc_lock);
1997 dev->pci_dev = pci_dev;
1999 SET_NETDEV_DEV(ndev, &pci_dev->dev);
2001 INIT_WORK(&dev->tq_refill, queue_refill);
2002 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
2004 err = pci_enable_device(pci_dev);
2005 if (err) {
2006 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
2007 goto out_free;
2010 pci_set_master(pci_dev);
2011 addr = pci_resource_start(pci_dev, 1);
2012 dev->base = ioremap_nocache(addr, PAGE_SIZE);
2013 dev->tx_descs = pci_alloc_consistent(pci_dev,
2014 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2015 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2016 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2017 err = -ENOMEM;
2018 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2019 goto out_disable;
2021 dprintk("%p: %08lx %p: %08lx\n",
2022 dev->tx_descs, (long)dev->tx_phy_descs,
2023 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2025 /* disable interrupts */
2026 writel(0, dev->base + IMR);
2027 writel(0, dev->base + IER);
2028 readl(dev->base + IER);
2030 dev->IMR_cache = 0;
2032 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2033 DRV_NAME, ndev);
2034 if (err) {
2035 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2036 pci_dev->irq, err);
2037 goto out_disable;
2041 * FIXME: we are holding rtnl_lock() over obscenely long area only
2042 * because some of the setup code uses dev->name. It's Wrong(tm) -
2043 * we should be using driver-specific names for all that stuff.
2044 * For now that will do, but we really need to come back and kill
2045 * most of the dev_alloc_name() users later.
2047 rtnl_lock();
2048 err = dev_alloc_name(ndev, ndev->name);
2049 if (err < 0) {
2050 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2051 goto out_free_irq;
2054 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2055 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2056 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2058 ndev->netdev_ops = &netdev_ops;
2059 SET_ETHTOOL_OPS(ndev, &ops);
2060 ndev->watchdog_timeo = 5 * HZ;
2061 pci_set_drvdata(pci_dev, ndev);
2063 ns83820_do_reset(dev, CR_RST);
2065 /* Must reset the ram bist before running it */
2066 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2067 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2068 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2069 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2070 PTSCR_EEBIST_FAIL);
2071 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2073 /* I love config registers */
2074 dev->CFG_cache = readl(dev->base + CFG);
2076 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2077 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2078 ndev->name);
2079 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2080 if (!(dev->CFG_cache & CFG_DATA64_EN))
2081 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2082 ndev->name);
2083 } else
2084 dev->CFG_cache &= ~(CFG_DATA64_EN);
2086 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2087 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2088 CFG_M64ADDR);
2089 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2090 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2091 dev->CFG_cache |= CFG_REQALG;
2092 dev->CFG_cache |= CFG_POW;
2093 dev->CFG_cache |= CFG_TMRTEST;
2095 /* When compiled with 64 bit addressing, we must always enable
2096 * the 64 bit descriptor format.
2098 if (sizeof(dma_addr_t) == 8)
2099 dev->CFG_cache |= CFG_M64ADDR;
2100 if (using_dac)
2101 dev->CFG_cache |= CFG_T64ADDR;
2103 /* Big endian mode does not seem to do what the docs suggest */
2104 dev->CFG_cache &= ~CFG_BEM;
2106 /* setup optical transceiver if we have one */
2107 if (dev->CFG_cache & CFG_TBI_EN) {
2108 printk(KERN_INFO "%s: enabling optical transceiver\n",
2109 ndev->name);
2110 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2112 /* setup auto negotiation feature advertisement */
2113 writel(readl(dev->base + TANAR)
2114 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2115 dev->base + TANAR);
2117 /* start auto negotiation */
2118 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2119 dev->base + TBICR);
2120 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2121 dev->linkstate = LINK_AUTONEGOTIATE;
2123 dev->CFG_cache |= CFG_MODE_1000;
2126 writel(dev->CFG_cache, dev->base + CFG);
2127 dprintk("CFG: %08x\n", dev->CFG_cache);
2129 if (reset_phy) {
2130 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2131 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2132 msleep(10);
2133 writel(dev->CFG_cache, dev->base + CFG);
2136 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2137 * the PCI layer. FIXME.
2139 if (readl(dev->base + SRR))
2140 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2141 #endif
2143 /* Note! The DMA burst size interacts with packet
2144 * transmission, such that the largest packet that
2145 * can be transmitted is 8192 - FLTH - burst size.
2146 * If only the transmit fifo was larger...
2148 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2149 * some DELL and COMPAQ SMP systems */
2150 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2151 | ((1600 / 32) * 0x100),
2152 dev->base + TXCFG);
2154 /* Flush the interrupt holdoff timer */
2155 writel(0x000, dev->base + IHR);
2156 writel(0x100, dev->base + IHR);
2157 writel(0x000, dev->base + IHR);
2159 /* Set Rx to full duplex, don't accept runt, errored, long or length
2160 * range errored packets. Use 512 byte DMA.
2162 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2163 * some DELL and COMPAQ SMP systems
2164 * Turn on ALP, only we are accpeting Jumbo Packets */
2165 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2166 | RXCFG_STRIPCRC
2167 //| RXCFG_ALP
2168 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2170 /* Disable priority queueing */
2171 writel(0, dev->base + PQCR);
2173 /* Enable IP checksum validation and detetion of VLAN headers.
2174 * Note: do not set the reject options as at least the 0x102
2175 * revision of the chip does not properly accept IP fragments
2176 * at least for UDP.
2178 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2179 * the MAC it calculates the packetsize AFTER stripping the VLAN
2180 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2181 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2182 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2183 * it discrards it!. These guys......
2184 * also turn on tag stripping if hardware acceleration is enabled
2186 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2187 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2188 #else
2189 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2190 #endif
2191 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2193 /* Enable per-packet TCP/UDP/IP checksumming
2194 * and per packet vlan tag insertion if
2195 * vlan hardware acceleration is enabled
2197 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2198 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2199 #else
2200 #define VTCR_INIT_VALUE VTCR_PPCHK
2201 #endif
2202 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2204 /* Ramit : Enable async and sync pause frames */
2205 /* writel(0, dev->base + PCR); */
2206 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2207 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2208 dev->base + PCR);
2210 /* Disable Wake On Lan */
2211 writel(0, dev->base + WCSR);
2213 ns83820_getmac(dev, ndev->dev_addr);
2215 /* Yes, we support dumb IP checksum on transmit */
2216 ndev->features |= NETIF_F_SG;
2217 ndev->features |= NETIF_F_IP_CSUM;
2219 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2220 /* We also support hardware vlan acceleration */
2221 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2222 #endif
2224 if (using_dac) {
2225 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2226 ndev->name);
2227 ndev->features |= NETIF_F_HIGHDMA;
2230 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2231 ndev->name,
2232 (unsigned)readl(dev->base + SRR) >> 8,
2233 (unsigned)readl(dev->base + SRR) & 0xff,
2234 ndev->dev_addr, addr, pci_dev->irq,
2235 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2238 #ifdef PHY_CODE_IS_FINISHED
2239 ns83820_probe_phy(ndev);
2240 #endif
2242 err = register_netdevice(ndev);
2243 if (err) {
2244 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2245 goto out_cleanup;
2247 rtnl_unlock();
2249 return 0;
2251 out_cleanup:
2252 writel(0, dev->base + IMR); /* paranoia */
2253 writel(0, dev->base + IER);
2254 readl(dev->base + IER);
2255 out_free_irq:
2256 rtnl_unlock();
2257 free_irq(pci_dev->irq, ndev);
2258 out_disable:
2259 if (dev->base)
2260 iounmap(dev->base);
2261 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2262 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2263 pci_disable_device(pci_dev);
2264 out_free:
2265 free_netdev(ndev);
2266 pci_set_drvdata(pci_dev, NULL);
2267 out:
2268 return err;
2271 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2273 struct net_device *ndev = pci_get_drvdata(pci_dev);
2274 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2276 if (!ndev) /* paranoia */
2277 return;
2279 writel(0, dev->base + IMR); /* paranoia */
2280 writel(0, dev->base + IER);
2281 readl(dev->base + IER);
2283 unregister_netdev(ndev);
2284 free_irq(dev->pci_dev->irq, ndev);
2285 iounmap(dev->base);
2286 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2287 dev->tx_descs, dev->tx_phy_descs);
2288 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2289 dev->rx_info.descs, dev->rx_info.phy_descs);
2290 pci_disable_device(dev->pci_dev);
2291 free_netdev(ndev);
2292 pci_set_drvdata(pci_dev, NULL);
2295 static struct pci_device_id ns83820_pci_tbl[] = {
2296 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2297 { 0, },
2300 static struct pci_driver driver = {
2301 .name = "ns83820",
2302 .id_table = ns83820_pci_tbl,
2303 .probe = ns83820_init_one,
2304 .remove = __devexit_p(ns83820_remove_one),
2305 #if 0 /* FIXME: implement */
2306 .suspend = ,
2307 .resume = ,
2308 #endif
2312 static int __init ns83820_init(void)
2314 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2315 return pci_register_driver(&driver);
2318 static void __exit ns83820_exit(void)
2320 pci_unregister_driver(&driver);
2323 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2324 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2325 MODULE_LICENSE("GPL");
2327 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2329 module_param(lnksts, int, 0);
2330 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2332 module_param(ihr, int, 0);
2333 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2335 module_param(reset_phy, int, 0);
2336 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2338 module_init(ns83820_init);
2339 module_exit(ns83820_exit);