Save sram context after changing MPU, DSP or core clocks
[linux-ginger.git] / drivers / net / wireless / wavelan.c
blobd634b2da3b84dd3685f35ef4d7602b55e02ff69d
1 /*
2 * WaveLAN ISA driver
4 * Jean II - HPLB '96
6 * Reorganisation and extension of the driver.
7 * Original copyright follows (also see the end of this file).
8 * See wavelan.p.h for details.
12 * AT&T GIS (nee NCR) WaveLAN card:
13 * An Ethernet-like radio transceiver
14 * controlled by an Intel 82586 coprocessor.
17 #include "wavelan.p.h" /* Private header */
19 /************************* MISC SUBROUTINES **************************/
21 * Subroutines which won't fit in one of the following category
22 * (WaveLAN modem or i82586)
25 /*------------------------------------------------------------------*/
27 * Translate irq number to PSA irq parameter
29 static u8 wv_irq_to_psa(int irq)
31 if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32 return 0;
34 return irqvals[irq];
37 /*------------------------------------------------------------------*/
39 * Translate PSA irq parameter to irq number
41 static int __init wv_psa_to_irq(u8 irqval)
43 int i;
45 for (i = 0; i < ARRAY_SIZE(irqvals); i++)
46 if (irqvals[i] == irqval)
47 return i;
49 return -1;
52 /********************* HOST ADAPTER SUBROUTINES *********************/
54 * Useful subroutines to manage the WaveLAN ISA interface
56 * One major difference with the PCMCIA hardware (except the port mapping)
57 * is that we have to keep the state of the Host Control Register
58 * because of the interrupt enable & bus size flags.
61 /*------------------------------------------------------------------*/
63 * Read from card's Host Adaptor Status Register.
65 static inline u16 hasr_read(unsigned long ioaddr)
67 return (inw(HASR(ioaddr)));
68 } /* hasr_read */
70 /*------------------------------------------------------------------*/
72 * Write to card's Host Adapter Command Register.
74 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
76 outw(hacr, HACR(ioaddr));
77 } /* hacr_write */
79 /*------------------------------------------------------------------*/
81 * Write to card's Host Adapter Command Register. Include a delay for
82 * those times when it is needed.
84 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
86 hacr_write(ioaddr, hacr);
87 /* delay might only be needed sometimes */
88 mdelay(1);
89 } /* hacr_write_slow */
91 /*------------------------------------------------------------------*/
93 * Set the channel attention bit.
95 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
97 hacr_write(ioaddr, hacr | HACR_CA);
98 } /* set_chan_attn */
100 /*------------------------------------------------------------------*/
102 * Reset, and then set host adaptor into default mode.
104 static inline void wv_hacr_reset(unsigned long ioaddr)
106 hacr_write_slow(ioaddr, HACR_RESET);
107 hacr_write(ioaddr, HACR_DEFAULT);
108 } /* wv_hacr_reset */
110 /*------------------------------------------------------------------*/
112 * Set the I/O transfer over the ISA bus to 8-bit mode
114 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
116 hacr &= ~HACR_16BITS;
117 hacr_write(ioaddr, hacr);
118 } /* wv_16_off */
120 /*------------------------------------------------------------------*/
122 * Set the I/O transfer over the ISA bus to 8-bit mode
124 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
126 hacr |= HACR_16BITS;
127 hacr_write(ioaddr, hacr);
128 } /* wv_16_on */
130 /*------------------------------------------------------------------*/
132 * Disable interrupts on the WaveLAN hardware.
133 * (called by wv_82586_stop())
135 static inline void wv_ints_off(struct net_device * dev)
137 net_local *lp = netdev_priv(dev);
138 unsigned long ioaddr = dev->base_addr;
140 lp->hacr &= ~HACR_INTRON;
141 hacr_write(ioaddr, lp->hacr);
142 } /* wv_ints_off */
144 /*------------------------------------------------------------------*/
146 * Enable interrupts on the WaveLAN hardware.
147 * (called by wv_hw_reset())
149 static inline void wv_ints_on(struct net_device * dev)
151 net_local *lp = netdev_priv(dev);
152 unsigned long ioaddr = dev->base_addr;
154 lp->hacr |= HACR_INTRON;
155 hacr_write(ioaddr, lp->hacr);
156 } /* wv_ints_on */
158 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
160 * Useful subroutines to manage the modem of the WaveLAN
163 /*------------------------------------------------------------------*/
165 * Read the Parameter Storage Area from the WaveLAN card's memory
168 * Read bytes from the PSA.
170 static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
171 u8 * b, /* buffer to fill */
172 int n)
173 { /* size to read */
174 wv_16_off(ioaddr, hacr);
176 while (n-- > 0) {
177 outw(o, PIOR2(ioaddr));
178 o++;
179 *b++ = inb(PIOP2(ioaddr));
182 wv_16_on(ioaddr, hacr);
183 } /* psa_read */
185 /*------------------------------------------------------------------*/
187 * Write the Parameter Storage Area to the WaveLAN card's memory.
189 static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
190 u8 * b, /* Buffer in memory */
191 int n)
192 { /* Length of buffer */
193 int count = 0;
195 wv_16_off(ioaddr, hacr);
197 while (n-- > 0) {
198 outw(o, PIOR2(ioaddr));
199 o++;
201 outb(*b, PIOP2(ioaddr));
202 b++;
204 /* Wait for the memory to finish its write cycle */
205 count = 0;
206 while ((count++ < 100) &&
207 (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
210 wv_16_on(ioaddr, hacr);
211 } /* psa_write */
213 #ifdef SET_PSA_CRC
214 /*------------------------------------------------------------------*/
216 * Calculate the PSA CRC
217 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
218 * NOTE: By specifying a length including the CRC position the
219 * returned value should be zero. (i.e. a correct checksum in the PSA)
221 * The Windows drivers don't use the CRC, but the AP and the PtP tool
222 * depend on it.
224 static u16 psa_crc(u8 * psa, /* The PSA */
225 int size)
226 { /* Number of short for CRC */
227 int byte_cnt; /* Loop on the PSA */
228 u16 crc_bytes = 0; /* Data in the PSA */
229 int bit_cnt; /* Loop on the bits of the short */
231 for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
232 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
234 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
235 if (crc_bytes & 0x0001)
236 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
237 else
238 crc_bytes >>= 1;
242 return crc_bytes;
243 } /* psa_crc */
244 #endif /* SET_PSA_CRC */
246 /*------------------------------------------------------------------*/
248 * update the checksum field in the Wavelan's PSA
250 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
252 #ifdef SET_PSA_CRC
253 psa_t psa;
254 u16 crc;
256 /* read the parameter storage area */
257 psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
259 /* update the checksum */
260 crc = psa_crc((unsigned char *) &psa,
261 sizeof(psa) - sizeof(psa.psa_crc[0]) -
262 sizeof(psa.psa_crc[1])
263 - sizeof(psa.psa_crc_status));
265 psa.psa_crc[0] = crc & 0xFF;
266 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
268 /* Write it ! */
269 psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
270 (unsigned char *) &psa.psa_crc, 2);
272 #ifdef DEBUG_IOCTL_INFO
273 printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
274 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
276 /* Check again (luxury !) */
277 crc = psa_crc((unsigned char *) &psa,
278 sizeof(psa) - sizeof(psa.psa_crc_status));
280 if (crc != 0)
281 printk(KERN_WARNING
282 "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
283 dev->name);
284 #endif /* DEBUG_IOCTL_INFO */
285 #endif /* SET_PSA_CRC */
286 } /* update_psa_checksum */
288 /*------------------------------------------------------------------*/
290 * Write 1 byte to the MMC.
292 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
294 int count = 0;
296 /* Wait for MMC to go idle */
297 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
298 udelay(10);
300 outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
303 /*------------------------------------------------------------------*/
305 * Routine to write bytes to the Modem Management Controller.
306 * We start at the end because it is the way it should be!
308 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
310 o += n;
311 b += n;
313 while (n-- > 0)
314 mmc_out(ioaddr, --o, *(--b));
315 } /* mmc_write */
317 /*------------------------------------------------------------------*/
319 * Read a byte from the MMC.
320 * Optimised version for 1 byte, avoid using memory.
322 static u8 mmc_in(unsigned long ioaddr, u16 o)
324 int count = 0;
326 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
327 udelay(10);
328 outw(o << 1, MMCR(ioaddr));
330 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
331 udelay(10);
332 return (u8) (inw(MMCR(ioaddr)) >> 8);
335 /*------------------------------------------------------------------*/
337 * Routine to read bytes from the Modem Management Controller.
338 * The implementation is complicated by a lack of address lines,
339 * which prevents decoding of the low-order bit.
340 * (code has just been moved in the above function)
341 * We start at the end because it is the way it should be!
343 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
345 o += n;
346 b += n;
348 while (n-- > 0)
349 *(--b) = mmc_in(ioaddr, --o);
350 } /* mmc_read */
352 /*------------------------------------------------------------------*/
354 * Get the type of encryption available.
356 static inline int mmc_encr(unsigned long ioaddr)
357 { /* I/O port of the card */
358 int temp;
360 temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
361 if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
362 return 0;
363 else
364 return temp;
367 /*------------------------------------------------------------------*/
369 * Wait for the frequency EEPROM to complete a command.
370 * I hope this one will be optimally inlined.
372 static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
373 int delay, /* Base delay to wait for */
374 int number)
375 { /* Number of time to wait */
376 int count = 0; /* Wait only a limited time */
378 while ((count++ < number) &&
379 (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
380 MMR_FEE_STATUS_BUSY)) udelay(delay);
383 /*------------------------------------------------------------------*/
385 * Read bytes from the Frequency EEPROM (frequency select cards).
387 static void fee_read(unsigned long ioaddr, /* I/O port of the card */
388 u16 o, /* destination offset */
389 u16 * b, /* data buffer */
390 int n)
391 { /* number of registers */
392 b += n; /* Position at the end of the area */
394 /* Write the address */
395 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
397 /* Loop on all buffer */
398 while (n-- > 0) {
399 /* Write the read command */
400 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
401 MMW_FEE_CTRL_READ);
403 /* Wait until EEPROM is ready (should be quick). */
404 fee_wait(ioaddr, 10, 100);
406 /* Read the value. */
407 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
408 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
413 /*------------------------------------------------------------------*/
415 * Write bytes from the Frequency EEPROM (frequency select cards).
416 * This is a bit complicated, because the frequency EEPROM has to
417 * be unprotected and the write enabled.
418 * Jean II
420 static void fee_write(unsigned long ioaddr, /* I/O port of the card */
421 u16 o, /* destination offset */
422 u16 * b, /* data buffer */
423 int n)
424 { /* number of registers */
425 b += n; /* Position at the end of the area. */
427 #ifdef EEPROM_IS_PROTECTED /* disabled */
428 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
429 /* Ask to read the protected register */
430 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
432 fee_wait(ioaddr, 10, 100);
434 /* Read the protected register. */
435 printk("Protected 2: %02X-%02X\n",
436 mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
437 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
438 #endif /* DOESNT_SEEM_TO_WORK */
440 /* Enable protected register. */
441 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
442 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
444 fee_wait(ioaddr, 10, 100);
446 /* Unprotect area. */
447 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
448 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
449 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
450 /* or use: */
451 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
452 #endif /* DOESNT_SEEM_TO_WORK */
454 fee_wait(ioaddr, 10, 100);
455 #endif /* EEPROM_IS_PROTECTED */
457 /* Write enable. */
458 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
459 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
461 fee_wait(ioaddr, 10, 100);
463 /* Write the EEPROM address. */
464 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
466 /* Loop on all buffer */
467 while (n-- > 0) {
468 /* Write the value. */
469 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
470 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
472 /* Write the write command. */
473 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
474 MMW_FEE_CTRL_WRITE);
476 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
477 mdelay(10);
478 fee_wait(ioaddr, 10, 100);
481 /* Write disable. */
482 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
483 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
485 fee_wait(ioaddr, 10, 100);
487 #ifdef EEPROM_IS_PROTECTED /* disabled */
488 /* Reprotect EEPROM. */
489 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
490 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
492 fee_wait(ioaddr, 10, 100);
493 #endif /* EEPROM_IS_PROTECTED */
496 /************************ I82586 SUBROUTINES *************************/
498 * Useful subroutines to manage the Ethernet controller
501 /*------------------------------------------------------------------*/
503 * Read bytes from the on-board RAM.
504 * Why does inlining this function make it fail?
506 static /*inline */ void obram_read(unsigned long ioaddr,
507 u16 o, u8 * b, int n)
509 outw(o, PIOR1(ioaddr));
510 insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
513 /*------------------------------------------------------------------*/
515 * Write bytes to the on-board RAM.
517 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
519 outw(o, PIOR1(ioaddr));
520 outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
523 /*------------------------------------------------------------------*/
525 * Acknowledge the reading of the status issued by the i82586.
527 static void wv_ack(struct net_device * dev)
529 net_local *lp = netdev_priv(dev);
530 unsigned long ioaddr = dev->base_addr;
531 u16 scb_cs;
532 int i;
534 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
535 (unsigned char *) &scb_cs, sizeof(scb_cs));
536 scb_cs &= SCB_ST_INT;
538 if (scb_cs == 0)
539 return;
541 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
542 (unsigned char *) &scb_cs, sizeof(scb_cs));
544 set_chan_attn(ioaddr, lp->hacr);
546 for (i = 1000; i > 0; i--) {
547 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
548 (unsigned char *) &scb_cs, sizeof(scb_cs));
549 if (scb_cs == 0)
550 break;
552 udelay(10);
554 udelay(100);
556 #ifdef DEBUG_CONFIG_ERROR
557 if (i <= 0)
558 printk(KERN_INFO
559 "%s: wv_ack(): board not accepting command.\n",
560 dev->name);
561 #endif
564 /*------------------------------------------------------------------*/
566 * Set channel attention bit and busy wait until command has
567 * completed, then acknowledge completion of the command.
569 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
571 net_local *lp = netdev_priv(dev);
572 unsigned long ioaddr = dev->base_addr;
573 u16 scb_cmd;
574 ach_t cb;
575 int i;
577 scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
578 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
579 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
581 set_chan_attn(ioaddr, lp->hacr);
583 for (i = 1000; i > 0; i--) {
584 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
585 sizeof(cb));
586 if (cb.ac_status & AC_SFLD_C)
587 break;
589 udelay(10);
591 udelay(100);
593 if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
594 #ifdef DEBUG_CONFIG_ERROR
595 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
596 dev->name, str, cb.ac_status);
597 #endif
598 #ifdef DEBUG_I82586_SHOW
599 wv_scb_show(ioaddr);
600 #endif
601 return -1;
604 /* Ack the status */
605 wv_ack(dev);
607 return 0;
610 /*------------------------------------------------------------------*/
612 * Configuration commands completion interrupt.
613 * Check if done, and if OK.
615 static int
616 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
618 unsigned short mcs_addr;
619 unsigned short status;
620 int ret;
622 #ifdef DEBUG_INTERRUPT_TRACE
623 printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
624 #endif
626 mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
627 + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
629 /* Read the status of the last command (set mc list). */
630 obram_read(ioaddr, acoff(mcs_addr, ac_status),
631 (unsigned char *) &status, sizeof(status));
633 /* If not completed -> exit */
634 if ((status & AC_SFLD_C) == 0)
635 ret = 0; /* Not ready to be scrapped */
636 else {
637 #ifdef DEBUG_CONFIG_ERROR
638 unsigned short cfg_addr;
639 unsigned short ias_addr;
641 /* Check mc_config command */
642 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
643 printk(KERN_INFO
644 "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
645 dev->name, status);
647 /* check ia-config command */
648 ias_addr = mcs_addr - sizeof(ac_ias_t);
649 obram_read(ioaddr, acoff(ias_addr, ac_status),
650 (unsigned char *) &status, sizeof(status));
651 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
652 printk(KERN_INFO
653 "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
654 dev->name, status);
656 /* Check config command. */
657 cfg_addr = ias_addr - sizeof(ac_cfg_t);
658 obram_read(ioaddr, acoff(cfg_addr, ac_status),
659 (unsigned char *) &status, sizeof(status));
660 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
661 printk(KERN_INFO
662 "%s: wv_config_complete(): configure failed; status = 0x%x\n",
663 dev->name, status);
664 #endif /* DEBUG_CONFIG_ERROR */
666 ret = 1; /* Ready to be scrapped */
669 #ifdef DEBUG_INTERRUPT_TRACE
670 printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
671 ret);
672 #endif
673 return ret;
676 /*------------------------------------------------------------------*/
678 * Command completion interrupt.
679 * Reclaim as many freed tx buffers as we can.
680 * (called in wavelan_interrupt()).
681 * Note : the spinlock is already grabbed for us.
683 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
685 int nreaped = 0;
687 #ifdef DEBUG_INTERRUPT_TRACE
688 printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
689 #endif
691 /* Loop on all the transmit buffers */
692 while (lp->tx_first_in_use != I82586NULL) {
693 unsigned short tx_status;
695 /* Read the first transmit buffer */
696 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
697 (unsigned char *) &tx_status,
698 sizeof(tx_status));
700 /* If not completed -> exit */
701 if ((tx_status & AC_SFLD_C) == 0)
702 break;
704 /* Hack for reconfiguration */
705 if (tx_status == 0xFFFF)
706 if (!wv_config_complete(dev, ioaddr, lp))
707 break; /* Not completed */
709 /* We now remove this buffer */
710 nreaped++;
711 --lp->tx_n_in_use;
714 if (lp->tx_n_in_use > 0)
715 printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
718 /* Was it the last one? */
719 if (lp->tx_n_in_use <= 0)
720 lp->tx_first_in_use = I82586NULL;
721 else {
722 /* Next one in the chain */
723 lp->tx_first_in_use += TXBLOCKZ;
724 if (lp->tx_first_in_use >=
725 OFFSET_CU +
726 NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
727 NTXBLOCKS * TXBLOCKZ;
730 /* Hack for reconfiguration */
731 if (tx_status == 0xFFFF)
732 continue;
734 /* Now, check status of the finished command */
735 if (tx_status & AC_SFLD_OK) {
736 int ncollisions;
738 dev->stats.tx_packets++;
739 ncollisions = tx_status & AC_SFLD_MAXCOL;
740 dev->stats.collisions += ncollisions;
741 #ifdef DEBUG_TX_INFO
742 if (ncollisions > 0)
743 printk(KERN_DEBUG
744 "%s: wv_complete(): tx completed after %d collisions.\n",
745 dev->name, ncollisions);
746 #endif
747 } else {
748 dev->stats.tx_errors++;
749 if (tx_status & AC_SFLD_S10) {
750 dev->stats.tx_carrier_errors++;
751 #ifdef DEBUG_TX_FAIL
752 printk(KERN_DEBUG
753 "%s: wv_complete(): tx error: no CS.\n",
754 dev->name);
755 #endif
757 if (tx_status & AC_SFLD_S9) {
758 dev->stats.tx_carrier_errors++;
759 #ifdef DEBUG_TX_FAIL
760 printk(KERN_DEBUG
761 "%s: wv_complete(): tx error: lost CTS.\n",
762 dev->name);
763 #endif
765 if (tx_status & AC_SFLD_S8) {
766 dev->stats.tx_fifo_errors++;
767 #ifdef DEBUG_TX_FAIL
768 printk(KERN_DEBUG
769 "%s: wv_complete(): tx error: slow DMA.\n",
770 dev->name);
771 #endif
773 if (tx_status & AC_SFLD_S6) {
774 dev->stats.tx_heartbeat_errors++;
775 #ifdef DEBUG_TX_FAIL
776 printk(KERN_DEBUG
777 "%s: wv_complete(): tx error: heart beat.\n",
778 dev->name);
779 #endif
781 if (tx_status & AC_SFLD_S5) {
782 dev->stats.tx_aborted_errors++;
783 #ifdef DEBUG_TX_FAIL
784 printk(KERN_DEBUG
785 "%s: wv_complete(): tx error: too many collisions.\n",
786 dev->name);
787 #endif
791 #ifdef DEBUG_TX_INFO
792 printk(KERN_DEBUG
793 "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
794 dev->name, tx_status);
795 #endif
798 #ifdef DEBUG_INTERRUPT_INFO
799 if (nreaped > 1)
800 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
801 dev->name, nreaped);
802 #endif
805 * Inform upper layers.
807 if (lp->tx_n_in_use < NTXBLOCKS - 1) {
808 netif_wake_queue(dev);
810 #ifdef DEBUG_INTERRUPT_TRACE
811 printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
812 #endif
813 return nreaped;
816 /*------------------------------------------------------------------*/
818 * Reconfigure the i82586, or at least ask for it.
819 * Because wv_82586_config uses a transmission buffer, we must do it
820 * when we are sure that there is one left, so we do it now
821 * or in wavelan_packet_xmit() (I can't find any better place,
822 * wavelan_interrupt is not an option), so you may experience
823 * delays sometimes.
825 static void wv_82586_reconfig(struct net_device * dev)
827 net_local *lp = netdev_priv(dev);
828 unsigned long flags;
830 /* Arm the flag, will be cleard in wv_82586_config() */
831 lp->reconfig_82586 = 1;
833 /* Check if we can do it now ! */
834 if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
835 spin_lock_irqsave(&lp->spinlock, flags);
836 /* May fail */
837 wv_82586_config(dev);
838 spin_unlock_irqrestore(&lp->spinlock, flags);
840 else {
841 #ifdef DEBUG_CONFIG_INFO
842 printk(KERN_DEBUG
843 "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
844 dev->name, dev->state);
845 #endif
849 /********************* DEBUG & INFO SUBROUTINES *********************/
851 * This routine is used in the code to show information for debugging.
852 * Most of the time, it dumps the contents of hardware structures.
855 #ifdef DEBUG_PSA_SHOW
856 /*------------------------------------------------------------------*/
858 * Print the formatted contents of the Parameter Storage Area.
860 static void wv_psa_show(psa_t * p)
862 printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
863 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
864 p->psa_io_base_addr_1,
865 p->psa_io_base_addr_2,
866 p->psa_io_base_addr_3, p->psa_io_base_addr_4);
867 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
868 p->psa_rem_boot_addr_1,
869 p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
870 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
871 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
872 #ifdef DEBUG_SHOW_UNUSED
873 printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
874 #endif /* DEBUG_SHOW_UNUSED */
875 printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
876 printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
877 printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
878 p->psa_univ_local_sel);
879 printk("psa_comp_number: %d, ", p->psa_comp_number);
880 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
881 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
882 p->psa_feature_select);
883 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
884 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
885 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
886 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
887 p->psa_nwid[1]);
888 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
889 printk(KERN_DEBUG "psa_encryption_select: %d, ",
890 p->psa_encryption_select);
891 printk
892 ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
893 p->psa_encryption_key[0], p->psa_encryption_key[1],
894 p->psa_encryption_key[2], p->psa_encryption_key[3],
895 p->psa_encryption_key[4], p->psa_encryption_key[5],
896 p->psa_encryption_key[6], p->psa_encryption_key[7]);
897 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
898 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
899 p->psa_call_code[0]);
900 printk
901 ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
902 p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
903 p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
904 p->psa_call_code[6], p->psa_call_code[7]);
905 #ifdef DEBUG_SHOW_UNUSED
906 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
907 p->psa_reserved[0],
908 p->psa_reserved[1]);
909 #endif /* DEBUG_SHOW_UNUSED */
910 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
911 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
912 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
913 } /* wv_psa_show */
914 #endif /* DEBUG_PSA_SHOW */
916 #ifdef DEBUG_MMC_SHOW
917 /*------------------------------------------------------------------*/
919 * Print the formatted status of the Modem Management Controller.
920 * This function needs to be completed.
922 static void wv_mmc_show(struct net_device * dev)
924 unsigned long ioaddr = dev->base_addr;
925 net_local *lp = netdev_priv(dev);
926 mmr_t m;
928 /* Basic check */
929 if (hasr_read(ioaddr) & HASR_NO_CLK) {
930 printk(KERN_WARNING
931 "%s: wv_mmc_show: modem not connected\n",
932 dev->name);
933 return;
936 /* Read the mmc */
937 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
938 mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
939 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
941 /* Don't forget to update statistics */
942 lp->wstats.discard.nwid +=
943 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
945 printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
946 #ifdef DEBUG_SHOW_UNUSED
947 printk(KERN_DEBUG
948 "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
949 m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
950 m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
951 m.mmr_unused0[6], m.mmr_unused0[7]);
952 #endif /* DEBUG_SHOW_UNUSED */
953 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
954 m.mmr_des_avail, m.mmr_des_status);
955 #ifdef DEBUG_SHOW_UNUSED
956 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
957 m.mmr_unused1[0],
958 m.mmr_unused1[1],
959 m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
960 #endif /* DEBUG_SHOW_UNUSED */
961 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
962 m.mmr_dce_status,
964 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
965 "energy detected," : "",
967 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
968 "loop test indicated," : "",
970 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
971 "transmitter on," : "",
973 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
974 "jabber timer expired," : "");
975 printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
976 #ifdef DEBUG_SHOW_UNUSED
977 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
978 m.mmr_unused2[0], m.mmr_unused2[1]);
979 #endif /* DEBUG_SHOW_UNUSED */
980 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
981 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
982 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
983 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
984 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
986 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
987 "below");
988 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
989 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
991 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
992 "no new msg");
993 printk("silence_lvl: %d [%s], ",
994 m.mmr_silence_lvl & MMR_SILENCE_LVL,
996 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
997 "no new update");
998 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1000 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1001 "Antenna 0");
1002 #ifdef DEBUG_SHOW_UNUSED
1003 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1004 #endif /* DEBUG_SHOW_UNUSED */
1005 } /* wv_mmc_show */
1006 #endif /* DEBUG_MMC_SHOW */
1008 #ifdef DEBUG_I82586_SHOW
1009 /*------------------------------------------------------------------*/
1011 * Print the last block of the i82586 memory.
1013 static void wv_scb_show(unsigned long ioaddr)
1015 scb_t scb;
1017 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1018 sizeof(scb));
1020 printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1022 printk(KERN_DEBUG "status: ");
1023 printk("stat 0x%x[%s%s%s%s] ",
1024 (scb.
1025 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1026 SCB_ST_RNR)) >> 12,
1027 (scb.
1028 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1029 "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1030 (scb.
1031 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1032 (scb.
1033 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1034 "");
1035 printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1036 ((scb.scb_status & SCB_ST_CUS) ==
1037 SCB_ST_CUS_IDLE) ? "idle" : "",
1038 ((scb.scb_status & SCB_ST_CUS) ==
1039 SCB_ST_CUS_SUSP) ? "suspended" : "",
1040 ((scb.scb_status & SCB_ST_CUS) ==
1041 SCB_ST_CUS_ACTV) ? "active" : "");
1042 printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1043 ((scb.scb_status & SCB_ST_RUS) ==
1044 SCB_ST_RUS_IDLE) ? "idle" : "",
1045 ((scb.scb_status & SCB_ST_RUS) ==
1046 SCB_ST_RUS_SUSP) ? "suspended" : "",
1047 ((scb.scb_status & SCB_ST_RUS) ==
1048 SCB_ST_RUS_NRES) ? "no resources" : "",
1049 ((scb.scb_status & SCB_ST_RUS) ==
1050 SCB_ST_RUS_RDY) ? "ready" : "");
1052 printk(KERN_DEBUG "command: ");
1053 printk("ack 0x%x[%s%s%s%s] ",
1054 (scb.
1055 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1056 SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1057 (scb.
1058 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1059 (scb.
1060 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1061 (scb.
1062 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1063 (scb.
1064 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1065 printk("cuc 0x%x[%s%s%s%s%s] ",
1066 (scb.scb_command & SCB_CMD_CUC) >> 8,
1067 ((scb.scb_command & SCB_CMD_CUC) ==
1068 SCB_CMD_CUC_NOP) ? "nop" : "",
1069 ((scb.scb_command & SCB_CMD_CUC) ==
1070 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1071 ((scb.scb_command & SCB_CMD_CUC) ==
1072 SCB_CMD_CUC_RES) ? "resume execution" : "",
1073 ((scb.scb_command & SCB_CMD_CUC) ==
1074 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1075 ((scb.scb_command & SCB_CMD_CUC) ==
1076 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1077 printk("ruc 0x%x[%s%s%s%s%s]\n",
1078 (scb.scb_command & SCB_CMD_RUC) >> 4,
1079 ((scb.scb_command & SCB_CMD_RUC) ==
1080 SCB_CMD_RUC_NOP) ? "nop" : "",
1081 ((scb.scb_command & SCB_CMD_RUC) ==
1082 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1083 ((scb.scb_command & SCB_CMD_RUC) ==
1084 SCB_CMD_RUC_RES) ? "resume reception" : "",
1085 ((scb.scb_command & SCB_CMD_RUC) ==
1086 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1087 ((scb.scb_command & SCB_CMD_RUC) ==
1088 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1090 printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1091 printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1093 printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1094 printk("alnerrs %d ", scb.scb_alnerrs);
1095 printk("rscerrs %d ", scb.scb_rscerrs);
1096 printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1099 /*------------------------------------------------------------------*/
1101 * Print the formatted status of the i82586's receive unit.
1103 static void wv_ru_show(struct net_device * dev)
1105 printk(KERN_DEBUG
1106 "##### WaveLAN i82586 receiver unit status: #####\n");
1107 printk(KERN_DEBUG "ru:");
1109 * Not implemented yet
1111 printk("\n");
1112 } /* wv_ru_show */
1114 /*------------------------------------------------------------------*/
1116 * Display info about one control block of the i82586 memory.
1118 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1120 unsigned long ioaddr;
1121 ac_tx_t actx;
1123 ioaddr = dev->base_addr;
1125 printk("%d: 0x%x:", i, p);
1127 obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1128 printk(" status=0x%x,", actx.tx_h.ac_status);
1129 printk(" command=0x%x,", actx.tx_h.ac_command);
1133 tbd_t tbd;
1135 obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1136 printk(" tbd_status=0x%x,", tbd.tbd_status);
1140 printk("|");
1143 /*------------------------------------------------------------------*/
1145 * Print status of the command unit of the i82586.
1147 static void wv_cu_show(struct net_device * dev)
1149 net_local *lp = netdev_priv(dev);
1150 unsigned int i;
1151 u16 p;
1153 printk(KERN_DEBUG
1154 "##### WaveLAN i82586 command unit status: #####\n");
1156 printk(KERN_DEBUG);
1157 for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1158 wv_cu_show_one(dev, lp, i, p);
1160 p += TXBLOCKZ;
1161 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1162 p -= NTXBLOCKS * TXBLOCKZ;
1164 printk("\n");
1166 #endif /* DEBUG_I82586_SHOW */
1168 #ifdef DEBUG_DEVICE_SHOW
1169 /*------------------------------------------------------------------*/
1171 * Print the formatted status of the WaveLAN PCMCIA device driver.
1173 static void wv_dev_show(struct net_device * dev)
1175 printk(KERN_DEBUG "dev:");
1176 printk(" state=%lX,", dev->state);
1177 printk(" trans_start=%ld,", dev->trans_start);
1178 printk(" flags=0x%x,", dev->flags);
1179 printk("\n");
1180 } /* wv_dev_show */
1182 /*------------------------------------------------------------------*/
1184 * Print the formatted status of the WaveLAN PCMCIA device driver's
1185 * private information.
1187 static void wv_local_show(struct net_device * dev)
1189 net_local *lp;
1191 lp = netdev_priv(dev);
1193 printk(KERN_DEBUG "local:");
1194 printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1195 printk(" hacr=0x%x,", lp->hacr);
1196 printk(" rx_head=0x%x,", lp->rx_head);
1197 printk(" rx_last=0x%x,", lp->rx_last);
1198 printk(" tx_first_free=0x%x,", lp->tx_first_free);
1199 printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1200 printk("\n");
1201 } /* wv_local_show */
1202 #endif /* DEBUG_DEVICE_SHOW */
1204 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1205 /*------------------------------------------------------------------*/
1207 * Dump packet header (and content if necessary) on the screen
1209 static inline void wv_packet_info(u8 * p, /* Packet to dump */
1210 int length, /* Length of the packet */
1211 char *msg1, /* Name of the device */
1212 char *msg2)
1213 { /* Name of the function */
1214 int i;
1215 int maxi;
1217 printk(KERN_DEBUG
1218 "%s: %s(): dest %pM, length %d\n",
1219 msg1, msg2, p, length);
1220 printk(KERN_DEBUG
1221 "%s: %s(): src %pM, type 0x%02X%02X\n",
1222 msg1, msg2, &p[6], p[12], p[13]);
1224 #ifdef DEBUG_PACKET_DUMP
1226 printk(KERN_DEBUG "data=\"");
1228 if ((maxi = length) > DEBUG_PACKET_DUMP)
1229 maxi = DEBUG_PACKET_DUMP;
1230 for (i = 14; i < maxi; i++)
1231 if (p[i] >= ' ' && p[i] <= '~')
1232 printk(" %c", p[i]);
1233 else
1234 printk("%02X", p[i]);
1235 if (maxi < length)
1236 printk("..");
1237 printk("\"\n");
1238 printk(KERN_DEBUG "\n");
1239 #endif /* DEBUG_PACKET_DUMP */
1241 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1243 /*------------------------------------------------------------------*/
1245 * This is the information which is displayed by the driver at startup.
1246 * There are lots of flags for configuring it to your liking.
1248 static void wv_init_info(struct net_device * dev)
1250 short ioaddr = dev->base_addr;
1251 net_local *lp = netdev_priv(dev);
1252 psa_t psa;
1254 /* Read the parameter storage area */
1255 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1257 #ifdef DEBUG_PSA_SHOW
1258 wv_psa_show(&psa);
1259 #endif
1260 #ifdef DEBUG_MMC_SHOW
1261 wv_mmc_show(dev);
1262 #endif
1263 #ifdef DEBUG_I82586_SHOW
1264 wv_cu_show(dev);
1265 #endif
1267 #ifdef DEBUG_BASIC_SHOW
1268 /* Now, let's go for the basic stuff. */
1269 printk(KERN_NOTICE "%s: WaveLAN at %#x, %pM, IRQ %d",
1270 dev->name, ioaddr, dev->dev_addr, dev->irq);
1272 /* Print current network ID. */
1273 if (psa.psa_nwid_select)
1274 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1275 psa.psa_nwid[1]);
1276 else
1277 printk(", nwid off");
1279 /* If 2.00 card */
1280 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1281 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1282 unsigned short freq;
1284 /* Ask the EEPROM to read the frequency from the first area. */
1285 fee_read(ioaddr, 0x00, &freq, 1);
1287 /* Print frequency */
1288 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1290 /* Hack! */
1291 if (freq & 0x20)
1292 printk(".5");
1293 } else {
1294 printk(", PC");
1295 switch (psa.psa_comp_number) {
1296 case PSA_COMP_PC_AT_915:
1297 case PSA_COMP_PC_AT_2400:
1298 printk("-AT");
1299 break;
1300 case PSA_COMP_PC_MC_915:
1301 case PSA_COMP_PC_MC_2400:
1302 printk("-MC");
1303 break;
1304 case PSA_COMP_PCMCIA_915:
1305 printk("MCIA");
1306 break;
1307 default:
1308 printk("?");
1310 printk(", ");
1311 switch (psa.psa_subband) {
1312 case PSA_SUBBAND_915:
1313 printk("915");
1314 break;
1315 case PSA_SUBBAND_2425:
1316 printk("2425");
1317 break;
1318 case PSA_SUBBAND_2460:
1319 printk("2460");
1320 break;
1321 case PSA_SUBBAND_2484:
1322 printk("2484");
1323 break;
1324 case PSA_SUBBAND_2430_5:
1325 printk("2430.5");
1326 break;
1327 default:
1328 printk("?");
1332 printk(" MHz\n");
1333 #endif /* DEBUG_BASIC_SHOW */
1335 #ifdef DEBUG_VERSION_SHOW
1336 /* Print version information */
1337 printk(KERN_NOTICE "%s", version);
1338 #endif
1339 } /* wv_init_info */
1341 /********************* IOCTL, STATS & RECONFIG *********************/
1343 * We found here routines that are called by Linux on different
1344 * occasions after the configuration and not for transmitting data
1345 * These may be called when the user use ifconfig, /proc/net/dev
1346 * or wireless extensions
1350 /*------------------------------------------------------------------*/
1352 * Set or clear the multicast filter for this adaptor.
1353 * num_addrs == -1 Promiscuous mode, receive all packets
1354 * num_addrs == 0 Normal mode, clear multicast list
1355 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1356 * and do best-effort filtering.
1358 static void wavelan_set_multicast_list(struct net_device * dev)
1360 net_local *lp = netdev_priv(dev);
1362 #ifdef DEBUG_IOCTL_TRACE
1363 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1364 dev->name);
1365 #endif
1367 #ifdef DEBUG_IOCTL_INFO
1368 printk(KERN_DEBUG
1369 "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1370 dev->name, dev->flags, dev->mc_count);
1371 #endif
1373 /* Are we asking for promiscuous mode,
1374 * or all multicast addresses (we don't have that!)
1375 * or too many multicast addresses for the hardware filter? */
1376 if ((dev->flags & IFF_PROMISC) ||
1377 (dev->flags & IFF_ALLMULTI) ||
1378 (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1380 * Enable promiscuous mode: receive all packets.
1382 if (!lp->promiscuous) {
1383 lp->promiscuous = 1;
1384 lp->mc_count = 0;
1386 wv_82586_reconfig(dev);
1388 } else
1389 /* Are there multicast addresses to send? */
1390 if (dev->mc_list != (struct dev_mc_list *) NULL) {
1392 * Disable promiscuous mode, but receive all packets
1393 * in multicast list
1395 #ifdef MULTICAST_AVOID
1396 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1397 #endif
1399 lp->promiscuous = 0;
1400 lp->mc_count = dev->mc_count;
1402 wv_82586_reconfig(dev);
1404 } else {
1406 * Switch to normal mode: disable promiscuous mode and
1407 * clear the multicast list.
1409 if (lp->promiscuous || lp->mc_count == 0) {
1410 lp->promiscuous = 0;
1411 lp->mc_count = 0;
1413 wv_82586_reconfig(dev);
1416 #ifdef DEBUG_IOCTL_TRACE
1417 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1418 dev->name);
1419 #endif
1422 /*------------------------------------------------------------------*/
1424 * This function doesn't exist.
1425 * (Note : it was a nice way to test the reconfigure stuff...)
1427 #ifdef SET_MAC_ADDRESS
1428 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1430 struct sockaddr *mac = addr;
1432 /* Copy the address. */
1433 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1435 /* Reconfigure the beast. */
1436 wv_82586_reconfig(dev);
1438 return 0;
1440 #endif /* SET_MAC_ADDRESS */
1443 /*------------------------------------------------------------------*/
1445 * Frequency setting (for hardware capable of it)
1446 * It's a bit complicated and you don't really want to look into it.
1447 * (called in wavelan_ioctl)
1449 static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
1450 iw_freq * frequency)
1452 const int BAND_NUM = 10; /* Number of bands */
1453 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1454 #ifdef DEBUG_IOCTL_INFO
1455 int i;
1456 #endif
1458 /* Setting by frequency */
1459 /* Theoretically, you may set any frequency between
1460 * the two limits with a 0.5 MHz precision. In practice,
1461 * I don't want you to have trouble with local regulations.
1463 if ((frequency->e == 1) &&
1464 (frequency->m >= (int) 2.412e8)
1465 && (frequency->m <= (int) 2.487e8)) {
1466 freq = ((frequency->m / 10000) - 24000L) / 5;
1469 /* Setting by channel (same as wfreqsel) */
1470 /* Warning: each channel is 22 MHz wide, so some of the channels
1471 * will interfere. */
1472 if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1473 /* Get frequency offset. */
1474 freq = channel_bands[frequency->m] >> 1;
1477 /* Verify that the frequency is allowed. */
1478 if (freq != 0L) {
1479 u16 table[10]; /* Authorized frequency table */
1481 /* Read the frequency table. */
1482 fee_read(ioaddr, 0x71, table, 10);
1484 #ifdef DEBUG_IOCTL_INFO
1485 printk(KERN_DEBUG "Frequency table: ");
1486 for (i = 0; i < 10; i++) {
1487 printk(" %04X", table[i]);
1489 printk("\n");
1490 #endif
1492 /* Look in the table to see whether the frequency is allowed. */
1493 if (!(table[9 - ((freq - 24) / 16)] &
1494 (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
1495 } else
1496 return -EINVAL;
1498 /* if we get a usable frequency */
1499 if (freq != 0L) {
1500 unsigned short area[16];
1501 unsigned short dac[2];
1502 unsigned short area_verify[16];
1503 unsigned short dac_verify[2];
1504 /* Corresponding gain (in the power adjust value table)
1505 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1506 * and WCIN062D.DOC, page 6.2.9. */
1507 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1508 int power_band = 0; /* Selected band */
1509 unsigned short power_adjust; /* Correct value */
1511 /* Search for the gain. */
1512 power_band = 0;
1513 while ((freq > power_limit[power_band]) &&
1514 (power_limit[++power_band] != 0));
1516 /* Read the first area. */
1517 fee_read(ioaddr, 0x00, area, 16);
1519 /* Read the DAC. */
1520 fee_read(ioaddr, 0x60, dac, 2);
1522 /* Read the new power adjust value. */
1523 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1525 if (power_band & 0x1)
1526 power_adjust >>= 8;
1527 else
1528 power_adjust &= 0xFF;
1530 #ifdef DEBUG_IOCTL_INFO
1531 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1532 for (i = 0; i < 16; i++) {
1533 printk(" %04X", area[i]);
1535 printk("\n");
1537 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1538 dac[0], dac[1]);
1539 #endif
1541 /* Frequency offset (for info only) */
1542 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1544 /* Receiver Principle main divider coefficient */
1545 area[3] = (freq >> 1) + 2400L - 352L;
1546 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1548 /* Transmitter Main divider coefficient */
1549 area[13] = (freq >> 1) + 2400L;
1550 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1552 /* Other parts of the area are flags, bit streams or unused. */
1554 /* Set the value in the DAC. */
1555 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1556 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1558 /* Write the first area. */
1559 fee_write(ioaddr, 0x00, area, 16);
1561 /* Write the DAC. */
1562 fee_write(ioaddr, 0x60, dac, 2);
1564 /* We now should verify here that the writing of the EEPROM went OK. */
1566 /* Reread the first area. */
1567 fee_read(ioaddr, 0x00, area_verify, 16);
1569 /* Reread the DAC. */
1570 fee_read(ioaddr, 0x60, dac_verify, 2);
1572 /* Compare. */
1573 if (memcmp(area, area_verify, 16 * 2) ||
1574 memcmp(dac, dac_verify, 2 * 2)) {
1575 #ifdef DEBUG_IOCTL_ERROR
1576 printk(KERN_INFO
1577 "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1578 #endif
1579 return -EOPNOTSUPP;
1582 /* We must download the frequency parameters to the
1583 * synthesizers (from the EEPROM - area 1)
1584 * Note: as the EEPROM is automatically decremented, we set the end
1585 * if the area... */
1586 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1587 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1588 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1590 /* Wait until the download is finished. */
1591 fee_wait(ioaddr, 100, 100);
1593 /* We must now download the power adjust value (gain) to
1594 * the synthesizers (from the EEPROM - area 7 - DAC). */
1595 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1596 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1597 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1599 /* Wait for the download to finish. */
1600 fee_wait(ioaddr, 100, 100);
1602 #ifdef DEBUG_IOCTL_INFO
1603 /* Verification of what we have done */
1605 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1606 for (i = 0; i < 16; i++) {
1607 printk(" %04X", area_verify[i]);
1609 printk("\n");
1611 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1612 dac_verify[0], dac_verify[1]);
1613 #endif
1615 return 0;
1616 } else
1617 return -EINVAL; /* Bah, never get there... */
1620 /*------------------------------------------------------------------*/
1622 * Give the list of available frequencies.
1624 static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
1625 iw_freq * list, /* List of frequencies to fill */
1626 int max)
1627 { /* Maximum number of frequencies */
1628 u16 table[10]; /* Authorized frequency table */
1629 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1630 int i; /* index in the table */
1631 int c = 0; /* Channel number */
1633 /* Read the frequency table. */
1634 fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1636 /* Check all frequencies. */
1637 i = 0;
1638 for (freq = 0; freq < 150; freq++)
1639 /* Look in the table if the frequency is allowed */
1640 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1641 /* Compute approximate channel number */
1642 while ((c < ARRAY_SIZE(channel_bands)) &&
1643 (((channel_bands[c] >> 1) - 24) < freq))
1644 c++;
1645 list[i].i = c; /* Set the list index */
1647 /* put in the list */
1648 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1649 list[i++].e = 1;
1651 /* Check number. */
1652 if (i >= max)
1653 return (i);
1656 return (i);
1659 #ifdef IW_WIRELESS_SPY
1660 /*------------------------------------------------------------------*/
1662 * Gather wireless spy statistics: for each packet, compare the source
1663 * address with our list, and if they match, get the statistics.
1664 * Sorry, but this function really needs the wireless extensions.
1666 static inline void wl_spy_gather(struct net_device * dev,
1667 u8 * mac, /* MAC address */
1668 u8 * stats) /* Statistics to gather */
1670 struct iw_quality wstats;
1672 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1673 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1674 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1675 wstats.updated = 0x7;
1677 /* Update spy records */
1678 wireless_spy_update(dev, mac, &wstats);
1680 #endif /* IW_WIRELESS_SPY */
1682 #ifdef HISTOGRAM
1683 /*------------------------------------------------------------------*/
1685 * This function calculates a histogram of the signal level.
1686 * As the noise is quite constant, it's like doing it on the SNR.
1687 * We have defined a set of interval (lp->his_range), and each time
1688 * the level goes in that interval, we increment the count (lp->his_sum).
1689 * With this histogram you may detect if one WaveLAN is really weak,
1690 * or you may also calculate the mean and standard deviation of the level.
1692 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1693 { /* Statistics to gather */
1694 net_local *lp = netdev_priv(dev);
1695 u8 level = stats[0] & MMR_SIGNAL_LVL;
1696 int i;
1698 /* Find the correct interval. */
1699 i = 0;
1700 while ((i < (lp->his_number - 1))
1701 && (level >= lp->his_range[i++]));
1703 /* Increment interval counter. */
1704 (lp->his_sum[i])++;
1706 #endif /* HISTOGRAM */
1708 /*------------------------------------------------------------------*/
1710 * Wireless Handler : get protocol name
1712 static int wavelan_get_name(struct net_device *dev,
1713 struct iw_request_info *info,
1714 union iwreq_data *wrqu,
1715 char *extra)
1717 strcpy(wrqu->name, "WaveLAN");
1718 return 0;
1721 /*------------------------------------------------------------------*/
1723 * Wireless Handler : set NWID
1725 static int wavelan_set_nwid(struct net_device *dev,
1726 struct iw_request_info *info,
1727 union iwreq_data *wrqu,
1728 char *extra)
1730 unsigned long ioaddr = dev->base_addr;
1731 net_local *lp = netdev_priv(dev); /* lp is not unused */
1732 psa_t psa;
1733 mm_t m;
1734 unsigned long flags;
1735 int ret = 0;
1737 /* Disable interrupts and save flags. */
1738 spin_lock_irqsave(&lp->spinlock, flags);
1740 /* Set NWID in WaveLAN. */
1741 if (!wrqu->nwid.disabled) {
1742 /* Set NWID in psa */
1743 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1744 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1745 psa.psa_nwid_select = 0x01;
1746 psa_write(ioaddr, lp->hacr,
1747 (char *) psa.psa_nwid - (char *) &psa,
1748 (unsigned char *) psa.psa_nwid, 3);
1750 /* Set NWID in mmc. */
1751 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1752 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1753 mmc_write(ioaddr,
1754 (char *) &m.w.mmw_netw_id_l -
1755 (char *) &m,
1756 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1757 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1758 } else {
1759 /* Disable NWID in the psa. */
1760 psa.psa_nwid_select = 0x00;
1761 psa_write(ioaddr, lp->hacr,
1762 (char *) &psa.psa_nwid_select -
1763 (char *) &psa,
1764 (unsigned char *) &psa.psa_nwid_select,
1767 /* Disable NWID in the mmc (no filtering). */
1768 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1769 MMW_LOOPT_SEL_DIS_NWID);
1771 /* update the Wavelan checksum */
1772 update_psa_checksum(dev, ioaddr, lp->hacr);
1774 /* Enable interrupts and restore flags. */
1775 spin_unlock_irqrestore(&lp->spinlock, flags);
1777 return ret;
1780 /*------------------------------------------------------------------*/
1782 * Wireless Handler : get NWID
1784 static int wavelan_get_nwid(struct net_device *dev,
1785 struct iw_request_info *info,
1786 union iwreq_data *wrqu,
1787 char *extra)
1789 unsigned long ioaddr = dev->base_addr;
1790 net_local *lp = netdev_priv(dev); /* lp is not unused */
1791 psa_t psa;
1792 unsigned long flags;
1793 int ret = 0;
1795 /* Disable interrupts and save flags. */
1796 spin_lock_irqsave(&lp->spinlock, flags);
1798 /* Read the NWID. */
1799 psa_read(ioaddr, lp->hacr,
1800 (char *) psa.psa_nwid - (char *) &psa,
1801 (unsigned char *) psa.psa_nwid, 3);
1802 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1803 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1804 wrqu->nwid.fixed = 1; /* Superfluous */
1806 /* Enable interrupts and restore flags. */
1807 spin_unlock_irqrestore(&lp->spinlock, flags);
1809 return ret;
1812 /*------------------------------------------------------------------*/
1814 * Wireless Handler : set frequency
1816 static int wavelan_set_freq(struct net_device *dev,
1817 struct iw_request_info *info,
1818 union iwreq_data *wrqu,
1819 char *extra)
1821 unsigned long ioaddr = dev->base_addr;
1822 net_local *lp = netdev_priv(dev); /* lp is not unused */
1823 unsigned long flags;
1824 int ret;
1826 /* Disable interrupts and save flags. */
1827 spin_lock_irqsave(&lp->spinlock, flags);
1829 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1830 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1831 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1832 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1833 else
1834 ret = -EOPNOTSUPP;
1836 /* Enable interrupts and restore flags. */
1837 spin_unlock_irqrestore(&lp->spinlock, flags);
1839 return ret;
1842 /*------------------------------------------------------------------*/
1844 * Wireless Handler : get frequency
1846 static int wavelan_get_freq(struct net_device *dev,
1847 struct iw_request_info *info,
1848 union iwreq_data *wrqu,
1849 char *extra)
1851 unsigned long ioaddr = dev->base_addr;
1852 net_local *lp = netdev_priv(dev); /* lp is not unused */
1853 psa_t psa;
1854 unsigned long flags;
1855 int ret = 0;
1857 /* Disable interrupts and save flags. */
1858 spin_lock_irqsave(&lp->spinlock, flags);
1860 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1861 * Does it work for everybody, especially old cards? */
1862 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1863 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1864 unsigned short freq;
1866 /* Ask the EEPROM to read the frequency from the first area. */
1867 fee_read(ioaddr, 0x00, &freq, 1);
1868 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1869 wrqu->freq.e = 1;
1870 } else {
1871 psa_read(ioaddr, lp->hacr,
1872 (char *) &psa.psa_subband - (char *) &psa,
1873 (unsigned char *) &psa.psa_subband, 1);
1875 if (psa.psa_subband <= 4) {
1876 wrqu->freq.m = fixed_bands[psa.psa_subband];
1877 wrqu->freq.e = (psa.psa_subband != 0);
1878 } else
1879 ret = -EOPNOTSUPP;
1882 /* Enable interrupts and restore flags. */
1883 spin_unlock_irqrestore(&lp->spinlock, flags);
1885 return ret;
1888 /*------------------------------------------------------------------*/
1890 * Wireless Handler : set level threshold
1892 static int wavelan_set_sens(struct net_device *dev,
1893 struct iw_request_info *info,
1894 union iwreq_data *wrqu,
1895 char *extra)
1897 unsigned long ioaddr = dev->base_addr;
1898 net_local *lp = netdev_priv(dev); /* lp is not unused */
1899 psa_t psa;
1900 unsigned long flags;
1901 int ret = 0;
1903 /* Disable interrupts and save flags. */
1904 spin_lock_irqsave(&lp->spinlock, flags);
1906 /* Set the level threshold. */
1907 /* We should complain loudly if wrqu->sens.fixed = 0, because we
1908 * can't set auto mode... */
1909 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1910 psa_write(ioaddr, lp->hacr,
1911 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1912 (unsigned char *) &psa.psa_thr_pre_set, 1);
1913 /* update the Wavelan checksum */
1914 update_psa_checksum(dev, ioaddr, lp->hacr);
1915 mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1916 psa.psa_thr_pre_set);
1918 /* Enable interrupts and restore flags. */
1919 spin_unlock_irqrestore(&lp->spinlock, flags);
1921 return ret;
1924 /*------------------------------------------------------------------*/
1926 * Wireless Handler : get level threshold
1928 static int wavelan_get_sens(struct net_device *dev,
1929 struct iw_request_info *info,
1930 union iwreq_data *wrqu,
1931 char *extra)
1933 unsigned long ioaddr = dev->base_addr;
1934 net_local *lp = netdev_priv(dev); /* lp is not unused */
1935 psa_t psa;
1936 unsigned long flags;
1937 int ret = 0;
1939 /* Disable interrupts and save flags. */
1940 spin_lock_irqsave(&lp->spinlock, flags);
1942 /* Read the level threshold. */
1943 psa_read(ioaddr, lp->hacr,
1944 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1945 (unsigned char *) &psa.psa_thr_pre_set, 1);
1946 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1947 wrqu->sens.fixed = 1;
1949 /* Enable interrupts and restore flags. */
1950 spin_unlock_irqrestore(&lp->spinlock, flags);
1952 return ret;
1955 /*------------------------------------------------------------------*/
1957 * Wireless Handler : set encryption key
1959 static int wavelan_set_encode(struct net_device *dev,
1960 struct iw_request_info *info,
1961 union iwreq_data *wrqu,
1962 char *extra)
1964 unsigned long ioaddr = dev->base_addr;
1965 net_local *lp = netdev_priv(dev); /* lp is not unused */
1966 unsigned long flags;
1967 psa_t psa;
1968 int ret = 0;
1970 /* Disable interrupts and save flags. */
1971 spin_lock_irqsave(&lp->spinlock, flags);
1973 /* Check if capable of encryption */
1974 if (!mmc_encr(ioaddr)) {
1975 ret = -EOPNOTSUPP;
1978 /* Check the size of the key */
1979 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
1980 ret = -EINVAL;
1983 if(!ret) {
1984 /* Basic checking... */
1985 if (wrqu->encoding.length == 8) {
1986 /* Copy the key in the driver */
1987 memcpy(psa.psa_encryption_key, extra,
1988 wrqu->encoding.length);
1989 psa.psa_encryption_select = 1;
1991 psa_write(ioaddr, lp->hacr,
1992 (char *) &psa.psa_encryption_select -
1993 (char *) &psa,
1994 (unsigned char *) &psa.
1995 psa_encryption_select, 8 + 1);
1997 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
1998 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
1999 mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2000 (unsigned char *) &psa.
2001 psa_encryption_key, 8);
2004 /* disable encryption */
2005 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2006 psa.psa_encryption_select = 0;
2007 psa_write(ioaddr, lp->hacr,
2008 (char *) &psa.psa_encryption_select -
2009 (char *) &psa,
2010 (unsigned char *) &psa.
2011 psa_encryption_select, 1);
2013 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2015 /* update the Wavelan checksum */
2016 update_psa_checksum(dev, ioaddr, lp->hacr);
2019 /* Enable interrupts and restore flags. */
2020 spin_unlock_irqrestore(&lp->spinlock, flags);
2022 return ret;
2025 /*------------------------------------------------------------------*/
2027 * Wireless Handler : get encryption key
2029 static int wavelan_get_encode(struct net_device *dev,
2030 struct iw_request_info *info,
2031 union iwreq_data *wrqu,
2032 char *extra)
2034 unsigned long ioaddr = dev->base_addr;
2035 net_local *lp = netdev_priv(dev); /* lp is not unused */
2036 psa_t psa;
2037 unsigned long flags;
2038 int ret = 0;
2040 /* Disable interrupts and save flags. */
2041 spin_lock_irqsave(&lp->spinlock, flags);
2043 /* Check if encryption is available */
2044 if (!mmc_encr(ioaddr)) {
2045 ret = -EOPNOTSUPP;
2046 } else {
2047 /* Read the encryption key */
2048 psa_read(ioaddr, lp->hacr,
2049 (char *) &psa.psa_encryption_select -
2050 (char *) &psa,
2051 (unsigned char *) &psa.
2052 psa_encryption_select, 1 + 8);
2054 /* encryption is enabled ? */
2055 if (psa.psa_encryption_select)
2056 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2057 else
2058 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2059 wrqu->encoding.flags |= mmc_encr(ioaddr);
2061 /* Copy the key to the user buffer */
2062 wrqu->encoding.length = 8;
2063 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2066 /* Enable interrupts and restore flags. */
2067 spin_unlock_irqrestore(&lp->spinlock, flags);
2069 return ret;
2072 /*------------------------------------------------------------------*/
2074 * Wireless Handler : get range info
2076 static int wavelan_get_range(struct net_device *dev,
2077 struct iw_request_info *info,
2078 union iwreq_data *wrqu,
2079 char *extra)
2081 unsigned long ioaddr = dev->base_addr;
2082 net_local *lp = netdev_priv(dev); /* lp is not unused */
2083 struct iw_range *range = (struct iw_range *) extra;
2084 unsigned long flags;
2085 int ret = 0;
2087 /* Set the length (very important for backward compatibility) */
2088 wrqu->data.length = sizeof(struct iw_range);
2090 /* Set all the info we don't care or don't know about to zero */
2091 memset(range, 0, sizeof(struct iw_range));
2093 /* Set the Wireless Extension versions */
2094 range->we_version_compiled = WIRELESS_EXT;
2095 range->we_version_source = 9;
2097 /* Set information in the range struct. */
2098 range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
2099 range->min_nwid = 0x0000;
2100 range->max_nwid = 0xFFFF;
2102 range->sensitivity = 0x3F;
2103 range->max_qual.qual = MMR_SGNL_QUAL;
2104 range->max_qual.level = MMR_SIGNAL_LVL;
2105 range->max_qual.noise = MMR_SILENCE_LVL;
2106 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2107 /* Need to get better values for those two */
2108 range->avg_qual.level = 30;
2109 range->avg_qual.noise = 8;
2111 range->num_bitrates = 1;
2112 range->bitrate[0] = 2000000; /* 2 Mb/s */
2114 /* Event capability (kernel + driver) */
2115 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2116 IW_EVENT_CAPA_MASK(0x8B04));
2117 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2119 /* Disable interrupts and save flags. */
2120 spin_lock_irqsave(&lp->spinlock, flags);
2122 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2123 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2124 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2125 range->num_channels = 10;
2126 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2127 IW_MAX_FREQUENCIES);
2128 } else
2129 range->num_channels = range->num_frequency = 0;
2131 /* Encryption supported ? */
2132 if (mmc_encr(ioaddr)) {
2133 range->encoding_size[0] = 8; /* DES = 64 bits key */
2134 range->num_encoding_sizes = 1;
2135 range->max_encoding_tokens = 1; /* Only one key possible */
2136 } else {
2137 range->num_encoding_sizes = 0;
2138 range->max_encoding_tokens = 0;
2141 /* Enable interrupts and restore flags. */
2142 spin_unlock_irqrestore(&lp->spinlock, flags);
2144 return ret;
2147 /*------------------------------------------------------------------*/
2149 * Wireless Private Handler : set quality threshold
2151 static int wavelan_set_qthr(struct net_device *dev,
2152 struct iw_request_info *info,
2153 union iwreq_data *wrqu,
2154 char *extra)
2156 unsigned long ioaddr = dev->base_addr;
2157 net_local *lp = netdev_priv(dev); /* lp is not unused */
2158 psa_t psa;
2159 unsigned long flags;
2161 /* Disable interrupts and save flags. */
2162 spin_lock_irqsave(&lp->spinlock, flags);
2164 psa.psa_quality_thr = *(extra) & 0x0F;
2165 psa_write(ioaddr, lp->hacr,
2166 (char *) &psa.psa_quality_thr - (char *) &psa,
2167 (unsigned char *) &psa.psa_quality_thr, 1);
2168 /* update the Wavelan checksum */
2169 update_psa_checksum(dev, ioaddr, lp->hacr);
2170 mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2171 psa.psa_quality_thr);
2173 /* Enable interrupts and restore flags. */
2174 spin_unlock_irqrestore(&lp->spinlock, flags);
2176 return 0;
2179 /*------------------------------------------------------------------*/
2181 * Wireless Private Handler : get quality threshold
2183 static int wavelan_get_qthr(struct net_device *dev,
2184 struct iw_request_info *info,
2185 union iwreq_data *wrqu,
2186 char *extra)
2188 unsigned long ioaddr = dev->base_addr;
2189 net_local *lp = netdev_priv(dev); /* lp is not unused */
2190 psa_t psa;
2191 unsigned long flags;
2193 /* Disable interrupts and save flags. */
2194 spin_lock_irqsave(&lp->spinlock, flags);
2196 psa_read(ioaddr, lp->hacr,
2197 (char *) &psa.psa_quality_thr - (char *) &psa,
2198 (unsigned char *) &psa.psa_quality_thr, 1);
2199 *(extra) = psa.psa_quality_thr & 0x0F;
2201 /* Enable interrupts and restore flags. */
2202 spin_unlock_irqrestore(&lp->spinlock, flags);
2204 return 0;
2207 #ifdef HISTOGRAM
2208 /*------------------------------------------------------------------*/
2210 * Wireless Private Handler : set histogram
2212 static int wavelan_set_histo(struct net_device *dev,
2213 struct iw_request_info *info,
2214 union iwreq_data *wrqu,
2215 char *extra)
2217 net_local *lp = netdev_priv(dev); /* lp is not unused */
2219 /* Check the number of intervals. */
2220 if (wrqu->data.length > 16) {
2221 return(-E2BIG);
2224 /* Disable histo while we copy the addresses.
2225 * As we don't disable interrupts, we need to do this */
2226 lp->his_number = 0;
2228 /* Are there ranges to copy? */
2229 if (wrqu->data.length > 0) {
2230 /* Copy interval ranges to the driver */
2231 memcpy(lp->his_range, extra, wrqu->data.length);
2234 int i;
2235 printk(KERN_DEBUG "Histo :");
2236 for(i = 0; i < wrqu->data.length; i++)
2237 printk(" %d", lp->his_range[i]);
2238 printk("\n");
2241 /* Reset result structure. */
2242 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2245 /* Now we can set the number of ranges */
2246 lp->his_number = wrqu->data.length;
2248 return(0);
2251 /*------------------------------------------------------------------*/
2253 * Wireless Private Handler : get histogram
2255 static int wavelan_get_histo(struct net_device *dev,
2256 struct iw_request_info *info,
2257 union iwreq_data *wrqu,
2258 char *extra)
2260 net_local *lp = netdev_priv(dev); /* lp is not unused */
2262 /* Set the number of intervals. */
2263 wrqu->data.length = lp->his_number;
2265 /* Give back the distribution statistics */
2266 if(lp->his_number > 0)
2267 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2269 return(0);
2271 #endif /* HISTOGRAM */
2273 /*------------------------------------------------------------------*/
2275 * Structures to export the Wireless Handlers
2278 static const iw_handler wavelan_handler[] =
2280 NULL, /* SIOCSIWNAME */
2281 wavelan_get_name, /* SIOCGIWNAME */
2282 wavelan_set_nwid, /* SIOCSIWNWID */
2283 wavelan_get_nwid, /* SIOCGIWNWID */
2284 wavelan_set_freq, /* SIOCSIWFREQ */
2285 wavelan_get_freq, /* SIOCGIWFREQ */
2286 NULL, /* SIOCSIWMODE */
2287 NULL, /* SIOCGIWMODE */
2288 wavelan_set_sens, /* SIOCSIWSENS */
2289 wavelan_get_sens, /* SIOCGIWSENS */
2290 NULL, /* SIOCSIWRANGE */
2291 wavelan_get_range, /* SIOCGIWRANGE */
2292 NULL, /* SIOCSIWPRIV */
2293 NULL, /* SIOCGIWPRIV */
2294 NULL, /* SIOCSIWSTATS */
2295 NULL, /* SIOCGIWSTATS */
2296 iw_handler_set_spy, /* SIOCSIWSPY */
2297 iw_handler_get_spy, /* SIOCGIWSPY */
2298 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2299 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2300 NULL, /* SIOCSIWAP */
2301 NULL, /* SIOCGIWAP */
2302 NULL, /* -- hole -- */
2303 NULL, /* SIOCGIWAPLIST */
2304 NULL, /* -- hole -- */
2305 NULL, /* -- hole -- */
2306 NULL, /* SIOCSIWESSID */
2307 NULL, /* SIOCGIWESSID */
2308 NULL, /* SIOCSIWNICKN */
2309 NULL, /* SIOCGIWNICKN */
2310 NULL, /* -- hole -- */
2311 NULL, /* -- hole -- */
2312 NULL, /* SIOCSIWRATE */
2313 NULL, /* SIOCGIWRATE */
2314 NULL, /* SIOCSIWRTS */
2315 NULL, /* SIOCGIWRTS */
2316 NULL, /* SIOCSIWFRAG */
2317 NULL, /* SIOCGIWFRAG */
2318 NULL, /* SIOCSIWTXPOW */
2319 NULL, /* SIOCGIWTXPOW */
2320 NULL, /* SIOCSIWRETRY */
2321 NULL, /* SIOCGIWRETRY */
2322 /* Bummer ! Why those are only at the end ??? */
2323 wavelan_set_encode, /* SIOCSIWENCODE */
2324 wavelan_get_encode, /* SIOCGIWENCODE */
2327 static const iw_handler wavelan_private_handler[] =
2329 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2330 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2331 #ifdef HISTOGRAM
2332 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
2333 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
2334 #endif /* HISTOGRAM */
2337 static const struct iw_priv_args wavelan_private_args[] = {
2338 /*{ cmd, set_args, get_args, name } */
2339 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2340 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2341 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2342 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2345 static const struct iw_handler_def wavelan_handler_def =
2347 .num_standard = ARRAY_SIZE(wavelan_handler),
2348 .num_private = ARRAY_SIZE(wavelan_private_handler),
2349 .num_private_args = ARRAY_SIZE(wavelan_private_args),
2350 .standard = wavelan_handler,
2351 .private = wavelan_private_handler,
2352 .private_args = wavelan_private_args,
2353 .get_wireless_stats = wavelan_get_wireless_stats,
2356 /*------------------------------------------------------------------*/
2358 * Get wireless statistics.
2359 * Called by /proc/net/wireless
2361 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2363 unsigned long ioaddr = dev->base_addr;
2364 net_local *lp = netdev_priv(dev);
2365 mmr_t m;
2366 iw_stats *wstats;
2367 unsigned long flags;
2369 #ifdef DEBUG_IOCTL_TRACE
2370 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2371 dev->name);
2372 #endif
2374 /* Check */
2375 if (lp == (net_local *) NULL)
2376 return (iw_stats *) NULL;
2378 /* Disable interrupts and save flags. */
2379 spin_lock_irqsave(&lp->spinlock, flags);
2381 wstats = &lp->wstats;
2383 /* Get data from the mmc. */
2384 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2386 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2387 mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2389 mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2392 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2394 /* Copy data to wireless stuff. */
2395 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2396 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2397 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2398 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2399 wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
2400 | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
2401 | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2402 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2403 wstats->discard.code = 0L;
2404 wstats->discard.misc = 0L;
2406 /* Enable interrupts and restore flags. */
2407 spin_unlock_irqrestore(&lp->spinlock, flags);
2409 #ifdef DEBUG_IOCTL_TRACE
2410 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2411 dev->name);
2412 #endif
2413 return &lp->wstats;
2416 /************************* PACKET RECEPTION *************************/
2418 * This part deals with receiving the packets.
2419 * The interrupt handler gets an interrupt when a packet has been
2420 * successfully received and calls this part.
2423 /*------------------------------------------------------------------*/
2425 * This routine does the actual copying of data (including the Ethernet
2426 * header structure) from the WaveLAN card to an sk_buff chain that
2427 * will be passed up to the network interface layer. NOTE: we
2428 * currently don't handle trailer protocols (neither does the rest of
2429 * the network interface), so if that is needed, it will (at least in
2430 * part) be added here. The contents of the receive ring buffer are
2431 * copied to a message chain that is then passed to the kernel.
2433 * Note: if any errors occur, the packet is "dropped on the floor".
2434 * (called by wv_packet_rcv())
2436 static void
2437 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2439 net_local *lp = netdev_priv(dev);
2440 unsigned long ioaddr = dev->base_addr;
2441 struct sk_buff *skb;
2443 #ifdef DEBUG_RX_TRACE
2444 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2445 dev->name, buf_off, sksize);
2446 #endif
2448 /* Allocate buffer for the data */
2449 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2450 #ifdef DEBUG_RX_ERROR
2451 printk(KERN_INFO
2452 "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2453 dev->name, sksize);
2454 #endif
2455 dev->stats.rx_dropped++;
2456 return;
2459 /* Copy the packet to the buffer. */
2460 obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2461 skb->protocol = eth_type_trans(skb, dev);
2463 #ifdef DEBUG_RX_INFO
2464 wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2465 "wv_packet_read");
2466 #endif /* DEBUG_RX_INFO */
2468 /* Statistics-gathering and associated stuff.
2469 * It seem a bit messy with all the define, but it's really
2470 * simple... */
2471 if (
2472 #ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
2473 (lp->spy_data.spy_number > 0) ||
2474 #endif /* IW_WIRELESS_SPY */
2475 #ifdef HISTOGRAM
2476 (lp->his_number > 0) ||
2477 #endif /* HISTOGRAM */
2478 0) {
2479 u8 stats[3]; /* signal level, noise level, signal quality */
2481 /* Read signal level, silence level and signal quality bytes */
2482 /* Note: in the PCMCIA hardware, these are part of the frame.
2483 * It seems that for the ISA hardware, it's nowhere to be
2484 * found in the frame, so I'm obliged to do this (it has a
2485 * side effect on /proc/net/wireless).
2486 * Any ideas?
2488 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2489 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2490 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2492 #ifdef DEBUG_RX_INFO
2493 printk(KERN_DEBUG
2494 "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2495 dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2496 stats[2] & 0x0F);
2497 #endif
2499 /* Spying stuff */
2500 #ifdef IW_WIRELESS_SPY
2501 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2502 stats);
2503 #endif /* IW_WIRELESS_SPY */
2504 #ifdef HISTOGRAM
2505 wl_his_gather(dev, stats);
2506 #endif /* HISTOGRAM */
2510 * Hand the packet to the network module.
2512 netif_rx(skb);
2514 /* Keep statistics up to date */
2515 dev->stats.rx_packets++;
2516 dev->stats.rx_bytes += sksize;
2518 #ifdef DEBUG_RX_TRACE
2519 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2520 #endif
2523 /*------------------------------------------------------------------*/
2525 * Transfer as many packets as we can
2526 * from the device RAM.
2527 * (called in wavelan_interrupt()).
2528 * Note : the spinlock is already grabbed for us.
2530 static void wv_receive(struct net_device * dev)
2532 unsigned long ioaddr = dev->base_addr;
2533 net_local *lp = netdev_priv(dev);
2534 fd_t fd;
2535 rbd_t rbd;
2536 int nreaped = 0;
2538 #ifdef DEBUG_RX_TRACE
2539 printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2540 #endif
2542 /* Loop on each received packet. */
2543 for (;;) {
2544 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2545 sizeof(fd));
2547 /* Note about the status :
2548 * It start up to be 0 (the value we set). Then, when the RU
2549 * grab the buffer to prepare for reception, it sets the
2550 * FD_STATUS_B flag. When the RU has finished receiving the
2551 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2552 * completion and set the other flags to indicate the eventual
2553 * errors. FD_STATUS_OK indicates that the reception was OK.
2556 /* If the current frame is not complete, we have reached the end. */
2557 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2558 break; /* This is how we exit the loop. */
2560 nreaped++;
2562 /* Check whether frame was correctly received. */
2563 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2564 /* Does the frame contain a pointer to the data? Let's check. */
2565 if (fd.fd_rbd_offset != I82586NULL) {
2566 /* Read the receive buffer descriptor */
2567 obram_read(ioaddr, fd.fd_rbd_offset,
2568 (unsigned char *) &rbd,
2569 sizeof(rbd));
2571 #ifdef DEBUG_RX_ERROR
2572 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2573 RBD_STATUS_EOF) printk(KERN_INFO
2574 "%s: wv_receive(): missing EOF flag.\n",
2575 dev->name);
2577 if ((rbd.rbd_status & RBD_STATUS_F) !=
2578 RBD_STATUS_F) printk(KERN_INFO
2579 "%s: wv_receive(): missing F flag.\n",
2580 dev->name);
2581 #endif /* DEBUG_RX_ERROR */
2583 /* Read the packet and transmit to Linux */
2584 wv_packet_read(dev, rbd.rbd_bufl,
2585 rbd.
2586 rbd_status &
2587 RBD_STATUS_ACNT);
2589 #ifdef DEBUG_RX_ERROR
2590 else /* if frame has no data */
2591 printk(KERN_INFO
2592 "%s: wv_receive(): frame has no data.\n",
2593 dev->name);
2594 #endif
2595 } else { /* If reception was no successful */
2597 dev->stats.rx_errors++;
2599 #ifdef DEBUG_RX_INFO
2600 printk(KERN_DEBUG
2601 "%s: wv_receive(): frame not received successfully (%X).\n",
2602 dev->name, fd.fd_status);
2603 #endif
2605 #ifdef DEBUG_RX_ERROR
2606 if ((fd.fd_status & FD_STATUS_S6) != 0)
2607 printk(KERN_INFO
2608 "%s: wv_receive(): no EOF flag.\n",
2609 dev->name);
2610 #endif
2612 if ((fd.fd_status & FD_STATUS_S7) != 0) {
2613 dev->stats.rx_length_errors++;
2614 #ifdef DEBUG_RX_FAIL
2615 printk(KERN_DEBUG
2616 "%s: wv_receive(): frame too short.\n",
2617 dev->name);
2618 #endif
2621 if ((fd.fd_status & FD_STATUS_S8) != 0) {
2622 dev->stats.rx_over_errors++;
2623 #ifdef DEBUG_RX_FAIL
2624 printk(KERN_DEBUG
2625 "%s: wv_receive(): rx DMA overrun.\n",
2626 dev->name);
2627 #endif
2630 if ((fd.fd_status & FD_STATUS_S9) != 0) {
2631 dev->stats.rx_fifo_errors++;
2632 #ifdef DEBUG_RX_FAIL
2633 printk(KERN_DEBUG
2634 "%s: wv_receive(): ran out of resources.\n",
2635 dev->name);
2636 #endif
2639 if ((fd.fd_status & FD_STATUS_S10) != 0) {
2640 dev->stats.rx_frame_errors++;
2641 #ifdef DEBUG_RX_FAIL
2642 printk(KERN_DEBUG
2643 "%s: wv_receive(): alignment error.\n",
2644 dev->name);
2645 #endif
2648 if ((fd.fd_status & FD_STATUS_S11) != 0) {
2649 dev->stats.rx_crc_errors++;
2650 #ifdef DEBUG_RX_FAIL
2651 printk(KERN_DEBUG
2652 "%s: wv_receive(): CRC error.\n",
2653 dev->name);
2654 #endif
2658 fd.fd_status = 0;
2659 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2660 (unsigned char *) &fd.fd_status,
2661 sizeof(fd.fd_status));
2663 fd.fd_command = FD_COMMAND_EL;
2664 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2665 (unsigned char *) &fd.fd_command,
2666 sizeof(fd.fd_command));
2668 fd.fd_command = 0;
2669 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2670 (unsigned char *) &fd.fd_command,
2671 sizeof(fd.fd_command));
2673 lp->rx_last = lp->rx_head;
2674 lp->rx_head = fd.fd_link_offset;
2675 } /* for(;;) -> loop on all frames */
2677 #ifdef DEBUG_RX_INFO
2678 if (nreaped > 1)
2679 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2680 dev->name, nreaped);
2681 #endif
2682 #ifdef DEBUG_RX_TRACE
2683 printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2684 #endif
2687 /*********************** PACKET TRANSMISSION ***********************/
2689 * This part deals with sending packets through the WaveLAN.
2693 /*------------------------------------------------------------------*/
2695 * This routine fills in the appropriate registers and memory
2696 * locations on the WaveLAN card and starts the card off on
2697 * the transmit.
2699 * The principle:
2700 * Each block contains a transmit command, a NOP command,
2701 * a transmit block descriptor and a buffer.
2702 * The CU read the transmit block which point to the tbd,
2703 * read the tbd and the content of the buffer.
2704 * When it has finish with it, it goes to the next command
2705 * which in our case is the NOP. The NOP points on itself,
2706 * so the CU stop here.
2707 * When we add the next block, we modify the previous nop
2708 * to make it point on the new tx command.
2709 * Simple, isn't it ?
2711 * (called in wavelan_packet_xmit())
2713 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2715 net_local *lp = netdev_priv(dev);
2716 unsigned long ioaddr = dev->base_addr;
2717 unsigned short txblock;
2718 unsigned short txpred;
2719 unsigned short tx_addr;
2720 unsigned short nop_addr;
2721 unsigned short tbd_addr;
2722 unsigned short buf_addr;
2723 ac_tx_t tx;
2724 ac_nop_t nop;
2725 tbd_t tbd;
2726 int clen = length;
2727 unsigned long flags;
2729 #ifdef DEBUG_TX_TRACE
2730 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2731 length);
2732 #endif
2734 spin_lock_irqsave(&lp->spinlock, flags);
2736 /* Check nothing bad has happened */
2737 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2738 #ifdef DEBUG_TX_ERROR
2739 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2740 dev->name);
2741 #endif
2742 spin_unlock_irqrestore(&lp->spinlock, flags);
2743 return 1;
2746 /* Calculate addresses of next block and previous block. */
2747 txblock = lp->tx_first_free;
2748 txpred = txblock - TXBLOCKZ;
2749 if (txpred < OFFSET_CU)
2750 txpred += NTXBLOCKS * TXBLOCKZ;
2751 lp->tx_first_free += TXBLOCKZ;
2752 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2753 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2755 lp->tx_n_in_use++;
2757 /* Calculate addresses of the different parts of the block. */
2758 tx_addr = txblock;
2759 nop_addr = tx_addr + sizeof(tx);
2760 tbd_addr = nop_addr + sizeof(nop);
2761 buf_addr = tbd_addr + sizeof(tbd);
2764 * Transmit command
2766 tx.tx_h.ac_status = 0;
2767 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2768 (unsigned char *) &tx.tx_h.ac_status,
2769 sizeof(tx.tx_h.ac_status));
2772 * NOP command
2774 nop.nop_h.ac_status = 0;
2775 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2776 (unsigned char *) &nop.nop_h.ac_status,
2777 sizeof(nop.nop_h.ac_status));
2778 nop.nop_h.ac_link = nop_addr;
2779 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2780 (unsigned char *) &nop.nop_h.ac_link,
2781 sizeof(nop.nop_h.ac_link));
2784 * Transmit buffer descriptor
2786 tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2787 tbd.tbd_next_bd_offset = I82586NULL;
2788 tbd.tbd_bufl = buf_addr;
2789 tbd.tbd_bufh = 0;
2790 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2793 * Data
2795 obram_write(ioaddr, buf_addr, buf, length);
2798 * Overwrite the predecessor NOP link
2799 * so that it points to this txblock.
2801 nop_addr = txpred + sizeof(tx);
2802 nop.nop_h.ac_status = 0;
2803 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2804 (unsigned char *) &nop.nop_h.ac_status,
2805 sizeof(nop.nop_h.ac_status));
2806 nop.nop_h.ac_link = txblock;
2807 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2808 (unsigned char *) &nop.nop_h.ac_link,
2809 sizeof(nop.nop_h.ac_link));
2811 /* Make sure the watchdog will keep quiet for a while */
2812 dev->trans_start = jiffies;
2814 /* Keep stats up to date. */
2815 dev->stats.tx_bytes += length;
2817 if (lp->tx_first_in_use == I82586NULL)
2818 lp->tx_first_in_use = txblock;
2820 if (lp->tx_n_in_use < NTXBLOCKS - 1)
2821 netif_wake_queue(dev);
2823 spin_unlock_irqrestore(&lp->spinlock, flags);
2825 #ifdef DEBUG_TX_INFO
2826 wv_packet_info((u8 *) buf, length, dev->name,
2827 "wv_packet_write");
2828 #endif /* DEBUG_TX_INFO */
2830 #ifdef DEBUG_TX_TRACE
2831 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2832 #endif
2834 return 0;
2837 /*------------------------------------------------------------------*/
2839 * This routine is called when we want to send a packet (NET3 callback)
2840 * In this routine, we check if the harware is ready to accept
2841 * the packet. We also prevent reentrance. Then we call the function
2842 * to send the packet.
2844 static netdev_tx_t wavelan_packet_xmit(struct sk_buff *skb,
2845 struct net_device * dev)
2847 net_local *lp = netdev_priv(dev);
2848 unsigned long flags;
2849 char data[ETH_ZLEN];
2851 #ifdef DEBUG_TX_TRACE
2852 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2853 (unsigned) skb);
2854 #endif
2857 * Block a timer-based transmit from overlapping.
2858 * In other words, prevent reentering this routine.
2860 netif_stop_queue(dev);
2862 /* If somebody has asked to reconfigure the controller,
2863 * we can do it now.
2865 if (lp->reconfig_82586) {
2866 spin_lock_irqsave(&lp->spinlock, flags);
2867 wv_82586_config(dev);
2868 spin_unlock_irqrestore(&lp->spinlock, flags);
2869 /* Check that we can continue */
2870 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2871 return NETDEV_TX_BUSY;
2874 /* Do we need some padding? */
2875 /* Note : on wireless the propagation time is in the order of 1us,
2876 * and we don't have the Ethernet specific requirement of beeing
2877 * able to detect collisions, therefore in theory we don't really
2878 * need to pad. Jean II */
2879 if (skb->len < ETH_ZLEN) {
2880 memset(data, 0, ETH_ZLEN);
2881 skb_copy_from_linear_data(skb, data, skb->len);
2882 /* Write packet on the card */
2883 if(wv_packet_write(dev, data, ETH_ZLEN))
2884 return NETDEV_TX_BUSY; /* We failed */
2886 else if(wv_packet_write(dev, skb->data, skb->len))
2887 return NETDEV_TX_BUSY; /* We failed */
2890 dev_kfree_skb(skb);
2892 #ifdef DEBUG_TX_TRACE
2893 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2894 #endif
2895 return NETDEV_TX_OK;
2898 /*********************** HARDWARE CONFIGURATION ***********************/
2900 * This part does the real job of starting and configuring the hardware.
2903 /*--------------------------------------------------------------------*/
2905 * Routine to initialize the Modem Management Controller.
2906 * (called by wv_hw_reset())
2908 static int wv_mmc_init(struct net_device * dev)
2910 unsigned long ioaddr = dev->base_addr;
2911 net_local *lp = netdev_priv(dev);
2912 psa_t psa;
2913 mmw_t m;
2914 int configured;
2916 #ifdef DEBUG_CONFIG_TRACE
2917 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2918 #endif
2920 /* Read the parameter storage area. */
2921 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2923 #ifdef USE_PSA_CONFIG
2924 configured = psa.psa_conf_status & 1;
2925 #else
2926 configured = 0;
2927 #endif
2929 /* Is the PSA is not configured */
2930 if (!configured) {
2931 /* User will be able to configure NWID later (with iwconfig). */
2932 psa.psa_nwid[0] = 0;
2933 psa.psa_nwid[1] = 0;
2935 /* no NWID checking since NWID is not set */
2936 psa.psa_nwid_select = 0;
2938 /* Disable encryption */
2939 psa.psa_encryption_select = 0;
2941 /* Set to standard values:
2942 * 0x04 for AT,
2943 * 0x01 for MCA,
2944 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2946 if (psa.psa_comp_number & 1)
2947 psa.psa_thr_pre_set = 0x01;
2948 else
2949 psa.psa_thr_pre_set = 0x04;
2950 psa.psa_quality_thr = 0x03;
2952 /* It is configured */
2953 psa.psa_conf_status |= 1;
2955 #ifdef USE_PSA_CONFIG
2956 /* Write the psa. */
2957 psa_write(ioaddr, lp->hacr,
2958 (char *) psa.psa_nwid - (char *) &psa,
2959 (unsigned char *) psa.psa_nwid, 4);
2960 psa_write(ioaddr, lp->hacr,
2961 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2962 (unsigned char *) &psa.psa_thr_pre_set, 1);
2963 psa_write(ioaddr, lp->hacr,
2964 (char *) &psa.psa_quality_thr - (char *) &psa,
2965 (unsigned char *) &psa.psa_quality_thr, 1);
2966 psa_write(ioaddr, lp->hacr,
2967 (char *) &psa.psa_conf_status - (char *) &psa,
2968 (unsigned char *) &psa.psa_conf_status, 1);
2969 /* update the Wavelan checksum */
2970 update_psa_checksum(dev, ioaddr, lp->hacr);
2971 #endif
2974 /* Zero the mmc structure. */
2975 memset(&m, 0x00, sizeof(m));
2977 /* Copy PSA info to the mmc. */
2978 m.mmw_netw_id_l = psa.psa_nwid[1];
2979 m.mmw_netw_id_h = psa.psa_nwid[0];
2981 if (psa.psa_nwid_select & 1)
2982 m.mmw_loopt_sel = 0x00;
2983 else
2984 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
2986 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
2987 sizeof(m.mmw_encr_key));
2989 if (psa.psa_encryption_select)
2990 m.mmw_encr_enable =
2991 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
2992 else
2993 m.mmw_encr_enable = 0;
2995 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
2996 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
2999 * Set default modem control parameters.
3000 * See NCR document 407-0024326 Rev. A.
3002 m.mmw_jabber_enable = 0x01;
3003 m.mmw_freeze = 0;
3004 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3005 m.mmw_ifs = 0x20;
3006 m.mmw_mod_delay = 0x04;
3007 m.mmw_jam_time = 0x38;
3009 m.mmw_des_io_invert = 0;
3010 m.mmw_decay_prm = 0;
3011 m.mmw_decay_updat_prm = 0;
3013 /* Write all info to MMC. */
3014 mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3016 /* The following code starts the modem of the 2.00 frequency
3017 * selectable cards at power on. It's not strictly needed for the
3018 * following boots.
3019 * The original patch was by Joe Finney for the PCMCIA driver, but
3020 * I've cleaned it up a bit and added documentation.
3021 * Thanks to Loeke Brederveld from Lucent for the info.
3024 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3025 * Does it work for everybody, especially old cards? */
3026 /* Note: WFREQSEL verifies that it is able to read a sensible
3027 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3028 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3029 * My test is more crude but does work. */
3030 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3031 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3032 /* We must download the frequency parameters to the
3033 * synthesizers (from the EEPROM - area 1)
3034 * Note: as the EEPROM is automatically decremented, we set the end
3035 * if the area... */
3036 m.mmw_fee_addr = 0x0F;
3037 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3038 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3039 (unsigned char *) &m.mmw_fee_ctrl, 2);
3041 /* Wait until the download is finished. */
3042 fee_wait(ioaddr, 100, 100);
3044 #ifdef DEBUG_CONFIG_INFO
3045 /* The frequency was in the last word downloaded. */
3046 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3047 (unsigned char *) &m.mmw_fee_data_l, 2);
3049 /* Print some info for the user. */
3050 printk(KERN_DEBUG
3051 "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
3052 dev->name,
3053 ((m.
3054 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3055 5 / 2 + 24000L);
3056 #endif
3058 /* We must now download the power adjust value (gain) to
3059 * the synthesizers (from the EEPROM - area 7 - DAC). */
3060 m.mmw_fee_addr = 0x61;
3061 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3062 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3063 (unsigned char *) &m.mmw_fee_ctrl, 2);
3065 /* Wait until the download is finished. */
3067 /* if 2.00 card */
3068 #ifdef DEBUG_CONFIG_TRACE
3069 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3070 #endif
3071 return 0;
3074 /*------------------------------------------------------------------*/
3076 * Construct the fd and rbd structures.
3077 * Start the receive unit.
3078 * (called by wv_hw_reset())
3080 static int wv_ru_start(struct net_device * dev)
3082 net_local *lp = netdev_priv(dev);
3083 unsigned long ioaddr = dev->base_addr;
3084 u16 scb_cs;
3085 fd_t fd;
3086 rbd_t rbd;
3087 u16 rx;
3088 u16 rx_next;
3089 int i;
3091 #ifdef DEBUG_CONFIG_TRACE
3092 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3093 #endif
3095 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3096 (unsigned char *) &scb_cs, sizeof(scb_cs));
3097 if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3098 return 0;
3100 lp->rx_head = OFFSET_RU;
3102 for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3103 rx_next =
3104 (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3106 fd.fd_status = 0;
3107 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3108 fd.fd_link_offset = rx_next;
3109 fd.fd_rbd_offset = rx + sizeof(fd);
3110 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3112 rbd.rbd_status = 0;
3113 rbd.rbd_next_rbd_offset = I82586NULL;
3114 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3115 rbd.rbd_bufh = 0;
3116 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3117 obram_write(ioaddr, rx + sizeof(fd),
3118 (unsigned char *) &rbd, sizeof(rbd));
3120 lp->rx_last = rx;
3123 obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3124 (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3126 scb_cs = SCB_CMD_RUC_GO;
3127 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3128 (unsigned char *) &scb_cs, sizeof(scb_cs));
3130 set_chan_attn(ioaddr, lp->hacr);
3132 for (i = 1000; i > 0; i--) {
3133 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3134 (unsigned char *) &scb_cs, sizeof(scb_cs));
3135 if (scb_cs == 0)
3136 break;
3138 udelay(10);
3141 if (i <= 0) {
3142 #ifdef DEBUG_CONFIG_ERROR
3143 printk(KERN_INFO
3144 "%s: wavelan_ru_start(): board not accepting command.\n",
3145 dev->name);
3146 #endif
3147 return -1;
3149 #ifdef DEBUG_CONFIG_TRACE
3150 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3151 #endif
3152 return 0;
3155 /*------------------------------------------------------------------*/
3157 * Initialise the transmit blocks.
3158 * Start the command unit executing the NOP
3159 * self-loop of the first transmit block.
3161 * Here we create the list of send buffers used to transmit packets
3162 * between the PC and the command unit. For each buffer, we create a
3163 * buffer descriptor (pointing on the buffer), a transmit command
3164 * (pointing to the buffer descriptor) and a NOP command.
3165 * The transmit command is linked to the NOP, and the NOP to itself.
3166 * When we will have finished executing the transmit command, we will
3167 * then loop on the NOP. By releasing the NOP link to a new command,
3168 * we may send another buffer.
3170 * (called by wv_hw_reset())
3172 static int wv_cu_start(struct net_device * dev)
3174 net_local *lp = netdev_priv(dev);
3175 unsigned long ioaddr = dev->base_addr;
3176 int i;
3177 u16 txblock;
3178 u16 first_nop;
3179 u16 scb_cs;
3181 #ifdef DEBUG_CONFIG_TRACE
3182 printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3183 #endif
3185 lp->tx_first_free = OFFSET_CU;
3186 lp->tx_first_in_use = I82586NULL;
3188 for (i = 0, txblock = OFFSET_CU;
3189 i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3190 ac_tx_t tx;
3191 ac_nop_t nop;
3192 tbd_t tbd;
3193 unsigned short tx_addr;
3194 unsigned short nop_addr;
3195 unsigned short tbd_addr;
3196 unsigned short buf_addr;
3198 tx_addr = txblock;
3199 nop_addr = tx_addr + sizeof(tx);
3200 tbd_addr = nop_addr + sizeof(nop);
3201 buf_addr = tbd_addr + sizeof(tbd);
3203 tx.tx_h.ac_status = 0;
3204 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3205 tx.tx_h.ac_link = nop_addr;
3206 tx.tx_tbd_offset = tbd_addr;
3207 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3208 sizeof(tx));
3210 nop.nop_h.ac_status = 0;
3211 nop.nop_h.ac_command = acmd_nop;
3212 nop.nop_h.ac_link = nop_addr;
3213 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3214 sizeof(nop));
3216 tbd.tbd_status = TBD_STATUS_EOF;
3217 tbd.tbd_next_bd_offset = I82586NULL;
3218 tbd.tbd_bufl = buf_addr;
3219 tbd.tbd_bufh = 0;
3220 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3221 sizeof(tbd));
3224 first_nop =
3225 OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3226 obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3227 (unsigned char *) &first_nop, sizeof(first_nop));
3229 scb_cs = SCB_CMD_CUC_GO;
3230 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3231 (unsigned char *) &scb_cs, sizeof(scb_cs));
3233 set_chan_attn(ioaddr, lp->hacr);
3235 for (i = 1000; i > 0; i--) {
3236 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3237 (unsigned char *) &scb_cs, sizeof(scb_cs));
3238 if (scb_cs == 0)
3239 break;
3241 udelay(10);
3244 if (i <= 0) {
3245 #ifdef DEBUG_CONFIG_ERROR
3246 printk(KERN_INFO
3247 "%s: wavelan_cu_start(): board not accepting command.\n",
3248 dev->name);
3249 #endif
3250 return -1;
3253 lp->tx_n_in_use = 0;
3254 netif_start_queue(dev);
3255 #ifdef DEBUG_CONFIG_TRACE
3256 printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3257 #endif
3258 return 0;
3261 /*------------------------------------------------------------------*/
3263 * This routine does a standard configuration of the WaveLAN
3264 * controller (i82586).
3266 * It initialises the scp, iscp and scb structure
3267 * The first two are just pointers to the next.
3268 * The last one is used for basic configuration and for basic
3269 * communication (interrupt status).
3271 * (called by wv_hw_reset())
3273 static int wv_82586_start(struct net_device * dev)
3275 net_local *lp = netdev_priv(dev);
3276 unsigned long ioaddr = dev->base_addr;
3277 scp_t scp; /* system configuration pointer */
3278 iscp_t iscp; /* intermediate scp */
3279 scb_t scb; /* system control block */
3280 ach_t cb; /* Action command header */
3281 u8 zeroes[512];
3282 int i;
3284 #ifdef DEBUG_CONFIG_TRACE
3285 printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3286 #endif
3289 * Clear the onboard RAM.
3291 memset(&zeroes[0], 0x00, sizeof(zeroes));
3292 for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3293 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3296 * Construct the command unit structures:
3297 * scp, iscp, scb, cb.
3299 memset(&scp, 0x00, sizeof(scp));
3300 scp.scp_sysbus = SCP_SY_16BBUS;
3301 scp.scp_iscpl = OFFSET_ISCP;
3302 obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3303 sizeof(scp));
3305 memset(&iscp, 0x00, sizeof(iscp));
3306 iscp.iscp_busy = 1;
3307 iscp.iscp_offset = OFFSET_SCB;
3308 obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3309 sizeof(iscp));
3311 /* Our first command is to reset the i82586. */
3312 memset(&scb, 0x00, sizeof(scb));
3313 scb.scb_command = SCB_CMD_RESET;
3314 scb.scb_cbl_offset = OFFSET_CU;
3315 scb.scb_rfa_offset = OFFSET_RU;
3316 obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3317 sizeof(scb));
3319 set_chan_attn(ioaddr, lp->hacr);
3321 /* Wait for command to finish. */
3322 for (i = 1000; i > 0; i--) {
3323 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3324 sizeof(iscp));
3326 if (iscp.iscp_busy == (unsigned short) 0)
3327 break;
3329 udelay(10);
3332 if (i <= 0) {
3333 #ifdef DEBUG_CONFIG_ERROR
3334 printk(KERN_INFO
3335 "%s: wv_82586_start(): iscp_busy timeout.\n",
3336 dev->name);
3337 #endif
3338 return -1;
3341 /* Check command completion. */
3342 for (i = 15; i > 0; i--) {
3343 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3344 sizeof(scb));
3346 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3347 break;
3349 udelay(10);
3352 if (i <= 0) {
3353 #ifdef DEBUG_CONFIG_ERROR
3354 printk(KERN_INFO
3355 "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3356 dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3357 #endif
3358 return -1;
3361 wv_ack(dev);
3363 /* Set the action command header. */
3364 memset(&cb, 0x00, sizeof(cb));
3365 cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3366 cb.ac_link = OFFSET_CU;
3367 obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3369 if (wv_synchronous_cmd(dev, "diag()") == -1)
3370 return -1;
3372 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3373 if (cb.ac_status & AC_SFLD_FAIL) {
3374 #ifdef DEBUG_CONFIG_ERROR
3375 printk(KERN_INFO
3376 "%s: wv_82586_start(): i82586 Self Test failed.\n",
3377 dev->name);
3378 #endif
3379 return -1;
3381 #ifdef DEBUG_I82586_SHOW
3382 wv_scb_show(ioaddr);
3383 #endif
3385 #ifdef DEBUG_CONFIG_TRACE
3386 printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3387 #endif
3388 return 0;
3391 /*------------------------------------------------------------------*/
3393 * This routine does a standard configuration of the WaveLAN
3394 * controller (i82586).
3396 * This routine is a violent hack. We use the first free transmit block
3397 * to make our configuration. In the buffer area, we create the three
3398 * configuration commands (linked). We make the previous NOP point to
3399 * the beginning of the buffer instead of the tx command. After, we go
3400 * as usual to the NOP command.
3401 * Note that only the last command (mc_set) will generate an interrupt.
3403 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3405 static void wv_82586_config(struct net_device * dev)
3407 net_local *lp = netdev_priv(dev);
3408 unsigned long ioaddr = dev->base_addr;
3409 unsigned short txblock;
3410 unsigned short txpred;
3411 unsigned short tx_addr;
3412 unsigned short nop_addr;
3413 unsigned short tbd_addr;
3414 unsigned short cfg_addr;
3415 unsigned short ias_addr;
3416 unsigned short mcs_addr;
3417 ac_tx_t tx;
3418 ac_nop_t nop;
3419 ac_cfg_t cfg; /* Configure action */
3420 ac_ias_t ias; /* IA-setup action */
3421 ac_mcs_t mcs; /* Multicast setup */
3422 struct dev_mc_list *dmi;
3424 #ifdef DEBUG_CONFIG_TRACE
3425 printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3426 #endif
3428 /* Check nothing bad has happened */
3429 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3430 #ifdef DEBUG_CONFIG_ERROR
3431 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3432 dev->name);
3433 #endif
3434 return;
3437 /* Calculate addresses of next block and previous block. */
3438 txblock = lp->tx_first_free;
3439 txpred = txblock - TXBLOCKZ;
3440 if (txpred < OFFSET_CU)
3441 txpred += NTXBLOCKS * TXBLOCKZ;
3442 lp->tx_first_free += TXBLOCKZ;
3443 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3444 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3446 lp->tx_n_in_use++;
3448 /* Calculate addresses of the different parts of the block. */
3449 tx_addr = txblock;
3450 nop_addr = tx_addr + sizeof(tx);
3451 tbd_addr = nop_addr + sizeof(nop);
3452 cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
3453 ias_addr = cfg_addr + sizeof(cfg);
3454 mcs_addr = ias_addr + sizeof(ias);
3457 * Transmit command
3459 tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
3460 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3461 (unsigned char *) &tx.tx_h.ac_status,
3462 sizeof(tx.tx_h.ac_status));
3465 * NOP command
3467 nop.nop_h.ac_status = 0;
3468 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3469 (unsigned char *) &nop.nop_h.ac_status,
3470 sizeof(nop.nop_h.ac_status));
3471 nop.nop_h.ac_link = nop_addr;
3472 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3473 (unsigned char *) &nop.nop_h.ac_link,
3474 sizeof(nop.nop_h.ac_link));
3476 /* Create a configure action. */
3477 memset(&cfg, 0x00, sizeof(cfg));
3480 * For Linux we invert AC_CFG_ALOC() so as to conform
3481 * to the way that net packets reach us from above.
3482 * (See also ac_tx_t.)
3484 * Updated from Wavelan Manual WCIN085B
3486 cfg.cfg_byte_cnt =
3487 AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3488 cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3489 cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3490 cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3491 AC_CFG_ILPBCK(0) |
3492 AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3493 AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3494 cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3495 AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3496 cfg.cfg_ifs = 0x20;
3497 cfg.cfg_slotl = 0x0C;
3498 cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3499 cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3500 AC_CFG_BTSTF(0) |
3501 AC_CFG_CRC16(0) |
3502 AC_CFG_NCRC(0) |
3503 AC_CFG_TNCRS(1) |
3504 AC_CFG_MANCH(0) |
3505 AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3506 cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3507 AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3509 cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3511 cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3513 cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3514 cfg.cfg_h.ac_link = ias_addr;
3515 obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3517 /* Set up the MAC address */
3518 memset(&ias, 0x00, sizeof(ias));
3519 ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3520 ias.ias_h.ac_link = mcs_addr;
3521 memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3522 sizeof(ias.ias_addr));
3523 obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3525 /* Initialize adapter's Ethernet multicast addresses */
3526 memset(&mcs, 0x00, sizeof(mcs));
3527 mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3528 mcs.mcs_h.ac_link = nop_addr;
3529 mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3530 obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3532 /* Any address to set? */
3533 if (lp->mc_count) {
3534 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3535 outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3536 WAVELAN_ADDR_SIZE >> 1);
3538 #ifdef DEBUG_CONFIG_INFO
3539 printk(KERN_DEBUG
3540 "%s: wv_82586_config(): set %d multicast addresses:\n",
3541 dev->name, lp->mc_count);
3542 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3543 printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
3544 #endif
3548 * Overwrite the predecessor NOP link
3549 * so that it points to the configure action.
3551 nop_addr = txpred + sizeof(tx);
3552 nop.nop_h.ac_status = 0;
3553 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3554 (unsigned char *) &nop.nop_h.ac_status,
3555 sizeof(nop.nop_h.ac_status));
3556 nop.nop_h.ac_link = cfg_addr;
3557 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3558 (unsigned char *) &nop.nop_h.ac_link,
3559 sizeof(nop.nop_h.ac_link));
3561 /* Job done, clear the flag */
3562 lp->reconfig_82586 = 0;
3564 if (lp->tx_first_in_use == I82586NULL)
3565 lp->tx_first_in_use = txblock;
3567 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3568 netif_stop_queue(dev);
3570 #ifdef DEBUG_CONFIG_TRACE
3571 printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3572 #endif
3575 /*------------------------------------------------------------------*/
3577 * This routine, called by wavelan_close(), gracefully stops the
3578 * WaveLAN controller (i82586).
3579 * (called by wavelan_close())
3581 static void wv_82586_stop(struct net_device * dev)
3583 net_local *lp = netdev_priv(dev);
3584 unsigned long ioaddr = dev->base_addr;
3585 u16 scb_cmd;
3587 #ifdef DEBUG_CONFIG_TRACE
3588 printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3589 #endif
3591 /* Suspend both command unit and receive unit. */
3592 scb_cmd =
3593 (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3594 SCB_CMD_RUC_SUS);
3595 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3596 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3597 set_chan_attn(ioaddr, lp->hacr);
3599 /* No more interrupts */
3600 wv_ints_off(dev);
3602 #ifdef DEBUG_CONFIG_TRACE
3603 printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3604 #endif
3607 /*------------------------------------------------------------------*/
3609 * Totally reset the WaveLAN and restart it.
3610 * Performs the following actions:
3611 * 1. A power reset (reset DMA)
3612 * 2. Initialize the radio modem (using wv_mmc_init)
3613 * 3. Reset & Configure LAN controller (using wv_82586_start)
3614 * 4. Start the LAN controller's command unit
3615 * 5. Start the LAN controller's receive unit
3616 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3618 static int wv_hw_reset(struct net_device * dev)
3620 net_local *lp = netdev_priv(dev);
3621 unsigned long ioaddr = dev->base_addr;
3623 #ifdef DEBUG_CONFIG_TRACE
3624 printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3625 (unsigned int) dev);
3626 #endif
3628 /* Increase the number of resets done. */
3629 lp->nresets++;
3631 wv_hacr_reset(ioaddr);
3632 lp->hacr = HACR_DEFAULT;
3634 if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3635 return -1;
3637 /* Enable the card to send interrupts. */
3638 wv_ints_on(dev);
3640 /* Start card functions */
3641 if (wv_cu_start(dev) < 0)
3642 return -1;
3644 /* Setup the controller and parameters */
3645 wv_82586_config(dev);
3647 /* Finish configuration with the receive unit */
3648 if (wv_ru_start(dev) < 0)
3649 return -1;
3651 #ifdef DEBUG_CONFIG_TRACE
3652 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3653 #endif
3654 return 0;
3657 /*------------------------------------------------------------------*/
3659 * Check if there is a WaveLAN at the specific base address.
3660 * As a side effect, this reads the MAC address.
3661 * (called in wavelan_probe() and init_module())
3663 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3665 int i; /* Loop counter */
3667 /* Check if the base address if available. */
3668 if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3669 return -EBUSY; /* ioaddr already used */
3671 /* Reset host interface */
3672 wv_hacr_reset(ioaddr);
3674 /* Read the MAC address from the parameter storage area. */
3675 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3676 mac, 6);
3678 release_region(ioaddr, sizeof(ha_t));
3681 * Check the first three octets of the address for the manufacturer's code.
3682 * Note: if this can't find your WaveLAN card, you've got a
3683 * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
3684 * how to configure your card.
3686 for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
3687 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3688 (mac[1] == MAC_ADDRESSES[i][1]) &&
3689 (mac[2] == MAC_ADDRESSES[i][2]))
3690 return 0;
3692 #ifdef DEBUG_CONFIG_INFO
3693 printk(KERN_WARNING
3694 "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3695 ioaddr, mac[0], mac[1], mac[2]);
3696 #endif
3697 return -ENODEV;
3700 /************************ INTERRUPT HANDLING ************************/
3703 * This function is the interrupt handler for the WaveLAN card. This
3704 * routine will be called whenever:
3706 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3708 struct net_device *dev;
3709 unsigned long ioaddr;
3710 net_local *lp;
3711 u16 hasr;
3712 u16 status;
3713 u16 ack_cmd;
3715 dev = dev_id;
3717 #ifdef DEBUG_INTERRUPT_TRACE
3718 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3719 #endif
3721 lp = netdev_priv(dev);
3722 ioaddr = dev->base_addr;
3724 #ifdef DEBUG_INTERRUPT_INFO
3725 /* Check state of our spinlock */
3726 if(spin_is_locked(&lp->spinlock))
3727 printk(KERN_DEBUG
3728 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3729 dev->name);
3730 #endif
3732 /* Prevent reentrancy. We need to do that because we may have
3733 * multiple interrupt handler running concurrently.
3734 * It is safe because interrupts are disabled before acquiring
3735 * the spinlock. */
3736 spin_lock(&lp->spinlock);
3738 /* We always had spurious interrupts at startup, but lately I
3739 * saw them comming *between* the request_irq() and the
3740 * spin_lock_irqsave() in wavelan_open(), so the spinlock
3741 * protection is no enough.
3742 * So, we also check lp->hacr that will tell us is we enabled
3743 * irqs or not (see wv_ints_on()).
3744 * We can't use netif_running(dev) because we depend on the
3745 * proper processing of the irq generated during the config. */
3747 /* Which interrupt it is ? */
3748 hasr = hasr_read(ioaddr);
3750 #ifdef DEBUG_INTERRUPT_INFO
3751 printk(KERN_INFO
3752 "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3753 dev->name, hasr, lp->hacr);
3754 #endif
3756 /* Check modem interrupt */
3757 if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3758 u8 dce_status;
3761 * Interrupt from the modem management controller.
3762 * This will clear it -- ignored for now.
3764 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3765 sizeof(dce_status));
3767 #ifdef DEBUG_INTERRUPT_ERROR
3768 printk(KERN_INFO
3769 "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3770 dev->name, dce_status);
3771 #endif
3774 /* Check if not controller interrupt */
3775 if (((hasr & HASR_82586_INTR) == 0) ||
3776 ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3777 #ifdef DEBUG_INTERRUPT_ERROR
3778 printk(KERN_INFO
3779 "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3780 dev->name, hasr);
3781 #endif
3782 spin_unlock (&lp->spinlock);
3783 return IRQ_NONE;
3786 /* Read interrupt data. */
3787 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3788 (unsigned char *) &status, sizeof(status));
3791 * Acknowledge the interrupt(s).
3793 ack_cmd = status & SCB_ST_INT;
3794 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3795 (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3796 set_chan_attn(ioaddr, lp->hacr);
3798 #ifdef DEBUG_INTERRUPT_INFO
3799 printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3800 dev->name, status);
3801 #endif
3803 /* Command completed. */
3804 if ((status & SCB_ST_CX) == SCB_ST_CX) {
3805 #ifdef DEBUG_INTERRUPT_INFO
3806 printk(KERN_DEBUG
3807 "%s: wavelan_interrupt(): command completed.\n",
3808 dev->name);
3809 #endif
3810 wv_complete(dev, ioaddr, lp);
3813 /* Frame received. */
3814 if ((status & SCB_ST_FR) == SCB_ST_FR) {
3815 #ifdef DEBUG_INTERRUPT_INFO
3816 printk(KERN_DEBUG
3817 "%s: wavelan_interrupt(): received packet.\n",
3818 dev->name);
3819 #endif
3820 wv_receive(dev);
3823 /* Check the state of the command unit. */
3824 if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3825 (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3826 (netif_running(dev)))) {
3827 #ifdef DEBUG_INTERRUPT_ERROR
3828 printk(KERN_INFO
3829 "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3830 dev->name);
3831 #endif
3832 wv_hw_reset(dev);
3835 /* Check the state of the command unit. */
3836 if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3837 (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3838 (netif_running(dev)))) {
3839 #ifdef DEBUG_INTERRUPT_ERROR
3840 printk(KERN_INFO
3841 "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3842 dev->name);
3843 #endif
3844 wv_hw_reset(dev);
3847 /* Release spinlock */
3848 spin_unlock (&lp->spinlock);
3850 #ifdef DEBUG_INTERRUPT_TRACE
3851 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3852 #endif
3853 return IRQ_HANDLED;
3856 /*------------------------------------------------------------------*/
3858 * Watchdog: when we start a transmission, a timer is set for us in the
3859 * kernel. If the transmission completes, this timer is disabled. If
3860 * the timer expires, we are called and we try to unlock the hardware.
3862 static void wavelan_watchdog(struct net_device * dev)
3864 net_local *lp = netdev_priv(dev);
3865 u_long ioaddr = dev->base_addr;
3866 unsigned long flags;
3867 unsigned int nreaped;
3869 #ifdef DEBUG_INTERRUPT_TRACE
3870 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3871 #endif
3873 #ifdef DEBUG_INTERRUPT_ERROR
3874 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3875 dev->name);
3876 #endif
3878 /* Check that we came here for something */
3879 if (lp->tx_n_in_use <= 0) {
3880 return;
3883 spin_lock_irqsave(&lp->spinlock, flags);
3885 /* Try to see if some buffers are not free (in case we missed
3886 * an interrupt */
3887 nreaped = wv_complete(dev, ioaddr, lp);
3889 #ifdef DEBUG_INTERRUPT_INFO
3890 printk(KERN_DEBUG
3891 "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3892 dev->name, nreaped, lp->tx_n_in_use);
3893 #endif
3895 #ifdef DEBUG_PSA_SHOW
3897 psa_t psa;
3898 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3899 wv_psa_show(&psa);
3901 #endif
3902 #ifdef DEBUG_MMC_SHOW
3903 wv_mmc_show(dev);
3904 #endif
3905 #ifdef DEBUG_I82586_SHOW
3906 wv_cu_show(dev);
3907 #endif
3909 /* If no buffer has been freed */
3910 if (nreaped == 0) {
3911 #ifdef DEBUG_INTERRUPT_ERROR
3912 printk(KERN_INFO
3913 "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3914 dev->name);
3915 #endif
3916 wv_hw_reset(dev);
3919 /* At this point, we should have some free Tx buffer ;-) */
3920 if (lp->tx_n_in_use < NTXBLOCKS - 1)
3921 netif_wake_queue(dev);
3923 spin_unlock_irqrestore(&lp->spinlock, flags);
3925 #ifdef DEBUG_INTERRUPT_TRACE
3926 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3927 #endif
3930 /********************* CONFIGURATION CALLBACKS *********************/
3932 * Here are the functions called by the Linux networking code (NET3)
3933 * for initialization, configuration and deinstallations of the
3934 * WaveLAN ISA hardware.
3937 /*------------------------------------------------------------------*/
3939 * Configure and start up the WaveLAN PCMCIA adaptor.
3940 * Called by NET3 when it "opens" the device.
3942 static int wavelan_open(struct net_device * dev)
3944 net_local *lp = netdev_priv(dev);
3945 unsigned long flags;
3947 #ifdef DEBUG_CALLBACK_TRACE
3948 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3949 (unsigned int) dev);
3950 #endif
3952 /* Check irq */
3953 if (dev->irq == 0) {
3954 #ifdef DEBUG_CONFIG_ERROR
3955 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3956 dev->name);
3957 #endif
3958 return -ENXIO;
3961 if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
3963 #ifdef DEBUG_CONFIG_ERROR
3964 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
3965 dev->name);
3966 #endif
3967 return -EAGAIN;
3970 spin_lock_irqsave(&lp->spinlock, flags);
3972 if (wv_hw_reset(dev) != -1) {
3973 netif_start_queue(dev);
3974 } else {
3975 free_irq(dev->irq, dev);
3976 #ifdef DEBUG_CONFIG_ERROR
3977 printk(KERN_INFO
3978 "%s: wavelan_open(): impossible to start the card\n",
3979 dev->name);
3980 #endif
3981 spin_unlock_irqrestore(&lp->spinlock, flags);
3982 return -EAGAIN;
3984 spin_unlock_irqrestore(&lp->spinlock, flags);
3986 #ifdef DEBUG_CALLBACK_TRACE
3987 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
3988 #endif
3989 return 0;
3992 /*------------------------------------------------------------------*/
3994 * Shut down the WaveLAN ISA card.
3995 * Called by NET3 when it "closes" the device.
3997 static int wavelan_close(struct net_device * dev)
3999 net_local *lp = netdev_priv(dev);
4000 unsigned long flags;
4002 #ifdef DEBUG_CALLBACK_TRACE
4003 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4004 (unsigned int) dev);
4005 #endif
4007 netif_stop_queue(dev);
4010 * Flush the Tx and disable Rx.
4012 spin_lock_irqsave(&lp->spinlock, flags);
4013 wv_82586_stop(dev);
4014 spin_unlock_irqrestore(&lp->spinlock, flags);
4016 free_irq(dev->irq, dev);
4018 #ifdef DEBUG_CALLBACK_TRACE
4019 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4020 #endif
4021 return 0;
4024 static const struct net_device_ops wavelan_netdev_ops = {
4025 .ndo_open = wavelan_open,
4026 .ndo_stop = wavelan_close,
4027 .ndo_start_xmit = wavelan_packet_xmit,
4028 .ndo_set_multicast_list = wavelan_set_multicast_list,
4029 .ndo_tx_timeout = wavelan_watchdog,
4030 .ndo_change_mtu = eth_change_mtu,
4031 .ndo_validate_addr = eth_validate_addr,
4032 #ifdef SET_MAC_ADDRESS
4033 .ndo_set_mac_address = wavelan_set_mac_address
4034 #else
4035 .ndo_set_mac_address = eth_mac_addr,
4036 #endif
4040 /*------------------------------------------------------------------*/
4042 * Probe an I/O address, and if the WaveLAN is there configure the
4043 * device structure
4044 * (called by wavelan_probe() and via init_module()).
4046 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4048 u8 irq_mask;
4049 int irq;
4050 net_local *lp;
4051 mac_addr mac;
4052 int err;
4054 if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4055 return -EADDRINUSE;
4057 err = wv_check_ioaddr(ioaddr, mac);
4058 if (err)
4059 goto out;
4061 memcpy(dev->dev_addr, mac, 6);
4063 dev->base_addr = ioaddr;
4065 #ifdef DEBUG_CALLBACK_TRACE
4066 printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4067 dev->name, (unsigned int) dev, ioaddr);
4068 #endif
4070 /* Check IRQ argument on command line. */
4071 if (dev->irq != 0) {
4072 irq_mask = wv_irq_to_psa(dev->irq);
4074 if (irq_mask == 0) {
4075 #ifdef DEBUG_CONFIG_ERROR
4076 printk(KERN_WARNING
4077 "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4078 dev->name, dev->irq);
4079 #endif
4080 dev->irq = 0;
4081 } else {
4082 #ifdef DEBUG_CONFIG_INFO
4083 printk(KERN_DEBUG
4084 "%s: wavelan_config(): changing IRQ to %d\n",
4085 dev->name, dev->irq);
4086 #endif
4087 psa_write(ioaddr, HACR_DEFAULT,
4088 psaoff(0, psa_int_req_no), &irq_mask, 1);
4089 /* update the Wavelan checksum */
4090 update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4091 wv_hacr_reset(ioaddr);
4095 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4096 &irq_mask, 1);
4097 if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4098 #ifdef DEBUG_CONFIG_ERROR
4099 printk(KERN_INFO
4100 "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4101 dev->name, irq_mask);
4102 #endif
4103 err = -EAGAIN;
4104 goto out;
4107 dev->irq = irq;
4109 dev->mem_start = 0x0000;
4110 dev->mem_end = 0x0000;
4111 dev->if_port = 0;
4113 /* Initialize device structures */
4114 memset(netdev_priv(dev), 0, sizeof(net_local));
4115 lp = netdev_priv(dev);
4117 /* Back link to the device structure. */
4118 lp->dev = dev;
4119 /* Add the device at the beginning of the linked list. */
4120 lp->next = wavelan_list;
4121 wavelan_list = lp;
4123 lp->hacr = HACR_DEFAULT;
4125 /* Multicast stuff */
4126 lp->promiscuous = 0;
4127 lp->mc_count = 0;
4129 /* Init spinlock */
4130 spin_lock_init(&lp->spinlock);
4132 dev->netdev_ops = &wavelan_netdev_ops;
4133 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4134 dev->wireless_handlers = &wavelan_handler_def;
4135 lp->wireless_data.spy_data = &lp->spy_data;
4136 dev->wireless_data = &lp->wireless_data;
4138 dev->mtu = WAVELAN_MTU;
4140 /* Display nice information. */
4141 wv_init_info(dev);
4143 #ifdef DEBUG_CALLBACK_TRACE
4144 printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4145 #endif
4146 return 0;
4147 out:
4148 release_region(ioaddr, sizeof(ha_t));
4149 return err;
4152 /*------------------------------------------------------------------*/
4154 * Check for a network adaptor of this type. Return '0' iff one
4155 * exists. There seem to be different interpretations of
4156 * the initial value of dev->base_addr.
4157 * We follow the example in drivers/net/ne.c.
4158 * (called in "Space.c")
4160 struct net_device * __init wavelan_probe(int unit)
4162 struct net_device *dev;
4163 short base_addr;
4164 int def_irq;
4165 int i;
4166 int r = 0;
4168 /* compile-time check the sizes of structures */
4169 BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
4170 BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
4171 BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
4172 BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
4174 dev = alloc_etherdev(sizeof(net_local));
4175 if (!dev)
4176 return ERR_PTR(-ENOMEM);
4178 sprintf(dev->name, "eth%d", unit);
4179 netdev_boot_setup_check(dev);
4180 base_addr = dev->base_addr;
4181 def_irq = dev->irq;
4183 #ifdef DEBUG_CALLBACK_TRACE
4184 printk(KERN_DEBUG
4185 "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4186 dev->name, dev, (unsigned int) dev->base_addr);
4187 #endif
4189 /* Don't probe at all. */
4190 if (base_addr < 0) {
4191 #ifdef DEBUG_CONFIG_ERROR
4192 printk(KERN_WARNING
4193 "%s: wavelan_probe(): invalid base address\n",
4194 dev->name);
4195 #endif
4196 r = -ENXIO;
4197 } else if (base_addr > 0x100) { /* Check a single specified location. */
4198 r = wavelan_config(dev, base_addr);
4199 #ifdef DEBUG_CONFIG_INFO
4200 if (r != 0)
4201 printk(KERN_DEBUG
4202 "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4203 dev->name, base_addr);
4204 #endif
4206 #ifdef DEBUG_CALLBACK_TRACE
4207 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4208 #endif
4209 } else { /* Scan all possible addresses of the WaveLAN hardware. */
4210 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4211 dev->irq = def_irq;
4212 if (wavelan_config(dev, iobase[i]) == 0) {
4213 #ifdef DEBUG_CALLBACK_TRACE
4214 printk(KERN_DEBUG
4215 "%s: <-wavelan_probe()\n",
4216 dev->name);
4217 #endif
4218 break;
4221 if (i == ARRAY_SIZE(iobase))
4222 r = -ENODEV;
4224 if (r)
4225 goto out;
4226 r = register_netdev(dev);
4227 if (r)
4228 goto out1;
4229 return dev;
4230 out1:
4231 release_region(dev->base_addr, sizeof(ha_t));
4232 wavelan_list = wavelan_list->next;
4233 out:
4234 free_netdev(dev);
4235 return ERR_PTR(r);
4238 /****************************** MODULE ******************************/
4240 * Module entry point: insertion and removal
4243 #ifdef MODULE
4244 /*------------------------------------------------------------------*/
4246 * Insertion of the module
4247 * I'm now quite proud of the multi-device support.
4249 int __init init_module(void)
4251 int ret = -EIO; /* Return error if no cards found */
4252 int i;
4254 #ifdef DEBUG_MODULE_TRACE
4255 printk(KERN_DEBUG "-> init_module()\n");
4256 #endif
4258 /* If probing is asked */
4259 if (io[0] == 0) {
4260 #ifdef DEBUG_CONFIG_ERROR
4261 printk(KERN_WARNING
4262 "WaveLAN init_module(): doing device probing (bad !)\n");
4263 printk(KERN_WARNING
4264 "Specify base addresses while loading module to correct the problem\n");
4265 #endif
4267 /* Copy the basic set of address to be probed. */
4268 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4269 io[i] = iobase[i];
4273 /* Loop on all possible base addresses. */
4274 for (i = 0; i < ARRAY_SIZE(io) && io[i] != 0; i++) {
4275 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4276 if (!dev)
4277 break;
4278 if (name[i])
4279 strcpy(dev->name, name[i]); /* Copy name */
4280 dev->base_addr = io[i];
4281 dev->irq = irq[i];
4283 /* Check if there is something at this base address. */
4284 if (wavelan_config(dev, io[i]) == 0) {
4285 if (register_netdev(dev) != 0) {
4286 release_region(dev->base_addr, sizeof(ha_t));
4287 wavelan_list = wavelan_list->next;
4288 } else {
4289 ret = 0;
4290 continue;
4293 free_netdev(dev);
4296 #ifdef DEBUG_CONFIG_ERROR
4297 if (!wavelan_list)
4298 printk(KERN_WARNING
4299 "WaveLAN init_module(): no device found\n");
4300 #endif
4302 #ifdef DEBUG_MODULE_TRACE
4303 printk(KERN_DEBUG "<- init_module()\n");
4304 #endif
4305 return ret;
4308 /*------------------------------------------------------------------*/
4310 * Removal of the module
4312 void cleanup_module(void)
4314 #ifdef DEBUG_MODULE_TRACE
4315 printk(KERN_DEBUG "-> cleanup_module()\n");
4316 #endif
4318 /* Loop on all devices and release them. */
4319 while (wavelan_list) {
4320 struct net_device *dev = wavelan_list->dev;
4322 #ifdef DEBUG_CONFIG_INFO
4323 printk(KERN_DEBUG
4324 "%s: cleanup_module(): removing device at 0x%x\n",
4325 dev->name, (unsigned int) dev);
4326 #endif
4327 unregister_netdev(dev);
4329 release_region(dev->base_addr, sizeof(ha_t));
4330 wavelan_list = wavelan_list->next;
4332 free_netdev(dev);
4335 #ifdef DEBUG_MODULE_TRACE
4336 printk(KERN_DEBUG "<- cleanup_module()\n");
4337 #endif
4339 #endif /* MODULE */
4340 MODULE_LICENSE("GPL");
4343 * This software may only be used and distributed
4344 * according to the terms of the GNU General Public License.
4346 * This software was developed as a component of the
4347 * Linux operating system.
4348 * It is based on other device drivers and information
4349 * either written or supplied by:
4350 * Ajay Bakre (bakre@paul.rutgers.edu),
4351 * Donald Becker (becker@scyld.com),
4352 * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4353 * Anders Klemets (klemets@it.kth.se),
4354 * Vladimir V. Kolpakov (w@stier.koenig.ru),
4355 * Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4356 * Pauline Middelink (middelin@polyware.iaf.nl),
4357 * Robert Morris (rtm@das.harvard.edu),
4358 * Jean Tourrilhes (jt@hplb.hpl.hp.com),
4359 * Girish Welling (welling@paul.rutgers.edu),
4361 * Thanks go also to:
4362 * James Ashton (jaa101@syseng.anu.edu.au),
4363 * Alan Cox (alan@lxorguk.ukuu.org.uk),
4364 * Allan Creighton (allanc@cs.usyd.edu.au),
4365 * Matthew Geier (matthew@cs.usyd.edu.au),
4366 * Remo di Giovanni (remo@cs.usyd.edu.au),
4367 * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4368 * Vipul Gupta (vgupta@cs.binghamton.edu),
4369 * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4370 * Tim Nicholson (tim@cs.usyd.edu.au),
4371 * Ian Parkin (ian@cs.usyd.edu.au),
4372 * John Rosenberg (johnr@cs.usyd.edu.au),
4373 * George Rossi (george@phm.gov.au),
4374 * Arthur Scott (arthur@cs.usyd.edu.au),
4375 * Peter Storey,
4376 * for their assistance and advice.
4378 * Please send bug reports, updates, comments to:
4380 * Bruce Janson Email: bruce@cs.usyd.edu.au
4381 * Basser Department of Computer Science Phone: +61-2-9351-3423
4382 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838