1 /* linux/drivers/usb/gadget/s3c-hsotg.c
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
8 * S3C USB2.0 High-speed / OtG driver
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/delay.h>
26 #include <linux/usb/ch9.h>
27 #include <linux/usb/gadget.h>
31 #include <plat/regs-usb-hsotg-phy.h>
32 #include <plat/regs-usb-hsotg.h>
33 #include <plat/regs-sys.h>
34 #include <plat/udc-hs.h>
36 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
40 * Unfortunately there seems to be a limit of the amount of data that can
41 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
42 * packets (which practially means 1 packet and 63 bytes of data) when the
45 * This means if we are wanting to move >127 bytes of data, we need to
46 * split the transactions up, but just doing one packet at a time does
47 * not work (this may be an implicit DATA0 PID on first packet of the
48 * transaction) and doing 2 packets is outside the controller's limits.
50 * If we try to lower the MPS size for EP0, then no transfers work properly
51 * for EP0, and the system will fail basic enumeration. As no cause for this
52 * has currently been found, we cannot support any large IN transfers for
55 #define EP0_MPS_LIMIT 64
61 * struct s3c_hsotg_ep - driver endpoint definition.
62 * @ep: The gadget layer representation of the endpoint.
63 * @name: The driver generated name for the endpoint.
64 * @queue: Queue of requests for this endpoint.
65 * @parent: Reference back to the parent device structure.
66 * @req: The current request that the endpoint is processing. This is
67 * used to indicate an request has been loaded onto the endpoint
68 * and has yet to be completed (maybe due to data move, or simply
69 * awaiting an ack from the core all the data has been completed).
70 * @debugfs: File entry for debugfs file for this endpoint.
71 * @lock: State lock to protect contents of endpoint.
72 * @dir_in: Set to true if this endpoint is of the IN direction, which
73 * means that it is sending data to the Host.
74 * @index: The index for the endpoint registers.
75 * @name: The name array passed to the USB core.
76 * @halted: Set if the endpoint has been halted.
77 * @periodic: Set if this is a periodic ep, such as Interrupt
78 * @sent_zlp: Set if we've sent a zero-length packet.
79 * @total_data: The total number of data bytes done.
80 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
81 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
82 * @last_load: The offset of data for the last start of request.
83 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
85 * This is the driver's state for each registered enpoint, allowing it
86 * to keep track of transactions that need doing. Each endpoint has a
87 * lock to protect the state, to try and avoid using an overall lock
88 * for the host controller as much as possible.
90 * For periodic IN endpoints, we have fifo_size and fifo_load to try
91 * and keep track of the amount of data in the periodic FIFO for each
92 * of these as we don't have a status register that tells us how much
97 struct list_head queue
;
98 struct s3c_hsotg
*parent
;
99 struct s3c_hsotg_req
*req
;
100 struct dentry
*debugfs
;
104 unsigned long total_data
;
105 unsigned int size_loaded
;
106 unsigned int last_load
;
107 unsigned int fifo_load
;
108 unsigned short fifo_size
;
110 unsigned char dir_in
;
113 unsigned int halted
:1;
114 unsigned int periodic
:1;
115 unsigned int sent_zlp
:1;
120 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
123 * struct s3c_hsotg - driver state.
124 * @dev: The parent device supplied to the probe function
125 * @driver: USB gadget driver
126 * @plat: The platform specific configuration data.
127 * @regs: The memory area mapped for accessing registers.
128 * @regs_res: The resource that was allocated when claiming register space.
129 * @irq: The IRQ number we are using
130 * @debug_root: root directrory for debugfs.
131 * @debug_file: main status file for debugfs.
132 * @debug_fifo: FIFO status file for debugfs.
133 * @ep0_reply: Request used for ep0 reply.
134 * @ep0_buff: Buffer for EP0 reply data, if needed.
135 * @ctrl_buff: Buffer for EP0 control requests.
136 * @ctrl_req: Request for EP0 control packets.
137 * @eps: The endpoints being supplied to the gadget framework
141 struct usb_gadget_driver
*driver
;
142 struct s3c_hsotg_plat
*plat
;
145 struct resource
*regs_res
;
148 struct dentry
*debug_root
;
149 struct dentry
*debug_file
;
150 struct dentry
*debug_fifo
;
152 struct usb_request
*ep0_reply
;
153 struct usb_request
*ctrl_req
;
157 struct usb_gadget gadget
;
158 struct s3c_hsotg_ep eps
[];
162 * struct s3c_hsotg_req - data transfer request
163 * @req: The USB gadget request
164 * @queue: The list of requests for the endpoint this is queued for.
165 * @in_progress: Has already had size/packets written to core
166 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
168 struct s3c_hsotg_req
{
169 struct usb_request req
;
170 struct list_head queue
;
171 unsigned char in_progress
;
172 unsigned char mapped
;
175 /* conversion functions */
176 static inline struct s3c_hsotg_req
*our_req(struct usb_request
*req
)
178 return container_of(req
, struct s3c_hsotg_req
, req
);
181 static inline struct s3c_hsotg_ep
*our_ep(struct usb_ep
*ep
)
183 return container_of(ep
, struct s3c_hsotg_ep
, ep
);
186 static inline struct s3c_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
188 return container_of(gadget
, struct s3c_hsotg
, gadget
);
191 static inline void __orr32(void __iomem
*ptr
, u32 val
)
193 writel(readl(ptr
) | val
, ptr
);
196 static inline void __bic32(void __iomem
*ptr
, u32 val
)
198 writel(readl(ptr
) & ~val
, ptr
);
201 /* forward decleration of functions */
202 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
);
205 * using_dma - return the DMA status of the driver.
206 * @hsotg: The driver state.
208 * Return true if we're using DMA.
210 * Currently, we have the DMA support code worked into everywhere
211 * that needs it, but the AMBA DMA implementation in the hardware can
212 * only DMA from 32bit aligned addresses. This means that gadgets such
213 * as the CDC Ethernet cannot work as they often pass packets which are
216 * Unfortunately the choice to use DMA or not is global to the controller
217 * and seems to be only settable when the controller is being put through
218 * a core reset. This means we either need to fix the gadgets to take
219 * account of DMA alignment, or add bounce buffers (yuerk).
221 * Until this issue is sorted out, we always return 'false'.
223 static inline bool using_dma(struct s3c_hsotg
*hsotg
)
225 return false; /* support is not complete */
229 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
230 * @hsotg: The device state
231 * @ints: A bitmask of the interrupts to enable
233 static void s3c_hsotg_en_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
235 u32 gsintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
238 new_gsintmsk
= gsintmsk
| ints
;
240 if (new_gsintmsk
!= gsintmsk
) {
241 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
242 writel(new_gsintmsk
, hsotg
->regs
+ S3C_GINTMSK
);
247 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
248 * @hsotg: The device state
249 * @ints: A bitmask of the interrupts to enable
251 static void s3c_hsotg_disable_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
253 u32 gsintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
256 new_gsintmsk
= gsintmsk
& ~ints
;
258 if (new_gsintmsk
!= gsintmsk
)
259 writel(new_gsintmsk
, hsotg
->regs
+ S3C_GINTMSK
);
263 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
264 * @hsotg: The device state
265 * @ep: The endpoint index
266 * @dir_in: True if direction is in.
267 * @en: The enable value, true to enable
269 * Set or clear the mask for an individual endpoint's interrupt
272 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg
*hsotg
,
273 unsigned int ep
, unsigned int dir_in
,
283 local_irq_save(flags
);
284 daint
= readl(hsotg
->regs
+ S3C_DAINTMSK
);
289 writel(daint
, hsotg
->regs
+ S3C_DAINTMSK
);
290 local_irq_restore(flags
);
294 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
295 * @hsotg: The device instance.
297 static void s3c_hsotg_init_fifo(struct s3c_hsotg
*hsotg
)
299 /* the ryu 2.6.24 release ahs
300 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
301 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
302 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
303 hsotg->regs + S3C_GNPTXFSIZ);
306 /* set FIFO sizes to 2048/0x1C0 */
308 writel(2048, hsotg
->regs
+ S3C_GRXFSIZ
);
309 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
310 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
311 hsotg
->regs
+ S3C_GNPTXFSIZ
);
315 * @ep: USB endpoint to allocate request for.
316 * @flags: Allocation flags
318 * Allocate a new USB request structure appropriate for the specified endpoint
320 struct usb_request
*s3c_hsotg_ep_alloc_request(struct usb_ep
*ep
, gfp_t flags
)
322 struct s3c_hsotg_req
*req
;
324 req
= kzalloc(sizeof(struct s3c_hsotg_req
), flags
);
328 INIT_LIST_HEAD(&req
->queue
);
330 req
->req
.dma
= DMA_ADDR_INVALID
;
335 * is_ep_periodic - return true if the endpoint is in periodic mode.
336 * @hs_ep: The endpoint to query.
338 * Returns true if the endpoint is in periodic mode, meaning it is being
339 * used for an Interrupt or ISO transfer.
341 static inline int is_ep_periodic(struct s3c_hsotg_ep
*hs_ep
)
343 return hs_ep
->periodic
;
347 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
348 * @hsotg: The device state.
349 * @hs_ep: The endpoint for the request
350 * @hs_req: The request being processed.
352 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
353 * of a request to ensure the buffer is ready for access by the caller.
355 static void s3c_hsotg_unmap_dma(struct s3c_hsotg
*hsotg
,
356 struct s3c_hsotg_ep
*hs_ep
,
357 struct s3c_hsotg_req
*hs_req
)
359 struct usb_request
*req
= &hs_req
->req
;
360 enum dma_data_direction dir
;
362 dir
= hs_ep
->dir_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
364 /* ignore this if we're not moving any data */
365 if (hs_req
->req
.length
== 0)
368 if (hs_req
->mapped
) {
369 /* we mapped this, so unmap and remove the dma */
371 dma_unmap_single(hsotg
->dev
, req
->dma
, req
->length
, dir
);
373 req
->dma
= DMA_ADDR_INVALID
;
376 dma_sync_single(hsotg
->dev
, req
->dma
, req
->length
, dir
);
381 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
382 * @hsotg: The controller state.
383 * @hs_ep: The endpoint we're going to write for.
384 * @hs_req: The request to write data for.
386 * This is called when the TxFIFO has some space in it to hold a new
387 * transmission and we have something to give it. The actual setup of
388 * the data size is done elsewhere, so all we have to do is to actually
391 * The return value is zero if there is more space (or nothing was done)
392 * otherwise -ENOSPC is returned if the FIFO space was used up.
394 * This routine is only needed for PIO
396 static int s3c_hsotg_write_fifo(struct s3c_hsotg
*hsotg
,
397 struct s3c_hsotg_ep
*hs_ep
,
398 struct s3c_hsotg_req
*hs_req
)
400 bool periodic
= is_ep_periodic(hs_ep
);
401 u32 gnptxsts
= readl(hsotg
->regs
+ S3C_GNPTXSTS
);
402 int buf_pos
= hs_req
->req
.actual
;
403 int to_write
= hs_ep
->size_loaded
;
408 to_write
-= (buf_pos
- hs_ep
->last_load
);
410 /* if there's nothing to write, get out early */
415 u32 epsize
= readl(hsotg
->regs
+ S3C_DIEPTSIZ(hs_ep
->index
));
419 /* work out how much data was loaded so we can calculate
420 * how much data is left in the fifo. */
422 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
424 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
426 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
428 /* how much of the data has moved */
429 size_done
= hs_ep
->size_loaded
- size_left
;
431 /* how much data is left in the fifo */
432 can_write
= hs_ep
->fifo_load
- size_done
;
433 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
434 __func__
, can_write
);
436 can_write
= hs_ep
->fifo_size
- can_write
;
437 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
438 __func__
, can_write
);
440 if (can_write
<= 0) {
441 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
445 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts
) == 0) {
447 "%s: no queue slots available (0x%08x)\n",
450 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_NPTxFEmp
);
454 can_write
= S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts
);
457 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
458 __func__
, gnptxsts
, can_write
, to_write
, hs_ep
->ep
.maxpacket
);
460 /* limit to 512 bytes of data, it seems at least on the non-periodic
461 * FIFO, requests of >512 cause the endpoint to get stuck with a
462 * fragment of the end of the transfer in it.
467 /* see if we can write data */
469 if (to_write
> can_write
) {
470 to_write
= can_write
;
471 pkt_round
= to_write
% hs_ep
->ep
.maxpacket
;
473 /* Not sure, but we probably shouldn't be writing partial
474 * packets into the FIFO, so round the write down to an
475 * exact number of packets.
477 * Note, we do not currently check to see if we can ever
478 * write a full packet or not to the FIFO.
482 to_write
-= pkt_round
;
484 /* enable correct FIFO interrupt to alert us when there
485 * is more room left. */
487 s3c_hsotg_en_gsint(hsotg
,
488 periodic
? S3C_GINTSTS_PTxFEmp
:
489 S3C_GINTSTS_NPTxFEmp
);
492 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
493 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
498 hs_req
->req
.actual
= buf_pos
+ to_write
;
499 hs_ep
->total_data
+= to_write
;
502 hs_ep
->fifo_load
+= to_write
;
504 to_write
= DIV_ROUND_UP(to_write
, 4);
505 data
= hs_req
->req
.buf
+ buf_pos
;
507 writesl(hsotg
->regs
+ S3C_EPFIFO(hs_ep
->index
), data
, to_write
);
509 return (to_write
>= can_write
) ? -ENOSPC
: 0;
513 * get_ep_limit - get the maximum data legnth for this endpoint
514 * @hs_ep: The endpoint
516 * Return the maximum data that can be queued in one go on a given endpoint
517 * so that transfers that are too long can be split.
519 static unsigned get_ep_limit(struct s3c_hsotg_ep
*hs_ep
)
521 int index
= hs_ep
->index
;
526 maxsize
= S3C_DxEPTSIZ_XferSize_LIMIT
+ 1;
527 maxpkt
= S3C_DxEPTSIZ_PktCnt_LIMIT
+ 1;
530 /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
532 maxpkt
= S3C_DIEPTSIZ0_PktCnt_LIMIT
+ 1;
539 /* we made the constant loading easier above by using +1 */
543 /* constrain by packet count if maxpkts*pktsize is greater
544 * than the length register size. */
546 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
547 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
553 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
554 * @hsotg: The controller state.
555 * @hs_ep: The endpoint to process a request for
556 * @hs_req: The request to start.
557 * @continuing: True if we are doing more for the current request.
559 * Start the given request running by setting the endpoint registers
560 * appropriately, and writing any data to the FIFOs.
562 static void s3c_hsotg_start_req(struct s3c_hsotg
*hsotg
,
563 struct s3c_hsotg_ep
*hs_ep
,
564 struct s3c_hsotg_req
*hs_req
,
567 struct usb_request
*ureq
= &hs_req
->req
;
568 int index
= hs_ep
->index
;
569 int dir_in
= hs_ep
->dir_in
;
579 if (hs_ep
->req
&& !continuing
) {
580 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
583 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
585 "%s: continue different req\n", __func__
);
591 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
592 epsize_reg
= dir_in
? S3C_DIEPTSIZ(index
) : S3C_DOEPTSIZ(index
);
594 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
595 __func__
, readl(hsotg
->regs
+ epctrl_reg
), index
,
596 hs_ep
->dir_in
? "in" : "out");
598 length
= ureq
->length
- ureq
->actual
;
602 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
603 ureq
->buf
, length
, ureq
->dma
,
604 ureq
->no_interrupt
, ureq
->zero
, ureq
->short_not_ok
);
606 maxreq
= get_ep_limit(hs_ep
);
607 if (length
> maxreq
) {
608 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
610 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
611 __func__
, length
, maxreq
, round
);
613 /* round down to multiple of packets */
621 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
623 packets
= 1; /* send one packet if length is zero. */
625 if (dir_in
&& index
!= 0)
626 epsize
= S3C_DxEPTSIZ_MC(1);
630 if (index
!= 0 && ureq
->zero
) {
631 /* test for the packets being exactly right for the
634 if (length
== (packets
* hs_ep
->ep
.maxpacket
))
638 epsize
|= S3C_DxEPTSIZ_PktCnt(packets
);
639 epsize
|= S3C_DxEPTSIZ_XferSize(length
);
641 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
642 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
644 /* store the request as the current one we're doing */
647 /* write size / packets */
648 writel(epsize
, hsotg
->regs
+ epsize_reg
);
650 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
652 if (ctrl
& S3C_DxEPCTL_Stall
) {
653 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
655 /* not sure what we can do here, if it is EP0 then we should
656 * get this cleared once the endpoint has transmitted the
657 * STALL packet, otherwise it needs to be cleared by the
662 if (using_dma(hsotg
)) {
663 unsigned int dma_reg
;
665 /* write DMA address to control register, buffer already
666 * synced by s3c_hsotg_ep_queue(). */
668 dma_reg
= dir_in
? S3C_DIEPDMA(index
) : S3C_DOEPDMA(index
);
669 writel(ureq
->dma
, hsotg
->regs
+ dma_reg
);
671 dev_dbg(hsotg
->dev
, "%s: 0x%08x => 0x%08x\n",
672 __func__
, ureq
->dma
, dma_reg
);
675 ctrl
|= S3C_DxEPCTL_EPEna
; /* ensure ep enabled */
676 ctrl
|= S3C_DxEPCTL_USBActEp
;
677 ctrl
|= S3C_DxEPCTL_CNAK
; /* clear NAK set by core */
679 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
680 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
682 /* set these, it seems that DMA support increments past the end
683 * of the packet buffer so we need to calculate the length from
684 * this information. */
685 hs_ep
->size_loaded
= length
;
686 hs_ep
->last_load
= ureq
->actual
;
688 if (dir_in
&& !using_dma(hsotg
)) {
689 /* set these anyway, we may need them for non-periodic in */
690 hs_ep
->fifo_load
= 0;
692 s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
695 /* clear the INTknTXFEmpMsk when we start request, more as a aide
696 * to debugging to see what is going on. */
698 writel(S3C_DIEPMSK_INTknTXFEmpMsk
,
699 hsotg
->regs
+ S3C_DIEPINT(index
));
701 /* Note, trying to clear the NAK here causes problems with transmit
702 * on the S3C6400 ending up with the TXFIFO becomming full. */
704 /* check ep is enabled */
705 if (!(readl(hsotg
->regs
+ epctrl_reg
) & S3C_DxEPCTL_EPEna
))
707 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
708 index
, readl(hsotg
->regs
+ epctrl_reg
));
710 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n",
711 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
715 * s3c_hsotg_map_dma - map the DMA memory being used for the request
716 * @hsotg: The device state.
717 * @hs_ep: The endpoint the request is on.
718 * @req: The request being processed.
720 * We've been asked to queue a request, so ensure that the memory buffer
721 * is correctly setup for DMA. If we've been passed an extant DMA address
722 * then ensure the buffer has been synced to memory. If our buffer has no
723 * DMA memory, then we map the memory and mark our request to allow us to
724 * cleanup on completion.
726 static int s3c_hsotg_map_dma(struct s3c_hsotg
*hsotg
,
727 struct s3c_hsotg_ep
*hs_ep
,
728 struct usb_request
*req
)
730 enum dma_data_direction dir
;
731 struct s3c_hsotg_req
*hs_req
= our_req(req
);
733 dir
= hs_ep
->dir_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
735 /* if the length is zero, ignore the DMA data */
736 if (hs_req
->req
.length
== 0)
739 if (req
->dma
== DMA_ADDR_INVALID
) {
742 dma
= dma_map_single(hsotg
->dev
, req
->buf
, req
->length
, dir
);
744 if (unlikely(dma_mapping_error(hsotg
->dev
, dma
)))
748 dev_err(hsotg
->dev
, "%s: unaligned dma buffer\n",
751 dma_unmap_single(hsotg
->dev
, dma
, req
->length
, dir
);
758 dma_sync_single(hsotg
->dev
, req
->dma
, req
->length
, dir
);
765 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
766 __func__
, req
->buf
, req
->length
);
771 static int s3c_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
774 struct s3c_hsotg_req
*hs_req
= our_req(req
);
775 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
776 struct s3c_hsotg
*hs
= hs_ep
->parent
;
777 unsigned long irqflags
;
780 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
781 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
782 req
->zero
, req
->short_not_ok
);
784 /* initialise status of the request */
785 INIT_LIST_HEAD(&hs_req
->queue
);
787 req
->status
= -EINPROGRESS
;
789 /* if we're using DMA, sync the buffers as necessary */
791 int ret
= s3c_hsotg_map_dma(hs
, hs_ep
, req
);
796 spin_lock_irqsave(&hs_ep
->lock
, irqflags
);
798 first
= list_empty(&hs_ep
->queue
);
799 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
802 s3c_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
804 spin_unlock_irqrestore(&hs_ep
->lock
, irqflags
);
809 static void s3c_hsotg_ep_free_request(struct usb_ep
*ep
,
810 struct usb_request
*req
)
812 struct s3c_hsotg_req
*hs_req
= our_req(req
);
818 * s3c_hsotg_complete_oursetup - setup completion callback
819 * @ep: The endpoint the request was on.
820 * @req: The request completed.
822 * Called on completion of any requests the driver itself
823 * submitted that need cleaning up.
825 static void s3c_hsotg_complete_oursetup(struct usb_ep
*ep
,
826 struct usb_request
*req
)
828 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
829 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
831 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
833 s3c_hsotg_ep_free_request(ep
, req
);
837 * ep_from_windex - convert control wIndex value to endpoint
838 * @hsotg: The driver state.
839 * @windex: The control request wIndex field (in host order).
841 * Convert the given wIndex into a pointer to an driver endpoint
842 * structure, or return NULL if it is not a valid endpoint.
844 static struct s3c_hsotg_ep
*ep_from_windex(struct s3c_hsotg
*hsotg
,
847 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[windex
& 0x7F];
848 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
849 int idx
= windex
& 0x7F;
854 if (idx
> S3C_HSOTG_EPS
)
857 if (idx
&& ep
->dir_in
!= dir
)
864 * s3c_hsotg_send_reply - send reply to control request
865 * @hsotg: The device state
867 * @buff: Buffer for request
868 * @length: Length of reply.
870 * Create a request and queue it on the given endpoint. This is useful as
871 * an internal method of sending replies to certain control requests, etc.
873 static int s3c_hsotg_send_reply(struct s3c_hsotg
*hsotg
,
874 struct s3c_hsotg_ep
*ep
,
878 struct usb_request
*req
;
881 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
883 req
= s3c_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
884 hsotg
->ep0_reply
= req
;
886 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
890 req
->buf
= hsotg
->ep0_buff
;
891 req
->length
= length
;
892 req
->zero
= 1; /* always do zero-length final transfer */
893 req
->complete
= s3c_hsotg_complete_oursetup
;
896 memcpy(req
->buf
, buff
, length
);
900 ret
= s3c_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
902 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
910 * s3c_hsotg_process_req_status - process request GET_STATUS
911 * @hsotg: The device state
912 * @ctrl: USB control request
914 static int s3c_hsotg_process_req_status(struct s3c_hsotg
*hsotg
,
915 struct usb_ctrlrequest
*ctrl
)
917 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
918 struct s3c_hsotg_ep
*ep
;
922 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
925 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
929 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
930 case USB_RECIP_DEVICE
:
931 reply
= cpu_to_le16(0); /* bit 0 => self powered,
932 * bit 1 => remote wakeup */
935 case USB_RECIP_INTERFACE
:
936 /* currently, the data result should be zero */
937 reply
= cpu_to_le16(0);
940 case USB_RECIP_ENDPOINT
:
941 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
945 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
952 if (le16_to_cpu(ctrl
->wLength
) != 2)
955 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
957 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
964 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
);
967 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
968 * @hsotg: The device state
969 * @ctrl: USB control request
971 static int s3c_hsotg_process_req_feature(struct s3c_hsotg
*hsotg
,
972 struct usb_ctrlrequest
*ctrl
)
974 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
975 struct s3c_hsotg_ep
*ep
;
977 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
978 __func__
, set
? "SET" : "CLEAR");
980 if (ctrl
->bRequestType
== USB_RECIP_ENDPOINT
) {
981 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
983 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
984 __func__
, le16_to_cpu(ctrl
->wIndex
));
988 switch (le16_to_cpu(ctrl
->wValue
)) {
989 case USB_ENDPOINT_HALT
:
990 s3c_hsotg_ep_sethalt(&ep
->ep
, set
);
997 return -ENOENT
; /* currently only deal with endpoint */
1003 * s3c_hsotg_process_control - process a control request
1004 * @hsotg: The device state
1005 * @ctrl: The control request received
1007 * The controller has received the SETUP phase of a control request, and
1008 * needs to work out what to do next (and whether to pass it on to the
1011 static void s3c_hsotg_process_control(struct s3c_hsotg
*hsotg
,
1012 struct usb_ctrlrequest
*ctrl
)
1014 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1020 dev_dbg(hsotg
->dev
, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1021 ctrl
->bRequest
, ctrl
->bRequestType
,
1022 ctrl
->wValue
, ctrl
->wLength
);
1024 /* record the direction of the request, for later use when enquing
1025 * packets onto EP0. */
1027 ep0
->dir_in
= (ctrl
->bRequestType
& USB_DIR_IN
) ? 1 : 0;
1028 dev_dbg(hsotg
->dev
, "ctrl: dir_in=%d\n", ep0
->dir_in
);
1030 /* if we've no data with this request, then the last part of the
1031 * transaction is going to implicitly be IN. */
1032 if (ctrl
->wLength
== 0)
1035 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1036 switch (ctrl
->bRequest
) {
1037 case USB_REQ_SET_ADDRESS
:
1038 dcfg
= readl(hsotg
->regs
+ S3C_DCFG
);
1039 dcfg
&= ~S3C_DCFG_DevAddr_MASK
;
1040 dcfg
|= ctrl
->wValue
<< S3C_DCFG_DevAddr_SHIFT
;
1041 writel(dcfg
, hsotg
->regs
+ S3C_DCFG
);
1043 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1045 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1048 case USB_REQ_GET_STATUS
:
1049 ret
= s3c_hsotg_process_req_status(hsotg
, ctrl
);
1052 case USB_REQ_CLEAR_FEATURE
:
1053 case USB_REQ_SET_FEATURE
:
1054 ret
= s3c_hsotg_process_req_feature(hsotg
, ctrl
);
1059 /* as a fallback, try delivering it to the driver to deal with */
1061 if (ret
== 0 && hsotg
->driver
) {
1062 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1064 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1069 /* need to generate zlp in reply or take data */
1070 /* todo - deal with any data we might be sent? */
1071 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1075 /* the request is either unhandlable, or is not formatted correctly
1076 * so respond with a STALL for the status stage to indicate failure.
1083 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1084 reg
= (ep0
->dir_in
) ? S3C_DIEPCTL0
: S3C_DOEPCTL0
;
1086 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1087 * taken effect, so no need to clear later. */
1089 ctrl
= readl(hsotg
->regs
+ reg
);
1090 ctrl
|= S3C_DxEPCTL_Stall
;
1091 ctrl
|= S3C_DxEPCTL_CNAK
;
1092 writel(ctrl
, hsotg
->regs
+ reg
);
1095 "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1096 ctrl
, reg
, readl(hsotg
->regs
+ reg
));
1098 /* don't belive we need to anything more to get the EP
1099 * to reply with a STALL packet */
1103 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
);
1106 * s3c_hsotg_complete_setup - completion of a setup transfer
1107 * @ep: The endpoint the request was on.
1108 * @req: The request completed.
1110 * Called on completion of any requests the driver itself submitted for
1113 static void s3c_hsotg_complete_setup(struct usb_ep
*ep
,
1114 struct usb_request
*req
)
1116 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
1117 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
1119 if (req
->status
< 0) {
1120 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1124 if (req
->actual
== 0)
1125 s3c_hsotg_enqueue_setup(hsotg
);
1127 s3c_hsotg_process_control(hsotg
, req
->buf
);
1131 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1132 * @hsotg: The device state.
1134 * Enqueue a request on EP0 if necessary to received any SETUP packets
1135 * received from the host.
1137 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
)
1139 struct usb_request
*req
= hsotg
->ctrl_req
;
1140 struct s3c_hsotg_req
*hs_req
= our_req(req
);
1143 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
1147 req
->buf
= hsotg
->ctrl_buff
;
1148 req
->complete
= s3c_hsotg_complete_setup
;
1150 if (!list_empty(&hs_req
->queue
)) {
1151 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
1155 hsotg
->eps
[0].dir_in
= 0;
1157 ret
= s3c_hsotg_ep_queue(&hsotg
->eps
[0].ep
, req
, GFP_ATOMIC
);
1159 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
1160 /* Don't think there's much we can do other than watch the
1166 * get_ep_head - return the first request on the endpoint
1167 * @hs_ep: The controller endpoint to get
1169 * Get the first request on the endpoint.
1171 static struct s3c_hsotg_req
*get_ep_head(struct s3c_hsotg_ep
*hs_ep
)
1173 if (list_empty(&hs_ep
->queue
))
1176 return list_first_entry(&hs_ep
->queue
, struct s3c_hsotg_req
, queue
);
1180 * s3c_hsotg_complete_request - complete a request given to us
1181 * @hsotg: The device state.
1182 * @hs_ep: The endpoint the request was on.
1183 * @hs_req: The request to complete.
1184 * @result: The result code (0 => Ok, otherwise errno)
1186 * The given request has finished, so call the necessary completion
1187 * if it has one and then look to see if we can start a new request
1190 * Note, expects the ep to already be locked as appropriate.
1192 static void s3c_hsotg_complete_request(struct s3c_hsotg
*hsotg
,
1193 struct s3c_hsotg_ep
*hs_ep
,
1194 struct s3c_hsotg_req
*hs_req
,
1200 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
1204 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
1205 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
1207 /* only replace the status if we've not already set an error
1208 * from a previous transaction */
1210 if (hs_req
->req
.status
== -EINPROGRESS
)
1211 hs_req
->req
.status
= result
;
1214 list_del_init(&hs_req
->queue
);
1216 if (using_dma(hsotg
))
1217 s3c_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
1219 /* call the complete request with the locks off, just in case the
1220 * request tries to queue more work for this endpoint. */
1222 if (hs_req
->req
.complete
) {
1223 spin_unlock(&hs_ep
->lock
);
1224 hs_req
->req
.complete(&hs_ep
->ep
, &hs_req
->req
);
1225 spin_lock(&hs_ep
->lock
);
1228 /* Look to see if there is anything else to do. Note, the completion
1229 * of the previous request may have caused a new request to be started
1230 * so be careful when doing this. */
1232 if (!hs_ep
->req
&& result
>= 0) {
1233 restart
= !list_empty(&hs_ep
->queue
);
1235 hs_req
= get_ep_head(hs_ep
);
1236 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1242 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1243 * @hsotg: The device state.
1244 * @hs_ep: The endpoint the request was on.
1245 * @hs_req: The request to complete.
1246 * @result: The result code (0 => Ok, otherwise errno)
1248 * See s3c_hsotg_complete_request(), but called with the endpoint's
1251 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg
*hsotg
,
1252 struct s3c_hsotg_ep
*hs_ep
,
1253 struct s3c_hsotg_req
*hs_req
,
1256 unsigned long flags
;
1258 spin_lock_irqsave(&hs_ep
->lock
, flags
);
1259 s3c_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
1260 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
1264 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1265 * @hsotg: The device state.
1266 * @ep_idx: The endpoint index for the data
1267 * @size: The size of data in the fifo, in bytes
1269 * The FIFO status shows there is data to read from the FIFO for a given
1270 * endpoint, so sort out whether we need to read the data into a request
1271 * that has been made for that endpoint.
1273 static void s3c_hsotg_rx_data(struct s3c_hsotg
*hsotg
, int ep_idx
, int size
)
1275 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep_idx
];
1276 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1277 void __iomem
*fifo
= hsotg
->regs
+ S3C_EPFIFO(ep_idx
);
1283 u32 epctl
= readl(hsotg
->regs
+ S3C_DOEPCTL(ep_idx
));
1286 dev_warn(hsotg
->dev
,
1287 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1288 __func__
, size
, ep_idx
, epctl
);
1290 /* dump the data from the FIFO, we've nothing we can do */
1291 for (ptr
= 0; ptr
< size
; ptr
+= 4)
1297 spin_lock(&hs_ep
->lock
);
1300 read_ptr
= hs_req
->req
.actual
;
1301 max_req
= hs_req
->req
.length
- read_ptr
;
1303 if (to_read
> max_req
) {
1304 /* more data appeared than we where willing
1305 * to deal with in this request.
1308 /* currently we don't deal this */
1312 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
1313 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
1315 hs_ep
->total_data
+= to_read
;
1316 hs_req
->req
.actual
+= to_read
;
1317 to_read
= DIV_ROUND_UP(to_read
, 4);
1319 /* note, we might over-write the buffer end by 3 bytes depending on
1320 * alignment of the data. */
1321 readsl(fifo
, hs_req
->req
.buf
+ read_ptr
, to_read
);
1323 spin_unlock(&hs_ep
->lock
);
1327 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1328 * @hsotg: The device instance
1329 * @req: The request currently on this endpoint
1331 * Generate a zero-length IN packet request for terminating a SETUP
1334 * Note, since we don't write any data to the TxFIFO, then it is
1335 * currently belived that we do not need to wait for any space in
1338 static void s3c_hsotg_send_zlp(struct s3c_hsotg
*hsotg
,
1339 struct s3c_hsotg_req
*req
)
1344 dev_warn(hsotg
->dev
, "%s: no request?\n", __func__
);
1348 if (req
->req
.length
== 0) {
1349 hsotg
->eps
[0].sent_zlp
= 1;
1350 s3c_hsotg_enqueue_setup(hsotg
);
1354 hsotg
->eps
[0].dir_in
= 1;
1355 hsotg
->eps
[0].sent_zlp
= 1;
1357 dev_dbg(hsotg
->dev
, "sending zero-length packet\n");
1359 /* issue a zero-sized packet to terminate this */
1360 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1361 S3C_DxEPTSIZ_XferSize(0), hsotg
->regs
+ S3C_DIEPTSIZ(0));
1363 ctrl
= readl(hsotg
->regs
+ S3C_DIEPCTL0
);
1364 ctrl
|= S3C_DxEPCTL_CNAK
; /* clear NAK set by core */
1365 ctrl
|= S3C_DxEPCTL_EPEna
; /* ensure ep enabled */
1366 ctrl
|= S3C_DxEPCTL_USBActEp
;
1367 writel(ctrl
, hsotg
->regs
+ S3C_DIEPCTL0
);
1371 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1372 * @hsotg: The device instance
1373 * @epnum: The endpoint received from
1374 * @was_setup: Set if processing a SetupDone event.
1376 * The RXFIFO has delivered an OutDone event, which means that the data
1377 * transfer for an OUT endpoint has been completed, either by a short
1378 * packet or by the finish of a transfer.
1380 static void s3c_hsotg_handle_outdone(struct s3c_hsotg
*hsotg
,
1381 int epnum
, bool was_setup
)
1383 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[epnum
];
1384 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1385 struct usb_request
*req
= &hs_req
->req
;
1389 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
1393 if (using_dma(hsotg
)) {
1394 u32 epsize
= readl(hsotg
->regs
+ S3C_DOEPTSIZ(epnum
));
1398 /* Calculate the size of the transfer by checking how much
1399 * is left in the endpoint size register and then working it
1400 * out from the amount we loaded for the transfer.
1402 * We need to do this as DMA pointers are always 32bit aligned
1403 * so may overshoot/undershoot the transfer.
1406 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
1408 size_done
= hs_ep
->size_loaded
- size_left
;
1409 size_done
+= hs_ep
->last_load
;
1411 req
->actual
= size_done
;
1414 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
1415 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
1416 __func__
, req
->actual
, req
->length
);
1418 /* todo - what should we return here? there's no one else
1419 * even bothering to check the status. */
1423 if (!was_setup
&& req
->complete
!= s3c_hsotg_complete_setup
)
1424 s3c_hsotg_send_zlp(hsotg
, hs_req
);
1427 s3c_hsotg_complete_request_lock(hsotg
, hs_ep
, hs_req
, result
);
1431 * s3c_hsotg_read_frameno - read current frame number
1432 * @hsotg: The device instance
1434 * Return the current frame number
1436 static u32
s3c_hsotg_read_frameno(struct s3c_hsotg
*hsotg
)
1440 dsts
= readl(hsotg
->regs
+ S3C_DSTS
);
1441 dsts
&= S3C_DSTS_SOFFN_MASK
;
1442 dsts
>>= S3C_DSTS_SOFFN_SHIFT
;
1448 * s3c_hsotg_handle_rx - RX FIFO has data
1449 * @hsotg: The device instance
1451 * The IRQ handler has detected that the RX FIFO has some data in it
1452 * that requires processing, so find out what is in there and do the
1455 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1456 * chunks, so if you have x packets received on an endpoint you'll get x
1457 * FIFO events delivered, each with a packet's worth of data in it.
1459 * When using DMA, we should not be processing events from the RXFIFO
1460 * as the actual data should be sent to the memory directly and we turn
1461 * on the completion interrupts to get notifications of transfer completion.
1463 void s3c_hsotg_handle_rx(struct s3c_hsotg
*hsotg
)
1465 u32 grxstsr
= readl(hsotg
->regs
+ S3C_GRXSTSP
);
1466 u32 epnum
, status
, size
;
1468 WARN_ON(using_dma(hsotg
));
1470 epnum
= grxstsr
& S3C_GRXSTS_EPNum_MASK
;
1471 status
= grxstsr
& S3C_GRXSTS_PktSts_MASK
;
1473 size
= grxstsr
& S3C_GRXSTS_ByteCnt_MASK
;
1474 size
>>= S3C_GRXSTS_ByteCnt_SHIFT
;
1477 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1478 __func__
, grxstsr
, size
, epnum
);
1480 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1482 switch (status
>> S3C_GRXSTS_PktSts_SHIFT
) {
1483 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK
):
1484 dev_dbg(hsotg
->dev
, "GlobalOutNAK\n");
1487 case __status(S3C_GRXSTS_PktSts_OutDone
):
1488 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
1489 s3c_hsotg_read_frameno(hsotg
));
1491 if (!using_dma(hsotg
))
1492 s3c_hsotg_handle_outdone(hsotg
, epnum
, false);
1495 case __status(S3C_GRXSTS_PktSts_SetupDone
):
1497 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1498 s3c_hsotg_read_frameno(hsotg
),
1499 readl(hsotg
->regs
+ S3C_DOEPCTL(0)));
1501 s3c_hsotg_handle_outdone(hsotg
, epnum
, true);
1504 case __status(S3C_GRXSTS_PktSts_OutRX
):
1505 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1508 case __status(S3C_GRXSTS_PktSts_SetupRX
):
1510 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1511 s3c_hsotg_read_frameno(hsotg
),
1512 readl(hsotg
->regs
+ S3C_DOEPCTL(0)));
1514 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1518 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
1521 s3c_hsotg_dump(hsotg
);
1527 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1528 * @mps: The maximum packet size in bytes.
1530 static u32
s3c_hsotg_ep0_mps(unsigned int mps
)
1534 return S3C_D0EPCTL_MPS_64
;
1536 return S3C_D0EPCTL_MPS_32
;
1538 return S3C_D0EPCTL_MPS_16
;
1540 return S3C_D0EPCTL_MPS_8
;
1543 /* bad max packet size, warn and return invalid result */
1549 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1550 * @hsotg: The driver state.
1551 * @ep: The index number of the endpoint
1552 * @mps: The maximum packet size in bytes
1554 * Configure the maximum packet size for the given endpoint, updating
1555 * the hardware control registers to reflect this.
1557 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg
*hsotg
,
1558 unsigned int ep
, unsigned int mps
)
1560 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep
];
1561 void __iomem
*regs
= hsotg
->regs
;
1566 /* EP0 is a special case */
1567 mpsval
= s3c_hsotg_ep0_mps(mps
);
1571 if (mps
>= S3C_DxEPCTL_MPS_LIMIT
+1)
1577 hs_ep
->ep
.maxpacket
= mps
;
1579 /* update both the in and out endpoint controldir_ registers, even
1580 * if one of the directions may not be in use. */
1582 reg
= readl(regs
+ S3C_DIEPCTL(ep
));
1583 reg
&= ~S3C_DxEPCTL_MPS_MASK
;
1585 writel(reg
, regs
+ S3C_DIEPCTL(ep
));
1587 reg
= readl(regs
+ S3C_DOEPCTL(ep
));
1588 reg
&= ~S3C_DxEPCTL_MPS_MASK
;
1590 writel(reg
, regs
+ S3C_DOEPCTL(ep
));
1595 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
1600 * s3c_hsotg_trytx - check to see if anything needs transmitting
1601 * @hsotg: The driver state
1602 * @hs_ep: The driver endpoint to check.
1604 * Check to see if there is a request that has data to send, and if so
1605 * make an attempt to write data into the FIFO.
1607 static int s3c_hsotg_trytx(struct s3c_hsotg
*hsotg
,
1608 struct s3c_hsotg_ep
*hs_ep
)
1610 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1612 if (!hs_ep
->dir_in
|| !hs_req
)
1615 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
1616 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
1618 return s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1625 * s3c_hsotg_complete_in - complete IN transfer
1626 * @hsotg: The device state.
1627 * @hs_ep: The endpoint that has just completed.
1629 * An IN transfer has been completed, update the transfer's state and then
1630 * call the relevant completion routines.
1632 static void s3c_hsotg_complete_in(struct s3c_hsotg
*hsotg
,
1633 struct s3c_hsotg_ep
*hs_ep
)
1635 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1636 u32 epsize
= readl(hsotg
->regs
+ S3C_DIEPTSIZ(hs_ep
->index
));
1637 int size_left
, size_done
;
1640 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
1644 /* Calculate the size of the transfer by checking how much is left
1645 * in the endpoint size register and then working it out from
1646 * the amount we loaded for the transfer.
1648 * We do this even for DMA, as the transfer may have incremented
1649 * past the end of the buffer (DMA transfers are always 32bit
1653 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
1655 size_done
= hs_ep
->size_loaded
- size_left
;
1656 size_done
+= hs_ep
->last_load
;
1658 if (hs_req
->req
.actual
!= size_done
)
1659 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
1660 __func__
, hs_req
->req
.actual
, size_done
);
1662 hs_req
->req
.actual
= size_done
;
1664 /* if we did all of the transfer, and there is more data left
1665 * around, then try restarting the rest of the request */
1667 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
1668 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
1669 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1671 s3c_hsotg_complete_request_lock(hsotg
, hs_ep
, hs_req
, 0);
1675 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1676 * @hsotg: The driver state
1677 * @idx: The index for the endpoint (0..15)
1678 * @dir_in: Set if this is an IN endpoint
1680 * Process and clear any interrupt pending for an individual endpoint
1682 static void s3c_hsotg_epint(struct s3c_hsotg
*hsotg
, unsigned int idx
,
1685 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[idx
];
1686 u32 epint_reg
= dir_in
? S3C_DIEPINT(idx
) : S3C_DOEPINT(idx
);
1687 u32 epctl_reg
= dir_in
? S3C_DIEPCTL(idx
) : S3C_DOEPCTL(idx
);
1688 u32 epsiz_reg
= dir_in
? S3C_DIEPTSIZ(idx
) : S3C_DOEPTSIZ(idx
);
1692 ints
= readl(hsotg
->regs
+ epint_reg
);
1694 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1695 __func__
, idx
, dir_in
? "in" : "out", ints
);
1697 if (ints
& S3C_DxEPINT_XferCompl
) {
1699 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1700 __func__
, readl(hsotg
->regs
+ epctl_reg
),
1701 readl(hsotg
->regs
+ epsiz_reg
));
1703 /* we get OutDone from the FIFO, so we only need to look
1704 * at completing IN requests here */
1706 s3c_hsotg_complete_in(hsotg
, hs_ep
);
1709 s3c_hsotg_enqueue_setup(hsotg
);
1710 } else if (using_dma(hsotg
)) {
1711 /* We're using DMA, we need to fire an OutDone here
1712 * as we ignore the RXFIFO. */
1714 s3c_hsotg_handle_outdone(hsotg
, idx
, false);
1717 clear
|= S3C_DxEPINT_XferCompl
;
1720 if (ints
& S3C_DxEPINT_EPDisbld
) {
1721 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
1722 clear
|= S3C_DxEPINT_EPDisbld
;
1725 if (ints
& S3C_DxEPINT_AHBErr
) {
1726 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
1727 clear
|= S3C_DxEPINT_AHBErr
;
1730 if (ints
& S3C_DxEPINT_Setup
) { /* Setup or Timeout */
1731 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
1733 if (using_dma(hsotg
) && idx
== 0) {
1734 /* this is the notification we've received a
1735 * setup packet. In non-DMA mode we'd get this
1736 * from the RXFIFO, instead we need to process
1737 * the setup here. */
1742 s3c_hsotg_handle_outdone(hsotg
, 0, true);
1745 clear
|= S3C_DxEPINT_Setup
;
1748 if (ints
& S3C_DxEPINT_Back2BackSetup
) {
1749 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
1750 clear
|= S3C_DxEPINT_Back2BackSetup
;
1754 /* not sure if this is important, but we'll clear it anyway
1756 if (ints
& S3C_DIEPMSK_INTknTXFEmpMsk
) {
1757 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
1759 clear
|= S3C_DIEPMSK_INTknTXFEmpMsk
;
1762 /* this probably means something bad is happening */
1763 if (ints
& S3C_DIEPMSK_INTknEPMisMsk
) {
1764 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
1766 clear
|= S3C_DIEPMSK_INTknEPMisMsk
;
1770 writel(clear
, hsotg
->regs
+ epint_reg
);
1774 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1775 * @hsotg: The device state.
1777 * Handle updating the device settings after the enumeration phase has
1780 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg
*hsotg
)
1782 u32 dsts
= readl(hsotg
->regs
+ S3C_DSTS
);
1783 int ep0_mps
= 0, ep_mps
;
1785 /* This should signal the finish of the enumeration phase
1786 * of the USB handshaking, so we should now know what rate
1787 * we connected at. */
1789 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
1791 /* note, since we're limited by the size of transfer on EP0, and
1792 * it seems IN transfers must be a even number of packets we do
1793 * not advertise a 64byte MPS on EP0. */
1795 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1796 switch (dsts
& S3C_DSTS_EnumSpd_MASK
) {
1797 case S3C_DSTS_EnumSpd_FS
:
1798 case S3C_DSTS_EnumSpd_FS48
:
1799 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
1800 dev_info(hsotg
->dev
, "new device is full-speed\n");
1802 ep0_mps
= EP0_MPS_LIMIT
;
1806 case S3C_DSTS_EnumSpd_HS
:
1807 dev_info(hsotg
->dev
, "new device is high-speed\n");
1808 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
1810 ep0_mps
= EP0_MPS_LIMIT
;
1814 case S3C_DSTS_EnumSpd_LS
:
1815 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
1816 dev_info(hsotg
->dev
, "new device is low-speed\n");
1818 /* note, we don't actually support LS in this driver at the
1819 * moment, and the documentation seems to imply that it isn't
1820 * supported by the PHYs on some of the devices.
1825 /* we should now know the maximum packet size for an
1826 * endpoint, so set the endpoints to a default value. */
1830 s3c_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
);
1831 for (i
= 1; i
< S3C_HSOTG_EPS
; i
++)
1832 s3c_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
);
1835 /* ensure after enumeration our EP0 is active */
1837 s3c_hsotg_enqueue_setup(hsotg
);
1839 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1840 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
1841 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
1845 * kill_all_requests - remove all requests from the endpoint's queue
1846 * @hsotg: The device state.
1847 * @ep: The endpoint the requests may be on.
1848 * @result: The result code to use.
1849 * @force: Force removal of any current requests
1851 * Go through the requests on the given endpoint and mark them
1852 * completed with the given result code.
1854 static void kill_all_requests(struct s3c_hsotg
*hsotg
,
1855 struct s3c_hsotg_ep
*ep
,
1856 int result
, bool force
)
1858 struct s3c_hsotg_req
*req
, *treq
;
1859 unsigned long flags
;
1861 spin_lock_irqsave(&ep
->lock
, flags
);
1863 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
1864 /* currently, we can't do much about an already
1865 * running request on an in endpoint */
1867 if (ep
->req
== req
&& ep
->dir_in
&& !force
)
1870 s3c_hsotg_complete_request(hsotg
, ep
, req
,
1874 spin_unlock_irqrestore(&ep
->lock
, flags
);
1877 #define call_gadget(_hs, _entry) \
1878 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1879 (_hs)->driver && (_hs)->driver->_entry) \
1880 (_hs)->driver->_entry(&(_hs)->gadget);
1883 * s3c_hsotg_disconnect_irq - disconnect irq service
1884 * @hsotg: The device state.
1886 * A disconnect IRQ has been received, meaning that the host has
1887 * lost contact with the bus. Remove all current transactions
1888 * and signal the gadget driver that this has happened.
1890 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg
*hsotg
)
1894 for (ep
= 0; ep
< S3C_HSOTG_EPS
; ep
++)
1895 kill_all_requests(hsotg
, &hsotg
->eps
[ep
], -ESHUTDOWN
, true);
1897 call_gadget(hsotg
, disconnect
);
1901 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1902 * @hsotg: The device state:
1903 * @periodic: True if this is a periodic FIFO interrupt
1905 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg
*hsotg
, bool periodic
)
1907 struct s3c_hsotg_ep
*ep
;
1910 /* look through for any more data to transmit */
1912 for (epno
= 0; epno
< S3C_HSOTG_EPS
; epno
++) {
1913 ep
= &hsotg
->eps
[epno
];
1918 if ((periodic
&& !ep
->periodic
) ||
1919 (!periodic
&& ep
->periodic
))
1922 ret
= s3c_hsotg_trytx(hsotg
, ep
);
1928 static struct s3c_hsotg
*our_hsotg
;
1930 /* IRQ flags which will trigger a retry around the IRQ loop */
1931 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
1932 S3C_GINTSTS_PTxFEmp | \
1936 * s3c_hsotg_irq - handle device interrupt
1937 * @irq: The IRQ number triggered
1938 * @pw: The pw value when registered the handler.
1940 static irqreturn_t
s3c_hsotg_irq(int irq
, void *pw
)
1942 struct s3c_hsotg
*hsotg
= pw
;
1943 int retry_count
= 8;
1948 gintsts
= readl(hsotg
->regs
+ S3C_GINTSTS
);
1949 gintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
1951 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
1952 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
1956 if (gintsts
& S3C_GINTSTS_OTGInt
) {
1957 u32 otgint
= readl(hsotg
->regs
+ S3C_GOTGINT
);
1959 dev_info(hsotg
->dev
, "OTGInt: %08x\n", otgint
);
1961 writel(otgint
, hsotg
->regs
+ S3C_GOTGINT
);
1962 writel(S3C_GINTSTS_OTGInt
, hsotg
->regs
+ S3C_GINTSTS
);
1965 if (gintsts
& S3C_GINTSTS_DisconnInt
) {
1966 dev_dbg(hsotg
->dev
, "%s: DisconnInt\n", __func__
);
1967 writel(S3C_GINTSTS_DisconnInt
, hsotg
->regs
+ S3C_GINTSTS
);
1969 s3c_hsotg_disconnect_irq(hsotg
);
1972 if (gintsts
& S3C_GINTSTS_SessReqInt
) {
1973 dev_dbg(hsotg
->dev
, "%s: SessReqInt\n", __func__
);
1974 writel(S3C_GINTSTS_SessReqInt
, hsotg
->regs
+ S3C_GINTSTS
);
1977 if (gintsts
& S3C_GINTSTS_EnumDone
) {
1978 s3c_hsotg_irq_enumdone(hsotg
);
1979 writel(S3C_GINTSTS_EnumDone
, hsotg
->regs
+ S3C_GINTSTS
);
1982 if (gintsts
& S3C_GINTSTS_ConIDStsChng
) {
1983 dev_dbg(hsotg
->dev
, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
1984 readl(hsotg
->regs
+ S3C_DSTS
),
1985 readl(hsotg
->regs
+ S3C_GOTGCTL
));
1987 writel(S3C_GINTSTS_ConIDStsChng
, hsotg
->regs
+ S3C_GINTSTS
);
1990 if (gintsts
& (S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
)) {
1991 u32 daint
= readl(hsotg
->regs
+ S3C_DAINT
);
1992 u32 daint_out
= daint
>> S3C_DAINT_OutEP_SHIFT
;
1993 u32 daint_in
= daint
& ~(daint_out
<< S3C_DAINT_OutEP_SHIFT
);
1996 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
1998 for (ep
= 0; ep
< 15 && daint_out
; ep
++, daint_out
>>= 1) {
2000 s3c_hsotg_epint(hsotg
, ep
, 0);
2003 for (ep
= 0; ep
< 15 && daint_in
; ep
++, daint_in
>>= 1) {
2005 s3c_hsotg_epint(hsotg
, ep
, 1);
2008 writel(daint
, hsotg
->regs
+ S3C_DAINT
);
2009 writel(gintsts
& (S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
),
2010 hsotg
->regs
+ S3C_GINTSTS
);
2013 if (gintsts
& S3C_GINTSTS_USBRst
) {
2014 dev_info(hsotg
->dev
, "%s: USBRst\n", __func__
);
2015 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
2016 readl(hsotg
->regs
+ S3C_GNPTXSTS
));
2018 kill_all_requests(hsotg
, &hsotg
->eps
[0], -ECONNRESET
, true);
2020 /* it seems after a reset we can end up with a situation
2021 * where the TXFIFO still has data in it... try flushing
2022 * it to remove anything that may still be in it.
2026 writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh
,
2027 hsotg
->regs
+ S3C_GRSTCTL
);
2029 dev_info(hsotg
->dev
, "GNPTXSTS=%08x\n",
2030 readl(hsotg
->regs
+ S3C_GNPTXSTS
));
2033 s3c_hsotg_enqueue_setup(hsotg
);
2035 writel(S3C_GINTSTS_USBRst
, hsotg
->regs
+ S3C_GINTSTS
);
2038 /* check both FIFOs */
2040 if (gintsts
& S3C_GINTSTS_NPTxFEmp
) {
2041 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
2043 /* Disable the interrupt to stop it happening again
2044 * unless one of these endpoint routines decides that
2045 * it needs re-enabling */
2047 s3c_hsotg_disable_gsint(hsotg
, S3C_GINTSTS_NPTxFEmp
);
2048 s3c_hsotg_irq_fifoempty(hsotg
, false);
2050 writel(S3C_GINTSTS_NPTxFEmp
, hsotg
->regs
+ S3C_GINTSTS
);
2053 if (gintsts
& S3C_GINTSTS_PTxFEmp
) {
2054 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
2056 /* See note in S3C_GINTSTS_NPTxFEmp */
2058 s3c_hsotg_disable_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
2059 s3c_hsotg_irq_fifoempty(hsotg
, true);
2061 writel(S3C_GINTSTS_PTxFEmp
, hsotg
->regs
+ S3C_GINTSTS
);
2064 if (gintsts
& S3C_GINTSTS_RxFLvl
) {
2065 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2066 * we need to retry s3c_hsotg_handle_rx if this is still
2069 s3c_hsotg_handle_rx(hsotg
);
2070 writel(S3C_GINTSTS_RxFLvl
, hsotg
->regs
+ S3C_GINTSTS
);
2073 if (gintsts
& S3C_GINTSTS_ModeMis
) {
2074 dev_warn(hsotg
->dev
, "warning, mode mismatch triggered\n");
2075 writel(S3C_GINTSTS_ModeMis
, hsotg
->regs
+ S3C_GINTSTS
);
2078 if (gintsts
& S3C_GINTSTS_USBSusp
) {
2079 dev_info(hsotg
->dev
, "S3C_GINTSTS_USBSusp\n");
2080 writel(S3C_GINTSTS_USBSusp
, hsotg
->regs
+ S3C_GINTSTS
);
2082 call_gadget(hsotg
, suspend
);
2085 if (gintsts
& S3C_GINTSTS_WkUpInt
) {
2086 dev_info(hsotg
->dev
, "S3C_GINTSTS_WkUpIn\n");
2087 writel(S3C_GINTSTS_WkUpInt
, hsotg
->regs
+ S3C_GINTSTS
);
2089 call_gadget(hsotg
, resume
);
2092 if (gintsts
& S3C_GINTSTS_ErlySusp
) {
2093 dev_dbg(hsotg
->dev
, "S3C_GINTSTS_ErlySusp\n");
2094 writel(S3C_GINTSTS_ErlySusp
, hsotg
->regs
+ S3C_GINTSTS
);
2097 /* these next two seem to crop-up occasionally causing the core
2098 * to shutdown the USB transfer, so try clearing them and logging
2101 if (gintsts
& S3C_GINTSTS_GOUTNakEff
) {
2102 dev_info(hsotg
->dev
, "GOUTNakEff triggered\n");
2104 s3c_hsotg_dump(hsotg
);
2106 writel(S3C_DCTL_CGOUTNak
, hsotg
->regs
+ S3C_DCTL
);
2107 writel(S3C_GINTSTS_GOUTNakEff
, hsotg
->regs
+ S3C_GINTSTS
);
2110 if (gintsts
& S3C_GINTSTS_GINNakEff
) {
2111 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
2113 s3c_hsotg_dump(hsotg
);
2115 writel(S3C_DCTL_CGNPInNAK
, hsotg
->regs
+ S3C_DCTL
);
2116 writel(S3C_GINTSTS_GINNakEff
, hsotg
->regs
+ S3C_GINTSTS
);
2119 /* if we've had fifo events, we should try and go around the
2120 * loop again to see if there's any point in returning yet. */
2122 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
2129 * s3c_hsotg_ep_enable - enable the given endpoint
2130 * @ep: The USB endpint to configure
2131 * @desc: The USB endpoint descriptor to configure with.
2133 * This is called from the USB gadget code's usb_ep_enable().
2135 static int s3c_hsotg_ep_enable(struct usb_ep
*ep
,
2136 const struct usb_endpoint_descriptor
*desc
)
2138 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2139 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2140 unsigned long flags
;
2141 int index
= hs_ep
->index
;
2148 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2149 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
2150 desc
->wMaxPacketSize
, desc
->bInterval
);
2152 /* not to be called for EP0 */
2153 WARN_ON(index
== 0);
2155 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
2156 if (dir_in
!= hs_ep
->dir_in
) {
2157 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
2161 mps
= le16_to_cpu(desc
->wMaxPacketSize
);
2163 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2165 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
2166 epctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2168 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2169 __func__
, epctrl
, epctrl_reg
);
2171 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2173 epctrl
&= ~(S3C_DxEPCTL_EPType_MASK
| S3C_DxEPCTL_MPS_MASK
);
2174 epctrl
|= S3C_DxEPCTL_MPS(mps
);
2176 /* mark the endpoint as active, otherwise the core may ignore
2177 * transactions entirely for this endpoint */
2178 epctrl
|= S3C_DxEPCTL_USBActEp
;
2180 /* set the NAK status on the endpoint, otherwise we might try and
2181 * do something with data that we've yet got a request to process
2182 * since the RXFIFO will take data for an endpoint even if the
2183 * size register hasn't been set.
2186 epctrl
|= S3C_DxEPCTL_SNAK
;
2188 /* update the endpoint state */
2189 hs_ep
->ep
.maxpacket
= mps
;
2191 /* default, set to non-periodic */
2192 hs_ep
->periodic
= 0;
2194 switch (desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) {
2195 case USB_ENDPOINT_XFER_ISOC
:
2196 dev_err(hsotg
->dev
, "no current ISOC support\n");
2199 case USB_ENDPOINT_XFER_BULK
:
2200 epctrl
|= S3C_DxEPCTL_EPType_Bulk
;
2203 case USB_ENDPOINT_XFER_INT
:
2205 /* Allocate our TxFNum by simply using the index
2206 * of the endpoint for the moment. We could do
2207 * something better if the host indicates how
2208 * many FIFOs we are expecting to use. */
2210 hs_ep
->periodic
= 1;
2211 epctrl
|= S3C_DxEPCTL_TxFNum(index
);
2214 epctrl
|= S3C_DxEPCTL_EPType_Intterupt
;
2217 case USB_ENDPOINT_XFER_CONTROL
:
2218 epctrl
|= S3C_DxEPCTL_EPType_Control
;
2222 /* for non control endpoints, set PID to D0 */
2224 epctrl
|= S3C_DxEPCTL_SetD0PID
;
2226 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
2229 writel(epctrl
, hsotg
->regs
+ epctrl_reg
);
2230 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
2231 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
2233 /* enable the endpoint interrupt */
2234 s3c_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
2236 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2240 static int s3c_hsotg_ep_disable(struct usb_ep
*ep
)
2242 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2243 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2244 int dir_in
= hs_ep
->dir_in
;
2245 int index
= hs_ep
->index
;
2246 unsigned long flags
;
2250 dev_info(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
2252 if (ep
== &hsotg
->eps
[0].ep
) {
2253 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
2257 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
2259 /* terminate all requests with shutdown */
2260 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
, false);
2262 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2264 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2265 ctrl
&= ~S3C_DxEPCTL_EPEna
;
2266 ctrl
&= ~S3C_DxEPCTL_USBActEp
;
2267 ctrl
|= S3C_DxEPCTL_SNAK
;
2269 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
2270 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
2272 /* disable endpoint interrupts */
2273 s3c_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
2275 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2280 * on_list - check request is on the given endpoint
2281 * @ep: The endpoint to check.
2282 * @test: The request to test if it is on the endpoint.
2284 static bool on_list(struct s3c_hsotg_ep
*ep
, struct s3c_hsotg_req
*test
)
2286 struct s3c_hsotg_req
*req
, *treq
;
2288 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
2296 static int s3c_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
2298 struct s3c_hsotg_req
*hs_req
= our_req(req
);
2299 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2300 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2301 unsigned long flags
;
2303 dev_info(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
2305 if (hs_req
== hs_ep
->req
) {
2306 dev_dbg(hs
->dev
, "%s: already in progress\n", __func__
);
2307 return -EINPROGRESS
;
2310 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2312 if (!on_list(hs_ep
, hs_req
)) {
2313 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2317 s3c_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
2318 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2323 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
)
2325 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2326 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2327 int index
= hs_ep
->index
;
2328 unsigned long irqflags
;
2332 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
2334 spin_lock_irqsave(&hs_ep
->lock
, irqflags
);
2336 /* write both IN and OUT control registers */
2338 epreg
= S3C_DIEPCTL(index
);
2339 epctl
= readl(hs
->regs
+ epreg
);
2342 epctl
|= S3C_DxEPCTL_Stall
;
2344 epctl
&= ~S3C_DxEPCTL_Stall
;
2346 writel(epctl
, hs
->regs
+ epreg
);
2348 epreg
= S3C_DOEPCTL(index
);
2349 epctl
= readl(hs
->regs
+ epreg
);
2352 epctl
|= S3C_DxEPCTL_Stall
;
2354 epctl
&= ~S3C_DxEPCTL_Stall
;
2356 writel(epctl
, hs
->regs
+ epreg
);
2358 spin_unlock_irqrestore(&hs_ep
->lock
, irqflags
);
2363 static struct usb_ep_ops s3c_hsotg_ep_ops
= {
2364 .enable
= s3c_hsotg_ep_enable
,
2365 .disable
= s3c_hsotg_ep_disable
,
2366 .alloc_request
= s3c_hsotg_ep_alloc_request
,
2367 .free_request
= s3c_hsotg_ep_free_request
,
2368 .queue
= s3c_hsotg_ep_queue
,
2369 .dequeue
= s3c_hsotg_ep_dequeue
,
2370 .set_halt
= s3c_hsotg_ep_sethalt
,
2371 /* note, don't belive we have any call for the fifo routines */
2375 * s3c_hsotg_corereset - issue softreset to the core
2376 * @hsotg: The device state
2378 * Issue a soft reset to the core, and await the core finishing it.
2380 static int s3c_hsotg_corereset(struct s3c_hsotg
*hsotg
)
2385 dev_dbg(hsotg
->dev
, "resetting core\n");
2387 /* issue soft reset */
2388 writel(S3C_GRSTCTL_CSftRst
, hsotg
->regs
+ S3C_GRSTCTL
);
2392 grstctl
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
2393 } while (!(grstctl
& S3C_GRSTCTL_CSftRst
) && timeout
-- > 0);
2395 if (!(grstctl
& S3C_GRSTCTL_CSftRst
)) {
2396 dev_err(hsotg
->dev
, "Failed to get CSftRst asserted\n");
2403 u32 grstctl
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
2405 if (timeout
-- < 0) {
2406 dev_info(hsotg
->dev
,
2407 "%s: reset failed, GRSTCTL=%08x\n",
2412 if (grstctl
& S3C_GRSTCTL_CSftRst
)
2415 if (!(grstctl
& S3C_GRSTCTL_AHBIdle
))
2418 break; /* reset done */
2421 dev_dbg(hsotg
->dev
, "reset successful\n");
2425 int usb_gadget_register_driver(struct usb_gadget_driver
*driver
)
2427 struct s3c_hsotg
*hsotg
= our_hsotg
;
2431 printk(KERN_ERR
"%s: called with no device\n", __func__
);
2436 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
2440 if (driver
->speed
!= USB_SPEED_HIGH
&&
2441 driver
->speed
!= USB_SPEED_FULL
) {
2442 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
2445 if (!driver
->bind
|| !driver
->setup
) {
2446 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
2450 WARN_ON(hsotg
->driver
);
2452 driver
->driver
.bus
= NULL
;
2453 hsotg
->driver
= driver
;
2454 hsotg
->gadget
.dev
.driver
= &driver
->driver
;
2455 hsotg
->gadget
.dev
.dma_mask
= hsotg
->dev
->dma_mask
;
2456 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
2458 ret
= device_add(&hsotg
->gadget
.dev
);
2460 dev_err(hsotg
->dev
, "failed to register gadget device\n");
2464 ret
= driver
->bind(&hsotg
->gadget
);
2466 dev_err(hsotg
->dev
, "failed bind %s\n", driver
->driver
.name
);
2468 hsotg
->gadget
.dev
.driver
= NULL
;
2469 hsotg
->driver
= NULL
;
2473 /* we must now enable ep0 ready for host detection and then
2474 * set configuration. */
2476 s3c_hsotg_corereset(hsotg
);
2478 /* set the PLL on, remove the HNP/SRP and set the PHY */
2479 writel(S3C_GUSBCFG_PHYIf16
| S3C_GUSBCFG_TOutCal(7) |
2480 (0x5 << 10), hsotg
->regs
+ S3C_GUSBCFG
);
2482 /* looks like soft-reset changes state of FIFOs */
2483 s3c_hsotg_init_fifo(hsotg
);
2485 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2487 writel(1 << 18 | S3C_DCFG_DevSpd_HS
, hsotg
->regs
+ S3C_DCFG
);
2489 writel(S3C_GINTSTS_DisconnInt
| S3C_GINTSTS_SessReqInt
|
2490 S3C_GINTSTS_ConIDStsChng
| S3C_GINTSTS_USBRst
|
2491 S3C_GINTSTS_EnumDone
| S3C_GINTSTS_OTGInt
|
2492 S3C_GINTSTS_USBSusp
| S3C_GINTSTS_WkUpInt
|
2493 S3C_GINTSTS_GOUTNakEff
| S3C_GINTSTS_GINNakEff
|
2494 S3C_GINTSTS_ErlySusp
,
2495 hsotg
->regs
+ S3C_GINTMSK
);
2497 if (using_dma(hsotg
))
2498 writel(S3C_GAHBCFG_GlblIntrEn
| S3C_GAHBCFG_DMAEn
|
2499 S3C_GAHBCFG_HBstLen_Incr4
,
2500 hsotg
->regs
+ S3C_GAHBCFG
);
2502 writel(S3C_GAHBCFG_GlblIntrEn
, hsotg
->regs
+ S3C_GAHBCFG
);
2504 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2505 * up being flooded with interrupts if the host is polling the
2506 * endpoint to try and read data. */
2508 writel(S3C_DIEPMSK_TimeOUTMsk
| S3C_DIEPMSK_AHBErrMsk
|
2509 S3C_DIEPMSK_INTknEPMisMsk
|
2510 S3C_DIEPMSK_EPDisbldMsk
| S3C_DIEPMSK_XferComplMsk
,
2511 hsotg
->regs
+ S3C_DIEPMSK
);
2513 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2514 * DMA mode we may need this. */
2515 writel(S3C_DOEPMSK_SetupMsk
| S3C_DOEPMSK_AHBErrMsk
|
2516 S3C_DOEPMSK_EPDisbldMsk
|
2517 (using_dma(hsotg
) ? (S3C_DIEPMSK_XferComplMsk
|
2518 S3C_DIEPMSK_TimeOUTMsk
) : 0),
2519 hsotg
->regs
+ S3C_DOEPMSK
);
2521 writel(0, hsotg
->regs
+ S3C_DAINTMSK
);
2523 dev_info(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2524 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
2525 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
2527 /* enable in and out endpoint interrupts */
2528 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
);
2530 /* Enable the RXFIFO when in slave mode, as this is how we collect
2531 * the data. In DMA mode, we get events from the FIFO but also
2532 * things we cannot process, so do not use it. */
2533 if (!using_dma(hsotg
))
2534 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_RxFLvl
);
2536 /* Enable interrupts for EP0 in and out */
2537 s3c_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
2538 s3c_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
2540 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_PWROnPrgDone
);
2541 udelay(10); /* see openiboot */
2542 __bic32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_PWROnPrgDone
);
2544 dev_info(hsotg
->dev
, "DCTL=0x%08x\n", readl(hsotg
->regs
+ S3C_DCTL
));
2546 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2547 writing to the EPCTL register.. */
2549 /* set to read 1 8byte packet */
2550 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2551 S3C_DxEPTSIZ_XferSize(8), hsotg
->regs
+ DOEPTSIZ0
);
2553 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2554 S3C_DxEPCTL_CNAK
| S3C_DxEPCTL_EPEna
|
2555 S3C_DxEPCTL_USBActEp
,
2556 hsotg
->regs
+ S3C_DOEPCTL0
);
2558 /* enable, but don't activate EP0in */
2559 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2560 S3C_DxEPCTL_USBActEp
, hsotg
->regs
+ S3C_DIEPCTL0
);
2562 s3c_hsotg_enqueue_setup(hsotg
);
2564 dev_info(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2565 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
2566 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
2568 /* clear global NAKs */
2569 writel(S3C_DCTL_CGOUTNak
| S3C_DCTL_CGNPInNAK
,
2570 hsotg
->regs
+ S3C_DCTL
);
2572 /* remove the soft-disconnect and let's go */
2573 __bic32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2575 /* report to the user, and return */
2577 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
2581 hsotg
->driver
= NULL
;
2582 hsotg
->gadget
.dev
.driver
= NULL
;
2586 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
2588 struct s3c_hsotg
*hsotg
= our_hsotg
;
2594 if (!driver
|| driver
!= hsotg
->driver
|| !driver
->unbind
)
2597 /* all endpoints should be shutdown */
2598 for (ep
= 0; ep
< S3C_HSOTG_EPS
; ep
++)
2599 s3c_hsotg_ep_disable(&hsotg
->eps
[ep
].ep
);
2601 call_gadget(hsotg
, disconnect
);
2603 driver
->unbind(&hsotg
->gadget
);
2604 hsotg
->driver
= NULL
;
2605 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
2607 device_del(&hsotg
->gadget
.dev
);
2609 dev_info(hsotg
->dev
, "unregistered gadget driver '%s'\n",
2610 driver
->driver
.name
);
2614 EXPORT_SYMBOL(usb_gadget_unregister_driver
);
2616 static int s3c_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
2618 return s3c_hsotg_read_frameno(to_hsotg(gadget
));
2621 static struct usb_gadget_ops s3c_hsotg_gadget_ops
= {
2622 .get_frame
= s3c_hsotg_gadget_getframe
,
2626 * s3c_hsotg_initep - initialise a single endpoint
2627 * @hsotg: The device state.
2628 * @hs_ep: The endpoint to be initialised.
2629 * @epnum: The endpoint number
2631 * Initialise the given endpoint (as part of the probe and device state
2632 * creation) to give to the gadget driver. Setup the endpoint name, any
2633 * direction information and other state that may be required.
2635 static void __devinit
s3c_hsotg_initep(struct s3c_hsotg
*hsotg
,
2636 struct s3c_hsotg_ep
*hs_ep
,
2644 else if ((epnum
% 2) == 0) {
2651 hs_ep
->index
= epnum
;
2653 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
2655 INIT_LIST_HEAD(&hs_ep
->queue
);
2656 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
2658 spin_lock_init(&hs_ep
->lock
);
2660 /* add to the list of endpoints known by the gadget driver */
2662 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
2664 hs_ep
->parent
= hsotg
;
2665 hs_ep
->ep
.name
= hs_ep
->name
;
2666 hs_ep
->ep
.maxpacket
= epnum
? 512 : EP0_MPS_LIMIT
;
2667 hs_ep
->ep
.ops
= &s3c_hsotg_ep_ops
;
2669 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2670 * an OUT endpoint, we may as well do this if in future the
2671 * code is changed to make each endpoint's direction changeable.
2674 ptxfifo
= readl(hsotg
->regs
+ S3C_DPTXFSIZn(epnum
));
2675 hs_ep
->fifo_size
= S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo
);
2677 /* if we're using dma, we need to set the next-endpoint pointer
2678 * to be something valid.
2681 if (using_dma(hsotg
)) {
2682 u32 next
= S3C_DxEPCTL_NextEp((epnum
+ 1) % 15);
2683 writel(next
, hsotg
->regs
+ S3C_DIEPCTL(epnum
));
2684 writel(next
, hsotg
->regs
+ S3C_DOEPCTL(epnum
));
2689 * s3c_hsotg_otgreset - reset the OtG phy block
2690 * @hsotg: The host state.
2692 * Power up the phy, set the basic configuration and start the PHY.
2694 static void s3c_hsotg_otgreset(struct s3c_hsotg
*hsotg
)
2698 writel(0, S3C_PHYPWR
);
2701 osc
= hsotg
->plat
->is_osc
? S3C_PHYCLK_EXT_OSC
: 0;
2703 writel(osc
| 0x10, S3C_PHYCLK
);
2705 /* issue a full set of resets to the otg and core */
2707 writel(S3C_RSTCON_PHY
, S3C_RSTCON
);
2708 udelay(20); /* at-least 10uS */
2709 writel(0, S3C_RSTCON
);
2713 static void s3c_hsotg_init(struct s3c_hsotg
*hsotg
)
2715 /* unmask subset of endpoint interrupts */
2717 writel(S3C_DIEPMSK_TimeOUTMsk
| S3C_DIEPMSK_AHBErrMsk
|
2718 S3C_DIEPMSK_EPDisbldMsk
| S3C_DIEPMSK_XferComplMsk
,
2719 hsotg
->regs
+ S3C_DIEPMSK
);
2721 writel(S3C_DOEPMSK_SetupMsk
| S3C_DOEPMSK_AHBErrMsk
|
2722 S3C_DOEPMSK_EPDisbldMsk
| S3C_DOEPMSK_XferComplMsk
,
2723 hsotg
->regs
+ S3C_DOEPMSK
);
2725 writel(0, hsotg
->regs
+ S3C_DAINTMSK
);
2728 /* post global nak until we're ready */
2729 writel(S3C_DCTL_SGNPInNAK
| S3C_DCTL_SGOUTNak
,
2730 hsotg
->regs
+ S3C_DCTL
);
2735 dev_info(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2736 readl(hsotg
->regs
+ S3C_GRXFSIZ
),
2737 readl(hsotg
->regs
+ S3C_GNPTXFSIZ
));
2739 s3c_hsotg_init_fifo(hsotg
);
2741 /* set the PLL on, remove the HNP/SRP and set the PHY */
2742 writel(S3C_GUSBCFG_PHYIf16
| S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2743 hsotg
->regs
+ S3C_GUSBCFG
);
2745 writel(using_dma(hsotg
) ? S3C_GAHBCFG_DMAEn
: 0x0,
2746 hsotg
->regs
+ S3C_GAHBCFG
);
2749 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
)
2751 struct device
*dev
= hsotg
->dev
;
2752 void __iomem
*regs
= hsotg
->regs
;
2756 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2757 readl(regs
+ S3C_DCFG
), readl(regs
+ S3C_DCTL
),
2758 readl(regs
+ S3C_DIEPMSK
));
2760 dev_info(dev
, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2761 readl(regs
+ S3C_GAHBCFG
), readl(regs
+ 0x44));
2763 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2764 readl(regs
+ S3C_GRXFSIZ
), readl(regs
+ S3C_GNPTXFSIZ
));
2766 /* show periodic fifo settings */
2768 for (idx
= 1; idx
<= 15; idx
++) {
2769 val
= readl(regs
+ S3C_DPTXFSIZn(idx
));
2770 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
2771 val
>> S3C_DPTXFSIZn_DPTxFSize_SHIFT
,
2772 val
& S3C_DPTXFSIZn_DPTxFStAddr_MASK
);
2775 for (idx
= 0; idx
< 15; idx
++) {
2777 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
2778 readl(regs
+ S3C_DIEPCTL(idx
)),
2779 readl(regs
+ S3C_DIEPTSIZ(idx
)),
2780 readl(regs
+ S3C_DIEPDMA(idx
)));
2782 val
= readl(regs
+ S3C_DOEPCTL(idx
));
2784 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2785 idx
, readl(regs
+ S3C_DOEPCTL(idx
)),
2786 readl(regs
+ S3C_DOEPTSIZ(idx
)),
2787 readl(regs
+ S3C_DOEPDMA(idx
)));
2791 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2792 readl(regs
+ S3C_DVBUSDIS
), readl(regs
+ S3C_DVBUSPULSE
));
2797 * state_show - debugfs: show overall driver and device state.
2798 * @seq: The seq file to write to.
2799 * @v: Unused parameter.
2801 * This debugfs entry shows the overall state of the hardware and
2802 * some general information about each of the endpoints available
2805 static int state_show(struct seq_file
*seq
, void *v
)
2807 struct s3c_hsotg
*hsotg
= seq
->private;
2808 void __iomem
*regs
= hsotg
->regs
;
2811 seq_printf(seq
, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2812 readl(regs
+ S3C_DCFG
),
2813 readl(regs
+ S3C_DCTL
),
2814 readl(regs
+ S3C_DSTS
));
2816 seq_printf(seq
, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2817 readl(regs
+ S3C_DIEPMSK
), readl(regs
+ S3C_DOEPMSK
));
2819 seq_printf(seq
, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2820 readl(regs
+ S3C_GINTMSK
),
2821 readl(regs
+ S3C_GINTSTS
));
2823 seq_printf(seq
, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2824 readl(regs
+ S3C_DAINTMSK
),
2825 readl(regs
+ S3C_DAINT
));
2827 seq_printf(seq
, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2828 readl(regs
+ S3C_GNPTXSTS
),
2829 readl(regs
+ S3C_GRXSTSR
));
2831 seq_printf(seq
, "\nEndpoint status:\n");
2833 for (idx
= 0; idx
< 15; idx
++) {
2836 in
= readl(regs
+ S3C_DIEPCTL(idx
));
2837 out
= readl(regs
+ S3C_DOEPCTL(idx
));
2839 seq_printf(seq
, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2842 in
= readl(regs
+ S3C_DIEPTSIZ(idx
));
2843 out
= readl(regs
+ S3C_DOEPTSIZ(idx
));
2845 seq_printf(seq
, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2848 seq_printf(seq
, "\n");
2854 static int state_open(struct inode
*inode
, struct file
*file
)
2856 return single_open(file
, state_show
, inode
->i_private
);
2859 static const struct file_operations state_fops
= {
2860 .owner
= THIS_MODULE
,
2863 .llseek
= seq_lseek
,
2864 .release
= single_release
,
2868 * fifo_show - debugfs: show the fifo information
2869 * @seq: The seq_file to write data to.
2870 * @v: Unused parameter.
2872 * Show the FIFO information for the overall fifo and all the
2873 * periodic transmission FIFOs.
2875 static int fifo_show(struct seq_file
*seq
, void *v
)
2877 struct s3c_hsotg
*hsotg
= seq
->private;
2878 void __iomem
*regs
= hsotg
->regs
;
2882 seq_printf(seq
, "Non-periodic FIFOs:\n");
2883 seq_printf(seq
, "RXFIFO: Size %d\n", readl(regs
+ S3C_GRXFSIZ
));
2885 val
= readl(regs
+ S3C_GNPTXFSIZ
);
2886 seq_printf(seq
, "NPTXFIFO: Size %d, Start 0x%08x\n",
2887 val
>> S3C_GNPTXFSIZ_NPTxFDep_SHIFT
,
2888 val
& S3C_GNPTXFSIZ_NPTxFStAddr_MASK
);
2890 seq_printf(seq
, "\nPeriodic TXFIFOs:\n");
2892 for (idx
= 1; idx
<= 15; idx
++) {
2893 val
= readl(regs
+ S3C_DPTXFSIZn(idx
));
2895 seq_printf(seq
, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx
,
2896 val
>> S3C_DPTXFSIZn_DPTxFSize_SHIFT
,
2897 val
& S3C_DPTXFSIZn_DPTxFStAddr_MASK
);
2903 static int fifo_open(struct inode
*inode
, struct file
*file
)
2905 return single_open(file
, fifo_show
, inode
->i_private
);
2908 static const struct file_operations fifo_fops
= {
2909 .owner
= THIS_MODULE
,
2912 .llseek
= seq_lseek
,
2913 .release
= single_release
,
2917 static const char *decode_direction(int is_in
)
2919 return is_in
? "in" : "out";
2923 * ep_show - debugfs: show the state of an endpoint.
2924 * @seq: The seq_file to write data to.
2925 * @v: Unused parameter.
2927 * This debugfs entry shows the state of the given endpoint (one is
2928 * registered for each available).
2930 static int ep_show(struct seq_file
*seq
, void *v
)
2932 struct s3c_hsotg_ep
*ep
= seq
->private;
2933 struct s3c_hsotg
*hsotg
= ep
->parent
;
2934 struct s3c_hsotg_req
*req
;
2935 void __iomem
*regs
= hsotg
->regs
;
2936 int index
= ep
->index
;
2937 int show_limit
= 15;
2938 unsigned long flags
;
2940 seq_printf(seq
, "Endpoint index %d, named %s, dir %s:\n",
2941 ep
->index
, ep
->ep
.name
, decode_direction(ep
->dir_in
));
2943 /* first show the register state */
2945 seq_printf(seq
, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
2946 readl(regs
+ S3C_DIEPCTL(index
)),
2947 readl(regs
+ S3C_DOEPCTL(index
)));
2949 seq_printf(seq
, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
2950 readl(regs
+ S3C_DIEPDMA(index
)),
2951 readl(regs
+ S3C_DOEPDMA(index
)));
2953 seq_printf(seq
, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
2954 readl(regs
+ S3C_DIEPINT(index
)),
2955 readl(regs
+ S3C_DOEPINT(index
)));
2957 seq_printf(seq
, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
2958 readl(regs
+ S3C_DIEPTSIZ(index
)),
2959 readl(regs
+ S3C_DOEPTSIZ(index
)));
2961 seq_printf(seq
, "\n");
2962 seq_printf(seq
, "mps %d\n", ep
->ep
.maxpacket
);
2963 seq_printf(seq
, "total_data=%ld\n", ep
->total_data
);
2965 seq_printf(seq
, "request list (%p,%p):\n",
2966 ep
->queue
.next
, ep
->queue
.prev
);
2968 spin_lock_irqsave(&ep
->lock
, flags
);
2970 list_for_each_entry(req
, &ep
->queue
, queue
) {
2971 if (--show_limit
< 0) {
2972 seq_printf(seq
, "not showing more requests...\n");
2976 seq_printf(seq
, "%c req %p: %d bytes @%p, ",
2977 req
== ep
->req
? '*' : ' ',
2978 req
, req
->req
.length
, req
->req
.buf
);
2979 seq_printf(seq
, "%d done, res %d\n",
2980 req
->req
.actual
, req
->req
.status
);
2983 spin_unlock_irqrestore(&ep
->lock
, flags
);
2988 static int ep_open(struct inode
*inode
, struct file
*file
)
2990 return single_open(file
, ep_show
, inode
->i_private
);
2993 static const struct file_operations ep_fops
= {
2994 .owner
= THIS_MODULE
,
2997 .llseek
= seq_lseek
,
2998 .release
= single_release
,
3002 * s3c_hsotg_create_debug - create debugfs directory and files
3003 * @hsotg: The driver state
3005 * Create the debugfs files to allow the user to get information
3006 * about the state of the system. The directory name is created
3007 * with the same name as the device itself, in case we end up
3008 * with multiple blocks in future systems.
3010 static void __devinit
s3c_hsotg_create_debug(struct s3c_hsotg
*hsotg
)
3012 struct dentry
*root
;
3015 root
= debugfs_create_dir(dev_name(hsotg
->dev
), NULL
);
3016 hsotg
->debug_root
= root
;
3018 dev_err(hsotg
->dev
, "cannot create debug root\n");
3022 /* create general state file */
3024 hsotg
->debug_file
= debugfs_create_file("state", 0444, root
,
3025 hsotg
, &state_fops
);
3027 if (IS_ERR(hsotg
->debug_file
))
3028 dev_err(hsotg
->dev
, "%s: failed to create state\n", __func__
);
3030 hsotg
->debug_fifo
= debugfs_create_file("fifo", 0444, root
,
3033 if (IS_ERR(hsotg
->debug_fifo
))
3034 dev_err(hsotg
->dev
, "%s: failed to create fifo\n", __func__
);
3036 /* create one file for each endpoint */
3038 for (epidx
= 0; epidx
< S3C_HSOTG_EPS
; epidx
++) {
3039 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3041 ep
->debugfs
= debugfs_create_file(ep
->name
, 0444,
3042 root
, ep
, &ep_fops
);
3044 if (IS_ERR(ep
->debugfs
))
3045 dev_err(hsotg
->dev
, "failed to create %s debug file\n",
3051 * s3c_hsotg_delete_debug - cleanup debugfs entries
3052 * @hsotg: The driver state
3054 * Cleanup (remove) the debugfs files for use on module exit.
3056 static void __devexit
s3c_hsotg_delete_debug(struct s3c_hsotg
*hsotg
)
3060 for (epidx
= 0; epidx
< S3C_HSOTG_EPS
; epidx
++) {
3061 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3062 debugfs_remove(ep
->debugfs
);
3065 debugfs_remove(hsotg
->debug_file
);
3066 debugfs_remove(hsotg
->debug_fifo
);
3067 debugfs_remove(hsotg
->debug_root
);
3071 * s3c_hsotg_gate - set the hardware gate for the block
3072 * @pdev: The device we bound to
3075 * Set the hardware gate setting into the block. If we end up on
3076 * something other than an S3C64XX, then we might need to change this
3077 * to using a platform data callback, or some other mechanism.
3079 static void s3c_hsotg_gate(struct platform_device
*pdev
, bool on
)
3081 unsigned long flags
;
3084 local_irq_save(flags
);
3086 others
= __raw_readl(S3C64XX_OTHERS
);
3088 others
|= S3C64XX_OTHERS_USBMASK
;
3090 others
&= ~S3C64XX_OTHERS_USBMASK
;
3091 __raw_writel(others
, S3C64XX_OTHERS
);
3093 local_irq_restore(flags
);
3096 struct s3c_hsotg_plat s3c_hsotg_default_pdata
;
3098 static int __devinit
s3c_hsotg_probe(struct platform_device
*pdev
)
3100 struct s3c_hsotg_plat
*plat
= pdev
->dev
.platform_data
;
3101 struct device
*dev
= &pdev
->dev
;
3102 struct s3c_hsotg
*hsotg
;
3103 struct resource
*res
;
3108 plat
= &s3c_hsotg_default_pdata
;
3110 hsotg
= kzalloc(sizeof(struct s3c_hsotg
) +
3111 sizeof(struct s3c_hsotg_ep
) * S3C_HSOTG_EPS
,
3114 dev_err(dev
, "cannot get memory\n");
3121 platform_set_drvdata(pdev
, hsotg
);
3123 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3125 dev_err(dev
, "cannot find register resource 0\n");
3130 hsotg
->regs_res
= request_mem_region(res
->start
, resource_size(res
),
3132 if (!hsotg
->regs_res
) {
3133 dev_err(dev
, "cannot reserve registers\n");
3138 hsotg
->regs
= ioremap(res
->start
, resource_size(res
));
3140 dev_err(dev
, "cannot map registers\n");
3145 ret
= platform_get_irq(pdev
, 0);
3147 dev_err(dev
, "cannot find IRQ\n");
3153 ret
= request_irq(ret
, s3c_hsotg_irq
, 0, dev_name(dev
), hsotg
);
3155 dev_err(dev
, "cannot claim IRQ\n");
3159 dev_info(dev
, "regs %p, irq %d\n", hsotg
->regs
, hsotg
->irq
);
3161 device_initialize(&hsotg
->gadget
.dev
);
3163 dev_set_name(&hsotg
->gadget
.dev
, "gadget");
3165 hsotg
->gadget
.is_dualspeed
= 1;
3166 hsotg
->gadget
.ops
= &s3c_hsotg_gadget_ops
;
3167 hsotg
->gadget
.name
= dev_name(dev
);
3169 hsotg
->gadget
.dev
.parent
= dev
;
3170 hsotg
->gadget
.dev
.dma_mask
= dev
->dma_mask
;
3172 /* setup endpoint information */
3174 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
3175 hsotg
->gadget
.ep0
= &hsotg
->eps
[0].ep
;
3177 /* allocate EP0 request */
3179 hsotg
->ctrl_req
= s3c_hsotg_ep_alloc_request(&hsotg
->eps
[0].ep
,
3181 if (!hsotg
->ctrl_req
) {
3182 dev_err(dev
, "failed to allocate ctrl req\n");
3186 /* reset the system */
3188 s3c_hsotg_gate(pdev
, true);
3190 s3c_hsotg_otgreset(hsotg
);
3191 s3c_hsotg_corereset(hsotg
);
3192 s3c_hsotg_init(hsotg
);
3194 /* initialise the endpoints now the core has been initialised */
3195 for (epnum
= 0; epnum
< S3C_HSOTG_EPS
; epnum
++)
3196 s3c_hsotg_initep(hsotg
, &hsotg
->eps
[epnum
], epnum
);
3198 s3c_hsotg_create_debug(hsotg
);
3200 s3c_hsotg_dump(hsotg
);
3206 iounmap(hsotg
->regs
);
3209 release_resource(hsotg
->regs_res
);
3210 kfree(hsotg
->regs_res
);
3217 static int __devexit
s3c_hsotg_remove(struct platform_device
*pdev
)
3219 struct s3c_hsotg
*hsotg
= platform_get_drvdata(pdev
);
3221 s3c_hsotg_delete_debug(hsotg
);
3223 usb_gadget_unregister_driver(hsotg
->driver
);
3225 free_irq(hsotg
->irq
, hsotg
);
3226 iounmap(hsotg
->regs
);
3228 release_resource(hsotg
->regs_res
);
3229 kfree(hsotg
->regs_res
);
3231 s3c_hsotg_gate(pdev
, false);
3238 #define s3c_hsotg_suspend NULL
3239 #define s3c_hsotg_resume NULL
3242 static struct platform_driver s3c_hsotg_driver
= {
3244 .name
= "s3c-hsotg",
3245 .owner
= THIS_MODULE
,
3247 .probe
= s3c_hsotg_probe
,
3248 .remove
= __devexit_p(s3c_hsotg_remove
),
3249 .suspend
= s3c_hsotg_suspend
,
3250 .resume
= s3c_hsotg_resume
,
3253 static int __init
s3c_hsotg_modinit(void)
3255 return platform_driver_register(&s3c_hsotg_driver
);
3258 static void __exit
s3c_hsotg_modexit(void)
3260 platform_driver_unregister(&s3c_hsotg_driver
);
3263 module_init(s3c_hsotg_modinit
);
3264 module_exit(s3c_hsotg_modexit
);
3266 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3267 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3268 MODULE_LICENSE("GPL");
3269 MODULE_ALIAS("platform:s3c-hsotg");