2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
43 EXPORT_SYMBOL(journal_start
);
44 EXPORT_SYMBOL(journal_restart
);
45 EXPORT_SYMBOL(journal_extend
);
46 EXPORT_SYMBOL(journal_stop
);
47 EXPORT_SYMBOL(journal_lock_updates
);
48 EXPORT_SYMBOL(journal_unlock_updates
);
49 EXPORT_SYMBOL(journal_get_write_access
);
50 EXPORT_SYMBOL(journal_get_create_access
);
51 EXPORT_SYMBOL(journal_get_undo_access
);
52 EXPORT_SYMBOL(journal_dirty_data
);
53 EXPORT_SYMBOL(journal_dirty_metadata
);
54 EXPORT_SYMBOL(journal_release_buffer
);
55 EXPORT_SYMBOL(journal_forget
);
57 EXPORT_SYMBOL(journal_sync_buffer
);
59 EXPORT_SYMBOL(journal_flush
);
60 EXPORT_SYMBOL(journal_revoke
);
62 EXPORT_SYMBOL(journal_init_dev
);
63 EXPORT_SYMBOL(journal_init_inode
);
64 EXPORT_SYMBOL(journal_update_format
);
65 EXPORT_SYMBOL(journal_check_used_features
);
66 EXPORT_SYMBOL(journal_check_available_features
);
67 EXPORT_SYMBOL(journal_set_features
);
68 EXPORT_SYMBOL(journal_create
);
69 EXPORT_SYMBOL(journal_load
);
70 EXPORT_SYMBOL(journal_destroy
);
71 EXPORT_SYMBOL(journal_abort
);
72 EXPORT_SYMBOL(journal_errno
);
73 EXPORT_SYMBOL(journal_ack_err
);
74 EXPORT_SYMBOL(journal_clear_err
);
75 EXPORT_SYMBOL(log_wait_commit
);
76 EXPORT_SYMBOL(journal_start_commit
);
77 EXPORT_SYMBOL(journal_force_commit_nested
);
78 EXPORT_SYMBOL(journal_wipe
);
79 EXPORT_SYMBOL(journal_blocks_per_page
);
80 EXPORT_SYMBOL(journal_invalidatepage
);
81 EXPORT_SYMBOL(journal_try_to_free_buffers
);
82 EXPORT_SYMBOL(journal_force_commit
);
84 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
85 static void __journal_abort_soft (journal_t
*journal
, int errno
);
88 * Helper function used to manage commit timeouts
91 static void commit_timeout(unsigned long __data
)
93 struct task_struct
* p
= (struct task_struct
*) __data
;
99 * kjournald: The main thread function used to manage a logging device
102 * This kernel thread is responsible for two things:
104 * 1) COMMIT: Every so often we need to commit the current state of the
105 * filesystem to disk. The journal thread is responsible for writing
106 * all of the metadata buffers to disk.
108 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
109 * of the data in that part of the log has been rewritten elsewhere on
110 * the disk. Flushing these old buffers to reclaim space in the log is
111 * known as checkpointing, and this thread is responsible for that job.
114 static int kjournald(void *arg
)
116 journal_t
*journal
= arg
;
117 transaction_t
*transaction
;
120 * Set up an interval timer which can be used to trigger a commit wakeup
121 * after the commit interval expires
123 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
124 (unsigned long)current
);
126 /* Record that the journal thread is running */
127 journal
->j_task
= current
;
128 wake_up(&journal
->j_wait_done_commit
);
130 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
131 journal
->j_commit_interval
/ HZ
);
134 * And now, wait forever for commit wakeup events.
136 spin_lock(&journal
->j_state_lock
);
139 if (journal
->j_flags
& JFS_UNMOUNT
)
142 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
143 journal
->j_commit_sequence
, journal
->j_commit_request
);
145 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
146 jbd_debug(1, "OK, requests differ\n");
147 spin_unlock(&journal
->j_state_lock
);
148 del_timer_sync(&journal
->j_commit_timer
);
149 journal_commit_transaction(journal
);
150 spin_lock(&journal
->j_state_lock
);
154 wake_up(&journal
->j_wait_done_commit
);
155 if (freezing(current
)) {
157 * The simpler the better. Flushing journal isn't a
158 * good idea, because that depends on threads that may
159 * be already stopped.
161 jbd_debug(1, "Now suspending kjournald\n");
162 spin_unlock(&journal
->j_state_lock
);
164 spin_lock(&journal
->j_state_lock
);
167 * We assume on resume that commits are already there,
171 int should_sleep
= 1;
173 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
175 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
177 transaction
= journal
->j_running_transaction
;
178 if (transaction
&& time_after_eq(jiffies
,
179 transaction
->t_expires
))
181 if (journal
->j_flags
& JFS_UNMOUNT
)
184 spin_unlock(&journal
->j_state_lock
);
186 spin_lock(&journal
->j_state_lock
);
188 finish_wait(&journal
->j_wait_commit
, &wait
);
191 jbd_debug(1, "kjournald wakes\n");
194 * Were we woken up by a commit wakeup event?
196 transaction
= journal
->j_running_transaction
;
197 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
198 journal
->j_commit_request
= transaction
->t_tid
;
199 jbd_debug(1, "woke because of timeout\n");
204 spin_unlock(&journal
->j_state_lock
);
205 del_timer_sync(&journal
->j_commit_timer
);
206 journal
->j_task
= NULL
;
207 wake_up(&journal
->j_wait_done_commit
);
208 jbd_debug(1, "Journal thread exiting.\n");
212 static int journal_start_thread(journal_t
*journal
)
214 struct task_struct
*t
;
216 t
= kthread_run(kjournald
, journal
, "kjournald");
220 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
224 static void journal_kill_thread(journal_t
*journal
)
226 spin_lock(&journal
->j_state_lock
);
227 journal
->j_flags
|= JFS_UNMOUNT
;
229 while (journal
->j_task
) {
230 wake_up(&journal
->j_wait_commit
);
231 spin_unlock(&journal
->j_state_lock
);
232 wait_event(journal
->j_wait_done_commit
,
233 journal
->j_task
== NULL
);
234 spin_lock(&journal
->j_state_lock
);
236 spin_unlock(&journal
->j_state_lock
);
240 * journal_write_metadata_buffer: write a metadata buffer to the journal.
242 * Writes a metadata buffer to a given disk block. The actual IO is not
243 * performed but a new buffer_head is constructed which labels the data
244 * to be written with the correct destination disk block.
246 * Any magic-number escaping which needs to be done will cause a
247 * copy-out here. If the buffer happens to start with the
248 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
249 * magic number is only written to the log for descripter blocks. In
250 * this case, we copy the data and replace the first word with 0, and we
251 * return a result code which indicates that this buffer needs to be
252 * marked as an escaped buffer in the corresponding log descriptor
253 * block. The missing word can then be restored when the block is read
256 * If the source buffer has already been modified by a new transaction
257 * since we took the last commit snapshot, we use the frozen copy of
258 * that data for IO. If we end up using the existing buffer_head's data
259 * for the write, then we *have* to lock the buffer to prevent anyone
260 * else from using and possibly modifying it while the IO is in
263 * The function returns a pointer to the buffer_heads to be used for IO.
265 * We assume that the journal has already been locked in this function.
272 * Bit 0 set == escape performed on the data
273 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
276 int journal_write_metadata_buffer(transaction_t
*transaction
,
277 struct journal_head
*jh_in
,
278 struct journal_head
**jh_out
,
279 unsigned int blocknr
)
281 int need_copy_out
= 0;
282 int done_copy_out
= 0;
285 struct buffer_head
*new_bh
;
286 struct journal_head
*new_jh
;
287 struct page
*new_page
;
288 unsigned int new_offset
;
289 struct buffer_head
*bh_in
= jh2bh(jh_in
);
290 journal_t
*journal
= transaction
->t_journal
;
293 * The buffer really shouldn't be locked: only the current committing
294 * transaction is allowed to write it, so nobody else is allowed
297 * akpm: except if we're journalling data, and write() output is
298 * also part of a shared mapping, and another thread has
299 * decided to launch a writepage() against this buffer.
301 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
303 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
304 /* keep subsequent assertions sane */
306 init_buffer(new_bh
, NULL
, NULL
);
307 atomic_set(&new_bh
->b_count
, 1);
308 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
311 * If a new transaction has already done a buffer copy-out, then
312 * we use that version of the data for the commit.
314 jbd_lock_bh_state(bh_in
);
316 if (jh_in
->b_frozen_data
) {
318 new_page
= virt_to_page(jh_in
->b_frozen_data
);
319 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
321 new_page
= jh2bh(jh_in
)->b_page
;
322 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
325 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
329 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
330 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
334 kunmap_atomic(mapped_data
, KM_USER0
);
337 * Do we need to do a data copy?
339 if (need_copy_out
&& !done_copy_out
) {
342 jbd_unlock_bh_state(bh_in
);
343 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
344 jbd_lock_bh_state(bh_in
);
345 if (jh_in
->b_frozen_data
) {
346 jbd_free(tmp
, bh_in
->b_size
);
350 jh_in
->b_frozen_data
= tmp
;
351 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
352 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
353 kunmap_atomic(mapped_data
, KM_USER0
);
355 new_page
= virt_to_page(tmp
);
356 new_offset
= offset_in_page(tmp
);
361 * Did we need to do an escaping? Now we've done all the
362 * copying, we can finally do so.
365 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
366 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
367 kunmap_atomic(mapped_data
, KM_USER0
);
370 set_bh_page(new_bh
, new_page
, new_offset
);
371 new_jh
->b_transaction
= NULL
;
372 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
373 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
374 new_bh
->b_blocknr
= blocknr
;
375 set_buffer_mapped(new_bh
);
376 set_buffer_dirty(new_bh
);
381 * The to-be-written buffer needs to get moved to the io queue,
382 * and the original buffer whose contents we are shadowing or
383 * copying is moved to the transaction's shadow queue.
385 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
386 spin_lock(&journal
->j_list_lock
);
387 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
388 spin_unlock(&journal
->j_list_lock
);
389 jbd_unlock_bh_state(bh_in
);
391 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
392 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
394 return do_escape
| (done_copy_out
<< 1);
398 * Allocation code for the journal file. Manage the space left in the
399 * journal, so that we can begin checkpointing when appropriate.
403 * __log_space_left: Return the number of free blocks left in the journal.
405 * Called with the journal already locked.
407 * Called under j_state_lock
410 int __log_space_left(journal_t
*journal
)
412 int left
= journal
->j_free
;
414 assert_spin_locked(&journal
->j_state_lock
);
417 * Be pessimistic here about the number of those free blocks which
418 * might be required for log descriptor control blocks.
421 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
423 left
-= MIN_LOG_RESERVED_BLOCKS
;
432 * Called under j_state_lock. Returns true if a transaction commit was started.
434 int __log_start_commit(journal_t
*journal
, tid_t target
)
437 * Are we already doing a recent enough commit?
439 if (!tid_geq(journal
->j_commit_request
, target
)) {
441 * We want a new commit: OK, mark the request and wakup the
442 * commit thread. We do _not_ do the commit ourselves.
445 journal
->j_commit_request
= target
;
446 jbd_debug(1, "JBD: requesting commit %d/%d\n",
447 journal
->j_commit_request
,
448 journal
->j_commit_sequence
);
449 wake_up(&journal
->j_wait_commit
);
455 int log_start_commit(journal_t
*journal
, tid_t tid
)
459 spin_lock(&journal
->j_state_lock
);
460 ret
= __log_start_commit(journal
, tid
);
461 spin_unlock(&journal
->j_state_lock
);
466 * Force and wait upon a commit if the calling process is not within
467 * transaction. This is used for forcing out undo-protected data which contains
468 * bitmaps, when the fs is running out of space.
470 * We can only force the running transaction if we don't have an active handle;
471 * otherwise, we will deadlock.
473 * Returns true if a transaction was started.
475 int journal_force_commit_nested(journal_t
*journal
)
477 transaction_t
*transaction
= NULL
;
480 spin_lock(&journal
->j_state_lock
);
481 if (journal
->j_running_transaction
&& !current
->journal_info
) {
482 transaction
= journal
->j_running_transaction
;
483 __log_start_commit(journal
, transaction
->t_tid
);
484 } else if (journal
->j_committing_transaction
)
485 transaction
= journal
->j_committing_transaction
;
488 spin_unlock(&journal
->j_state_lock
);
489 return 0; /* Nothing to retry */
492 tid
= transaction
->t_tid
;
493 spin_unlock(&journal
->j_state_lock
);
494 log_wait_commit(journal
, tid
);
499 * Start a commit of the current running transaction (if any). Returns true
500 * if a transaction is going to be committed (or is currently already
501 * committing), and fills its tid in at *ptid
503 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
507 spin_lock(&journal
->j_state_lock
);
508 if (journal
->j_running_transaction
) {
509 tid_t tid
= journal
->j_running_transaction
->t_tid
;
511 __log_start_commit(journal
, tid
);
512 /* There's a running transaction and we've just made sure
513 * it's commit has been scheduled. */
517 } else if (journal
->j_committing_transaction
) {
519 * If ext3_write_super() recently started a commit, then we
520 * have to wait for completion of that transaction
523 *ptid
= journal
->j_committing_transaction
->t_tid
;
526 spin_unlock(&journal
->j_state_lock
);
531 * Wait for a specified commit to complete.
532 * The caller may not hold the journal lock.
534 int log_wait_commit(journal_t
*journal
, tid_t tid
)
538 #ifdef CONFIG_JBD_DEBUG
539 spin_lock(&journal
->j_state_lock
);
540 if (!tid_geq(journal
->j_commit_request
, tid
)) {
542 "%s: error: j_commit_request=%d, tid=%d\n",
543 __func__
, journal
->j_commit_request
, tid
);
545 spin_unlock(&journal
->j_state_lock
);
547 spin_lock(&journal
->j_state_lock
);
548 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
549 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
550 tid
, journal
->j_commit_sequence
);
551 wake_up(&journal
->j_wait_commit
);
552 spin_unlock(&journal
->j_state_lock
);
553 wait_event(journal
->j_wait_done_commit
,
554 !tid_gt(tid
, journal
->j_commit_sequence
));
555 spin_lock(&journal
->j_state_lock
);
557 spin_unlock(&journal
->j_state_lock
);
559 if (unlikely(is_journal_aborted(journal
))) {
560 printk(KERN_EMERG
"journal commit I/O error\n");
567 * Log buffer allocation routines:
570 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
572 unsigned int blocknr
;
574 spin_lock(&journal
->j_state_lock
);
575 J_ASSERT(journal
->j_free
> 1);
577 blocknr
= journal
->j_head
;
580 if (journal
->j_head
== journal
->j_last
)
581 journal
->j_head
= journal
->j_first
;
582 spin_unlock(&journal
->j_state_lock
);
583 return journal_bmap(journal
, blocknr
, retp
);
587 * Conversion of logical to physical block numbers for the journal
589 * On external journals the journal blocks are identity-mapped, so
590 * this is a no-op. If needed, we can use j_blk_offset - everything is
593 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
599 if (journal
->j_inode
) {
600 ret
= bmap(journal
->j_inode
, blocknr
);
604 char b
[BDEVNAME_SIZE
];
606 printk(KERN_ALERT
"%s: journal block not found "
607 "at offset %u on %s\n",
610 bdevname(journal
->j_dev
, b
));
612 __journal_abort_soft(journal
, err
);
615 *retp
= blocknr
; /* +journal->j_blk_offset */
621 * We play buffer_head aliasing tricks to write data/metadata blocks to
622 * the journal without copying their contents, but for journal
623 * descriptor blocks we do need to generate bona fide buffers.
625 * After the caller of journal_get_descriptor_buffer() has finished modifying
626 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
627 * But we don't bother doing that, so there will be coherency problems with
628 * mmaps of blockdevs which hold live JBD-controlled filesystems.
630 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
632 struct buffer_head
*bh
;
633 unsigned int blocknr
;
636 err
= journal_next_log_block(journal
, &blocknr
);
641 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
645 memset(bh
->b_data
, 0, journal
->j_blocksize
);
646 set_buffer_uptodate(bh
);
648 BUFFER_TRACE(bh
, "return this buffer");
649 return journal_add_journal_head(bh
);
653 * Management for journal control blocks: functions to create and
654 * destroy journal_t structures, and to initialise and read existing
655 * journal blocks from disk. */
657 /* First: create and setup a journal_t object in memory. We initialise
658 * very few fields yet: that has to wait until we have created the
659 * journal structures from from scratch, or loaded them from disk. */
661 static journal_t
* journal_init_common (void)
666 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
670 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
671 init_waitqueue_head(&journal
->j_wait_logspace
);
672 init_waitqueue_head(&journal
->j_wait_done_commit
);
673 init_waitqueue_head(&journal
->j_wait_checkpoint
);
674 init_waitqueue_head(&journal
->j_wait_commit
);
675 init_waitqueue_head(&journal
->j_wait_updates
);
676 mutex_init(&journal
->j_barrier
);
677 mutex_init(&journal
->j_checkpoint_mutex
);
678 spin_lock_init(&journal
->j_revoke_lock
);
679 spin_lock_init(&journal
->j_list_lock
);
680 spin_lock_init(&journal
->j_state_lock
);
682 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
684 /* The journal is marked for error until we succeed with recovery! */
685 journal
->j_flags
= JFS_ABORT
;
687 /* Set up a default-sized revoke table for the new mount. */
688 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
698 /* journal_init_dev and journal_init_inode:
700 * Create a journal structure assigned some fixed set of disk blocks to
701 * the journal. We don't actually touch those disk blocks yet, but we
702 * need to set up all of the mapping information to tell the journaling
703 * system where the journal blocks are.
708 * journal_t * journal_init_dev() - creates and initialises a journal structure
709 * @bdev: Block device on which to create the journal
710 * @fs_dev: Device which hold journalled filesystem for this journal.
711 * @start: Block nr Start of journal.
712 * @len: Length of the journal in blocks.
713 * @blocksize: blocksize of journalling device
715 * Returns: a newly created journal_t *
717 * journal_init_dev creates a journal which maps a fixed contiguous
718 * range of blocks on an arbitrary block device.
721 journal_t
* journal_init_dev(struct block_device
*bdev
,
722 struct block_device
*fs_dev
,
723 int start
, int len
, int blocksize
)
725 journal_t
*journal
= journal_init_common();
726 struct buffer_head
*bh
;
732 /* journal descriptor can store up to n blocks -bzzz */
733 journal
->j_blocksize
= blocksize
;
734 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
735 journal
->j_wbufsize
= n
;
736 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
737 if (!journal
->j_wbuf
) {
738 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
742 journal
->j_dev
= bdev
;
743 journal
->j_fs_dev
= fs_dev
;
744 journal
->j_blk_offset
= start
;
745 journal
->j_maxlen
= len
;
747 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
750 "%s: Cannot get buffer for journal superblock\n",
754 journal
->j_sb_buffer
= bh
;
755 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
764 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
765 * @inode: An inode to create the journal in
767 * journal_init_inode creates a journal which maps an on-disk inode as
768 * the journal. The inode must exist already, must support bmap() and
769 * must have all data blocks preallocated.
771 journal_t
* journal_init_inode (struct inode
*inode
)
773 struct buffer_head
*bh
;
774 journal_t
*journal
= journal_init_common();
777 unsigned int blocknr
;
782 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
783 journal
->j_inode
= inode
;
785 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
786 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
787 (long long) inode
->i_size
,
788 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
790 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
791 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
793 /* journal descriptor can store up to n blocks -bzzz */
794 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
795 journal
->j_wbufsize
= n
;
796 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
797 if (!journal
->j_wbuf
) {
798 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
803 err
= journal_bmap(journal
, 0, &blocknr
);
804 /* If that failed, give up */
806 printk(KERN_ERR
"%s: Cannnot locate journal superblock\n",
811 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
814 "%s: Cannot get buffer for journal superblock\n",
818 journal
->j_sb_buffer
= bh
;
819 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
828 * If the journal init or create aborts, we need to mark the journal
829 * superblock as being NULL to prevent the journal destroy from writing
830 * back a bogus superblock.
832 static void journal_fail_superblock (journal_t
*journal
)
834 struct buffer_head
*bh
= journal
->j_sb_buffer
;
836 journal
->j_sb_buffer
= NULL
;
840 * Given a journal_t structure, initialise the various fields for
841 * startup of a new journaling session. We use this both when creating
842 * a journal, and after recovering an old journal to reset it for
846 static int journal_reset(journal_t
*journal
)
848 journal_superblock_t
*sb
= journal
->j_superblock
;
849 unsigned int first
, last
;
851 first
= be32_to_cpu(sb
->s_first
);
852 last
= be32_to_cpu(sb
->s_maxlen
);
853 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
854 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
856 journal_fail_superblock(journal
);
860 journal
->j_first
= first
;
861 journal
->j_last
= last
;
863 journal
->j_head
= first
;
864 journal
->j_tail
= first
;
865 journal
->j_free
= last
- first
;
867 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
868 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
869 journal
->j_commit_request
= journal
->j_commit_sequence
;
871 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
873 /* Add the dynamic fields and write it to disk. */
874 journal_update_superblock(journal
, 1);
875 return journal_start_thread(journal
);
879 * int journal_create() - Initialise the new journal file
880 * @journal: Journal to create. This structure must have been initialised
882 * Given a journal_t structure which tells us which disk blocks we can
883 * use, create a new journal superblock and initialise all of the
884 * journal fields from scratch.
886 int journal_create(journal_t
*journal
)
888 unsigned int blocknr
;
889 struct buffer_head
*bh
;
890 journal_superblock_t
*sb
;
893 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
894 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
896 journal_fail_superblock(journal
);
900 if (journal
->j_inode
== NULL
) {
902 * We don't know what block to start at!
905 "%s: creation of journal on external device!\n",
910 /* Zero out the entire journal on disk. We cannot afford to
911 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
912 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
913 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
914 err
= journal_bmap(journal
, i
, &blocknr
);
917 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
919 memset (bh
->b_data
, 0, journal
->j_blocksize
);
920 BUFFER_TRACE(bh
, "marking dirty");
921 mark_buffer_dirty(bh
);
922 BUFFER_TRACE(bh
, "marking uptodate");
923 set_buffer_uptodate(bh
);
928 sync_blockdev(journal
->j_dev
);
929 jbd_debug(1, "JBD: journal cleared.\n");
931 /* OK, fill in the initial static fields in the new superblock */
932 sb
= journal
->j_superblock
;
934 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
935 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
937 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
938 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
939 sb
->s_first
= cpu_to_be32(1);
941 journal
->j_transaction_sequence
= 1;
943 journal
->j_flags
&= ~JFS_ABORT
;
944 journal
->j_format_version
= 2;
946 return journal_reset(journal
);
950 * void journal_update_superblock() - Update journal sb on disk.
951 * @journal: The journal to update.
952 * @wait: Set to '0' if you don't want to wait for IO completion.
954 * Update a journal's dynamic superblock fields and write it to disk,
955 * optionally waiting for the IO to complete.
957 void journal_update_superblock(journal_t
*journal
, int wait
)
959 journal_superblock_t
*sb
= journal
->j_superblock
;
960 struct buffer_head
*bh
= journal
->j_sb_buffer
;
963 * As a special case, if the on-disk copy is already marked as needing
964 * no recovery (s_start == 0) and there are no outstanding transactions
965 * in the filesystem, then we can safely defer the superblock update
966 * until the next commit by setting JFS_FLUSHED. This avoids
967 * attempting a write to a potential-readonly device.
969 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
970 journal
->j_transaction_sequence
) {
971 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
972 "(start %u, seq %d, errno %d)\n",
973 journal
->j_tail
, journal
->j_tail_sequence
,
978 spin_lock(&journal
->j_state_lock
);
979 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
980 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
982 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
983 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
984 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
985 spin_unlock(&journal
->j_state_lock
);
987 BUFFER_TRACE(bh
, "marking dirty");
988 mark_buffer_dirty(bh
);
990 sync_dirty_buffer(bh
);
992 ll_rw_block(SWRITE
, 1, &bh
);
995 /* If we have just flushed the log (by marking s_start==0), then
996 * any future commit will have to be careful to update the
997 * superblock again to re-record the true start of the log. */
999 spin_lock(&journal
->j_state_lock
);
1001 journal
->j_flags
&= ~JFS_FLUSHED
;
1003 journal
->j_flags
|= JFS_FLUSHED
;
1004 spin_unlock(&journal
->j_state_lock
);
1008 * Read the superblock for a given journal, performing initial
1009 * validation of the format.
1012 static int journal_get_superblock(journal_t
*journal
)
1014 struct buffer_head
*bh
;
1015 journal_superblock_t
*sb
;
1018 bh
= journal
->j_sb_buffer
;
1020 J_ASSERT(bh
!= NULL
);
1021 if (!buffer_uptodate(bh
)) {
1022 ll_rw_block(READ
, 1, &bh
);
1024 if (!buffer_uptodate(bh
)) {
1026 "JBD: IO error reading journal superblock\n");
1031 sb
= journal
->j_superblock
;
1035 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1036 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1037 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1041 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1042 case JFS_SUPERBLOCK_V1
:
1043 journal
->j_format_version
= 1;
1045 case JFS_SUPERBLOCK_V2
:
1046 journal
->j_format_version
= 2;
1049 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1053 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1054 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1055 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1056 printk (KERN_WARNING
"JBD: journal file too short\n");
1063 journal_fail_superblock(journal
);
1068 * Load the on-disk journal superblock and read the key fields into the
1072 static int load_superblock(journal_t
*journal
)
1075 journal_superblock_t
*sb
;
1077 err
= journal_get_superblock(journal
);
1081 sb
= journal
->j_superblock
;
1083 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1084 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1085 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1086 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1087 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1094 * int journal_load() - Read journal from disk.
1095 * @journal: Journal to act on.
1097 * Given a journal_t structure which tells us which disk blocks contain
1098 * a journal, read the journal from disk to initialise the in-memory
1101 int journal_load(journal_t
*journal
)
1104 journal_superblock_t
*sb
;
1106 err
= load_superblock(journal
);
1110 sb
= journal
->j_superblock
;
1111 /* If this is a V2 superblock, then we have to check the
1112 * features flags on it. */
1114 if (journal
->j_format_version
>= 2) {
1115 if ((sb
->s_feature_ro_compat
&
1116 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1117 (sb
->s_feature_incompat
&
1118 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1119 printk (KERN_WARNING
1120 "JBD: Unrecognised features on journal\n");
1125 /* Let the recovery code check whether it needs to recover any
1126 * data from the journal. */
1127 if (journal_recover(journal
))
1128 goto recovery_error
;
1130 /* OK, we've finished with the dynamic journal bits:
1131 * reinitialise the dynamic contents of the superblock in memory
1132 * and reset them on disk. */
1133 if (journal_reset(journal
))
1134 goto recovery_error
;
1136 journal
->j_flags
&= ~JFS_ABORT
;
1137 journal
->j_flags
|= JFS_LOADED
;
1141 printk (KERN_WARNING
"JBD: recovery failed\n");
1146 * void journal_destroy() - Release a journal_t structure.
1147 * @journal: Journal to act on.
1149 * Release a journal_t structure once it is no longer in use by the
1151 * Return <0 if we couldn't clean up the journal.
1153 int journal_destroy(journal_t
*journal
)
1157 /* Wait for the commit thread to wake up and die. */
1158 journal_kill_thread(journal
);
1160 /* Force a final log commit */
1161 if (journal
->j_running_transaction
)
1162 journal_commit_transaction(journal
);
1164 /* Force any old transactions to disk */
1166 /* Totally anal locking here... */
1167 spin_lock(&journal
->j_list_lock
);
1168 while (journal
->j_checkpoint_transactions
!= NULL
) {
1169 spin_unlock(&journal
->j_list_lock
);
1170 log_do_checkpoint(journal
);
1171 spin_lock(&journal
->j_list_lock
);
1174 J_ASSERT(journal
->j_running_transaction
== NULL
);
1175 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1176 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1177 spin_unlock(&journal
->j_list_lock
);
1179 if (journal
->j_sb_buffer
) {
1180 if (!is_journal_aborted(journal
)) {
1181 /* We can now mark the journal as empty. */
1182 journal
->j_tail
= 0;
1183 journal
->j_tail_sequence
=
1184 ++journal
->j_transaction_sequence
;
1185 journal_update_superblock(journal
, 1);
1189 brelse(journal
->j_sb_buffer
);
1192 if (journal
->j_inode
)
1193 iput(journal
->j_inode
);
1194 if (journal
->j_revoke
)
1195 journal_destroy_revoke(journal
);
1196 kfree(journal
->j_wbuf
);
1204 *int journal_check_used_features () - Check if features specified are used.
1205 * @journal: Journal to check.
1206 * @compat: bitmask of compatible features
1207 * @ro: bitmask of features that force read-only mount
1208 * @incompat: bitmask of incompatible features
1210 * Check whether the journal uses all of a given set of
1211 * features. Return true (non-zero) if it does.
1214 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1215 unsigned long ro
, unsigned long incompat
)
1217 journal_superblock_t
*sb
;
1219 if (!compat
&& !ro
&& !incompat
)
1221 if (journal
->j_format_version
== 1)
1224 sb
= journal
->j_superblock
;
1226 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1227 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1228 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1235 * int journal_check_available_features() - Check feature set in journalling layer
1236 * @journal: Journal to check.
1237 * @compat: bitmask of compatible features
1238 * @ro: bitmask of features that force read-only mount
1239 * @incompat: bitmask of incompatible features
1241 * Check whether the journaling code supports the use of
1242 * all of a given set of features on this journal. Return true
1243 * (non-zero) if it can. */
1245 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1246 unsigned long ro
, unsigned long incompat
)
1248 journal_superblock_t
*sb
;
1250 if (!compat
&& !ro
&& !incompat
)
1253 sb
= journal
->j_superblock
;
1255 /* We can support any known requested features iff the
1256 * superblock is in version 2. Otherwise we fail to support any
1257 * extended sb features. */
1259 if (journal
->j_format_version
!= 2)
1262 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1263 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1264 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1271 * int journal_set_features () - Mark a given journal feature in the superblock
1272 * @journal: Journal to act on.
1273 * @compat: bitmask of compatible features
1274 * @ro: bitmask of features that force read-only mount
1275 * @incompat: bitmask of incompatible features
1277 * Mark a given journal feature as present on the
1278 * superblock. Returns true if the requested features could be set.
1282 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1283 unsigned long ro
, unsigned long incompat
)
1285 journal_superblock_t
*sb
;
1287 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1290 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1293 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1294 compat
, ro
, incompat
);
1296 sb
= journal
->j_superblock
;
1298 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1299 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1300 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1307 * int journal_update_format () - Update on-disk journal structure.
1308 * @journal: Journal to act on.
1310 * Given an initialised but unloaded journal struct, poke about in the
1311 * on-disk structure to update it to the most recent supported version.
1313 int journal_update_format (journal_t
*journal
)
1315 journal_superblock_t
*sb
;
1318 err
= journal_get_superblock(journal
);
1322 sb
= journal
->j_superblock
;
1324 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1325 case JFS_SUPERBLOCK_V2
:
1327 case JFS_SUPERBLOCK_V1
:
1328 return journal_convert_superblock_v1(journal
, sb
);
1335 static int journal_convert_superblock_v1(journal_t
*journal
,
1336 journal_superblock_t
*sb
)
1338 int offset
, blocksize
;
1339 struct buffer_head
*bh
;
1342 "JBD: Converting superblock from version 1 to 2.\n");
1344 /* Pre-initialise new fields to zero */
1345 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1346 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1347 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1349 sb
->s_nr_users
= cpu_to_be32(1);
1350 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1351 journal
->j_format_version
= 2;
1353 bh
= journal
->j_sb_buffer
;
1354 BUFFER_TRACE(bh
, "marking dirty");
1355 mark_buffer_dirty(bh
);
1356 sync_dirty_buffer(bh
);
1362 * int journal_flush () - Flush journal
1363 * @journal: Journal to act on.
1365 * Flush all data for a given journal to disk and empty the journal.
1366 * Filesystems can use this when remounting readonly to ensure that
1367 * recovery does not need to happen on remount.
1370 int journal_flush(journal_t
*journal
)
1373 transaction_t
*transaction
= NULL
;
1374 unsigned int old_tail
;
1376 spin_lock(&journal
->j_state_lock
);
1378 /* Force everything buffered to the log... */
1379 if (journal
->j_running_transaction
) {
1380 transaction
= journal
->j_running_transaction
;
1381 __log_start_commit(journal
, transaction
->t_tid
);
1382 } else if (journal
->j_committing_transaction
)
1383 transaction
= journal
->j_committing_transaction
;
1385 /* Wait for the log commit to complete... */
1387 tid_t tid
= transaction
->t_tid
;
1389 spin_unlock(&journal
->j_state_lock
);
1390 log_wait_commit(journal
, tid
);
1392 spin_unlock(&journal
->j_state_lock
);
1395 /* ...and flush everything in the log out to disk. */
1396 spin_lock(&journal
->j_list_lock
);
1397 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1398 spin_unlock(&journal
->j_list_lock
);
1399 mutex_lock(&journal
->j_checkpoint_mutex
);
1400 err
= log_do_checkpoint(journal
);
1401 mutex_unlock(&journal
->j_checkpoint_mutex
);
1402 spin_lock(&journal
->j_list_lock
);
1404 spin_unlock(&journal
->j_list_lock
);
1406 if (is_journal_aborted(journal
))
1409 cleanup_journal_tail(journal
);
1411 /* Finally, mark the journal as really needing no recovery.
1412 * This sets s_start==0 in the underlying superblock, which is
1413 * the magic code for a fully-recovered superblock. Any future
1414 * commits of data to the journal will restore the current
1416 spin_lock(&journal
->j_state_lock
);
1417 old_tail
= journal
->j_tail
;
1418 journal
->j_tail
= 0;
1419 spin_unlock(&journal
->j_state_lock
);
1420 journal_update_superblock(journal
, 1);
1421 spin_lock(&journal
->j_state_lock
);
1422 journal
->j_tail
= old_tail
;
1424 J_ASSERT(!journal
->j_running_transaction
);
1425 J_ASSERT(!journal
->j_committing_transaction
);
1426 J_ASSERT(!journal
->j_checkpoint_transactions
);
1427 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1428 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1429 spin_unlock(&journal
->j_state_lock
);
1434 * int journal_wipe() - Wipe journal contents
1435 * @journal: Journal to act on.
1436 * @write: flag (see below)
1438 * Wipe out all of the contents of a journal, safely. This will produce
1439 * a warning if the journal contains any valid recovery information.
1440 * Must be called between journal_init_*() and journal_load().
1442 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1443 * we merely suppress recovery.
1446 int journal_wipe(journal_t
*journal
, int write
)
1448 journal_superblock_t
*sb
;
1451 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1453 err
= load_superblock(journal
);
1457 sb
= journal
->j_superblock
;
1459 if (!journal
->j_tail
)
1462 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1463 write
? "Clearing" : "Ignoring");
1465 err
= journal_skip_recovery(journal
);
1467 journal_update_superblock(journal
, 1);
1474 * journal_dev_name: format a character string to describe on what
1475 * device this journal is present.
1478 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1480 struct block_device
*bdev
;
1482 if (journal
->j_inode
)
1483 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1485 bdev
= journal
->j_dev
;
1487 return bdevname(bdev
, buffer
);
1491 * Journal abort has very specific semantics, which we describe
1492 * for journal abort.
1494 * Two internal function, which provide abort to te jbd layer
1499 * Quick version for internal journal use (doesn't lock the journal).
1500 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1501 * and don't attempt to make any other journal updates.
1503 static void __journal_abort_hard(journal_t
*journal
)
1505 transaction_t
*transaction
;
1506 char b
[BDEVNAME_SIZE
];
1508 if (journal
->j_flags
& JFS_ABORT
)
1511 printk(KERN_ERR
"Aborting journal on device %s.\n",
1512 journal_dev_name(journal
, b
));
1514 spin_lock(&journal
->j_state_lock
);
1515 journal
->j_flags
|= JFS_ABORT
;
1516 transaction
= journal
->j_running_transaction
;
1518 __log_start_commit(journal
, transaction
->t_tid
);
1519 spin_unlock(&journal
->j_state_lock
);
1522 /* Soft abort: record the abort error status in the journal superblock,
1523 * but don't do any other IO. */
1524 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1526 if (journal
->j_flags
& JFS_ABORT
)
1529 if (!journal
->j_errno
)
1530 journal
->j_errno
= errno
;
1532 __journal_abort_hard(journal
);
1535 journal_update_superblock(journal
, 1);
1539 * void journal_abort () - Shutdown the journal immediately.
1540 * @journal: the journal to shutdown.
1541 * @errno: an error number to record in the journal indicating
1542 * the reason for the shutdown.
1544 * Perform a complete, immediate shutdown of the ENTIRE
1545 * journal (not of a single transaction). This operation cannot be
1546 * undone without closing and reopening the journal.
1548 * The journal_abort function is intended to support higher level error
1549 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1552 * Journal abort has very specific semantics. Any existing dirty,
1553 * unjournaled buffers in the main filesystem will still be written to
1554 * disk by bdflush, but the journaling mechanism will be suspended
1555 * immediately and no further transaction commits will be honoured.
1557 * Any dirty, journaled buffers will be written back to disk without
1558 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1559 * filesystem, but we _do_ attempt to leave as much data as possible
1560 * behind for fsck to use for cleanup.
1562 * Any attempt to get a new transaction handle on a journal which is in
1563 * ABORT state will just result in an -EROFS error return. A
1564 * journal_stop on an existing handle will return -EIO if we have
1565 * entered abort state during the update.
1567 * Recursive transactions are not disturbed by journal abort until the
1568 * final journal_stop, which will receive the -EIO error.
1570 * Finally, the journal_abort call allows the caller to supply an errno
1571 * which will be recorded (if possible) in the journal superblock. This
1572 * allows a client to record failure conditions in the middle of a
1573 * transaction without having to complete the transaction to record the
1574 * failure to disk. ext3_error, for example, now uses this
1577 * Errors which originate from within the journaling layer will NOT
1578 * supply an errno; a null errno implies that absolutely no further
1579 * writes are done to the journal (unless there are any already in
1584 void journal_abort(journal_t
*journal
, int errno
)
1586 __journal_abort_soft(journal
, errno
);
1590 * int journal_errno () - returns the journal's error state.
1591 * @journal: journal to examine.
1593 * This is the errno numbet set with journal_abort(), the last
1594 * time the journal was mounted - if the journal was stopped
1595 * without calling abort this will be 0.
1597 * If the journal has been aborted on this mount time -EROFS will
1600 int journal_errno(journal_t
*journal
)
1604 spin_lock(&journal
->j_state_lock
);
1605 if (journal
->j_flags
& JFS_ABORT
)
1608 err
= journal
->j_errno
;
1609 spin_unlock(&journal
->j_state_lock
);
1614 * int journal_clear_err () - clears the journal's error state
1615 * @journal: journal to act on.
1617 * An error must be cleared or Acked to take a FS out of readonly
1620 int journal_clear_err(journal_t
*journal
)
1624 spin_lock(&journal
->j_state_lock
);
1625 if (journal
->j_flags
& JFS_ABORT
)
1628 journal
->j_errno
= 0;
1629 spin_unlock(&journal
->j_state_lock
);
1634 * void journal_ack_err() - Ack journal err.
1635 * @journal: journal to act on.
1637 * An error must be cleared or Acked to take a FS out of readonly
1640 void journal_ack_err(journal_t
*journal
)
1642 spin_lock(&journal
->j_state_lock
);
1643 if (journal
->j_errno
)
1644 journal
->j_flags
|= JFS_ACK_ERR
;
1645 spin_unlock(&journal
->j_state_lock
);
1648 int journal_blocks_per_page(struct inode
*inode
)
1650 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1654 * Journal_head storage management
1656 static struct kmem_cache
*journal_head_cache
;
1657 #ifdef CONFIG_JBD_DEBUG
1658 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1661 static int journal_init_journal_head_cache(void)
1665 J_ASSERT(journal_head_cache
== NULL
);
1666 journal_head_cache
= kmem_cache_create("journal_head",
1667 sizeof(struct journal_head
),
1669 SLAB_TEMPORARY
, /* flags */
1672 if (!journal_head_cache
) {
1674 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1679 static void journal_destroy_journal_head_cache(void)
1681 if (journal_head_cache
) {
1682 kmem_cache_destroy(journal_head_cache
);
1683 journal_head_cache
= NULL
;
1688 * journal_head splicing and dicing
1690 static struct journal_head
*journal_alloc_journal_head(void)
1692 struct journal_head
*ret
;
1693 static unsigned long last_warning
;
1695 #ifdef CONFIG_JBD_DEBUG
1696 atomic_inc(&nr_journal_heads
);
1698 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1700 jbd_debug(1, "out of memory for journal_head\n");
1701 if (time_after(jiffies
, last_warning
+ 5*HZ
)) {
1702 printk(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1704 last_warning
= jiffies
;
1706 while (ret
== NULL
) {
1708 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1714 static void journal_free_journal_head(struct journal_head
*jh
)
1716 #ifdef CONFIG_JBD_DEBUG
1717 atomic_dec(&nr_journal_heads
);
1718 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1720 kmem_cache_free(journal_head_cache
, jh
);
1724 * A journal_head is attached to a buffer_head whenever JBD has an
1725 * interest in the buffer.
1727 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1728 * is set. This bit is tested in core kernel code where we need to take
1729 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1732 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1734 * When a buffer has its BH_JBD bit set it is immune from being released by
1735 * core kernel code, mainly via ->b_count.
1737 * A journal_head may be detached from its buffer_head when the journal_head's
1738 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1739 * Various places in JBD call journal_remove_journal_head() to indicate that the
1740 * journal_head can be dropped if needed.
1742 * Various places in the kernel want to attach a journal_head to a buffer_head
1743 * _before_ attaching the journal_head to a transaction. To protect the
1744 * journal_head in this situation, journal_add_journal_head elevates the
1745 * journal_head's b_jcount refcount by one. The caller must call
1746 * journal_put_journal_head() to undo this.
1748 * So the typical usage would be:
1750 * (Attach a journal_head if needed. Increments b_jcount)
1751 * struct journal_head *jh = journal_add_journal_head(bh);
1753 * jh->b_transaction = xxx;
1754 * journal_put_journal_head(jh);
1756 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1757 * because it has a non-zero b_transaction.
1761 * Give a buffer_head a journal_head.
1763 * Doesn't need the journal lock.
1766 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1768 struct journal_head
*jh
;
1769 struct journal_head
*new_jh
= NULL
;
1772 if (!buffer_jbd(bh
)) {
1773 new_jh
= journal_alloc_journal_head();
1774 memset(new_jh
, 0, sizeof(*new_jh
));
1777 jbd_lock_bh_journal_head(bh
);
1778 if (buffer_jbd(bh
)) {
1782 (atomic_read(&bh
->b_count
) > 0) ||
1783 (bh
->b_page
&& bh
->b_page
->mapping
));
1786 jbd_unlock_bh_journal_head(bh
);
1791 new_jh
= NULL
; /* We consumed it */
1796 BUFFER_TRACE(bh
, "added journal_head");
1799 jbd_unlock_bh_journal_head(bh
);
1801 journal_free_journal_head(new_jh
);
1802 return bh
->b_private
;
1806 * Grab a ref against this buffer_head's journal_head. If it ended up not
1807 * having a journal_head, return NULL
1809 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1811 struct journal_head
*jh
= NULL
;
1813 jbd_lock_bh_journal_head(bh
);
1814 if (buffer_jbd(bh
)) {
1818 jbd_unlock_bh_journal_head(bh
);
1822 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1824 struct journal_head
*jh
= bh2jh(bh
);
1826 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1829 if (jh
->b_jcount
== 0) {
1830 if (jh
->b_transaction
== NULL
&&
1831 jh
->b_next_transaction
== NULL
&&
1832 jh
->b_cp_transaction
== NULL
) {
1833 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1834 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1835 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1836 BUFFER_TRACE(bh
, "remove journal_head");
1837 if (jh
->b_frozen_data
) {
1838 printk(KERN_WARNING
"%s: freeing "
1841 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1843 if (jh
->b_committed_data
) {
1844 printk(KERN_WARNING
"%s: freeing "
1845 "b_committed_data\n",
1847 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1849 bh
->b_private
= NULL
;
1850 jh
->b_bh
= NULL
; /* debug, really */
1851 clear_buffer_jbd(bh
);
1853 journal_free_journal_head(jh
);
1855 BUFFER_TRACE(bh
, "journal_head was locked");
1861 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1862 * and has a zero b_jcount then remove and release its journal_head. If we did
1863 * see that the buffer is not used by any transaction we also "logically"
1864 * decrement ->b_count.
1866 * We in fact take an additional increment on ->b_count as a convenience,
1867 * because the caller usually wants to do additional things with the bh
1868 * after calling here.
1869 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1870 * time. Once the caller has run __brelse(), the buffer is eligible for
1871 * reaping by try_to_free_buffers().
1873 void journal_remove_journal_head(struct buffer_head
*bh
)
1875 jbd_lock_bh_journal_head(bh
);
1876 __journal_remove_journal_head(bh
);
1877 jbd_unlock_bh_journal_head(bh
);
1881 * Drop a reference on the passed journal_head. If it fell to zero then try to
1882 * release the journal_head from the buffer_head.
1884 void journal_put_journal_head(struct journal_head
*jh
)
1886 struct buffer_head
*bh
= jh2bh(jh
);
1888 jbd_lock_bh_journal_head(bh
);
1889 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1891 if (!jh
->b_jcount
&& !jh
->b_transaction
) {
1892 __journal_remove_journal_head(bh
);
1895 jbd_unlock_bh_journal_head(bh
);
1901 #ifdef CONFIG_JBD_DEBUG
1903 u8 journal_enable_debug __read_mostly
;
1904 EXPORT_SYMBOL(journal_enable_debug
);
1906 static struct dentry
*jbd_debugfs_dir
;
1907 static struct dentry
*jbd_debug
;
1909 static void __init
jbd_create_debugfs_entry(void)
1911 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
1912 if (jbd_debugfs_dir
)
1913 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
,
1915 &journal_enable_debug
);
1918 static void __exit
jbd_remove_debugfs_entry(void)
1920 debugfs_remove(jbd_debug
);
1921 debugfs_remove(jbd_debugfs_dir
);
1926 static inline void jbd_create_debugfs_entry(void)
1930 static inline void jbd_remove_debugfs_entry(void)
1936 struct kmem_cache
*jbd_handle_cache
;
1938 static int __init
journal_init_handle_cache(void)
1940 jbd_handle_cache
= kmem_cache_create("journal_handle",
1943 SLAB_TEMPORARY
, /* flags */
1945 if (jbd_handle_cache
== NULL
) {
1946 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
1952 static void journal_destroy_handle_cache(void)
1954 if (jbd_handle_cache
)
1955 kmem_cache_destroy(jbd_handle_cache
);
1959 * Module startup and shutdown
1962 static int __init
journal_init_caches(void)
1966 ret
= journal_init_revoke_caches();
1968 ret
= journal_init_journal_head_cache();
1970 ret
= journal_init_handle_cache();
1974 static void journal_destroy_caches(void)
1976 journal_destroy_revoke_caches();
1977 journal_destroy_journal_head_cache();
1978 journal_destroy_handle_cache();
1981 static int __init
journal_init(void)
1985 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
1987 ret
= journal_init_caches();
1989 journal_destroy_caches();
1990 jbd_create_debugfs_entry();
1994 static void __exit
journal_exit(void)
1996 #ifdef CONFIG_JBD_DEBUG
1997 int n
= atomic_read(&nr_journal_heads
);
1999 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2001 jbd_remove_debugfs_entry();
2002 journal_destroy_caches();
2005 MODULE_LICENSE("GPL");
2006 module_init(journal_init
);
2007 module_exit(journal_exit
);