Save sram context after changing MPU, DSP or core clocks
[linux-ginger.git] / mm / vmscan.c
blob64e438898832371277e8baeb89fd5ebb1f72a14a
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
61 int may_writepage;
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
75 int swappiness;
77 int all_unreclaimable;
79 int order;
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
88 nodemask_t *nodemask;
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
94 int active, int file);
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
148 return &zone->reclaim_stat;
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
157 return zone_page_state(zone, NR_LRU_BASE + lru);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker *shrinker)
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
171 EXPORT_SYMBOL(register_shrinker);
174 * Remove one
176 void unregister_shrinker(struct shrinker *shrinker)
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
182 EXPORT_SYMBOL(unregister_shrinker);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
221 delta = (4 * scanned) / shrinker->seeks;
222 delta *= max_pass;
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
225 if (shrinker->nr < 0) {
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
229 shrinker->nr = max_pass;
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
246 int nr_before;
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 if (shrink_ret == -1)
251 break;
252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
254 count_vm_events(SLABS_SCANNED, this_scan);
255 total_scan -= this_scan;
257 cond_resched();
260 shrinker->nr += total_scan;
262 up_read(&shrinker_rwsem);
263 return ret;
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
269 struct address_space *mapping;
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
287 static inline int is_page_cache_freeable(struct page *page)
290 * A freeable page cache page is referenced only by the caller
291 * that isolated the page, the page cache radix tree and
292 * optional buffer heads at page->private.
294 return page_count(page) - page_has_private(page) == 2;
297 static int may_write_to_queue(struct backing_dev_info *bdi)
299 if (current->flags & PF_SWAPWRITE)
300 return 1;
301 if (!bdi_write_congested(bdi))
302 return 1;
303 if (bdi == current->backing_dev_info)
304 return 1;
305 return 0;
309 * We detected a synchronous write error writing a page out. Probably
310 * -ENOSPC. We need to propagate that into the address_space for a subsequent
311 * fsync(), msync() or close().
313 * The tricky part is that after writepage we cannot touch the mapping: nothing
314 * prevents it from being freed up. But we have a ref on the page and once
315 * that page is locked, the mapping is pinned.
317 * We're allowed to run sleeping lock_page() here because we know the caller has
318 * __GFP_FS.
320 static void handle_write_error(struct address_space *mapping,
321 struct page *page, int error)
323 lock_page(page);
324 if (page_mapping(page) == mapping)
325 mapping_set_error(mapping, error);
326 unlock_page(page);
329 /* Request for sync pageout. */
330 enum pageout_io {
331 PAGEOUT_IO_ASYNC,
332 PAGEOUT_IO_SYNC,
335 /* possible outcome of pageout() */
336 typedef enum {
337 /* failed to write page out, page is locked */
338 PAGE_KEEP,
339 /* move page to the active list, page is locked */
340 PAGE_ACTIVATE,
341 /* page has been sent to the disk successfully, page is unlocked */
342 PAGE_SUCCESS,
343 /* page is clean and locked */
344 PAGE_CLEAN,
345 } pageout_t;
348 * pageout is called by shrink_page_list() for each dirty page.
349 * Calls ->writepage().
351 static pageout_t pageout(struct page *page, struct address_space *mapping,
352 enum pageout_io sync_writeback)
355 * If the page is dirty, only perform writeback if that write
356 * will be non-blocking. To prevent this allocation from being
357 * stalled by pagecache activity. But note that there may be
358 * stalls if we need to run get_block(). We could test
359 * PagePrivate for that.
361 * If this process is currently in generic_file_write() against
362 * this page's queue, we can perform writeback even if that
363 * will block.
365 * If the page is swapcache, write it back even if that would
366 * block, for some throttling. This happens by accident, because
367 * swap_backing_dev_info is bust: it doesn't reflect the
368 * congestion state of the swapdevs. Easy to fix, if needed.
370 if (!is_page_cache_freeable(page))
371 return PAGE_KEEP;
372 if (!mapping) {
374 * Some data journaling orphaned pages can have
375 * page->mapping == NULL while being dirty with clean buffers.
377 if (page_has_private(page)) {
378 if (try_to_free_buffers(page)) {
379 ClearPageDirty(page);
380 printk("%s: orphaned page\n", __func__);
381 return PAGE_CLEAN;
384 return PAGE_KEEP;
386 if (mapping->a_ops->writepage == NULL)
387 return PAGE_ACTIVATE;
388 if (!may_write_to_queue(mapping->backing_dev_info))
389 return PAGE_KEEP;
391 if (clear_page_dirty_for_io(page)) {
392 int res;
393 struct writeback_control wbc = {
394 .sync_mode = WB_SYNC_NONE,
395 .nr_to_write = SWAP_CLUSTER_MAX,
396 .range_start = 0,
397 .range_end = LLONG_MAX,
398 .nonblocking = 1,
399 .for_reclaim = 1,
402 SetPageReclaim(page);
403 res = mapping->a_ops->writepage(page, &wbc);
404 if (res < 0)
405 handle_write_error(mapping, page, res);
406 if (res == AOP_WRITEPAGE_ACTIVATE) {
407 ClearPageReclaim(page);
408 return PAGE_ACTIVATE;
412 * Wait on writeback if requested to. This happens when
413 * direct reclaiming a large contiguous area and the
414 * first attempt to free a range of pages fails.
416 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
417 wait_on_page_writeback(page);
419 if (!PageWriteback(page)) {
420 /* synchronous write or broken a_ops? */
421 ClearPageReclaim(page);
423 inc_zone_page_state(page, NR_VMSCAN_WRITE);
424 return PAGE_SUCCESS;
427 return PAGE_CLEAN;
431 * Same as remove_mapping, but if the page is removed from the mapping, it
432 * gets returned with a refcount of 0.
434 static int __remove_mapping(struct address_space *mapping, struct page *page)
436 BUG_ON(!PageLocked(page));
437 BUG_ON(mapping != page_mapping(page));
439 spin_lock_irq(&mapping->tree_lock);
441 * The non racy check for a busy page.
443 * Must be careful with the order of the tests. When someone has
444 * a ref to the page, it may be possible that they dirty it then
445 * drop the reference. So if PageDirty is tested before page_count
446 * here, then the following race may occur:
448 * get_user_pages(&page);
449 * [user mapping goes away]
450 * write_to(page);
451 * !PageDirty(page) [good]
452 * SetPageDirty(page);
453 * put_page(page);
454 * !page_count(page) [good, discard it]
456 * [oops, our write_to data is lost]
458 * Reversing the order of the tests ensures such a situation cannot
459 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
460 * load is not satisfied before that of page->_count.
462 * Note that if SetPageDirty is always performed via set_page_dirty,
463 * and thus under tree_lock, then this ordering is not required.
465 if (!page_freeze_refs(page, 2))
466 goto cannot_free;
467 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
468 if (unlikely(PageDirty(page))) {
469 page_unfreeze_refs(page, 2);
470 goto cannot_free;
473 if (PageSwapCache(page)) {
474 swp_entry_t swap = { .val = page_private(page) };
475 __delete_from_swap_cache(page);
476 spin_unlock_irq(&mapping->tree_lock);
477 swapcache_free(swap, page);
478 } else {
479 __remove_from_page_cache(page);
480 spin_unlock_irq(&mapping->tree_lock);
481 mem_cgroup_uncharge_cache_page(page);
484 return 1;
486 cannot_free:
487 spin_unlock_irq(&mapping->tree_lock);
488 return 0;
492 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
493 * someone else has a ref on the page, abort and return 0. If it was
494 * successfully detached, return 1. Assumes the caller has a single ref on
495 * this page.
497 int remove_mapping(struct address_space *mapping, struct page *page)
499 if (__remove_mapping(mapping, page)) {
501 * Unfreezing the refcount with 1 rather than 2 effectively
502 * drops the pagecache ref for us without requiring another
503 * atomic operation.
505 page_unfreeze_refs(page, 1);
506 return 1;
508 return 0;
512 * putback_lru_page - put previously isolated page onto appropriate LRU list
513 * @page: page to be put back to appropriate lru list
515 * Add previously isolated @page to appropriate LRU list.
516 * Page may still be unevictable for other reasons.
518 * lru_lock must not be held, interrupts must be enabled.
520 void putback_lru_page(struct page *page)
522 int lru;
523 int active = !!TestClearPageActive(page);
524 int was_unevictable = PageUnevictable(page);
526 VM_BUG_ON(PageLRU(page));
528 redo:
529 ClearPageUnevictable(page);
531 if (page_evictable(page, NULL)) {
533 * For evictable pages, we can use the cache.
534 * In event of a race, worst case is we end up with an
535 * unevictable page on [in]active list.
536 * We know how to handle that.
538 lru = active + page_lru_base_type(page);
539 lru_cache_add_lru(page, lru);
540 } else {
542 * Put unevictable pages directly on zone's unevictable
543 * list.
545 lru = LRU_UNEVICTABLE;
546 add_page_to_unevictable_list(page);
550 * page's status can change while we move it among lru. If an evictable
551 * page is on unevictable list, it never be freed. To avoid that,
552 * check after we added it to the list, again.
554 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
555 if (!isolate_lru_page(page)) {
556 put_page(page);
557 goto redo;
559 /* This means someone else dropped this page from LRU
560 * So, it will be freed or putback to LRU again. There is
561 * nothing to do here.
565 if (was_unevictable && lru != LRU_UNEVICTABLE)
566 count_vm_event(UNEVICTABLE_PGRESCUED);
567 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
568 count_vm_event(UNEVICTABLE_PGCULLED);
570 put_page(page); /* drop ref from isolate */
574 * shrink_page_list() returns the number of reclaimed pages
576 static unsigned long shrink_page_list(struct list_head *page_list,
577 struct scan_control *sc,
578 enum pageout_io sync_writeback)
580 LIST_HEAD(ret_pages);
581 struct pagevec freed_pvec;
582 int pgactivate = 0;
583 unsigned long nr_reclaimed = 0;
584 unsigned long vm_flags;
586 cond_resched();
588 pagevec_init(&freed_pvec, 1);
589 while (!list_empty(page_list)) {
590 struct address_space *mapping;
591 struct page *page;
592 int may_enter_fs;
593 int referenced;
595 cond_resched();
597 page = lru_to_page(page_list);
598 list_del(&page->lru);
600 if (!trylock_page(page))
601 goto keep;
603 VM_BUG_ON(PageActive(page));
605 sc->nr_scanned++;
607 if (unlikely(!page_evictable(page, NULL)))
608 goto cull_mlocked;
610 if (!sc->may_unmap && page_mapped(page))
611 goto keep_locked;
613 /* Double the slab pressure for mapped and swapcache pages */
614 if (page_mapped(page) || PageSwapCache(page))
615 sc->nr_scanned++;
617 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
618 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
620 if (PageWriteback(page)) {
622 * Synchronous reclaim is performed in two passes,
623 * first an asynchronous pass over the list to
624 * start parallel writeback, and a second synchronous
625 * pass to wait for the IO to complete. Wait here
626 * for any page for which writeback has already
627 * started.
629 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
630 wait_on_page_writeback(page);
631 else
632 goto keep_locked;
635 referenced = page_referenced(page, 1,
636 sc->mem_cgroup, &vm_flags);
638 * In active use or really unfreeable? Activate it.
639 * If page which have PG_mlocked lost isoltation race,
640 * try_to_unmap moves it to unevictable list
642 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
643 referenced && page_mapping_inuse(page)
644 && !(vm_flags & VM_LOCKED))
645 goto activate_locked;
648 * Anonymous process memory has backing store?
649 * Try to allocate it some swap space here.
651 if (PageAnon(page) && !PageSwapCache(page)) {
652 if (!(sc->gfp_mask & __GFP_IO))
653 goto keep_locked;
654 if (!add_to_swap(page))
655 goto activate_locked;
656 may_enter_fs = 1;
659 mapping = page_mapping(page);
662 * The page is mapped into the page tables of one or more
663 * processes. Try to unmap it here.
665 if (page_mapped(page) && mapping) {
666 switch (try_to_unmap(page, TTU_UNMAP)) {
667 case SWAP_FAIL:
668 goto activate_locked;
669 case SWAP_AGAIN:
670 goto keep_locked;
671 case SWAP_MLOCK:
672 goto cull_mlocked;
673 case SWAP_SUCCESS:
674 ; /* try to free the page below */
678 if (PageDirty(page)) {
679 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
680 goto keep_locked;
681 if (!may_enter_fs)
682 goto keep_locked;
683 if (!sc->may_writepage)
684 goto keep_locked;
686 /* Page is dirty, try to write it out here */
687 switch (pageout(page, mapping, sync_writeback)) {
688 case PAGE_KEEP:
689 goto keep_locked;
690 case PAGE_ACTIVATE:
691 goto activate_locked;
692 case PAGE_SUCCESS:
693 if (PageWriteback(page) || PageDirty(page))
694 goto keep;
696 * A synchronous write - probably a ramdisk. Go
697 * ahead and try to reclaim the page.
699 if (!trylock_page(page))
700 goto keep;
701 if (PageDirty(page) || PageWriteback(page))
702 goto keep_locked;
703 mapping = page_mapping(page);
704 case PAGE_CLEAN:
705 ; /* try to free the page below */
710 * If the page has buffers, try to free the buffer mappings
711 * associated with this page. If we succeed we try to free
712 * the page as well.
714 * We do this even if the page is PageDirty().
715 * try_to_release_page() does not perform I/O, but it is
716 * possible for a page to have PageDirty set, but it is actually
717 * clean (all its buffers are clean). This happens if the
718 * buffers were written out directly, with submit_bh(). ext3
719 * will do this, as well as the blockdev mapping.
720 * try_to_release_page() will discover that cleanness and will
721 * drop the buffers and mark the page clean - it can be freed.
723 * Rarely, pages can have buffers and no ->mapping. These are
724 * the pages which were not successfully invalidated in
725 * truncate_complete_page(). We try to drop those buffers here
726 * and if that worked, and the page is no longer mapped into
727 * process address space (page_count == 1) it can be freed.
728 * Otherwise, leave the page on the LRU so it is swappable.
730 if (page_has_private(page)) {
731 if (!try_to_release_page(page, sc->gfp_mask))
732 goto activate_locked;
733 if (!mapping && page_count(page) == 1) {
734 unlock_page(page);
735 if (put_page_testzero(page))
736 goto free_it;
737 else {
739 * rare race with speculative reference.
740 * the speculative reference will free
741 * this page shortly, so we may
742 * increment nr_reclaimed here (and
743 * leave it off the LRU).
745 nr_reclaimed++;
746 continue;
751 if (!mapping || !__remove_mapping(mapping, page))
752 goto keep_locked;
755 * At this point, we have no other references and there is
756 * no way to pick any more up (removed from LRU, removed
757 * from pagecache). Can use non-atomic bitops now (and
758 * we obviously don't have to worry about waking up a process
759 * waiting on the page lock, because there are no references.
761 __clear_page_locked(page);
762 free_it:
763 nr_reclaimed++;
764 if (!pagevec_add(&freed_pvec, page)) {
765 __pagevec_free(&freed_pvec);
766 pagevec_reinit(&freed_pvec);
768 continue;
770 cull_mlocked:
771 if (PageSwapCache(page))
772 try_to_free_swap(page);
773 unlock_page(page);
774 putback_lru_page(page);
775 continue;
777 activate_locked:
778 /* Not a candidate for swapping, so reclaim swap space. */
779 if (PageSwapCache(page) && vm_swap_full())
780 try_to_free_swap(page);
781 VM_BUG_ON(PageActive(page));
782 SetPageActive(page);
783 pgactivate++;
784 keep_locked:
785 unlock_page(page);
786 keep:
787 list_add(&page->lru, &ret_pages);
788 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
790 list_splice(&ret_pages, page_list);
791 if (pagevec_count(&freed_pvec))
792 __pagevec_free(&freed_pvec);
793 count_vm_events(PGACTIVATE, pgactivate);
794 return nr_reclaimed;
797 /* LRU Isolation modes. */
798 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
799 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
800 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
803 * Attempt to remove the specified page from its LRU. Only take this page
804 * if it is of the appropriate PageActive status. Pages which are being
805 * freed elsewhere are also ignored.
807 * page: page to consider
808 * mode: one of the LRU isolation modes defined above
810 * returns 0 on success, -ve errno on failure.
812 int __isolate_lru_page(struct page *page, int mode, int file)
814 int ret = -EINVAL;
816 /* Only take pages on the LRU. */
817 if (!PageLRU(page))
818 return ret;
821 * When checking the active state, we need to be sure we are
822 * dealing with comparible boolean values. Take the logical not
823 * of each.
825 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
826 return ret;
828 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
829 return ret;
832 * When this function is being called for lumpy reclaim, we
833 * initially look into all LRU pages, active, inactive and
834 * unevictable; only give shrink_page_list evictable pages.
836 if (PageUnevictable(page))
837 return ret;
839 ret = -EBUSY;
841 if (likely(get_page_unless_zero(page))) {
843 * Be careful not to clear PageLRU until after we're
844 * sure the page is not being freed elsewhere -- the
845 * page release code relies on it.
847 ClearPageLRU(page);
848 ret = 0;
851 return ret;
855 * zone->lru_lock is heavily contended. Some of the functions that
856 * shrink the lists perform better by taking out a batch of pages
857 * and working on them outside the LRU lock.
859 * For pagecache intensive workloads, this function is the hottest
860 * spot in the kernel (apart from copy_*_user functions).
862 * Appropriate locks must be held before calling this function.
864 * @nr_to_scan: The number of pages to look through on the list.
865 * @src: The LRU list to pull pages off.
866 * @dst: The temp list to put pages on to.
867 * @scanned: The number of pages that were scanned.
868 * @order: The caller's attempted allocation order
869 * @mode: One of the LRU isolation modes
870 * @file: True [1] if isolating file [!anon] pages
872 * returns how many pages were moved onto *@dst.
874 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
875 struct list_head *src, struct list_head *dst,
876 unsigned long *scanned, int order, int mode, int file)
878 unsigned long nr_taken = 0;
879 unsigned long scan;
881 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
882 struct page *page;
883 unsigned long pfn;
884 unsigned long end_pfn;
885 unsigned long page_pfn;
886 int zone_id;
888 page = lru_to_page(src);
889 prefetchw_prev_lru_page(page, src, flags);
891 VM_BUG_ON(!PageLRU(page));
893 switch (__isolate_lru_page(page, mode, file)) {
894 case 0:
895 list_move(&page->lru, dst);
896 mem_cgroup_del_lru(page);
897 nr_taken++;
898 break;
900 case -EBUSY:
901 /* else it is being freed elsewhere */
902 list_move(&page->lru, src);
903 mem_cgroup_rotate_lru_list(page, page_lru(page));
904 continue;
906 default:
907 BUG();
910 if (!order)
911 continue;
914 * Attempt to take all pages in the order aligned region
915 * surrounding the tag page. Only take those pages of
916 * the same active state as that tag page. We may safely
917 * round the target page pfn down to the requested order
918 * as the mem_map is guarenteed valid out to MAX_ORDER,
919 * where that page is in a different zone we will detect
920 * it from its zone id and abort this block scan.
922 zone_id = page_zone_id(page);
923 page_pfn = page_to_pfn(page);
924 pfn = page_pfn & ~((1 << order) - 1);
925 end_pfn = pfn + (1 << order);
926 for (; pfn < end_pfn; pfn++) {
927 struct page *cursor_page;
929 /* The target page is in the block, ignore it. */
930 if (unlikely(pfn == page_pfn))
931 continue;
933 /* Avoid holes within the zone. */
934 if (unlikely(!pfn_valid_within(pfn)))
935 break;
937 cursor_page = pfn_to_page(pfn);
939 /* Check that we have not crossed a zone boundary. */
940 if (unlikely(page_zone_id(cursor_page) != zone_id))
941 continue;
944 * If we don't have enough swap space, reclaiming of
945 * anon page which don't already have a swap slot is
946 * pointless.
948 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
949 !PageSwapCache(cursor_page))
950 continue;
952 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
953 list_move(&cursor_page->lru, dst);
954 mem_cgroup_del_lru(cursor_page);
955 nr_taken++;
956 scan++;
961 *scanned = scan;
962 return nr_taken;
965 static unsigned long isolate_pages_global(unsigned long nr,
966 struct list_head *dst,
967 unsigned long *scanned, int order,
968 int mode, struct zone *z,
969 struct mem_cgroup *mem_cont,
970 int active, int file)
972 int lru = LRU_BASE;
973 if (active)
974 lru += LRU_ACTIVE;
975 if (file)
976 lru += LRU_FILE;
977 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
978 mode, file);
982 * clear_active_flags() is a helper for shrink_active_list(), clearing
983 * any active bits from the pages in the list.
985 static unsigned long clear_active_flags(struct list_head *page_list,
986 unsigned int *count)
988 int nr_active = 0;
989 int lru;
990 struct page *page;
992 list_for_each_entry(page, page_list, lru) {
993 lru = page_lru_base_type(page);
994 if (PageActive(page)) {
995 lru += LRU_ACTIVE;
996 ClearPageActive(page);
997 nr_active++;
999 count[lru]++;
1002 return nr_active;
1006 * isolate_lru_page - tries to isolate a page from its LRU list
1007 * @page: page to isolate from its LRU list
1009 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1010 * vmstat statistic corresponding to whatever LRU list the page was on.
1012 * Returns 0 if the page was removed from an LRU list.
1013 * Returns -EBUSY if the page was not on an LRU list.
1015 * The returned page will have PageLRU() cleared. If it was found on
1016 * the active list, it will have PageActive set. If it was found on
1017 * the unevictable list, it will have the PageUnevictable bit set. That flag
1018 * may need to be cleared by the caller before letting the page go.
1020 * The vmstat statistic corresponding to the list on which the page was
1021 * found will be decremented.
1023 * Restrictions:
1024 * (1) Must be called with an elevated refcount on the page. This is a
1025 * fundamentnal difference from isolate_lru_pages (which is called
1026 * without a stable reference).
1027 * (2) the lru_lock must not be held.
1028 * (3) interrupts must be enabled.
1030 int isolate_lru_page(struct page *page)
1032 int ret = -EBUSY;
1034 if (PageLRU(page)) {
1035 struct zone *zone = page_zone(page);
1037 spin_lock_irq(&zone->lru_lock);
1038 if (PageLRU(page) && get_page_unless_zero(page)) {
1039 int lru = page_lru(page);
1040 ret = 0;
1041 ClearPageLRU(page);
1043 del_page_from_lru_list(zone, page, lru);
1045 spin_unlock_irq(&zone->lru_lock);
1047 return ret;
1051 * Are there way too many processes in the direct reclaim path already?
1053 static int too_many_isolated(struct zone *zone, int file,
1054 struct scan_control *sc)
1056 unsigned long inactive, isolated;
1058 if (current_is_kswapd())
1059 return 0;
1061 if (!scanning_global_lru(sc))
1062 return 0;
1064 if (file) {
1065 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1066 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1067 } else {
1068 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1069 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1072 return isolated > inactive;
1076 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1077 * of reclaimed pages
1079 static unsigned long shrink_inactive_list(unsigned long max_scan,
1080 struct zone *zone, struct scan_control *sc,
1081 int priority, int file)
1083 LIST_HEAD(page_list);
1084 struct pagevec pvec;
1085 unsigned long nr_scanned = 0;
1086 unsigned long nr_reclaimed = 0;
1087 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1088 int lumpy_reclaim = 0;
1090 while (unlikely(too_many_isolated(zone, file, sc))) {
1091 congestion_wait(WRITE, HZ/10);
1093 /* We are about to die and free our memory. Return now. */
1094 if (fatal_signal_pending(current))
1095 return SWAP_CLUSTER_MAX;
1099 * If we need a large contiguous chunk of memory, or have
1100 * trouble getting a small set of contiguous pages, we
1101 * will reclaim both active and inactive pages.
1103 * We use the same threshold as pageout congestion_wait below.
1105 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1106 lumpy_reclaim = 1;
1107 else if (sc->order && priority < DEF_PRIORITY - 2)
1108 lumpy_reclaim = 1;
1110 pagevec_init(&pvec, 1);
1112 lru_add_drain();
1113 spin_lock_irq(&zone->lru_lock);
1114 do {
1115 struct page *page;
1116 unsigned long nr_taken;
1117 unsigned long nr_scan;
1118 unsigned long nr_freed;
1119 unsigned long nr_active;
1120 unsigned int count[NR_LRU_LISTS] = { 0, };
1121 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1122 unsigned long nr_anon;
1123 unsigned long nr_file;
1125 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1126 &page_list, &nr_scan, sc->order, mode,
1127 zone, sc->mem_cgroup, 0, file);
1129 if (scanning_global_lru(sc)) {
1130 zone->pages_scanned += nr_scan;
1131 if (current_is_kswapd())
1132 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1133 nr_scan);
1134 else
1135 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1136 nr_scan);
1139 if (nr_taken == 0)
1140 goto done;
1142 nr_active = clear_active_flags(&page_list, count);
1143 __count_vm_events(PGDEACTIVATE, nr_active);
1145 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1146 -count[LRU_ACTIVE_FILE]);
1147 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1148 -count[LRU_INACTIVE_FILE]);
1149 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1150 -count[LRU_ACTIVE_ANON]);
1151 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1152 -count[LRU_INACTIVE_ANON]);
1154 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1155 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1156 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1157 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1159 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1160 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1161 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1162 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1164 spin_unlock_irq(&zone->lru_lock);
1166 nr_scanned += nr_scan;
1167 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1170 * If we are direct reclaiming for contiguous pages and we do
1171 * not reclaim everything in the list, try again and wait
1172 * for IO to complete. This will stall high-order allocations
1173 * but that should be acceptable to the caller
1175 if (nr_freed < nr_taken && !current_is_kswapd() &&
1176 lumpy_reclaim) {
1177 congestion_wait(BLK_RW_ASYNC, HZ/10);
1180 * The attempt at page out may have made some
1181 * of the pages active, mark them inactive again.
1183 nr_active = clear_active_flags(&page_list, count);
1184 count_vm_events(PGDEACTIVATE, nr_active);
1186 nr_freed += shrink_page_list(&page_list, sc,
1187 PAGEOUT_IO_SYNC);
1190 nr_reclaimed += nr_freed;
1192 local_irq_disable();
1193 if (current_is_kswapd())
1194 __count_vm_events(KSWAPD_STEAL, nr_freed);
1195 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1197 spin_lock(&zone->lru_lock);
1199 * Put back any unfreeable pages.
1201 while (!list_empty(&page_list)) {
1202 int lru;
1203 page = lru_to_page(&page_list);
1204 VM_BUG_ON(PageLRU(page));
1205 list_del(&page->lru);
1206 if (unlikely(!page_evictable(page, NULL))) {
1207 spin_unlock_irq(&zone->lru_lock);
1208 putback_lru_page(page);
1209 spin_lock_irq(&zone->lru_lock);
1210 continue;
1212 SetPageLRU(page);
1213 lru = page_lru(page);
1214 add_page_to_lru_list(zone, page, lru);
1215 if (is_active_lru(lru)) {
1216 int file = is_file_lru(lru);
1217 reclaim_stat->recent_rotated[file]++;
1219 if (!pagevec_add(&pvec, page)) {
1220 spin_unlock_irq(&zone->lru_lock);
1221 __pagevec_release(&pvec);
1222 spin_lock_irq(&zone->lru_lock);
1225 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1226 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1228 } while (nr_scanned < max_scan);
1230 done:
1231 spin_unlock_irq(&zone->lru_lock);
1232 pagevec_release(&pvec);
1233 return nr_reclaimed;
1237 * We are about to scan this zone at a certain priority level. If that priority
1238 * level is smaller (ie: more urgent) than the previous priority, then note
1239 * that priority level within the zone. This is done so that when the next
1240 * process comes in to scan this zone, it will immediately start out at this
1241 * priority level rather than having to build up its own scanning priority.
1242 * Here, this priority affects only the reclaim-mapped threshold.
1244 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1246 if (priority < zone->prev_priority)
1247 zone->prev_priority = priority;
1251 * This moves pages from the active list to the inactive list.
1253 * We move them the other way if the page is referenced by one or more
1254 * processes, from rmap.
1256 * If the pages are mostly unmapped, the processing is fast and it is
1257 * appropriate to hold zone->lru_lock across the whole operation. But if
1258 * the pages are mapped, the processing is slow (page_referenced()) so we
1259 * should drop zone->lru_lock around each page. It's impossible to balance
1260 * this, so instead we remove the pages from the LRU while processing them.
1261 * It is safe to rely on PG_active against the non-LRU pages in here because
1262 * nobody will play with that bit on a non-LRU page.
1264 * The downside is that we have to touch page->_count against each page.
1265 * But we had to alter page->flags anyway.
1268 static void move_active_pages_to_lru(struct zone *zone,
1269 struct list_head *list,
1270 enum lru_list lru)
1272 unsigned long pgmoved = 0;
1273 struct pagevec pvec;
1274 struct page *page;
1276 pagevec_init(&pvec, 1);
1278 while (!list_empty(list)) {
1279 page = lru_to_page(list);
1281 VM_BUG_ON(PageLRU(page));
1282 SetPageLRU(page);
1284 list_move(&page->lru, &zone->lru[lru].list);
1285 mem_cgroup_add_lru_list(page, lru);
1286 pgmoved++;
1288 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1289 spin_unlock_irq(&zone->lru_lock);
1290 if (buffer_heads_over_limit)
1291 pagevec_strip(&pvec);
1292 __pagevec_release(&pvec);
1293 spin_lock_irq(&zone->lru_lock);
1296 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1297 if (!is_active_lru(lru))
1298 __count_vm_events(PGDEACTIVATE, pgmoved);
1301 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1302 struct scan_control *sc, int priority, int file)
1304 unsigned long nr_taken;
1305 unsigned long pgscanned;
1306 unsigned long vm_flags;
1307 LIST_HEAD(l_hold); /* The pages which were snipped off */
1308 LIST_HEAD(l_active);
1309 LIST_HEAD(l_inactive);
1310 struct page *page;
1311 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1312 unsigned long nr_rotated = 0;
1314 lru_add_drain();
1315 spin_lock_irq(&zone->lru_lock);
1316 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1317 ISOLATE_ACTIVE, zone,
1318 sc->mem_cgroup, 1, file);
1320 * zone->pages_scanned is used for detect zone's oom
1321 * mem_cgroup remembers nr_scan by itself.
1323 if (scanning_global_lru(sc)) {
1324 zone->pages_scanned += pgscanned;
1326 reclaim_stat->recent_scanned[file] += nr_taken;
1328 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1329 if (file)
1330 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1331 else
1332 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1333 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1334 spin_unlock_irq(&zone->lru_lock);
1336 while (!list_empty(&l_hold)) {
1337 cond_resched();
1338 page = lru_to_page(&l_hold);
1339 list_del(&page->lru);
1341 if (unlikely(!page_evictable(page, NULL))) {
1342 putback_lru_page(page);
1343 continue;
1346 /* page_referenced clears PageReferenced */
1347 if (page_mapping_inuse(page) &&
1348 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1349 nr_rotated++;
1351 * Identify referenced, file-backed active pages and
1352 * give them one more trip around the active list. So
1353 * that executable code get better chances to stay in
1354 * memory under moderate memory pressure. Anon pages
1355 * are not likely to be evicted by use-once streaming
1356 * IO, plus JVM can create lots of anon VM_EXEC pages,
1357 * so we ignore them here.
1359 if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1360 list_add(&page->lru, &l_active);
1361 continue;
1365 ClearPageActive(page); /* we are de-activating */
1366 list_add(&page->lru, &l_inactive);
1370 * Move pages back to the lru list.
1372 spin_lock_irq(&zone->lru_lock);
1374 * Count referenced pages from currently used mappings as rotated,
1375 * even though only some of them are actually re-activated. This
1376 * helps balance scan pressure between file and anonymous pages in
1377 * get_scan_ratio.
1379 reclaim_stat->recent_rotated[file] += nr_rotated;
1381 move_active_pages_to_lru(zone, &l_active,
1382 LRU_ACTIVE + file * LRU_FILE);
1383 move_active_pages_to_lru(zone, &l_inactive,
1384 LRU_BASE + file * LRU_FILE);
1385 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1386 spin_unlock_irq(&zone->lru_lock);
1389 static int inactive_anon_is_low_global(struct zone *zone)
1391 unsigned long active, inactive;
1393 active = zone_page_state(zone, NR_ACTIVE_ANON);
1394 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1396 if (inactive * zone->inactive_ratio < active)
1397 return 1;
1399 return 0;
1403 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1404 * @zone: zone to check
1405 * @sc: scan control of this context
1407 * Returns true if the zone does not have enough inactive anon pages,
1408 * meaning some active anon pages need to be deactivated.
1410 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1412 int low;
1414 if (scanning_global_lru(sc))
1415 low = inactive_anon_is_low_global(zone);
1416 else
1417 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1418 return low;
1421 static int inactive_file_is_low_global(struct zone *zone)
1423 unsigned long active, inactive;
1425 active = zone_page_state(zone, NR_ACTIVE_FILE);
1426 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1428 return (active > inactive);
1432 * inactive_file_is_low - check if file pages need to be deactivated
1433 * @zone: zone to check
1434 * @sc: scan control of this context
1436 * When the system is doing streaming IO, memory pressure here
1437 * ensures that active file pages get deactivated, until more
1438 * than half of the file pages are on the inactive list.
1440 * Once we get to that situation, protect the system's working
1441 * set from being evicted by disabling active file page aging.
1443 * This uses a different ratio than the anonymous pages, because
1444 * the page cache uses a use-once replacement algorithm.
1446 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1448 int low;
1450 if (scanning_global_lru(sc))
1451 low = inactive_file_is_low_global(zone);
1452 else
1453 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1454 return low;
1457 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1458 struct zone *zone, struct scan_control *sc, int priority)
1460 int file = is_file_lru(lru);
1462 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1463 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1464 return 0;
1467 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1468 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1469 return 0;
1471 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1475 * Determine how aggressively the anon and file LRU lists should be
1476 * scanned. The relative value of each set of LRU lists is determined
1477 * by looking at the fraction of the pages scanned we did rotate back
1478 * onto the active list instead of evict.
1480 * percent[0] specifies how much pressure to put on ram/swap backed
1481 * memory, while percent[1] determines pressure on the file LRUs.
1483 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1484 unsigned long *percent)
1486 unsigned long anon, file, free;
1487 unsigned long anon_prio, file_prio;
1488 unsigned long ap, fp;
1489 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1491 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1492 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1493 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1494 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1496 if (scanning_global_lru(sc)) {
1497 free = zone_page_state(zone, NR_FREE_PAGES);
1498 /* If we have very few page cache pages,
1499 force-scan anon pages. */
1500 if (unlikely(file + free <= high_wmark_pages(zone))) {
1501 percent[0] = 100;
1502 percent[1] = 0;
1503 return;
1508 * OK, so we have swap space and a fair amount of page cache
1509 * pages. We use the recently rotated / recently scanned
1510 * ratios to determine how valuable each cache is.
1512 * Because workloads change over time (and to avoid overflow)
1513 * we keep these statistics as a floating average, which ends
1514 * up weighing recent references more than old ones.
1516 * anon in [0], file in [1]
1518 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1519 spin_lock_irq(&zone->lru_lock);
1520 reclaim_stat->recent_scanned[0] /= 2;
1521 reclaim_stat->recent_rotated[0] /= 2;
1522 spin_unlock_irq(&zone->lru_lock);
1525 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1526 spin_lock_irq(&zone->lru_lock);
1527 reclaim_stat->recent_scanned[1] /= 2;
1528 reclaim_stat->recent_rotated[1] /= 2;
1529 spin_unlock_irq(&zone->lru_lock);
1533 * With swappiness at 100, anonymous and file have the same priority.
1534 * This scanning priority is essentially the inverse of IO cost.
1536 anon_prio = sc->swappiness;
1537 file_prio = 200 - sc->swappiness;
1540 * The amount of pressure on anon vs file pages is inversely
1541 * proportional to the fraction of recently scanned pages on
1542 * each list that were recently referenced and in active use.
1544 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1545 ap /= reclaim_stat->recent_rotated[0] + 1;
1547 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1548 fp /= reclaim_stat->recent_rotated[1] + 1;
1550 /* Normalize to percentages */
1551 percent[0] = 100 * ap / (ap + fp + 1);
1552 percent[1] = 100 - percent[0];
1556 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1557 * until we collected @swap_cluster_max pages to scan.
1559 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1560 unsigned long *nr_saved_scan,
1561 unsigned long swap_cluster_max)
1563 unsigned long nr;
1565 *nr_saved_scan += nr_to_scan;
1566 nr = *nr_saved_scan;
1568 if (nr >= swap_cluster_max)
1569 *nr_saved_scan = 0;
1570 else
1571 nr = 0;
1573 return nr;
1577 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1579 static void shrink_zone(int priority, struct zone *zone,
1580 struct scan_control *sc)
1582 unsigned long nr[NR_LRU_LISTS];
1583 unsigned long nr_to_scan;
1584 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1585 enum lru_list l;
1586 unsigned long nr_reclaimed = sc->nr_reclaimed;
1587 unsigned long swap_cluster_max = sc->swap_cluster_max;
1588 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1589 int noswap = 0;
1591 /* If we have no swap space, do not bother scanning anon pages. */
1592 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593 noswap = 1;
1594 percent[0] = 0;
1595 percent[1] = 100;
1596 } else
1597 get_scan_ratio(zone, sc, percent);
1599 for_each_evictable_lru(l) {
1600 int file = is_file_lru(l);
1601 unsigned long scan;
1603 scan = zone_nr_lru_pages(zone, sc, l);
1604 if (priority || noswap) {
1605 scan >>= priority;
1606 scan = (scan * percent[file]) / 100;
1608 nr[l] = nr_scan_try_batch(scan,
1609 &reclaim_stat->nr_saved_scan[l],
1610 swap_cluster_max);
1613 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1614 nr[LRU_INACTIVE_FILE]) {
1615 for_each_evictable_lru(l) {
1616 if (nr[l]) {
1617 nr_to_scan = min(nr[l], swap_cluster_max);
1618 nr[l] -= nr_to_scan;
1620 nr_reclaimed += shrink_list(l, nr_to_scan,
1621 zone, sc, priority);
1625 * On large memory systems, scan >> priority can become
1626 * really large. This is fine for the starting priority;
1627 * we want to put equal scanning pressure on each zone.
1628 * However, if the VM has a harder time of freeing pages,
1629 * with multiple processes reclaiming pages, the total
1630 * freeing target can get unreasonably large.
1632 if (nr_reclaimed > swap_cluster_max &&
1633 priority < DEF_PRIORITY && !current_is_kswapd())
1634 break;
1637 sc->nr_reclaimed = nr_reclaimed;
1640 * Even if we did not try to evict anon pages at all, we want to
1641 * rebalance the anon lru active/inactive ratio.
1643 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1644 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1646 throttle_vm_writeout(sc->gfp_mask);
1650 * This is the direct reclaim path, for page-allocating processes. We only
1651 * try to reclaim pages from zones which will satisfy the caller's allocation
1652 * request.
1654 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1655 * Because:
1656 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1657 * allocation or
1658 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1659 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1660 * zone defense algorithm.
1662 * If a zone is deemed to be full of pinned pages then just give it a light
1663 * scan then give up on it.
1665 static void shrink_zones(int priority, struct zonelist *zonelist,
1666 struct scan_control *sc)
1668 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1669 struct zoneref *z;
1670 struct zone *zone;
1672 sc->all_unreclaimable = 1;
1673 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1674 sc->nodemask) {
1675 if (!populated_zone(zone))
1676 continue;
1678 * Take care memory controller reclaiming has small influence
1679 * to global LRU.
1681 if (scanning_global_lru(sc)) {
1682 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683 continue;
1684 note_zone_scanning_priority(zone, priority);
1686 if (zone_is_all_unreclaimable(zone) &&
1687 priority != DEF_PRIORITY)
1688 continue; /* Let kswapd poll it */
1689 sc->all_unreclaimable = 0;
1690 } else {
1692 * Ignore cpuset limitation here. We just want to reduce
1693 * # of used pages by us regardless of memory shortage.
1695 sc->all_unreclaimable = 0;
1696 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1697 priority);
1700 shrink_zone(priority, zone, sc);
1705 * This is the main entry point to direct page reclaim.
1707 * If a full scan of the inactive list fails to free enough memory then we
1708 * are "out of memory" and something needs to be killed.
1710 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1711 * high - the zone may be full of dirty or under-writeback pages, which this
1712 * caller can't do much about. We kick the writeback threads and take explicit
1713 * naps in the hope that some of these pages can be written. But if the
1714 * allocating task holds filesystem locks which prevent writeout this might not
1715 * work, and the allocation attempt will fail.
1717 * returns: 0, if no pages reclaimed
1718 * else, the number of pages reclaimed
1720 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1721 struct scan_control *sc)
1723 int priority;
1724 unsigned long ret = 0;
1725 unsigned long total_scanned = 0;
1726 struct reclaim_state *reclaim_state = current->reclaim_state;
1727 unsigned long lru_pages = 0;
1728 struct zoneref *z;
1729 struct zone *zone;
1730 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1732 delayacct_freepages_start();
1734 if (scanning_global_lru(sc))
1735 count_vm_event(ALLOCSTALL);
1737 * mem_cgroup will not do shrink_slab.
1739 if (scanning_global_lru(sc)) {
1740 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1742 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1743 continue;
1745 lru_pages += zone_reclaimable_pages(zone);
1749 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1750 sc->nr_scanned = 0;
1751 if (!priority)
1752 disable_swap_token();
1753 shrink_zones(priority, zonelist, sc);
1755 * Don't shrink slabs when reclaiming memory from
1756 * over limit cgroups
1758 if (scanning_global_lru(sc)) {
1759 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1760 if (reclaim_state) {
1761 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1762 reclaim_state->reclaimed_slab = 0;
1765 total_scanned += sc->nr_scanned;
1766 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1767 ret = sc->nr_reclaimed;
1768 goto out;
1772 * Try to write back as many pages as we just scanned. This
1773 * tends to cause slow streaming writers to write data to the
1774 * disk smoothly, at the dirtying rate, which is nice. But
1775 * that's undesirable in laptop mode, where we *want* lumpy
1776 * writeout. So in laptop mode, write out the whole world.
1778 if (total_scanned > sc->swap_cluster_max +
1779 sc->swap_cluster_max / 2) {
1780 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1781 sc->may_writepage = 1;
1784 /* Take a nap, wait for some writeback to complete */
1785 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1786 congestion_wait(BLK_RW_ASYNC, HZ/10);
1788 /* top priority shrink_zones still had more to do? don't OOM, then */
1789 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1790 ret = sc->nr_reclaimed;
1791 out:
1793 * Now that we've scanned all the zones at this priority level, note
1794 * that level within the zone so that the next thread which performs
1795 * scanning of this zone will immediately start out at this priority
1796 * level. This affects only the decision whether or not to bring
1797 * mapped pages onto the inactive list.
1799 if (priority < 0)
1800 priority = 0;
1802 if (scanning_global_lru(sc)) {
1803 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1805 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1806 continue;
1808 zone->prev_priority = priority;
1810 } else
1811 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1813 delayacct_freepages_end();
1815 return ret;
1818 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1819 gfp_t gfp_mask, nodemask_t *nodemask)
1821 struct scan_control sc = {
1822 .gfp_mask = gfp_mask,
1823 .may_writepage = !laptop_mode,
1824 .swap_cluster_max = SWAP_CLUSTER_MAX,
1825 .may_unmap = 1,
1826 .may_swap = 1,
1827 .swappiness = vm_swappiness,
1828 .order = order,
1829 .mem_cgroup = NULL,
1830 .isolate_pages = isolate_pages_global,
1831 .nodemask = nodemask,
1834 return do_try_to_free_pages(zonelist, &sc);
1837 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1839 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1840 gfp_t gfp_mask, bool noswap,
1841 unsigned int swappiness,
1842 struct zone *zone, int nid)
1844 struct scan_control sc = {
1845 .may_writepage = !laptop_mode,
1846 .may_unmap = 1,
1847 .may_swap = !noswap,
1848 .swap_cluster_max = SWAP_CLUSTER_MAX,
1849 .swappiness = swappiness,
1850 .order = 0,
1851 .mem_cgroup = mem,
1852 .isolate_pages = mem_cgroup_isolate_pages,
1854 nodemask_t nm = nodemask_of_node(nid);
1856 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1857 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1858 sc.nodemask = &nm;
1859 sc.nr_reclaimed = 0;
1860 sc.nr_scanned = 0;
1862 * NOTE: Although we can get the priority field, using it
1863 * here is not a good idea, since it limits the pages we can scan.
1864 * if we don't reclaim here, the shrink_zone from balance_pgdat
1865 * will pick up pages from other mem cgroup's as well. We hack
1866 * the priority and make it zero.
1868 shrink_zone(0, zone, &sc);
1869 return sc.nr_reclaimed;
1872 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1873 gfp_t gfp_mask,
1874 bool noswap,
1875 unsigned int swappiness)
1877 struct zonelist *zonelist;
1878 struct scan_control sc = {
1879 .may_writepage = !laptop_mode,
1880 .may_unmap = 1,
1881 .may_swap = !noswap,
1882 .swap_cluster_max = SWAP_CLUSTER_MAX,
1883 .swappiness = swappiness,
1884 .order = 0,
1885 .mem_cgroup = mem_cont,
1886 .isolate_pages = mem_cgroup_isolate_pages,
1887 .nodemask = NULL, /* we don't care the placement */
1890 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1891 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1892 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1893 return do_try_to_free_pages(zonelist, &sc);
1895 #endif
1898 * For kswapd, balance_pgdat() will work across all this node's zones until
1899 * they are all at high_wmark_pages(zone).
1901 * Returns the number of pages which were actually freed.
1903 * There is special handling here for zones which are full of pinned pages.
1904 * This can happen if the pages are all mlocked, or if they are all used by
1905 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1906 * What we do is to detect the case where all pages in the zone have been
1907 * scanned twice and there has been zero successful reclaim. Mark the zone as
1908 * dead and from now on, only perform a short scan. Basically we're polling
1909 * the zone for when the problem goes away.
1911 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1912 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1913 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1914 * lower zones regardless of the number of free pages in the lower zones. This
1915 * interoperates with the page allocator fallback scheme to ensure that aging
1916 * of pages is balanced across the zones.
1918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1920 int all_zones_ok;
1921 int priority;
1922 int i;
1923 unsigned long total_scanned;
1924 struct reclaim_state *reclaim_state = current->reclaim_state;
1925 struct scan_control sc = {
1926 .gfp_mask = GFP_KERNEL,
1927 .may_unmap = 1,
1928 .may_swap = 1,
1929 .swap_cluster_max = SWAP_CLUSTER_MAX,
1930 .swappiness = vm_swappiness,
1931 .order = order,
1932 .mem_cgroup = NULL,
1933 .isolate_pages = isolate_pages_global,
1936 * temp_priority is used to remember the scanning priority at which
1937 * this zone was successfully refilled to
1938 * free_pages == high_wmark_pages(zone).
1940 int temp_priority[MAX_NR_ZONES];
1942 loop_again:
1943 total_scanned = 0;
1944 sc.nr_reclaimed = 0;
1945 sc.may_writepage = !laptop_mode;
1946 count_vm_event(PAGEOUTRUN);
1948 for (i = 0; i < pgdat->nr_zones; i++)
1949 temp_priority[i] = DEF_PRIORITY;
1951 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1952 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1953 unsigned long lru_pages = 0;
1955 /* The swap token gets in the way of swapout... */
1956 if (!priority)
1957 disable_swap_token();
1959 all_zones_ok = 1;
1962 * Scan in the highmem->dma direction for the highest
1963 * zone which needs scanning
1965 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1966 struct zone *zone = pgdat->node_zones + i;
1968 if (!populated_zone(zone))
1969 continue;
1971 if (zone_is_all_unreclaimable(zone) &&
1972 priority != DEF_PRIORITY)
1973 continue;
1976 * Do some background aging of the anon list, to give
1977 * pages a chance to be referenced before reclaiming.
1979 if (inactive_anon_is_low(zone, &sc))
1980 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1981 &sc, priority, 0);
1983 if (!zone_watermark_ok(zone, order,
1984 high_wmark_pages(zone), 0, 0)) {
1985 end_zone = i;
1986 break;
1989 if (i < 0)
1990 goto out;
1992 for (i = 0; i <= end_zone; i++) {
1993 struct zone *zone = pgdat->node_zones + i;
1995 lru_pages += zone_reclaimable_pages(zone);
1999 * Now scan the zone in the dma->highmem direction, stopping
2000 * at the last zone which needs scanning.
2002 * We do this because the page allocator works in the opposite
2003 * direction. This prevents the page allocator from allocating
2004 * pages behind kswapd's direction of progress, which would
2005 * cause too much scanning of the lower zones.
2007 for (i = 0; i <= end_zone; i++) {
2008 struct zone *zone = pgdat->node_zones + i;
2009 int nr_slab;
2010 int nid, zid;
2012 if (!populated_zone(zone))
2013 continue;
2015 if (zone_is_all_unreclaimable(zone) &&
2016 priority != DEF_PRIORITY)
2017 continue;
2019 if (!zone_watermark_ok(zone, order,
2020 high_wmark_pages(zone), end_zone, 0))
2021 all_zones_ok = 0;
2022 temp_priority[i] = priority;
2023 sc.nr_scanned = 0;
2024 note_zone_scanning_priority(zone, priority);
2026 nid = pgdat->node_id;
2027 zid = zone_idx(zone);
2029 * Call soft limit reclaim before calling shrink_zone.
2030 * For now we ignore the return value
2032 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2033 nid, zid);
2035 * We put equal pressure on every zone, unless one
2036 * zone has way too many pages free already.
2038 if (!zone_watermark_ok(zone, order,
2039 8*high_wmark_pages(zone), end_zone, 0))
2040 shrink_zone(priority, zone, &sc);
2041 reclaim_state->reclaimed_slab = 0;
2042 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2043 lru_pages);
2044 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2045 total_scanned += sc.nr_scanned;
2046 if (zone_is_all_unreclaimable(zone))
2047 continue;
2048 if (nr_slab == 0 && zone->pages_scanned >=
2049 (zone_reclaimable_pages(zone) * 6))
2050 zone_set_flag(zone,
2051 ZONE_ALL_UNRECLAIMABLE);
2053 * If we've done a decent amount of scanning and
2054 * the reclaim ratio is low, start doing writepage
2055 * even in laptop mode
2057 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2058 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2059 sc.may_writepage = 1;
2061 if (all_zones_ok)
2062 break; /* kswapd: all done */
2064 * OK, kswapd is getting into trouble. Take a nap, then take
2065 * another pass across the zones.
2067 if (total_scanned && priority < DEF_PRIORITY - 2)
2068 congestion_wait(BLK_RW_ASYNC, HZ/10);
2071 * We do this so kswapd doesn't build up large priorities for
2072 * example when it is freeing in parallel with allocators. It
2073 * matches the direct reclaim path behaviour in terms of impact
2074 * on zone->*_priority.
2076 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2077 break;
2079 out:
2081 * Note within each zone the priority level at which this zone was
2082 * brought into a happy state. So that the next thread which scans this
2083 * zone will start out at that priority level.
2085 for (i = 0; i < pgdat->nr_zones; i++) {
2086 struct zone *zone = pgdat->node_zones + i;
2088 zone->prev_priority = temp_priority[i];
2090 if (!all_zones_ok) {
2091 cond_resched();
2093 try_to_freeze();
2096 * Fragmentation may mean that the system cannot be
2097 * rebalanced for high-order allocations in all zones.
2098 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2099 * it means the zones have been fully scanned and are still
2100 * not balanced. For high-order allocations, there is
2101 * little point trying all over again as kswapd may
2102 * infinite loop.
2104 * Instead, recheck all watermarks at order-0 as they
2105 * are the most important. If watermarks are ok, kswapd will go
2106 * back to sleep. High-order users can still perform direct
2107 * reclaim if they wish.
2109 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2110 order = sc.order = 0;
2112 goto loop_again;
2115 return sc.nr_reclaimed;
2119 * The background pageout daemon, started as a kernel thread
2120 * from the init process.
2122 * This basically trickles out pages so that we have _some_
2123 * free memory available even if there is no other activity
2124 * that frees anything up. This is needed for things like routing
2125 * etc, where we otherwise might have all activity going on in
2126 * asynchronous contexts that cannot page things out.
2128 * If there are applications that are active memory-allocators
2129 * (most normal use), this basically shouldn't matter.
2131 static int kswapd(void *p)
2133 unsigned long order;
2134 pg_data_t *pgdat = (pg_data_t*)p;
2135 struct task_struct *tsk = current;
2136 DEFINE_WAIT(wait);
2137 struct reclaim_state reclaim_state = {
2138 .reclaimed_slab = 0,
2140 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2142 lockdep_set_current_reclaim_state(GFP_KERNEL);
2144 if (!cpumask_empty(cpumask))
2145 set_cpus_allowed_ptr(tsk, cpumask);
2146 current->reclaim_state = &reclaim_state;
2149 * Tell the memory management that we're a "memory allocator",
2150 * and that if we need more memory we should get access to it
2151 * regardless (see "__alloc_pages()"). "kswapd" should
2152 * never get caught in the normal page freeing logic.
2154 * (Kswapd normally doesn't need memory anyway, but sometimes
2155 * you need a small amount of memory in order to be able to
2156 * page out something else, and this flag essentially protects
2157 * us from recursively trying to free more memory as we're
2158 * trying to free the first piece of memory in the first place).
2160 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2161 set_freezable();
2163 order = 0;
2164 for ( ; ; ) {
2165 unsigned long new_order;
2167 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2168 new_order = pgdat->kswapd_max_order;
2169 pgdat->kswapd_max_order = 0;
2170 if (order < new_order) {
2172 * Don't sleep if someone wants a larger 'order'
2173 * allocation
2175 order = new_order;
2176 } else {
2177 if (!freezing(current))
2178 schedule();
2180 order = pgdat->kswapd_max_order;
2182 finish_wait(&pgdat->kswapd_wait, &wait);
2184 if (!try_to_freeze()) {
2185 /* We can speed up thawing tasks if we don't call
2186 * balance_pgdat after returning from the refrigerator
2188 balance_pgdat(pgdat, order);
2191 return 0;
2195 * A zone is low on free memory, so wake its kswapd task to service it.
2197 void wakeup_kswapd(struct zone *zone, int order)
2199 pg_data_t *pgdat;
2201 if (!populated_zone(zone))
2202 return;
2204 pgdat = zone->zone_pgdat;
2205 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2206 return;
2207 if (pgdat->kswapd_max_order < order)
2208 pgdat->kswapd_max_order = order;
2209 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2210 return;
2211 if (!waitqueue_active(&pgdat->kswapd_wait))
2212 return;
2213 wake_up_interruptible(&pgdat->kswapd_wait);
2217 * The reclaimable count would be mostly accurate.
2218 * The less reclaimable pages may be
2219 * - mlocked pages, which will be moved to unevictable list when encountered
2220 * - mapped pages, which may require several travels to be reclaimed
2221 * - dirty pages, which is not "instantly" reclaimable
2223 unsigned long global_reclaimable_pages(void)
2225 int nr;
2227 nr = global_page_state(NR_ACTIVE_FILE) +
2228 global_page_state(NR_INACTIVE_FILE);
2230 if (nr_swap_pages > 0)
2231 nr += global_page_state(NR_ACTIVE_ANON) +
2232 global_page_state(NR_INACTIVE_ANON);
2234 return nr;
2237 unsigned long zone_reclaimable_pages(struct zone *zone)
2239 int nr;
2241 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2242 zone_page_state(zone, NR_INACTIVE_FILE);
2244 if (nr_swap_pages > 0)
2245 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2246 zone_page_state(zone, NR_INACTIVE_ANON);
2248 return nr;
2251 #ifdef CONFIG_HIBERNATION
2253 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2254 * from LRU lists system-wide, for given pass and priority.
2256 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2258 static void shrink_all_zones(unsigned long nr_pages, int prio,
2259 int pass, struct scan_control *sc)
2261 struct zone *zone;
2262 unsigned long nr_reclaimed = 0;
2263 struct zone_reclaim_stat *reclaim_stat;
2265 for_each_populated_zone(zone) {
2266 enum lru_list l;
2268 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2269 continue;
2271 for_each_evictable_lru(l) {
2272 enum zone_stat_item ls = NR_LRU_BASE + l;
2273 unsigned long lru_pages = zone_page_state(zone, ls);
2275 /* For pass = 0, we don't shrink the active list */
2276 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2277 l == LRU_ACTIVE_FILE))
2278 continue;
2280 reclaim_stat = get_reclaim_stat(zone, sc);
2281 reclaim_stat->nr_saved_scan[l] +=
2282 (lru_pages >> prio) + 1;
2283 if (reclaim_stat->nr_saved_scan[l]
2284 >= nr_pages || pass > 3) {
2285 unsigned long nr_to_scan;
2287 reclaim_stat->nr_saved_scan[l] = 0;
2288 nr_to_scan = min(nr_pages, lru_pages);
2289 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2290 sc, prio);
2291 if (nr_reclaimed >= nr_pages) {
2292 sc->nr_reclaimed += nr_reclaimed;
2293 return;
2298 sc->nr_reclaimed += nr_reclaimed;
2302 * Try to free `nr_pages' of memory, system-wide, and return the number of
2303 * freed pages.
2305 * Rather than trying to age LRUs the aim is to preserve the overall
2306 * LRU order by reclaiming preferentially
2307 * inactive > active > active referenced > active mapped
2309 unsigned long shrink_all_memory(unsigned long nr_pages)
2311 unsigned long lru_pages, nr_slab;
2312 int pass;
2313 struct reclaim_state reclaim_state;
2314 struct scan_control sc = {
2315 .gfp_mask = GFP_KERNEL,
2316 .may_unmap = 0,
2317 .may_writepage = 1,
2318 .isolate_pages = isolate_pages_global,
2319 .nr_reclaimed = 0,
2322 current->reclaim_state = &reclaim_state;
2324 lru_pages = global_reclaimable_pages();
2325 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2326 /* If slab caches are huge, it's better to hit them first */
2327 while (nr_slab >= lru_pages) {
2328 reclaim_state.reclaimed_slab = 0;
2329 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2330 if (!reclaim_state.reclaimed_slab)
2331 break;
2333 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2334 if (sc.nr_reclaimed >= nr_pages)
2335 goto out;
2337 nr_slab -= reclaim_state.reclaimed_slab;
2341 * We try to shrink LRUs in 5 passes:
2342 * 0 = Reclaim from inactive_list only
2343 * 1 = Reclaim from active list but don't reclaim mapped
2344 * 2 = 2nd pass of type 1
2345 * 3 = Reclaim mapped (normal reclaim)
2346 * 4 = 2nd pass of type 3
2348 for (pass = 0; pass < 5; pass++) {
2349 int prio;
2351 /* Force reclaiming mapped pages in the passes #3 and #4 */
2352 if (pass > 2)
2353 sc.may_unmap = 1;
2355 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2356 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2358 sc.nr_scanned = 0;
2359 sc.swap_cluster_max = nr_to_scan;
2360 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2361 if (sc.nr_reclaimed >= nr_pages)
2362 goto out;
2364 reclaim_state.reclaimed_slab = 0;
2365 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2366 global_reclaimable_pages());
2367 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2368 if (sc.nr_reclaimed >= nr_pages)
2369 goto out;
2371 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2372 congestion_wait(BLK_RW_ASYNC, HZ / 10);
2377 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2378 * something in slab caches
2380 if (!sc.nr_reclaimed) {
2381 do {
2382 reclaim_state.reclaimed_slab = 0;
2383 shrink_slab(nr_pages, sc.gfp_mask,
2384 global_reclaimable_pages());
2385 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2386 } while (sc.nr_reclaimed < nr_pages &&
2387 reclaim_state.reclaimed_slab > 0);
2391 out:
2392 current->reclaim_state = NULL;
2394 return sc.nr_reclaimed;
2396 #endif /* CONFIG_HIBERNATION */
2398 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2399 not required for correctness. So if the last cpu in a node goes
2400 away, we get changed to run anywhere: as the first one comes back,
2401 restore their cpu bindings. */
2402 static int __devinit cpu_callback(struct notifier_block *nfb,
2403 unsigned long action, void *hcpu)
2405 int nid;
2407 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2408 for_each_node_state(nid, N_HIGH_MEMORY) {
2409 pg_data_t *pgdat = NODE_DATA(nid);
2410 const struct cpumask *mask;
2412 mask = cpumask_of_node(pgdat->node_id);
2414 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2415 /* One of our CPUs online: restore mask */
2416 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2419 return NOTIFY_OK;
2423 * This kswapd start function will be called by init and node-hot-add.
2424 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2426 int kswapd_run(int nid)
2428 pg_data_t *pgdat = NODE_DATA(nid);
2429 int ret = 0;
2431 if (pgdat->kswapd)
2432 return 0;
2434 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2435 if (IS_ERR(pgdat->kswapd)) {
2436 /* failure at boot is fatal */
2437 BUG_ON(system_state == SYSTEM_BOOTING);
2438 printk("Failed to start kswapd on node %d\n",nid);
2439 ret = -1;
2441 return ret;
2444 static int __init kswapd_init(void)
2446 int nid;
2448 swap_setup();
2449 for_each_node_state(nid, N_HIGH_MEMORY)
2450 kswapd_run(nid);
2451 hotcpu_notifier(cpu_callback, 0);
2452 return 0;
2455 module_init(kswapd_init)
2457 #ifdef CONFIG_NUMA
2459 * Zone reclaim mode
2461 * If non-zero call zone_reclaim when the number of free pages falls below
2462 * the watermarks.
2464 int zone_reclaim_mode __read_mostly;
2466 #define RECLAIM_OFF 0
2467 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2468 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2469 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2472 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2473 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2474 * a zone.
2476 #define ZONE_RECLAIM_PRIORITY 4
2479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2480 * occur.
2482 int sysctl_min_unmapped_ratio = 1;
2485 * If the number of slab pages in a zone grows beyond this percentage then
2486 * slab reclaim needs to occur.
2488 int sysctl_min_slab_ratio = 5;
2490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2492 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2493 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2494 zone_page_state(zone, NR_ACTIVE_FILE);
2497 * It's possible for there to be more file mapped pages than
2498 * accounted for by the pages on the file LRU lists because
2499 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2501 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2505 static long zone_pagecache_reclaimable(struct zone *zone)
2507 long nr_pagecache_reclaimable;
2508 long delta = 0;
2511 * If RECLAIM_SWAP is set, then all file pages are considered
2512 * potentially reclaimable. Otherwise, we have to worry about
2513 * pages like swapcache and zone_unmapped_file_pages() provides
2514 * a better estimate
2516 if (zone_reclaim_mode & RECLAIM_SWAP)
2517 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2518 else
2519 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2521 /* If we can't clean pages, remove dirty pages from consideration */
2522 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2523 delta += zone_page_state(zone, NR_FILE_DIRTY);
2525 /* Watch for any possible underflows due to delta */
2526 if (unlikely(delta > nr_pagecache_reclaimable))
2527 delta = nr_pagecache_reclaimable;
2529 return nr_pagecache_reclaimable - delta;
2533 * Try to free up some pages from this zone through reclaim.
2535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2537 /* Minimum pages needed in order to stay on node */
2538 const unsigned long nr_pages = 1 << order;
2539 struct task_struct *p = current;
2540 struct reclaim_state reclaim_state;
2541 int priority;
2542 struct scan_control sc = {
2543 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2544 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2545 .may_swap = 1,
2546 .swap_cluster_max = max_t(unsigned long, nr_pages,
2547 SWAP_CLUSTER_MAX),
2548 .gfp_mask = gfp_mask,
2549 .swappiness = vm_swappiness,
2550 .order = order,
2551 .isolate_pages = isolate_pages_global,
2553 unsigned long slab_reclaimable;
2555 disable_swap_token();
2556 cond_resched();
2558 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2559 * and we also need to be able to write out pages for RECLAIM_WRITE
2560 * and RECLAIM_SWAP.
2562 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2563 reclaim_state.reclaimed_slab = 0;
2564 p->reclaim_state = &reclaim_state;
2566 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2568 * Free memory by calling shrink zone with increasing
2569 * priorities until we have enough memory freed.
2571 priority = ZONE_RECLAIM_PRIORITY;
2572 do {
2573 note_zone_scanning_priority(zone, priority);
2574 shrink_zone(priority, zone, &sc);
2575 priority--;
2576 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2579 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2580 if (slab_reclaimable > zone->min_slab_pages) {
2582 * shrink_slab() does not currently allow us to determine how
2583 * many pages were freed in this zone. So we take the current
2584 * number of slab pages and shake the slab until it is reduced
2585 * by the same nr_pages that we used for reclaiming unmapped
2586 * pages.
2588 * Note that shrink_slab will free memory on all zones and may
2589 * take a long time.
2591 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2592 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2593 slab_reclaimable - nr_pages)
2597 * Update nr_reclaimed by the number of slab pages we
2598 * reclaimed from this zone.
2600 sc.nr_reclaimed += slab_reclaimable -
2601 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2604 p->reclaim_state = NULL;
2605 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2606 return sc.nr_reclaimed >= nr_pages;
2609 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2611 int node_id;
2612 int ret;
2615 * Zone reclaim reclaims unmapped file backed pages and
2616 * slab pages if we are over the defined limits.
2618 * A small portion of unmapped file backed pages is needed for
2619 * file I/O otherwise pages read by file I/O will be immediately
2620 * thrown out if the zone is overallocated. So we do not reclaim
2621 * if less than a specified percentage of the zone is used by
2622 * unmapped file backed pages.
2624 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2625 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2626 return ZONE_RECLAIM_FULL;
2628 if (zone_is_all_unreclaimable(zone))
2629 return ZONE_RECLAIM_FULL;
2632 * Do not scan if the allocation should not be delayed.
2634 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2635 return ZONE_RECLAIM_NOSCAN;
2638 * Only run zone reclaim on the local zone or on zones that do not
2639 * have associated processors. This will favor the local processor
2640 * over remote processors and spread off node memory allocations
2641 * as wide as possible.
2643 node_id = zone_to_nid(zone);
2644 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2645 return ZONE_RECLAIM_NOSCAN;
2647 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2648 return ZONE_RECLAIM_NOSCAN;
2650 ret = __zone_reclaim(zone, gfp_mask, order);
2651 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2653 if (!ret)
2654 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2656 return ret;
2658 #endif
2661 * page_evictable - test whether a page is evictable
2662 * @page: the page to test
2663 * @vma: the VMA in which the page is or will be mapped, may be NULL
2665 * Test whether page is evictable--i.e., should be placed on active/inactive
2666 * lists vs unevictable list. The vma argument is !NULL when called from the
2667 * fault path to determine how to instantate a new page.
2669 * Reasons page might not be evictable:
2670 * (1) page's mapping marked unevictable
2671 * (2) page is part of an mlocked VMA
2674 int page_evictable(struct page *page, struct vm_area_struct *vma)
2677 if (mapping_unevictable(page_mapping(page)))
2678 return 0;
2680 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2681 return 0;
2683 return 1;
2687 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2688 * @page: page to check evictability and move to appropriate lru list
2689 * @zone: zone page is in
2691 * Checks a page for evictability and moves the page to the appropriate
2692 * zone lru list.
2694 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2695 * have PageUnevictable set.
2697 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2699 VM_BUG_ON(PageActive(page));
2701 retry:
2702 ClearPageUnevictable(page);
2703 if (page_evictable(page, NULL)) {
2704 enum lru_list l = page_lru_base_type(page);
2706 __dec_zone_state(zone, NR_UNEVICTABLE);
2707 list_move(&page->lru, &zone->lru[l].list);
2708 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2709 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2710 __count_vm_event(UNEVICTABLE_PGRESCUED);
2711 } else {
2713 * rotate unevictable list
2715 SetPageUnevictable(page);
2716 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2717 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2718 if (page_evictable(page, NULL))
2719 goto retry;
2724 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2725 * @mapping: struct address_space to scan for evictable pages
2727 * Scan all pages in mapping. Check unevictable pages for
2728 * evictability and move them to the appropriate zone lru list.
2730 void scan_mapping_unevictable_pages(struct address_space *mapping)
2732 pgoff_t next = 0;
2733 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2734 PAGE_CACHE_SHIFT;
2735 struct zone *zone;
2736 struct pagevec pvec;
2738 if (mapping->nrpages == 0)
2739 return;
2741 pagevec_init(&pvec, 0);
2742 while (next < end &&
2743 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2744 int i;
2745 int pg_scanned = 0;
2747 zone = NULL;
2749 for (i = 0; i < pagevec_count(&pvec); i++) {
2750 struct page *page = pvec.pages[i];
2751 pgoff_t page_index = page->index;
2752 struct zone *pagezone = page_zone(page);
2754 pg_scanned++;
2755 if (page_index > next)
2756 next = page_index;
2757 next++;
2759 if (pagezone != zone) {
2760 if (zone)
2761 spin_unlock_irq(&zone->lru_lock);
2762 zone = pagezone;
2763 spin_lock_irq(&zone->lru_lock);
2766 if (PageLRU(page) && PageUnevictable(page))
2767 check_move_unevictable_page(page, zone);
2769 if (zone)
2770 spin_unlock_irq(&zone->lru_lock);
2771 pagevec_release(&pvec);
2773 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2779 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2780 * @zone - zone of which to scan the unevictable list
2782 * Scan @zone's unevictable LRU lists to check for pages that have become
2783 * evictable. Move those that have to @zone's inactive list where they
2784 * become candidates for reclaim, unless shrink_inactive_zone() decides
2785 * to reactivate them. Pages that are still unevictable are rotated
2786 * back onto @zone's unevictable list.
2788 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2789 static void scan_zone_unevictable_pages(struct zone *zone)
2791 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2792 unsigned long scan;
2793 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2795 while (nr_to_scan > 0) {
2796 unsigned long batch_size = min(nr_to_scan,
2797 SCAN_UNEVICTABLE_BATCH_SIZE);
2799 spin_lock_irq(&zone->lru_lock);
2800 for (scan = 0; scan < batch_size; scan++) {
2801 struct page *page = lru_to_page(l_unevictable);
2803 if (!trylock_page(page))
2804 continue;
2806 prefetchw_prev_lru_page(page, l_unevictable, flags);
2808 if (likely(PageLRU(page) && PageUnevictable(page)))
2809 check_move_unevictable_page(page, zone);
2811 unlock_page(page);
2813 spin_unlock_irq(&zone->lru_lock);
2815 nr_to_scan -= batch_size;
2821 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2823 * A really big hammer: scan all zones' unevictable LRU lists to check for
2824 * pages that have become evictable. Move those back to the zones'
2825 * inactive list where they become candidates for reclaim.
2826 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2827 * and we add swap to the system. As such, it runs in the context of a task
2828 * that has possibly/probably made some previously unevictable pages
2829 * evictable.
2831 static void scan_all_zones_unevictable_pages(void)
2833 struct zone *zone;
2835 for_each_zone(zone) {
2836 scan_zone_unevictable_pages(zone);
2841 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2842 * all nodes' unevictable lists for evictable pages
2844 unsigned long scan_unevictable_pages;
2846 int scan_unevictable_handler(struct ctl_table *table, int write,
2847 void __user *buffer,
2848 size_t *length, loff_t *ppos)
2850 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2852 if (write && *(unsigned long *)table->data)
2853 scan_all_zones_unevictable_pages();
2855 scan_unevictable_pages = 0;
2856 return 0;
2860 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2861 * a specified node's per zone unevictable lists for evictable pages.
2864 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2865 struct sysdev_attribute *attr,
2866 char *buf)
2868 return sprintf(buf, "0\n"); /* always zero; should fit... */
2871 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2872 struct sysdev_attribute *attr,
2873 const char *buf, size_t count)
2875 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2876 struct zone *zone;
2877 unsigned long res;
2878 unsigned long req = strict_strtoul(buf, 10, &res);
2880 if (!req)
2881 return 1; /* zero is no-op */
2883 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2884 if (!populated_zone(zone))
2885 continue;
2886 scan_zone_unevictable_pages(zone);
2888 return 1;
2892 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2893 read_scan_unevictable_node,
2894 write_scan_unevictable_node);
2896 int scan_unevictable_register_node(struct node *node)
2898 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2901 void scan_unevictable_unregister_node(struct node *node)
2903 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);