2 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
3 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
5 * An implementation of the DCCP protocol
7 * This code has been developed by the University of Waikato WAND
8 * research group. For further information please see http://www.wand.net.nz/
9 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
11 * This code also uses code from Lulea University, rereleased as GPL by its
13 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
15 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
16 * and to make it work as a loadable module in the DCCP stack written by
17 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
19 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License as published by
23 * the Free Software Foundation; either version 2 of the License, or
24 * (at your option) any later version.
26 * This program is distributed in the hope that it will be useful,
27 * but WITHOUT ANY WARRANTY; without even the implied warranty of
28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 * GNU General Public License for more details.
31 * You should have received a copy of the GNU General Public License
32 * along with this program; if not, write to the Free Software
33 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include "packet_history.h"
39 #include "../../dccp.h"
42 * tfrc_tx_hist_entry - Simple singly-linked TX history list
43 * @next: next oldest entry (LIFO order)
44 * @seqno: sequence number of this entry
45 * @stamp: send time of packet with sequence number @seqno
47 struct tfrc_tx_hist_entry
{
48 struct tfrc_tx_hist_entry
*next
;
54 * Transmitter History Routines
56 static struct kmem_cache
*tfrc_tx_hist_slab
;
58 int __init
tfrc_tx_packet_history_init(void)
60 tfrc_tx_hist_slab
= kmem_cache_create("tfrc_tx_hist",
61 sizeof(struct tfrc_tx_hist_entry
),
62 0, SLAB_HWCACHE_ALIGN
, NULL
);
63 return tfrc_tx_hist_slab
== NULL
? -ENOBUFS
: 0;
66 void tfrc_tx_packet_history_exit(void)
68 if (tfrc_tx_hist_slab
!= NULL
) {
69 kmem_cache_destroy(tfrc_tx_hist_slab
);
70 tfrc_tx_hist_slab
= NULL
;
74 static struct tfrc_tx_hist_entry
*
75 tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry
*head
, u64 seqno
)
77 while (head
!= NULL
&& head
->seqno
!= seqno
)
83 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry
**headp
, u64 seqno
)
85 struct tfrc_tx_hist_entry
*entry
= kmem_cache_alloc(tfrc_tx_hist_slab
, gfp_any());
90 entry
->stamp
= ktime_get_real();
96 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry
**headp
)
98 struct tfrc_tx_hist_entry
*head
= *headp
;
100 while (head
!= NULL
) {
101 struct tfrc_tx_hist_entry
*next
= head
->next
;
103 kmem_cache_free(tfrc_tx_hist_slab
, head
);
110 u32
tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry
*head
, const u64 seqno
,
114 struct tfrc_tx_hist_entry
*packet
= tfrc_tx_hist_find_entry(head
, seqno
);
116 if (packet
!= NULL
) {
117 rtt
= ktime_us_delta(now
, packet
->stamp
);
119 * Garbage-collect older (irrelevant) entries:
121 tfrc_tx_hist_purge(&packet
->next
);
129 * Receiver History Routines
131 static struct kmem_cache
*tfrc_rx_hist_slab
;
133 int __init
tfrc_rx_packet_history_init(void)
135 tfrc_rx_hist_slab
= kmem_cache_create("tfrc_rxh_cache",
136 sizeof(struct tfrc_rx_hist_entry
),
137 0, SLAB_HWCACHE_ALIGN
, NULL
);
138 return tfrc_rx_hist_slab
== NULL
? -ENOBUFS
: 0;
141 void tfrc_rx_packet_history_exit(void)
143 if (tfrc_rx_hist_slab
!= NULL
) {
144 kmem_cache_destroy(tfrc_rx_hist_slab
);
145 tfrc_rx_hist_slab
= NULL
;
149 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry
*entry
,
150 const struct sk_buff
*skb
,
153 const struct dccp_hdr
*dh
= dccp_hdr(skb
);
155 entry
->tfrchrx_seqno
= DCCP_SKB_CB(skb
)->dccpd_seq
;
156 entry
->tfrchrx_ccval
= dh
->dccph_ccval
;
157 entry
->tfrchrx_type
= dh
->dccph_type
;
158 entry
->tfrchrx_ndp
= ndp
;
159 entry
->tfrchrx_tstamp
= ktime_get_real();
162 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist
*h
,
163 const struct sk_buff
*skb
,
166 struct tfrc_rx_hist_entry
*entry
= tfrc_rx_hist_last_rcv(h
);
168 tfrc_rx_hist_entry_from_skb(entry
, skb
, ndp
);
171 /* has the packet contained in skb been seen before? */
172 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
)
174 const u64 seq
= DCCP_SKB_CB(skb
)->dccpd_seq
;
177 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
, seq
) <= 0)
180 for (i
= 1; i
<= h
->loss_count
; i
++)
181 if (tfrc_rx_hist_entry(h
, i
)->tfrchrx_seqno
== seq
)
187 static void tfrc_rx_hist_swap(struct tfrc_rx_hist
*h
, const u8 a
, const u8 b
)
189 const u8 idx_a
= tfrc_rx_hist_index(h
, a
),
190 idx_b
= tfrc_rx_hist_index(h
, b
);
191 struct tfrc_rx_hist_entry
*tmp
= h
->ring
[idx_a
];
193 h
->ring
[idx_a
] = h
->ring
[idx_b
];
194 h
->ring
[idx_b
] = tmp
;
198 * Private helper functions for loss detection.
200 * In the descriptions, `Si' refers to the sequence number of entry number i,
201 * whose NDP count is `Ni' (lower case is used for variables).
202 * Note: All __xxx_loss functions expect that a test against duplicates has been
203 * performed already: the seqno of the skb must not be less than the seqno
204 * of loss_prev; and it must not equal that of any valid history entry.
206 static void __do_track_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u64 n1
)
208 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
209 s1
= DCCP_SKB_CB(skb
)->dccpd_seq
;
211 if (!dccp_loss_free(s0
, s1
, n1
)) { /* gap between S0 and S1 */
213 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n1
);
217 static void __one_after_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u32 n2
)
219 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
220 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
221 s2
= DCCP_SKB_CB(skb
)->dccpd_seq
;
223 if (likely(dccp_delta_seqno(s1
, s2
) > 0)) { /* S1 < S2 */
225 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 2), skb
, n2
);
231 if (dccp_loss_free(s0
, s2
, n2
)) {
232 u64 n1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_ndp
;
234 if (dccp_loss_free(s2
, s1
, n1
)) {
235 /* hole is filled: S0, S2, and S1 are consecutive */
237 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
239 /* gap between S2 and S1: just update loss_prev */
240 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h
), skb
, n2
);
242 } else { /* gap between S0 and S2 */
244 * Reorder history to insert S2 between S0 and S1
246 tfrc_rx_hist_swap(h
, 0, 3);
247 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
248 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n2
);
253 /* return 1 if a new loss event has been identified */
254 static int __two_after_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u32 n3
)
256 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
257 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
258 s2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_seqno
,
259 s3
= DCCP_SKB_CB(skb
)->dccpd_seq
;
261 if (likely(dccp_delta_seqno(s2
, s3
) > 0)) { /* S2 < S3 */
263 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 3), skb
, n3
);
269 if (dccp_delta_seqno(s1
, s3
) > 0) { /* S1 < S3 < S2 */
271 * Reorder history to insert S3 between S1 and S2
273 tfrc_rx_hist_swap(h
, 2, 3);
274 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 2), skb
, n3
);
281 if (dccp_loss_free(s0
, s3
, n3
)) {
282 u64 n1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_ndp
;
284 if (dccp_loss_free(s3
, s1
, n1
)) {
285 /* hole between S0 and S1 filled by S3 */
286 u64 n2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_ndp
;
288 if (dccp_loss_free(s1
, s2
, n2
)) {
289 /* entire hole filled by S0, S3, S1, S2 */
290 h
->loss_start
= tfrc_rx_hist_index(h
, 2);
293 /* gap remains between S1 and S2 */
294 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
298 } else /* gap exists between S3 and S1, loss_count stays at 2 */
299 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h
), skb
, n3
);
305 * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
306 * Reorder history to insert S3 between S0 and S1.
308 tfrc_rx_hist_swap(h
, 0, 3);
309 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
310 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n3
);
316 /* recycle RX history records to continue loss detection if necessary */
317 static void __three_after_loss(struct tfrc_rx_hist
*h
)
320 * At this stage we know already that there is a gap between S0 and S1
321 * (since S0 was the highest sequence number received before detecting
322 * the loss). To recycle the loss record, it is thus only necessary to
323 * check for other possible gaps between S1/S2 and between S2/S3.
325 u64 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
326 s2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_seqno
,
327 s3
= tfrc_rx_hist_entry(h
, 3)->tfrchrx_seqno
;
328 u64 n2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_ndp
,
329 n3
= tfrc_rx_hist_entry(h
, 3)->tfrchrx_ndp
;
331 if (dccp_loss_free(s1
, s2
, n2
)) {
333 if (dccp_loss_free(s2
, s3
, n3
)) {
334 /* no gap between S2 and S3: entire hole is filled */
335 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
338 /* gap between S2 and S3 */
339 h
->loss_start
= tfrc_rx_hist_index(h
, 2);
343 } else { /* gap between S1 and S2 */
344 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
350 * tfrc_rx_handle_loss - Loss detection and further processing
351 * @h: The non-empty RX history object
352 * @lh: Loss Intervals database to update
353 * @skb: Currently received packet
354 * @ndp: The NDP count belonging to @skb
355 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
356 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
357 * Chooses action according to pending loss, updates LI database when a new
358 * loss was detected, and does required post-processing. Returns 1 when caller
359 * should send feedback, 0 otherwise.
360 * Since it also takes care of reordering during loss detection and updates the
361 * records accordingly, the caller should not perform any more RX history
362 * operations when loss_count is greater than 0 after calling this function.
364 int tfrc_rx_handle_loss(struct tfrc_rx_hist
*h
,
365 struct tfrc_loss_hist
*lh
,
366 struct sk_buff
*skb
, const u64 ndp
,
367 u32 (*calc_first_li
)(struct sock
*), struct sock
*sk
)
371 if (h
->loss_count
== 0) {
372 __do_track_loss(h
, skb
, ndp
);
373 } else if (h
->loss_count
== 1) {
374 __one_after_loss(h
, skb
, ndp
);
375 } else if (h
->loss_count
!= 2) {
376 DCCP_BUG("invalid loss_count %d", h
->loss_count
);
377 } else if (__two_after_loss(h
, skb
, ndp
)) {
379 * Update Loss Interval database and recycle RX records
381 is_new_loss
= tfrc_lh_interval_add(lh
, h
, calc_first_li
, sk
);
382 __three_after_loss(h
);
387 int tfrc_rx_hist_alloc(struct tfrc_rx_hist
*h
)
391 for (i
= 0; i
<= TFRC_NDUPACK
; i
++) {
392 h
->ring
[i
] = kmem_cache_alloc(tfrc_rx_hist_slab
, GFP_ATOMIC
);
393 if (h
->ring
[i
] == NULL
)
397 h
->loss_count
= h
->loss_start
= 0;
402 kmem_cache_free(tfrc_rx_hist_slab
, h
->ring
[i
]);
408 void tfrc_rx_hist_purge(struct tfrc_rx_hist
*h
)
412 for (i
= 0; i
<= TFRC_NDUPACK
; ++i
)
413 if (h
->ring
[i
] != NULL
) {
414 kmem_cache_free(tfrc_rx_hist_slab
, h
->ring
[i
]);
420 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
422 static inline struct tfrc_rx_hist_entry
*
423 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist
*h
)
429 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
431 static inline struct tfrc_rx_hist_entry
*
432 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist
*h
)
434 return h
->ring
[h
->rtt_sample_prev
];
438 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
439 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
440 * to compute a sample with given data - calling function should check this.
442 u32
tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist
*h
, const struct sk_buff
*skb
)
445 delta_v
= SUB16(dccp_hdr(skb
)->dccph_ccval
,
446 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
448 if (delta_v
< 1 || delta_v
> 4) { /* unsuitable CCVal delta */
449 if (h
->rtt_sample_prev
== 2) { /* previous candidate stored */
450 sample
= SUB16(tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_ccval
,
451 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
453 sample
= 4 / sample
*
454 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_tstamp
,
455 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_tstamp
);
457 * FIXME: This condition is in principle not
458 * possible but occurs when CCID is used for
459 * two-way data traffic. I have tried to trace
460 * it, but the cause does not seem to be here.
462 DCCP_BUG("please report to dccp@vger.kernel.org"
463 " => prev = %u, last = %u",
464 tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_ccval
,
465 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
466 } else if (delta_v
< 1) {
467 h
->rtt_sample_prev
= 1;
468 goto keep_ref_for_next_time
;
471 } else if (delta_v
== 4) /* optimal match */
472 sample
= ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_tstamp
));
473 else { /* suboptimal match */
474 h
->rtt_sample_prev
= 2;
475 goto keep_ref_for_next_time
;
478 if (unlikely(sample
> DCCP_SANE_RTT_MAX
)) {
479 DCCP_WARN("RTT sample %u too large, using max\n", sample
);
480 sample
= DCCP_SANE_RTT_MAX
;
483 h
->rtt_sample_prev
= 0; /* use current entry as next reference */
484 keep_ref_for_next_time
: