CPUidle: always return with interrupts enabled
[linux-ginger.git] / mm / vmalloc.c
blob0f551a4a44cddc7a042d47bbcd85c7126569ee69
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
35 /*** Page table manipulation functions ***/
37 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39 pte_t *pte;
41 pte = pte_offset_kernel(pmd, addr);
42 do {
43 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 } while (pte++, addr += PAGE_SIZE, addr != end);
48 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50 pmd_t *pmd;
51 unsigned long next;
53 pmd = pmd_offset(pud, addr);
54 do {
55 next = pmd_addr_end(addr, end);
56 if (pmd_none_or_clear_bad(pmd))
57 continue;
58 vunmap_pte_range(pmd, addr, next);
59 } while (pmd++, addr = next, addr != end);
62 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64 pud_t *pud;
65 unsigned long next;
67 pud = pud_offset(pgd, addr);
68 do {
69 next = pud_addr_end(addr, end);
70 if (pud_none_or_clear_bad(pud))
71 continue;
72 vunmap_pmd_range(pud, addr, next);
73 } while (pud++, addr = next, addr != end);
76 static void vunmap_page_range(unsigned long addr, unsigned long end)
78 pgd_t *pgd;
79 unsigned long next;
81 BUG_ON(addr >= end);
82 pgd = pgd_offset_k(addr);
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
91 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
92 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94 pte_t *pte;
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
101 pte = pte_alloc_kernel(pmd, addr);
102 if (!pte)
103 return -ENOMEM;
104 do {
105 struct page *page = pages[*nr];
107 if (WARN_ON(!pte_none(*pte)))
108 return -EBUSY;
109 if (WARN_ON(!page))
110 return -ENOMEM;
111 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
112 (*nr)++;
113 } while (pte++, addr += PAGE_SIZE, addr != end);
114 return 0;
117 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120 pmd_t *pmd;
121 unsigned long next;
123 pmd = pmd_alloc(&init_mm, pud, addr);
124 if (!pmd)
125 return -ENOMEM;
126 do {
127 next = pmd_addr_end(addr, end);
128 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
129 return -ENOMEM;
130 } while (pmd++, addr = next, addr != end);
131 return 0;
134 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 pud_t *pud;
138 unsigned long next;
140 pud = pud_alloc(&init_mm, pgd, addr);
141 if (!pud)
142 return -ENOMEM;
143 do {
144 next = pud_addr_end(addr, end);
145 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
146 return -ENOMEM;
147 } while (pud++, addr = next, addr != end);
148 return 0;
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 pgprot_t prot, struct page **pages)
160 pgd_t *pgd;
161 unsigned long next;
162 unsigned long addr = start;
163 int err = 0;
164 int nr = 0;
166 BUG_ON(addr >= end);
167 pgd = pgd_offset_k(addr);
168 do {
169 next = pgd_addr_end(addr, end);
170 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
171 if (err)
172 return err;
173 } while (pgd++, addr = next, addr != end);
175 return nr;
178 static int vmap_page_range(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
181 int ret;
183 ret = vmap_page_range_noflush(start, end, prot, pages);
184 flush_cache_vmap(start, end);
185 return ret;
188 int is_vmalloc_or_module_addr(const void *x)
191 * ARM, x86-64 and sparc64 put modules in a special place,
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr = (unsigned long)x;
197 if (addr >= MODULES_VADDR && addr < MODULES_END)
198 return 1;
199 #endif
200 return is_vmalloc_addr(x);
204 * Walk a vmap address to the struct page it maps.
206 struct page *vmalloc_to_page(const void *vmalloc_addr)
208 unsigned long addr = (unsigned long) vmalloc_addr;
209 struct page *page = NULL;
210 pgd_t *pgd = pgd_offset_k(addr);
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218 if (!pgd_none(*pgd)) {
219 pud_t *pud = pud_offset(pgd, addr);
220 if (!pud_none(*pud)) {
221 pmd_t *pmd = pmd_offset(pud, addr);
222 if (!pmd_none(*pmd)) {
223 pte_t *ptep, pte;
225 ptep = pte_offset_map(pmd, addr);
226 pte = *ptep;
227 if (pte_present(pte))
228 page = pte_page(pte);
229 pte_unmap(ptep);
233 return page;
235 EXPORT_SYMBOL(vmalloc_to_page);
238 * Map a vmalloc()-space virtual address to the physical page frame number.
240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244 EXPORT_SYMBOL(vmalloc_to_pfn);
247 /*** Global kva allocator ***/
249 #define VM_LAZY_FREE 0x01
250 #define VM_LAZY_FREEING 0x02
251 #define VM_VM_AREA 0x04
253 struct vmap_area {
254 unsigned long va_start;
255 unsigned long va_end;
256 unsigned long flags;
257 struct rb_node rb_node; /* address sorted rbtree */
258 struct list_head list; /* address sorted list */
259 struct list_head purge_list; /* "lazy purge" list */
260 void *private;
261 struct rcu_head rcu_head;
264 static DEFINE_SPINLOCK(vmap_area_lock);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 static LIST_HEAD(vmap_area_list);
267 static unsigned long vmap_area_pcpu_hole;
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
271 struct rb_node *n = vmap_area_root.rb_node;
273 while (n) {
274 struct vmap_area *va;
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
285 return NULL;
288 static void __insert_vmap_area(struct vmap_area *va)
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
294 while (*p) {
295 struct vmap_area *tmp;
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
331 struct vmap_area *va;
332 struct rb_node *n;
333 unsigned long addr;
334 int purged = 0;
336 BUG_ON(!size);
337 BUG_ON(size & ~PAGE_MASK);
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
344 retry:
345 addr = ALIGN(vstart, align);
347 spin_lock(&vmap_area_lock);
348 if (addr + size - 1 < addr)
349 goto overflow;
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
367 } while (n);
369 if (!first)
370 goto found;
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
380 while (addr + size > first->va_start && addr + size <= vend) {
381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 if (addr + size - 1 < addr)
383 goto overflow;
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
392 found:
393 if (addr + size > vend) {
394 overflow:
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
401 if (printk_ratelimit())
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
405 kfree(va);
406 return ERR_PTR(-EBUSY);
409 BUG_ON(addr & (align-1));
411 va->va_start = addr;
412 va->va_end = addr + size;
413 va->flags = 0;
414 __insert_vmap_area(va);
415 spin_unlock(&vmap_area_lock);
417 return va;
420 static void rcu_free_va(struct rcu_head *head)
422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424 kfree(va);
427 static void __free_vmap_area(struct vmap_area *va)
429 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 rb_erase(&va->rb_node, &vmap_area_root);
431 RB_CLEAR_NODE(&va->rb_node);
432 list_del_rcu(&va->list);
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
440 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443 call_rcu(&va->rcu_head, rcu_free_va);
447 * Free a region of KVA allocated by alloc_vmap_area
449 static void free_vmap_area(struct vmap_area *va)
451 spin_lock(&vmap_area_lock);
452 __free_vmap_area(va);
453 spin_unlock(&vmap_area_lock);
457 * Clear the pagetable entries of a given vmap_area
459 static void unmap_vmap_area(struct vmap_area *va)
461 vunmap_page_range(va->va_start, va->va_end);
464 static void vmap_debug_free_range(unsigned long start, unsigned long end)
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
477 * faster).
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start, end);
481 flush_tlb_kernel_range(start, end);
482 #endif
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
501 static unsigned long lazy_max_pages(void)
503 unsigned int log;
505 log = fls(num_online_cpus());
507 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
510 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
513 * Purges all lazily-freed vmap areas.
515 * If sync is 0 then don't purge if there is already a purge in progress.
516 * If force_flush is 1, then flush kernel TLBs between *start and *end even
517 * if we found no lazy vmap areas to unmap (callers can use this to optimise
518 * their own TLB flushing).
519 * Returns with *start = min(*start, lowest purged address)
520 * *end = max(*end, highest purged address)
522 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
523 int sync, int force_flush)
525 static DEFINE_SPINLOCK(purge_lock);
526 LIST_HEAD(valist);
527 struct vmap_area *va;
528 struct vmap_area *n_va;
529 int nr = 0;
532 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
533 * should not expect such behaviour. This just simplifies locking for
534 * the case that isn't actually used at the moment anyway.
536 if (!sync && !force_flush) {
537 if (!spin_trylock(&purge_lock))
538 return;
539 } else
540 spin_lock(&purge_lock);
542 rcu_read_lock();
543 list_for_each_entry_rcu(va, &vmap_area_list, list) {
544 if (va->flags & VM_LAZY_FREE) {
545 if (va->va_start < *start)
546 *start = va->va_start;
547 if (va->va_end > *end)
548 *end = va->va_end;
549 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
550 unmap_vmap_area(va);
551 list_add_tail(&va->purge_list, &valist);
552 va->flags |= VM_LAZY_FREEING;
553 va->flags &= ~VM_LAZY_FREE;
556 rcu_read_unlock();
558 if (nr) {
559 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
560 atomic_sub(nr, &vmap_lazy_nr);
563 if (nr || force_flush)
564 flush_tlb_kernel_range(*start, *end);
566 if (nr) {
567 spin_lock(&vmap_area_lock);
568 list_for_each_entry_safe(va, n_va, &valist, purge_list)
569 __free_vmap_area(va);
570 spin_unlock(&vmap_area_lock);
572 spin_unlock(&purge_lock);
576 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
577 * is already purging.
579 static void try_purge_vmap_area_lazy(void)
581 unsigned long start = ULONG_MAX, end = 0;
583 __purge_vmap_area_lazy(&start, &end, 0, 0);
587 * Kick off a purge of the outstanding lazy areas.
589 static void purge_vmap_area_lazy(void)
591 unsigned long start = ULONG_MAX, end = 0;
593 __purge_vmap_area_lazy(&start, &end, 1, 0);
597 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
598 * called for the correct range previously.
600 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
602 va->flags |= VM_LAZY_FREE;
603 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
604 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
605 try_purge_vmap_area_lazy();
609 * Free and unmap a vmap area
611 static void free_unmap_vmap_area(struct vmap_area *va)
613 flush_cache_vunmap(va->va_start, va->va_end);
614 free_unmap_vmap_area_noflush(va);
617 static struct vmap_area *find_vmap_area(unsigned long addr)
619 struct vmap_area *va;
621 spin_lock(&vmap_area_lock);
622 va = __find_vmap_area(addr);
623 spin_unlock(&vmap_area_lock);
625 return va;
628 static void free_unmap_vmap_area_addr(unsigned long addr)
630 struct vmap_area *va;
632 va = find_vmap_area(addr);
633 BUG_ON(!va);
634 free_unmap_vmap_area(va);
638 /*** Per cpu kva allocator ***/
641 * vmap space is limited especially on 32 bit architectures. Ensure there is
642 * room for at least 16 percpu vmap blocks per CPU.
645 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
646 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
647 * instead (we just need a rough idea)
649 #if BITS_PER_LONG == 32
650 #define VMALLOC_SPACE (128UL*1024*1024)
651 #else
652 #define VMALLOC_SPACE (128UL*1024*1024*1024)
653 #endif
655 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
656 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
657 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
658 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
659 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
660 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
661 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
662 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
663 VMALLOC_PAGES / NR_CPUS / 16))
665 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
667 static bool vmap_initialized __read_mostly = false;
669 struct vmap_block_queue {
670 spinlock_t lock;
671 struct list_head free;
672 struct list_head dirty;
673 unsigned int nr_dirty;
676 struct vmap_block {
677 spinlock_t lock;
678 struct vmap_area *va;
679 struct vmap_block_queue *vbq;
680 unsigned long free, dirty;
681 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
682 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
683 union {
684 struct list_head free_list;
685 struct rcu_head rcu_head;
689 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
690 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
693 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
694 * in the free path. Could get rid of this if we change the API to return a
695 * "cookie" from alloc, to be passed to free. But no big deal yet.
697 static DEFINE_SPINLOCK(vmap_block_tree_lock);
698 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
701 * We should probably have a fallback mechanism to allocate virtual memory
702 * out of partially filled vmap blocks. However vmap block sizing should be
703 * fairly reasonable according to the vmalloc size, so it shouldn't be a
704 * big problem.
707 static unsigned long addr_to_vb_idx(unsigned long addr)
709 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
710 addr /= VMAP_BLOCK_SIZE;
711 return addr;
714 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
716 struct vmap_block_queue *vbq;
717 struct vmap_block *vb;
718 struct vmap_area *va;
719 unsigned long vb_idx;
720 int node, err;
722 node = numa_node_id();
724 vb = kmalloc_node(sizeof(struct vmap_block),
725 gfp_mask & GFP_RECLAIM_MASK, node);
726 if (unlikely(!vb))
727 return ERR_PTR(-ENOMEM);
729 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
730 VMALLOC_START, VMALLOC_END,
731 node, gfp_mask);
732 if (unlikely(IS_ERR(va))) {
733 kfree(vb);
734 return ERR_PTR(PTR_ERR(va));
737 err = radix_tree_preload(gfp_mask);
738 if (unlikely(err)) {
739 kfree(vb);
740 free_vmap_area(va);
741 return ERR_PTR(err);
744 spin_lock_init(&vb->lock);
745 vb->va = va;
746 vb->free = VMAP_BBMAP_BITS;
747 vb->dirty = 0;
748 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
749 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
750 INIT_LIST_HEAD(&vb->free_list);
752 vb_idx = addr_to_vb_idx(va->va_start);
753 spin_lock(&vmap_block_tree_lock);
754 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
755 spin_unlock(&vmap_block_tree_lock);
756 BUG_ON(err);
757 radix_tree_preload_end();
759 vbq = &get_cpu_var(vmap_block_queue);
760 vb->vbq = vbq;
761 spin_lock(&vbq->lock);
762 list_add(&vb->free_list, &vbq->free);
763 spin_unlock(&vbq->lock);
764 put_cpu_var(vmap_cpu_blocks);
766 return vb;
769 static void rcu_free_vb(struct rcu_head *head)
771 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
773 kfree(vb);
776 static void free_vmap_block(struct vmap_block *vb)
778 struct vmap_block *tmp;
779 unsigned long vb_idx;
781 BUG_ON(!list_empty(&vb->free_list));
783 vb_idx = addr_to_vb_idx(vb->va->va_start);
784 spin_lock(&vmap_block_tree_lock);
785 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
786 spin_unlock(&vmap_block_tree_lock);
787 BUG_ON(tmp != vb);
789 free_unmap_vmap_area_noflush(vb->va);
790 call_rcu(&vb->rcu_head, rcu_free_vb);
793 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
795 struct vmap_block_queue *vbq;
796 struct vmap_block *vb;
797 unsigned long addr = 0;
798 unsigned int order;
800 BUG_ON(size & ~PAGE_MASK);
801 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
802 order = get_order(size);
804 again:
805 rcu_read_lock();
806 vbq = &get_cpu_var(vmap_block_queue);
807 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
808 int i;
810 spin_lock(&vb->lock);
811 i = bitmap_find_free_region(vb->alloc_map,
812 VMAP_BBMAP_BITS, order);
814 if (i >= 0) {
815 addr = vb->va->va_start + (i << PAGE_SHIFT);
816 BUG_ON(addr_to_vb_idx(addr) !=
817 addr_to_vb_idx(vb->va->va_start));
818 vb->free -= 1UL << order;
819 if (vb->free == 0) {
820 spin_lock(&vbq->lock);
821 list_del_init(&vb->free_list);
822 spin_unlock(&vbq->lock);
824 spin_unlock(&vb->lock);
825 break;
827 spin_unlock(&vb->lock);
829 put_cpu_var(vmap_cpu_blocks);
830 rcu_read_unlock();
832 if (!addr) {
833 vb = new_vmap_block(gfp_mask);
834 if (IS_ERR(vb))
835 return vb;
836 goto again;
839 return (void *)addr;
842 static void vb_free(const void *addr, unsigned long size)
844 unsigned long offset;
845 unsigned long vb_idx;
846 unsigned int order;
847 struct vmap_block *vb;
849 BUG_ON(size & ~PAGE_MASK);
850 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
852 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
854 order = get_order(size);
856 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
858 vb_idx = addr_to_vb_idx((unsigned long)addr);
859 rcu_read_lock();
860 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
861 rcu_read_unlock();
862 BUG_ON(!vb);
864 spin_lock(&vb->lock);
865 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
867 vb->dirty += 1UL << order;
868 if (vb->dirty == VMAP_BBMAP_BITS) {
869 BUG_ON(vb->free || !list_empty(&vb->free_list));
870 spin_unlock(&vb->lock);
871 free_vmap_block(vb);
872 } else
873 spin_unlock(&vb->lock);
877 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
879 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
880 * to amortize TLB flushing overheads. What this means is that any page you
881 * have now, may, in a former life, have been mapped into kernel virtual
882 * address by the vmap layer and so there might be some CPUs with TLB entries
883 * still referencing that page (additional to the regular 1:1 kernel mapping).
885 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
886 * be sure that none of the pages we have control over will have any aliases
887 * from the vmap layer.
889 void vm_unmap_aliases(void)
891 unsigned long start = ULONG_MAX, end = 0;
892 int cpu;
893 int flush = 0;
895 if (unlikely(!vmap_initialized))
896 return;
898 for_each_possible_cpu(cpu) {
899 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
900 struct vmap_block *vb;
902 rcu_read_lock();
903 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
904 int i;
906 spin_lock(&vb->lock);
907 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
908 while (i < VMAP_BBMAP_BITS) {
909 unsigned long s, e;
910 int j;
911 j = find_next_zero_bit(vb->dirty_map,
912 VMAP_BBMAP_BITS, i);
914 s = vb->va->va_start + (i << PAGE_SHIFT);
915 e = vb->va->va_start + (j << PAGE_SHIFT);
916 vunmap_page_range(s, e);
917 flush = 1;
919 if (s < start)
920 start = s;
921 if (e > end)
922 end = e;
924 i = j;
925 i = find_next_bit(vb->dirty_map,
926 VMAP_BBMAP_BITS, i);
928 spin_unlock(&vb->lock);
930 rcu_read_unlock();
933 __purge_vmap_area_lazy(&start, &end, 1, flush);
935 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
938 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
939 * @mem: the pointer returned by vm_map_ram
940 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
942 void vm_unmap_ram(const void *mem, unsigned int count)
944 unsigned long size = count << PAGE_SHIFT;
945 unsigned long addr = (unsigned long)mem;
947 BUG_ON(!addr);
948 BUG_ON(addr < VMALLOC_START);
949 BUG_ON(addr > VMALLOC_END);
950 BUG_ON(addr & (PAGE_SIZE-1));
952 debug_check_no_locks_freed(mem, size);
953 vmap_debug_free_range(addr, addr+size);
955 if (likely(count <= VMAP_MAX_ALLOC))
956 vb_free(mem, size);
957 else
958 free_unmap_vmap_area_addr(addr);
960 EXPORT_SYMBOL(vm_unmap_ram);
963 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
964 * @pages: an array of pointers to the pages to be mapped
965 * @count: number of pages
966 * @node: prefer to allocate data structures on this node
967 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
969 * Returns: a pointer to the address that has been mapped, or %NULL on failure
971 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
973 unsigned long size = count << PAGE_SHIFT;
974 unsigned long addr;
975 void *mem;
977 if (likely(count <= VMAP_MAX_ALLOC)) {
978 mem = vb_alloc(size, GFP_KERNEL);
979 if (IS_ERR(mem))
980 return NULL;
981 addr = (unsigned long)mem;
982 } else {
983 struct vmap_area *va;
984 va = alloc_vmap_area(size, PAGE_SIZE,
985 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
986 if (IS_ERR(va))
987 return NULL;
989 addr = va->va_start;
990 mem = (void *)addr;
992 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
993 vm_unmap_ram(mem, count);
994 return NULL;
996 return mem;
998 EXPORT_SYMBOL(vm_map_ram);
1001 * vm_area_register_early - register vmap area early during boot
1002 * @vm: vm_struct to register
1003 * @align: requested alignment
1005 * This function is used to register kernel vm area before
1006 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1007 * proper values on entry and other fields should be zero. On return,
1008 * vm->addr contains the allocated address.
1010 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1012 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1014 static size_t vm_init_off __initdata;
1015 unsigned long addr;
1017 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1018 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1020 vm->addr = (void *)addr;
1022 vm->next = vmlist;
1023 vmlist = vm;
1026 void __init vmalloc_init(void)
1028 struct vmap_area *va;
1029 struct vm_struct *tmp;
1030 int i;
1032 for_each_possible_cpu(i) {
1033 struct vmap_block_queue *vbq;
1035 vbq = &per_cpu(vmap_block_queue, i);
1036 spin_lock_init(&vbq->lock);
1037 INIT_LIST_HEAD(&vbq->free);
1038 INIT_LIST_HEAD(&vbq->dirty);
1039 vbq->nr_dirty = 0;
1042 /* Import existing vmlist entries. */
1043 for (tmp = vmlist; tmp; tmp = tmp->next) {
1044 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1045 va->flags = tmp->flags | VM_VM_AREA;
1046 va->va_start = (unsigned long)tmp->addr;
1047 va->va_end = va->va_start + tmp->size;
1048 __insert_vmap_area(va);
1051 vmap_area_pcpu_hole = VMALLOC_END;
1053 vmap_initialized = true;
1057 * map_kernel_range_noflush - map kernel VM area with the specified pages
1058 * @addr: start of the VM area to map
1059 * @size: size of the VM area to map
1060 * @prot: page protection flags to use
1061 * @pages: pages to map
1063 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1064 * specify should have been allocated using get_vm_area() and its
1065 * friends.
1067 * NOTE:
1068 * This function does NOT do any cache flushing. The caller is
1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1070 * before calling this function.
1072 * RETURNS:
1073 * The number of pages mapped on success, -errno on failure.
1075 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1076 pgprot_t prot, struct page **pages)
1078 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1082 * unmap_kernel_range_noflush - unmap kernel VM area
1083 * @addr: start of the VM area to unmap
1084 * @size: size of the VM area to unmap
1086 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1087 * specify should have been allocated using get_vm_area() and its
1088 * friends.
1090 * NOTE:
1091 * This function does NOT do any cache flushing. The caller is
1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1093 * before calling this function and flush_tlb_kernel_range() after.
1095 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1097 vunmap_page_range(addr, addr + size);
1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1102 * @addr: start of the VM area to unmap
1103 * @size: size of the VM area to unmap
1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1106 * the unmapping and tlb after.
1108 void unmap_kernel_range(unsigned long addr, unsigned long size)
1110 unsigned long end = addr + size;
1112 flush_cache_vunmap(addr, end);
1113 vunmap_page_range(addr, end);
1114 flush_tlb_kernel_range(addr, end);
1117 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1119 unsigned long addr = (unsigned long)area->addr;
1120 unsigned long end = addr + area->size - PAGE_SIZE;
1121 int err;
1123 err = vmap_page_range(addr, end, prot, *pages);
1124 if (err > 0) {
1125 *pages += err;
1126 err = 0;
1129 return err;
1131 EXPORT_SYMBOL_GPL(map_vm_area);
1133 /*** Old vmalloc interfaces ***/
1134 DEFINE_RWLOCK(vmlist_lock);
1135 struct vm_struct *vmlist;
1137 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1138 unsigned long flags, void *caller)
1140 struct vm_struct *tmp, **p;
1142 vm->flags = flags;
1143 vm->addr = (void *)va->va_start;
1144 vm->size = va->va_end - va->va_start;
1145 vm->caller = caller;
1146 va->private = vm;
1147 va->flags |= VM_VM_AREA;
1149 write_lock(&vmlist_lock);
1150 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1151 if (tmp->addr >= vm->addr)
1152 break;
1154 vm->next = *p;
1155 *p = vm;
1156 write_unlock(&vmlist_lock);
1159 static struct vm_struct *__get_vm_area_node(unsigned long size,
1160 unsigned long align, unsigned long flags, unsigned long start,
1161 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1163 static struct vmap_area *va;
1164 struct vm_struct *area;
1166 BUG_ON(in_interrupt());
1167 if (flags & VM_IOREMAP) {
1168 int bit = fls(size);
1170 if (bit > IOREMAP_MAX_ORDER)
1171 bit = IOREMAP_MAX_ORDER;
1172 else if (bit < PAGE_SHIFT)
1173 bit = PAGE_SHIFT;
1175 align = 1ul << bit;
1178 size = PAGE_ALIGN(size);
1179 if (unlikely(!size))
1180 return NULL;
1182 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1183 if (unlikely(!area))
1184 return NULL;
1187 * We always allocate a guard page.
1189 size += PAGE_SIZE;
1191 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1192 if (IS_ERR(va)) {
1193 kfree(area);
1194 return NULL;
1197 insert_vmalloc_vm(area, va, flags, caller);
1198 return area;
1201 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1202 unsigned long start, unsigned long end)
1204 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1205 __builtin_return_address(0));
1207 EXPORT_SYMBOL_GPL(__get_vm_area);
1209 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1210 unsigned long start, unsigned long end,
1211 void *caller)
1213 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1214 caller);
1218 * get_vm_area - reserve a contiguous kernel virtual area
1219 * @size: size of the area
1220 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1222 * Search an area of @size in the kernel virtual mapping area,
1223 * and reserved it for out purposes. Returns the area descriptor
1224 * on success or %NULL on failure.
1226 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1228 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1229 -1, GFP_KERNEL, __builtin_return_address(0));
1232 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1233 void *caller)
1235 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1236 -1, GFP_KERNEL, caller);
1239 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1240 int node, gfp_t gfp_mask)
1242 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1243 node, gfp_mask, __builtin_return_address(0));
1246 static struct vm_struct *find_vm_area(const void *addr)
1248 struct vmap_area *va;
1250 va = find_vmap_area((unsigned long)addr);
1251 if (va && va->flags & VM_VM_AREA)
1252 return va->private;
1254 return NULL;
1258 * remove_vm_area - find and remove a continuous kernel virtual area
1259 * @addr: base address
1261 * Search for the kernel VM area starting at @addr, and remove it.
1262 * This function returns the found VM area, but using it is NOT safe
1263 * on SMP machines, except for its size or flags.
1265 struct vm_struct *remove_vm_area(const void *addr)
1267 struct vmap_area *va;
1269 va = find_vmap_area((unsigned long)addr);
1270 if (va && va->flags & VM_VM_AREA) {
1271 struct vm_struct *vm = va->private;
1272 struct vm_struct *tmp, **p;
1274 * remove from list and disallow access to this vm_struct
1275 * before unmap. (address range confliction is maintained by
1276 * vmap.)
1278 write_lock(&vmlist_lock);
1279 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1281 *p = tmp->next;
1282 write_unlock(&vmlist_lock);
1284 vmap_debug_free_range(va->va_start, va->va_end);
1285 free_unmap_vmap_area(va);
1286 vm->size -= PAGE_SIZE;
1288 return vm;
1290 return NULL;
1293 static void __vunmap(const void *addr, int deallocate_pages)
1295 struct vm_struct *area;
1297 if (!addr)
1298 return;
1300 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1301 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1302 return;
1305 area = remove_vm_area(addr);
1306 if (unlikely(!area)) {
1307 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1308 addr);
1309 return;
1312 debug_check_no_locks_freed(addr, area->size);
1313 debug_check_no_obj_freed(addr, area->size);
1315 if (deallocate_pages) {
1316 int i;
1318 for (i = 0; i < area->nr_pages; i++) {
1319 struct page *page = area->pages[i];
1321 BUG_ON(!page);
1322 __free_page(page);
1325 if (area->flags & VM_VPAGES)
1326 vfree(area->pages);
1327 else
1328 kfree(area->pages);
1331 kfree(area);
1332 return;
1336 * vfree - release memory allocated by vmalloc()
1337 * @addr: memory base address
1339 * Free the virtually continuous memory area starting at @addr, as
1340 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1341 * NULL, no operation is performed.
1343 * Must not be called in interrupt context.
1345 void vfree(const void *addr)
1347 BUG_ON(in_interrupt());
1349 kmemleak_free(addr);
1351 __vunmap(addr, 1);
1353 EXPORT_SYMBOL(vfree);
1356 * vunmap - release virtual mapping obtained by vmap()
1357 * @addr: memory base address
1359 * Free the virtually contiguous memory area starting at @addr,
1360 * which was created from the page array passed to vmap().
1362 * Must not be called in interrupt context.
1364 void vunmap(const void *addr)
1366 BUG_ON(in_interrupt());
1367 might_sleep();
1368 __vunmap(addr, 0);
1370 EXPORT_SYMBOL(vunmap);
1373 * vmap - map an array of pages into virtually contiguous space
1374 * @pages: array of page pointers
1375 * @count: number of pages to map
1376 * @flags: vm_area->flags
1377 * @prot: page protection for the mapping
1379 * Maps @count pages from @pages into contiguous kernel virtual
1380 * space.
1382 void *vmap(struct page **pages, unsigned int count,
1383 unsigned long flags, pgprot_t prot)
1385 struct vm_struct *area;
1387 might_sleep();
1389 if (count > totalram_pages)
1390 return NULL;
1392 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1393 __builtin_return_address(0));
1394 if (!area)
1395 return NULL;
1397 if (map_vm_area(area, prot, &pages)) {
1398 vunmap(area->addr);
1399 return NULL;
1402 return area->addr;
1404 EXPORT_SYMBOL(vmap);
1406 static void *__vmalloc_node(unsigned long size, unsigned long align,
1407 gfp_t gfp_mask, pgprot_t prot,
1408 int node, void *caller);
1409 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1410 pgprot_t prot, int node, void *caller)
1412 struct page **pages;
1413 unsigned int nr_pages, array_size, i;
1415 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1416 array_size = (nr_pages * sizeof(struct page *));
1418 area->nr_pages = nr_pages;
1419 /* Please note that the recursion is strictly bounded. */
1420 if (array_size > PAGE_SIZE) {
1421 pages = __vmalloc_node(array_size, 1, gfp_mask | __GFP_ZERO,
1422 PAGE_KERNEL, node, caller);
1423 area->flags |= VM_VPAGES;
1424 } else {
1425 pages = kmalloc_node(array_size,
1426 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1427 node);
1429 area->pages = pages;
1430 area->caller = caller;
1431 if (!area->pages) {
1432 remove_vm_area(area->addr);
1433 kfree(area);
1434 return NULL;
1437 for (i = 0; i < area->nr_pages; i++) {
1438 struct page *page;
1440 if (node < 0)
1441 page = alloc_page(gfp_mask);
1442 else
1443 page = alloc_pages_node(node, gfp_mask, 0);
1445 if (unlikely(!page)) {
1446 /* Successfully allocated i pages, free them in __vunmap() */
1447 area->nr_pages = i;
1448 goto fail;
1450 area->pages[i] = page;
1453 if (map_vm_area(area, prot, &pages))
1454 goto fail;
1455 return area->addr;
1457 fail:
1458 vfree(area->addr);
1459 return NULL;
1462 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1464 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1465 __builtin_return_address(0));
1468 * A ref_count = 3 is needed because the vm_struct and vmap_area
1469 * structures allocated in the __get_vm_area_node() function contain
1470 * references to the virtual address of the vmalloc'ed block.
1472 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1474 return addr;
1478 * __vmalloc_node - allocate virtually contiguous memory
1479 * @size: allocation size
1480 * @align: desired alignment
1481 * @gfp_mask: flags for the page level allocator
1482 * @prot: protection mask for the allocated pages
1483 * @node: node to use for allocation or -1
1484 * @caller: caller's return address
1486 * Allocate enough pages to cover @size from the page level
1487 * allocator with @gfp_mask flags. Map them into contiguous
1488 * kernel virtual space, using a pagetable protection of @prot.
1490 static void *__vmalloc_node(unsigned long size, unsigned long align,
1491 gfp_t gfp_mask, pgprot_t prot,
1492 int node, void *caller)
1494 struct vm_struct *area;
1495 void *addr;
1496 unsigned long real_size = size;
1498 size = PAGE_ALIGN(size);
1499 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1500 return NULL;
1502 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1503 VMALLOC_END, node, gfp_mask, caller);
1505 if (!area)
1506 return NULL;
1508 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1511 * A ref_count = 3 is needed because the vm_struct and vmap_area
1512 * structures allocated in the __get_vm_area_node() function contain
1513 * references to the virtual address of the vmalloc'ed block.
1515 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1517 return addr;
1520 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1522 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1523 __builtin_return_address(0));
1525 EXPORT_SYMBOL(__vmalloc);
1528 * vmalloc - allocate virtually contiguous memory
1529 * @size: allocation size
1530 * Allocate enough pages to cover @size from the page level
1531 * allocator and map them into contiguous kernel virtual space.
1533 * For tight control over page level allocator and protection flags
1534 * use __vmalloc() instead.
1536 void *vmalloc(unsigned long size)
1538 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1539 -1, __builtin_return_address(0));
1541 EXPORT_SYMBOL(vmalloc);
1544 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1545 * @size: allocation size
1547 * The resulting memory area is zeroed so it can be mapped to userspace
1548 * without leaking data.
1550 void *vmalloc_user(unsigned long size)
1552 struct vm_struct *area;
1553 void *ret;
1555 ret = __vmalloc_node(size, SHMLBA,
1556 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1557 PAGE_KERNEL, -1, __builtin_return_address(0));
1558 if (ret) {
1559 area = find_vm_area(ret);
1560 area->flags |= VM_USERMAP;
1562 return ret;
1564 EXPORT_SYMBOL(vmalloc_user);
1567 * vmalloc_node - allocate memory on a specific node
1568 * @size: allocation size
1569 * @node: numa node
1571 * Allocate enough pages to cover @size from the page level
1572 * allocator and map them into contiguous kernel virtual space.
1574 * For tight control over page level allocator and protection flags
1575 * use __vmalloc() instead.
1577 void *vmalloc_node(unsigned long size, int node)
1579 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1580 node, __builtin_return_address(0));
1582 EXPORT_SYMBOL(vmalloc_node);
1584 #ifndef PAGE_KERNEL_EXEC
1585 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1586 #endif
1589 * vmalloc_exec - allocate virtually contiguous, executable memory
1590 * @size: allocation size
1592 * Kernel-internal function to allocate enough pages to cover @size
1593 * the page level allocator and map them into contiguous and
1594 * executable kernel virtual space.
1596 * For tight control over page level allocator and protection flags
1597 * use __vmalloc() instead.
1600 void *vmalloc_exec(unsigned long size)
1602 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1603 -1, __builtin_return_address(0));
1606 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1607 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1608 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1609 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1610 #else
1611 #define GFP_VMALLOC32 GFP_KERNEL
1612 #endif
1615 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1616 * @size: allocation size
1618 * Allocate enough 32bit PA addressable pages to cover @size from the
1619 * page level allocator and map them into contiguous kernel virtual space.
1621 void *vmalloc_32(unsigned long size)
1623 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1624 -1, __builtin_return_address(0));
1626 EXPORT_SYMBOL(vmalloc_32);
1629 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1630 * @size: allocation size
1632 * The resulting memory area is 32bit addressable and zeroed so it can be
1633 * mapped to userspace without leaking data.
1635 void *vmalloc_32_user(unsigned long size)
1637 struct vm_struct *area;
1638 void *ret;
1640 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1641 -1, __builtin_return_address(0));
1642 if (ret) {
1643 area = find_vm_area(ret);
1644 area->flags |= VM_USERMAP;
1646 return ret;
1648 EXPORT_SYMBOL(vmalloc_32_user);
1651 * small helper routine , copy contents to buf from addr.
1652 * If the page is not present, fill zero.
1655 static int aligned_vread(char *buf, char *addr, unsigned long count)
1657 struct page *p;
1658 int copied = 0;
1660 while (count) {
1661 unsigned long offset, length;
1663 offset = (unsigned long)addr & ~PAGE_MASK;
1664 length = PAGE_SIZE - offset;
1665 if (length > count)
1666 length = count;
1667 p = vmalloc_to_page(addr);
1669 * To do safe access to this _mapped_ area, we need
1670 * lock. But adding lock here means that we need to add
1671 * overhead of vmalloc()/vfree() calles for this _debug_
1672 * interface, rarely used. Instead of that, we'll use
1673 * kmap() and get small overhead in this access function.
1675 if (p) {
1677 * we can expect USER0 is not used (see vread/vwrite's
1678 * function description)
1680 void *map = kmap_atomic(p, KM_USER0);
1681 memcpy(buf, map + offset, length);
1682 kunmap_atomic(map, KM_USER0);
1683 } else
1684 memset(buf, 0, length);
1686 addr += length;
1687 buf += length;
1688 copied += length;
1689 count -= length;
1691 return copied;
1694 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1696 struct page *p;
1697 int copied = 0;
1699 while (count) {
1700 unsigned long offset, length;
1702 offset = (unsigned long)addr & ~PAGE_MASK;
1703 length = PAGE_SIZE - offset;
1704 if (length > count)
1705 length = count;
1706 p = vmalloc_to_page(addr);
1708 * To do safe access to this _mapped_ area, we need
1709 * lock. But adding lock here means that we need to add
1710 * overhead of vmalloc()/vfree() calles for this _debug_
1711 * interface, rarely used. Instead of that, we'll use
1712 * kmap() and get small overhead in this access function.
1714 if (p) {
1716 * we can expect USER0 is not used (see vread/vwrite's
1717 * function description)
1719 void *map = kmap_atomic(p, KM_USER0);
1720 memcpy(map + offset, buf, length);
1721 kunmap_atomic(map, KM_USER0);
1723 addr += length;
1724 buf += length;
1725 copied += length;
1726 count -= length;
1728 return copied;
1732 * vread() - read vmalloc area in a safe way.
1733 * @buf: buffer for reading data
1734 * @addr: vm address.
1735 * @count: number of bytes to be read.
1737 * Returns # of bytes which addr and buf should be increased.
1738 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1739 * includes any intersect with alive vmalloc area.
1741 * This function checks that addr is a valid vmalloc'ed area, and
1742 * copy data from that area to a given buffer. If the given memory range
1743 * of [addr...addr+count) includes some valid address, data is copied to
1744 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1745 * IOREMAP area is treated as memory hole and no copy is done.
1747 * If [addr...addr+count) doesn't includes any intersects with alive
1748 * vm_struct area, returns 0.
1749 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1750 * the caller should guarantee KM_USER0 is not used.
1752 * Note: In usual ops, vread() is never necessary because the caller
1753 * should know vmalloc() area is valid and can use memcpy().
1754 * This is for routines which have to access vmalloc area without
1755 * any informaion, as /dev/kmem.
1759 long vread(char *buf, char *addr, unsigned long count)
1761 struct vm_struct *tmp;
1762 char *vaddr, *buf_start = buf;
1763 unsigned long buflen = count;
1764 unsigned long n;
1766 /* Don't allow overflow */
1767 if ((unsigned long) addr + count < count)
1768 count = -(unsigned long) addr;
1770 read_lock(&vmlist_lock);
1771 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1772 vaddr = (char *) tmp->addr;
1773 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1774 continue;
1775 while (addr < vaddr) {
1776 if (count == 0)
1777 goto finished;
1778 *buf = '\0';
1779 buf++;
1780 addr++;
1781 count--;
1783 n = vaddr + tmp->size - PAGE_SIZE - addr;
1784 if (n > count)
1785 n = count;
1786 if (!(tmp->flags & VM_IOREMAP))
1787 aligned_vread(buf, addr, n);
1788 else /* IOREMAP area is treated as memory hole */
1789 memset(buf, 0, n);
1790 buf += n;
1791 addr += n;
1792 count -= n;
1794 finished:
1795 read_unlock(&vmlist_lock);
1797 if (buf == buf_start)
1798 return 0;
1799 /* zero-fill memory holes */
1800 if (buf != buf_start + buflen)
1801 memset(buf, 0, buflen - (buf - buf_start));
1803 return buflen;
1807 * vwrite() - write vmalloc area in a safe way.
1808 * @buf: buffer for source data
1809 * @addr: vm address.
1810 * @count: number of bytes to be read.
1812 * Returns # of bytes which addr and buf should be incresed.
1813 * (same number to @count).
1814 * If [addr...addr+count) doesn't includes any intersect with valid
1815 * vmalloc area, returns 0.
1817 * This function checks that addr is a valid vmalloc'ed area, and
1818 * copy data from a buffer to the given addr. If specified range of
1819 * [addr...addr+count) includes some valid address, data is copied from
1820 * proper area of @buf. If there are memory holes, no copy to hole.
1821 * IOREMAP area is treated as memory hole and no copy is done.
1823 * If [addr...addr+count) doesn't includes any intersects with alive
1824 * vm_struct area, returns 0.
1825 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1826 * the caller should guarantee KM_USER0 is not used.
1828 * Note: In usual ops, vwrite() is never necessary because the caller
1829 * should know vmalloc() area is valid and can use memcpy().
1830 * This is for routines which have to access vmalloc area without
1831 * any informaion, as /dev/kmem.
1833 * The caller should guarantee KM_USER1 is not used.
1836 long vwrite(char *buf, char *addr, unsigned long count)
1838 struct vm_struct *tmp;
1839 char *vaddr;
1840 unsigned long n, buflen;
1841 int copied = 0;
1843 /* Don't allow overflow */
1844 if ((unsigned long) addr + count < count)
1845 count = -(unsigned long) addr;
1846 buflen = count;
1848 read_lock(&vmlist_lock);
1849 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1850 vaddr = (char *) tmp->addr;
1851 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1852 continue;
1853 while (addr < vaddr) {
1854 if (count == 0)
1855 goto finished;
1856 buf++;
1857 addr++;
1858 count--;
1860 n = vaddr + tmp->size - PAGE_SIZE - addr;
1861 if (n > count)
1862 n = count;
1863 if (!(tmp->flags & VM_IOREMAP)) {
1864 aligned_vwrite(buf, addr, n);
1865 copied++;
1867 buf += n;
1868 addr += n;
1869 count -= n;
1871 finished:
1872 read_unlock(&vmlist_lock);
1873 if (!copied)
1874 return 0;
1875 return buflen;
1879 * remap_vmalloc_range - map vmalloc pages to userspace
1880 * @vma: vma to cover (map full range of vma)
1881 * @addr: vmalloc memory
1882 * @pgoff: number of pages into addr before first page to map
1884 * Returns: 0 for success, -Exxx on failure
1886 * This function checks that addr is a valid vmalloc'ed area, and
1887 * that it is big enough to cover the vma. Will return failure if
1888 * that criteria isn't met.
1890 * Similar to remap_pfn_range() (see mm/memory.c)
1892 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1893 unsigned long pgoff)
1895 struct vm_struct *area;
1896 unsigned long uaddr = vma->vm_start;
1897 unsigned long usize = vma->vm_end - vma->vm_start;
1899 if ((PAGE_SIZE-1) & (unsigned long)addr)
1900 return -EINVAL;
1902 area = find_vm_area(addr);
1903 if (!area)
1904 return -EINVAL;
1906 if (!(area->flags & VM_USERMAP))
1907 return -EINVAL;
1909 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1910 return -EINVAL;
1912 addr += pgoff << PAGE_SHIFT;
1913 do {
1914 struct page *page = vmalloc_to_page(addr);
1915 int ret;
1917 ret = vm_insert_page(vma, uaddr, page);
1918 if (ret)
1919 return ret;
1921 uaddr += PAGE_SIZE;
1922 addr += PAGE_SIZE;
1923 usize -= PAGE_SIZE;
1924 } while (usize > 0);
1926 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1927 vma->vm_flags |= VM_RESERVED;
1929 return 0;
1931 EXPORT_SYMBOL(remap_vmalloc_range);
1934 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1935 * have one.
1937 void __attribute__((weak)) vmalloc_sync_all(void)
1942 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1944 /* apply_to_page_range() does all the hard work. */
1945 return 0;
1949 * alloc_vm_area - allocate a range of kernel address space
1950 * @size: size of the area
1952 * Returns: NULL on failure, vm_struct on success
1954 * This function reserves a range of kernel address space, and
1955 * allocates pagetables to map that range. No actual mappings
1956 * are created. If the kernel address space is not shared
1957 * between processes, it syncs the pagetable across all
1958 * processes.
1960 struct vm_struct *alloc_vm_area(size_t size)
1962 struct vm_struct *area;
1964 area = get_vm_area_caller(size, VM_IOREMAP,
1965 __builtin_return_address(0));
1966 if (area == NULL)
1967 return NULL;
1970 * This ensures that page tables are constructed for this region
1971 * of kernel virtual address space and mapped into init_mm.
1973 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1974 area->size, f, NULL)) {
1975 free_vm_area(area);
1976 return NULL;
1979 /* Make sure the pagetables are constructed in process kernel
1980 mappings */
1981 vmalloc_sync_all();
1983 return area;
1985 EXPORT_SYMBOL_GPL(alloc_vm_area);
1987 void free_vm_area(struct vm_struct *area)
1989 struct vm_struct *ret;
1990 ret = remove_vm_area(area->addr);
1991 BUG_ON(ret != area);
1992 kfree(area);
1994 EXPORT_SYMBOL_GPL(free_vm_area);
1996 static struct vmap_area *node_to_va(struct rb_node *n)
1998 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2002 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2003 * @end: target address
2004 * @pnext: out arg for the next vmap_area
2005 * @pprev: out arg for the previous vmap_area
2007 * Returns: %true if either or both of next and prev are found,
2008 * %false if no vmap_area exists
2010 * Find vmap_areas end addresses of which enclose @end. ie. if not
2011 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2013 static bool pvm_find_next_prev(unsigned long end,
2014 struct vmap_area **pnext,
2015 struct vmap_area **pprev)
2017 struct rb_node *n = vmap_area_root.rb_node;
2018 struct vmap_area *va = NULL;
2020 while (n) {
2021 va = rb_entry(n, struct vmap_area, rb_node);
2022 if (end < va->va_end)
2023 n = n->rb_left;
2024 else if (end > va->va_end)
2025 n = n->rb_right;
2026 else
2027 break;
2030 if (!va)
2031 return false;
2033 if (va->va_end > end) {
2034 *pnext = va;
2035 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2036 } else {
2037 *pprev = va;
2038 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2040 return true;
2044 * pvm_determine_end - find the highest aligned address between two vmap_areas
2045 * @pnext: in/out arg for the next vmap_area
2046 * @pprev: in/out arg for the previous vmap_area
2047 * @align: alignment
2049 * Returns: determined end address
2051 * Find the highest aligned address between *@pnext and *@pprev below
2052 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2053 * down address is between the end addresses of the two vmap_areas.
2055 * Please note that the address returned by this function may fall
2056 * inside *@pnext vmap_area. The caller is responsible for checking
2057 * that.
2059 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2060 struct vmap_area **pprev,
2061 unsigned long align)
2063 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2064 unsigned long addr;
2066 if (*pnext)
2067 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2068 else
2069 addr = vmalloc_end;
2071 while (*pprev && (*pprev)->va_end > addr) {
2072 *pnext = *pprev;
2073 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2076 return addr;
2080 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2081 * @offsets: array containing offset of each area
2082 * @sizes: array containing size of each area
2083 * @nr_vms: the number of areas to allocate
2084 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2085 * @gfp_mask: allocation mask
2087 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2088 * vm_structs on success, %NULL on failure
2090 * Percpu allocator wants to use congruent vm areas so that it can
2091 * maintain the offsets among percpu areas. This function allocates
2092 * congruent vmalloc areas for it. These areas tend to be scattered
2093 * pretty far, distance between two areas easily going up to
2094 * gigabytes. To avoid interacting with regular vmallocs, these areas
2095 * are allocated from top.
2097 * Despite its complicated look, this allocator is rather simple. It
2098 * does everything top-down and scans areas from the end looking for
2099 * matching slot. While scanning, if any of the areas overlaps with
2100 * existing vmap_area, the base address is pulled down to fit the
2101 * area. Scanning is repeated till all the areas fit and then all
2102 * necessary data structres are inserted and the result is returned.
2104 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2105 const size_t *sizes, int nr_vms,
2106 size_t align, gfp_t gfp_mask)
2108 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2109 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2110 struct vmap_area **vas, *prev, *next;
2111 struct vm_struct **vms;
2112 int area, area2, last_area, term_area;
2113 unsigned long base, start, end, last_end;
2114 bool purged = false;
2116 gfp_mask &= GFP_RECLAIM_MASK;
2118 /* verify parameters and allocate data structures */
2119 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2120 for (last_area = 0, area = 0; area < nr_vms; area++) {
2121 start = offsets[area];
2122 end = start + sizes[area];
2124 /* is everything aligned properly? */
2125 BUG_ON(!IS_ALIGNED(offsets[area], align));
2126 BUG_ON(!IS_ALIGNED(sizes[area], align));
2128 /* detect the area with the highest address */
2129 if (start > offsets[last_area])
2130 last_area = area;
2132 for (area2 = 0; area2 < nr_vms; area2++) {
2133 unsigned long start2 = offsets[area2];
2134 unsigned long end2 = start2 + sizes[area2];
2136 if (area2 == area)
2137 continue;
2139 BUG_ON(start2 >= start && start2 < end);
2140 BUG_ON(end2 <= end && end2 > start);
2143 last_end = offsets[last_area] + sizes[last_area];
2145 if (vmalloc_end - vmalloc_start < last_end) {
2146 WARN_ON(true);
2147 return NULL;
2150 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2151 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2152 if (!vas || !vms)
2153 goto err_free;
2155 for (area = 0; area < nr_vms; area++) {
2156 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2157 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2158 if (!vas[area] || !vms[area])
2159 goto err_free;
2161 retry:
2162 spin_lock(&vmap_area_lock);
2164 /* start scanning - we scan from the top, begin with the last area */
2165 area = term_area = last_area;
2166 start = offsets[area];
2167 end = start + sizes[area];
2169 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2170 base = vmalloc_end - last_end;
2171 goto found;
2173 base = pvm_determine_end(&next, &prev, align) - end;
2175 while (true) {
2176 BUG_ON(next && next->va_end <= base + end);
2177 BUG_ON(prev && prev->va_end > base + end);
2180 * base might have underflowed, add last_end before
2181 * comparing.
2183 if (base + last_end < vmalloc_start + last_end) {
2184 spin_unlock(&vmap_area_lock);
2185 if (!purged) {
2186 purge_vmap_area_lazy();
2187 purged = true;
2188 goto retry;
2190 goto err_free;
2194 * If next overlaps, move base downwards so that it's
2195 * right below next and then recheck.
2197 if (next && next->va_start < base + end) {
2198 base = pvm_determine_end(&next, &prev, align) - end;
2199 term_area = area;
2200 continue;
2204 * If prev overlaps, shift down next and prev and move
2205 * base so that it's right below new next and then
2206 * recheck.
2208 if (prev && prev->va_end > base + start) {
2209 next = prev;
2210 prev = node_to_va(rb_prev(&next->rb_node));
2211 base = pvm_determine_end(&next, &prev, align) - end;
2212 term_area = area;
2213 continue;
2217 * This area fits, move on to the previous one. If
2218 * the previous one is the terminal one, we're done.
2220 area = (area + nr_vms - 1) % nr_vms;
2221 if (area == term_area)
2222 break;
2223 start = offsets[area];
2224 end = start + sizes[area];
2225 pvm_find_next_prev(base + end, &next, &prev);
2227 found:
2228 /* we've found a fitting base, insert all va's */
2229 for (area = 0; area < nr_vms; area++) {
2230 struct vmap_area *va = vas[area];
2232 va->va_start = base + offsets[area];
2233 va->va_end = va->va_start + sizes[area];
2234 __insert_vmap_area(va);
2237 vmap_area_pcpu_hole = base + offsets[last_area];
2239 spin_unlock(&vmap_area_lock);
2241 /* insert all vm's */
2242 for (area = 0; area < nr_vms; area++)
2243 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2244 pcpu_get_vm_areas);
2246 kfree(vas);
2247 return vms;
2249 err_free:
2250 for (area = 0; area < nr_vms; area++) {
2251 if (vas)
2252 kfree(vas[area]);
2253 if (vms)
2254 kfree(vms[area]);
2256 kfree(vas);
2257 kfree(vms);
2258 return NULL;
2262 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2263 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2264 * @nr_vms: the number of allocated areas
2266 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2268 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2270 int i;
2272 for (i = 0; i < nr_vms; i++)
2273 free_vm_area(vms[i]);
2274 kfree(vms);
2277 #ifdef CONFIG_PROC_FS
2278 static void *s_start(struct seq_file *m, loff_t *pos)
2280 loff_t n = *pos;
2281 struct vm_struct *v;
2283 read_lock(&vmlist_lock);
2284 v = vmlist;
2285 while (n > 0 && v) {
2286 n--;
2287 v = v->next;
2289 if (!n)
2290 return v;
2292 return NULL;
2296 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2298 struct vm_struct *v = p;
2300 ++*pos;
2301 return v->next;
2304 static void s_stop(struct seq_file *m, void *p)
2306 read_unlock(&vmlist_lock);
2309 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2311 if (NUMA_BUILD) {
2312 unsigned int nr, *counters = m->private;
2314 if (!counters)
2315 return;
2317 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2319 for (nr = 0; nr < v->nr_pages; nr++)
2320 counters[page_to_nid(v->pages[nr])]++;
2322 for_each_node_state(nr, N_HIGH_MEMORY)
2323 if (counters[nr])
2324 seq_printf(m, " N%u=%u", nr, counters[nr]);
2328 static int s_show(struct seq_file *m, void *p)
2330 struct vm_struct *v = p;
2332 seq_printf(m, "0x%p-0x%p %7ld",
2333 v->addr, v->addr + v->size, v->size);
2335 if (v->caller) {
2336 char buff[KSYM_SYMBOL_LEN];
2338 seq_putc(m, ' ');
2339 sprint_symbol(buff, (unsigned long)v->caller);
2340 seq_puts(m, buff);
2343 if (v->nr_pages)
2344 seq_printf(m, " pages=%d", v->nr_pages);
2346 if (v->phys_addr)
2347 seq_printf(m, " phys=%lx", v->phys_addr);
2349 if (v->flags & VM_IOREMAP)
2350 seq_printf(m, " ioremap");
2352 if (v->flags & VM_ALLOC)
2353 seq_printf(m, " vmalloc");
2355 if (v->flags & VM_MAP)
2356 seq_printf(m, " vmap");
2358 if (v->flags & VM_USERMAP)
2359 seq_printf(m, " user");
2361 if (v->flags & VM_VPAGES)
2362 seq_printf(m, " vpages");
2364 show_numa_info(m, v);
2365 seq_putc(m, '\n');
2366 return 0;
2369 static const struct seq_operations vmalloc_op = {
2370 .start = s_start,
2371 .next = s_next,
2372 .stop = s_stop,
2373 .show = s_show,
2376 static int vmalloc_open(struct inode *inode, struct file *file)
2378 unsigned int *ptr = NULL;
2379 int ret;
2381 if (NUMA_BUILD)
2382 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2383 ret = seq_open(file, &vmalloc_op);
2384 if (!ret) {
2385 struct seq_file *m = file->private_data;
2386 m->private = ptr;
2387 } else
2388 kfree(ptr);
2389 return ret;
2392 static const struct file_operations proc_vmalloc_operations = {
2393 .open = vmalloc_open,
2394 .read = seq_read,
2395 .llseek = seq_lseek,
2396 .release = seq_release_private,
2399 static int __init proc_vmalloc_init(void)
2401 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2402 return 0;
2404 module_init(proc_vmalloc_init);
2405 #endif