First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / arm / mm / ioremap.c
blob0ab75c60f7cfdf4745cc1f9c48d87db61cb93918
1 /*
2 * linux/arch/arm/mm/ioremap.c
4 * Re-map IO memory to kernel address space so that we can access it.
6 * (C) Copyright 1995 1996 Linus Torvalds
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
29 #include <asm/cputype.h>
30 #include <asm/cacheflush.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgalloc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/sizes.h>
36 #include <asm/mach/map.h>
37 #include "mm.h"
40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
41 * I/O regions in vm_struct->flags field.
43 #define VM_ARM_SECTION_MAPPING 0x80000000
45 static int remap_area_pte(pmd_t *pmd, unsigned long addr, unsigned long end,
46 unsigned long phys_addr, const struct mem_type *type)
48 pgprot_t prot = __pgprot(type->prot_pte);
49 pte_t *pte;
51 pte = pte_alloc_kernel(pmd, addr);
52 if (!pte)
53 return -ENOMEM;
55 do {
56 if (!pte_none(*pte))
57 goto bad;
59 set_pte_ext(pte, pfn_pte(phys_addr >> PAGE_SHIFT, prot), 0);
60 phys_addr += PAGE_SIZE;
61 } while (pte++, addr += PAGE_SIZE, addr != end);
62 return 0;
64 bad:
65 printk(KERN_CRIT "remap_area_pte: page already exists\n");
66 BUG();
69 static inline int remap_area_pmd(pgd_t *pgd, unsigned long addr,
70 unsigned long end, unsigned long phys_addr,
71 const struct mem_type *type)
73 unsigned long next;
74 pmd_t *pmd;
75 int ret = 0;
77 pmd = pmd_alloc(&init_mm, pgd, addr);
78 if (!pmd)
79 return -ENOMEM;
81 do {
82 next = pmd_addr_end(addr, end);
83 ret = remap_area_pte(pmd, addr, next, phys_addr, type);
84 if (ret)
85 return ret;
86 phys_addr += next - addr;
87 } while (pmd++, addr = next, addr != end);
88 return ret;
91 static int remap_area_pages(unsigned long start, unsigned long pfn,
92 size_t size, const struct mem_type *type)
94 unsigned long addr = start;
95 unsigned long next, end = start + size;
96 unsigned long phys_addr = __pfn_to_phys(pfn);
97 pgd_t *pgd;
98 int err = 0;
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
102 do {
103 next = pgd_addr_end(addr, end);
104 err = remap_area_pmd(pgd, addr, next, phys_addr, type);
105 if (err)
106 break;
107 phys_addr += next - addr;
108 } while (pgd++, addr = next, addr != end);
110 return err;
113 int ioremap_page(unsigned long virt, unsigned long phys,
114 const struct mem_type *mtype)
116 return remap_area_pages(virt, __phys_to_pfn(phys), PAGE_SIZE, mtype);
118 EXPORT_SYMBOL(ioremap_page);
120 void __check_kvm_seq(struct mm_struct *mm)
122 unsigned int seq;
124 do {
125 seq = init_mm.context.kvm_seq;
126 memcpy(pgd_offset(mm, VMALLOC_START),
127 pgd_offset_k(VMALLOC_START),
128 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
129 pgd_index(VMALLOC_START)));
130 mm->context.kvm_seq = seq;
131 } while (seq != init_mm.context.kvm_seq);
134 #ifndef CONFIG_SMP
136 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
137 * the other CPUs will not see this change until their next context switch.
138 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
139 * which requires the new ioremap'd region to be referenced, the CPU will
140 * reference the _old_ region.
142 * Note that get_vm_area() allocates a guard 4K page, so we need to mask
143 * the size back to 1MB aligned or we will overflow in the loop below.
145 static void unmap_area_sections(unsigned long virt, unsigned long size)
147 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
148 pgd_t *pgd;
150 flush_cache_vunmap(addr, end);
151 pgd = pgd_offset_k(addr);
152 do {
153 pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
155 pmd = *pmdp;
156 if (!pmd_none(pmd)) {
158 * Clear the PMD from the page table, and
159 * increment the kvm sequence so others
160 * notice this change.
162 * Note: this is still racy on SMP machines.
164 pmd_clear(pmdp);
165 init_mm.context.kvm_seq++;
168 * Free the page table, if there was one.
170 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
171 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
174 addr += PGDIR_SIZE;
175 pgd++;
176 } while (addr < end);
179 * Ensure that the active_mm is up to date - we want to
180 * catch any use-after-iounmap cases.
182 if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
183 __check_kvm_seq(current->active_mm);
185 flush_tlb_kernel_range(virt, end);
188 static int
189 remap_area_sections(unsigned long virt, unsigned long pfn,
190 size_t size, const struct mem_type *type)
192 unsigned long addr = virt, end = virt + size;
193 pgd_t *pgd;
196 * Remove and free any PTE-based mapping, and
197 * sync the current kernel mapping.
199 unmap_area_sections(virt, size);
201 pgd = pgd_offset_k(addr);
202 do {
203 pmd_t *pmd = pmd_offset(pgd, addr);
205 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
206 pfn += SZ_1M >> PAGE_SHIFT;
207 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
208 pfn += SZ_1M >> PAGE_SHIFT;
209 flush_pmd_entry(pmd);
211 addr += PGDIR_SIZE;
212 pgd++;
213 } while (addr < end);
215 return 0;
218 static int
219 remap_area_supersections(unsigned long virt, unsigned long pfn,
220 size_t size, const struct mem_type *type)
222 unsigned long addr = virt, end = virt + size;
223 pgd_t *pgd;
226 * Remove and free any PTE-based mapping, and
227 * sync the current kernel mapping.
229 unmap_area_sections(virt, size);
231 pgd = pgd_offset_k(virt);
232 do {
233 unsigned long super_pmd_val, i;
235 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
236 PMD_SECT_SUPER;
237 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
239 for (i = 0; i < 8; i++) {
240 pmd_t *pmd = pmd_offset(pgd, addr);
242 pmd[0] = __pmd(super_pmd_val);
243 pmd[1] = __pmd(super_pmd_val);
244 flush_pmd_entry(pmd);
246 addr += PGDIR_SIZE;
247 pgd++;
250 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
251 } while (addr < end);
253 return 0;
255 #endif
259 * Remap an arbitrary physical address space into the kernel virtual
260 * address space. Needed when the kernel wants to access high addresses
261 * directly.
263 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
264 * have to convert them into an offset in a page-aligned mapping, but the
265 * caller shouldn't need to know that small detail.
267 * 'flags' are the extra L_PTE_ flags that you want to specify for this
268 * mapping. See <asm/pgtable.h> for more information.
270 void __iomem *
271 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
272 unsigned int mtype)
274 const struct mem_type *type;
275 int err;
276 unsigned long addr;
277 struct vm_struct * area;
280 * High mappings must be supersection aligned
282 if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
283 return NULL;
285 type = get_mem_type(mtype);
286 if (!type)
287 return NULL;
290 * Page align the mapping size, taking account of any offset.
292 size = PAGE_ALIGN(offset + size);
294 area = get_vm_area(size, VM_IOREMAP);
295 if (!area)
296 return NULL;
297 addr = (unsigned long)area->addr;
299 #ifndef CONFIG_SMP
300 if (DOMAIN_IO == 0 &&
301 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
302 cpu_is_xsc3()) && pfn >= 0x100000 &&
303 !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
304 area->flags |= VM_ARM_SECTION_MAPPING;
305 err = remap_area_supersections(addr, pfn, size, type);
306 } else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
307 area->flags |= VM_ARM_SECTION_MAPPING;
308 err = remap_area_sections(addr, pfn, size, type);
309 } else
310 #endif
311 err = remap_area_pages(addr, pfn, size, type);
313 if (err) {
314 vunmap((void *)addr);
315 return NULL;
318 flush_cache_vmap(addr, addr + size);
319 return (void __iomem *) (offset + addr);
321 EXPORT_SYMBOL(__arm_ioremap_pfn);
323 void __iomem *
324 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
326 unsigned long last_addr;
327 unsigned long offset = phys_addr & ~PAGE_MASK;
328 unsigned long pfn = __phys_to_pfn(phys_addr);
331 * Don't allow wraparound or zero size
333 last_addr = phys_addr + size - 1;
334 if (!size || last_addr < phys_addr)
335 return NULL;
337 return __arm_ioremap_pfn(pfn, offset, size, mtype);
339 EXPORT_SYMBOL(__arm_ioremap);
341 void __iounmap(volatile void __iomem *io_addr)
343 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
344 #ifndef CONFIG_SMP
345 struct vm_struct **p, *tmp;
348 * If this is a section based mapping we need to handle it
349 * specially as the VM subsystem does not know how to handle
350 * such a beast. We need the lock here b/c we need to clear
351 * all the mappings before the area can be reclaimed
352 * by someone else.
354 write_lock(&vmlist_lock);
355 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
356 if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
357 if (tmp->flags & VM_ARM_SECTION_MAPPING) {
358 unmap_area_sections((unsigned long)tmp->addr,
359 tmp->size);
361 break;
364 write_unlock(&vmlist_lock);
365 #endif
367 vunmap(addr);
369 EXPORT_SYMBOL(__iounmap);