First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / cris / arch-v10 / drivers / axisflashmap.c
blobb2079703af7e381e508d6915d563ab89d8c5ee60
1 /*
2 * Physical mapping layer for MTD using the Axis partitiontable format
4 * Copyright (c) 2001, 2002 Axis Communications AB
6 * This file is under the GPL.
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
21 #include <linux/mtd/concat.h>
22 #include <linux/mtd/map.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/mtdram.h>
25 #include <linux/mtd/partitions.h>
27 #include <asm/axisflashmap.h>
28 #include <asm/mmu.h>
29 #include <arch/sv_addr_ag.h>
31 #ifdef CONFIG_CRIS_LOW_MAP
32 #define FLASH_UNCACHED_ADDR KSEG_8
33 #define FLASH_CACHED_ADDR KSEG_5
34 #else
35 #define FLASH_UNCACHED_ADDR KSEG_E
36 #define FLASH_CACHED_ADDR KSEG_F
37 #endif
39 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
40 #define flash_data __u8
41 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
42 #define flash_data __u16
43 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
44 #define flash_data __u32
45 #endif
47 /* From head.S */
48 extern unsigned long romfs_start, romfs_length, romfs_in_flash;
50 /* The master mtd for the entire flash. */
51 struct mtd_info* axisflash_mtd = NULL;
53 /* Map driver functions. */
55 static map_word flash_read(struct map_info *map, unsigned long ofs)
57 map_word tmp;
58 tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
59 return tmp;
62 static void flash_copy_from(struct map_info *map, void *to,
63 unsigned long from, ssize_t len)
65 memcpy(to, (void *)(map->map_priv_1 + from), len);
68 static void flash_write(struct map_info *map, map_word d, unsigned long adr)
70 *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
74 * The map for chip select e0.
76 * We run into tricky coherence situations if we mix cached with uncached
77 * accesses to we only use the uncached version here.
79 * The size field is the total size where the flash chips may be mapped on the
80 * chip select. MTD probes should find all devices there and it does not matter
81 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
82 * probes will ignore them.
84 * The start address in map_priv_1 is in virtual memory so we cannot use
85 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
86 * address of cse0.
88 static struct map_info map_cse0 = {
89 .name = "cse0",
90 .size = MEM_CSE0_SIZE,
91 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
92 .read = flash_read,
93 .copy_from = flash_copy_from,
94 .write = flash_write,
95 .map_priv_1 = FLASH_UNCACHED_ADDR
99 * The map for chip select e1.
101 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
102 * address, but there isn't.
104 static struct map_info map_cse1 = {
105 .name = "cse1",
106 .size = MEM_CSE1_SIZE,
107 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
108 .read = flash_read,
109 .copy_from = flash_copy_from,
110 .write = flash_write,
111 .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
114 /* If no partition-table was found, we use this default-set. */
115 #define MAX_PARTITIONS 7
116 #define NUM_DEFAULT_PARTITIONS 3
119 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
120 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
121 * to use JFFS.
123 static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
125 .name = "boot firmware",
126 .size = CONFIG_ETRAX_PTABLE_SECTOR,
127 .offset = 0
130 .name = "kernel",
131 .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
132 .offset = CONFIG_ETRAX_PTABLE_SECTOR
135 .name = "filesystem",
136 .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
137 .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
141 /* Initialize the ones normally used. */
142 static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
144 .name = "part0",
145 .size = CONFIG_ETRAX_PTABLE_SECTOR,
146 .offset = 0
149 .name = "part1",
150 .size = 0,
151 .offset = 0
154 .name = "part2",
155 .size = 0,
156 .offset = 0
159 .name = "part3",
160 .size = 0,
161 .offset = 0
164 .name = "part4",
165 .size = 0,
166 .offset = 0
169 .name = "part5",
170 .size = 0,
171 .offset = 0
174 .name = "part6",
175 .size = 0,
176 .offset = 0
180 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
181 /* Main flash device */
182 static struct mtd_partition main_partition = {
183 .name = "main",
184 .size = 0,
185 .offset = 0
187 #endif
190 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
191 * chips in that order (because the amd_flash-driver is faster).
193 static struct mtd_info *probe_cs(struct map_info *map_cs)
195 struct mtd_info *mtd_cs = NULL;
197 printk(KERN_INFO
198 "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
199 map_cs->name, map_cs->size, map_cs->map_priv_1);
201 #ifdef CONFIG_MTD_CFI
202 mtd_cs = do_map_probe("cfi_probe", map_cs);
203 #endif
204 #ifdef CONFIG_MTD_JEDECPROBE
205 if (!mtd_cs)
206 mtd_cs = do_map_probe("jedec_probe", map_cs);
207 #endif
209 return mtd_cs;
213 * Probe each chip select individually for flash chips. If there are chips on
214 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
215 * so that MTD partitions can cross chip boundries.
217 * The only known restriction to how you can mount your chips is that each
218 * chip select must hold similar flash chips. But you need external hardware
219 * to do that anyway and you can put totally different chips on cse0 and cse1
220 * so it isn't really much of a restriction.
222 static struct mtd_info *flash_probe(void)
224 struct mtd_info *mtd_cse0;
225 struct mtd_info *mtd_cse1;
226 struct mtd_info *mtd_cse;
228 mtd_cse0 = probe_cs(&map_cse0);
229 mtd_cse1 = probe_cs(&map_cse1);
231 if (!mtd_cse0 && !mtd_cse1) {
232 /* No chip found. */
233 return NULL;
236 if (mtd_cse0 && mtd_cse1) {
237 #ifdef CONFIG_MTD_CONCAT
238 struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
240 /* Since the concatenation layer adds a small overhead we
241 * could try to figure out if the chips in cse0 and cse1 are
242 * identical and reprobe the whole cse0+cse1 window. But since
243 * flash chips are slow, the overhead is relatively small.
244 * So we use the MTD concatenation layer instead of further
245 * complicating the probing procedure.
247 mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
248 "cse0+cse1");
249 #else
250 printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
251 "(mis)configuration!\n", map_cse0.name, map_cse1.name);
252 mtd_cse = NULL;
253 #endif
254 if (!mtd_cse) {
255 printk(KERN_ERR "%s and %s: Concatenation failed!\n",
256 map_cse0.name, map_cse1.name);
258 /* The best we can do now is to only use what we found
259 * at cse0.
261 mtd_cse = mtd_cse0;
262 map_destroy(mtd_cse1);
264 } else {
265 mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
268 return mtd_cse;
272 * Probe the flash chip(s) and, if it succeeds, read the partition-table
273 * and register the partitions with MTD.
275 static int __init init_axis_flash(void)
277 struct mtd_info *mymtd;
278 int err = 0;
279 int pidx = 0;
280 struct partitiontable_head *ptable_head = NULL;
281 struct partitiontable_entry *ptable;
282 int use_default_ptable = 1; /* Until proven otherwise. */
283 const char pmsg[] = " /dev/flash%d at 0x%08x, size 0x%08x\n";
285 if (!(mymtd = flash_probe())) {
286 /* There's no reason to use this module if no flash chip can
287 * be identified. Make sure that's understood.
289 printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
290 } else {
291 printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
292 mymtd->name, mymtd->size);
293 axisflash_mtd = mymtd;
296 if (mymtd) {
297 mymtd->owner = THIS_MODULE;
298 ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
299 CONFIG_ETRAX_PTABLE_SECTOR +
300 PARTITION_TABLE_OFFSET);
302 pidx++; /* First partition is always set to the default. */
304 if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
305 && (ptable_head->size <
306 (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
307 PARTITIONTABLE_END_MARKER_SIZE))
308 && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
309 ptable_head->size -
310 PARTITIONTABLE_END_MARKER_SIZE)
311 == PARTITIONTABLE_END_MARKER)) {
312 /* Looks like a start, sane length and end of a
313 * partition table, lets check csum etc.
315 int ptable_ok = 0;
316 struct partitiontable_entry *max_addr =
317 (struct partitiontable_entry *)
318 ((unsigned long)ptable_head + sizeof(*ptable_head) +
319 ptable_head->size);
320 unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
321 unsigned char *p;
322 unsigned long csum = 0;
324 ptable = (struct partitiontable_entry *)
325 ((unsigned long)ptable_head + sizeof(*ptable_head));
327 /* Lets be PARANOID, and check the checksum. */
328 p = (unsigned char*) ptable;
330 while (p <= (unsigned char*)max_addr) {
331 csum += *p++;
332 csum += *p++;
333 csum += *p++;
334 csum += *p++;
336 ptable_ok = (csum == ptable_head->checksum);
338 /* Read the entries and use/show the info. */
339 printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
340 (ptable_ok ? " valid" : "n invalid"), ptable_head,
341 max_addr);
343 /* We have found a working bootblock. Now read the
344 * partition table. Scan the table. It ends when
345 * there is 0xffffffff, that is, empty flash.
347 while (ptable_ok
348 && ptable->offset != 0xffffffff
349 && ptable < max_addr
350 && pidx < MAX_PARTITIONS) {
352 axis_partitions[pidx].offset = offset + ptable->offset;
353 axis_partitions[pidx].size = ptable->size;
355 printk(pmsg, pidx, axis_partitions[pidx].offset,
356 axis_partitions[pidx].size);
357 pidx++;
358 ptable++;
360 use_default_ptable = !ptable_ok;
363 if (romfs_in_flash) {
364 /* Add an overlapping device for the root partition (romfs). */
366 axis_partitions[pidx].name = "romfs";
367 axis_partitions[pidx].size = romfs_length;
368 axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
369 axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
371 printk(KERN_INFO
372 " Adding readonly flash partition for romfs image:\n");
373 printk(pmsg, pidx, axis_partitions[pidx].offset,
374 axis_partitions[pidx].size);
375 pidx++;
378 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
379 if (mymtd) {
380 main_partition.size = mymtd->size;
381 err = add_mtd_partitions(mymtd, &main_partition, 1);
382 if (err)
383 panic("axisflashmap: Could not initialize "
384 "partition for whole main mtd device!\n");
386 #endif
388 if (mymtd) {
389 if (use_default_ptable) {
390 printk(KERN_INFO " Using default partition table.\n");
391 err = add_mtd_partitions(mymtd, axis_default_partitions,
392 NUM_DEFAULT_PARTITIONS);
393 } else {
394 err = add_mtd_partitions(mymtd, axis_partitions, pidx);
397 if (err)
398 panic("axisflashmap could not add MTD partitions!\n");
401 if (!romfs_in_flash) {
402 /* Create an RAM device for the root partition (romfs). */
404 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
405 /* No use trying to boot this kernel from RAM. Panic! */
406 printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
407 "device due to kernel (mis)configuration!\n");
408 panic("This kernel cannot boot from RAM!\n");
409 #else
410 struct mtd_info *mtd_ram;
412 mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
413 if (!mtd_ram)
414 panic("axisflashmap couldn't allocate memory for "
415 "mtd_info!\n");
417 printk(KERN_INFO " Adding RAM partition for romfs image:\n");
418 printk(pmsg, pidx, (unsigned)romfs_start,
419 (unsigned)romfs_length);
421 err = mtdram_init_device(mtd_ram,
422 (void *)romfs_start,
423 romfs_length,
424 "romfs");
425 if (err)
426 panic("axisflashmap could not initialize MTD RAM "
427 "device!\n");
428 #endif
430 return err;
433 /* This adds the above to the kernels init-call chain. */
434 module_init(init_axis_flash);
436 EXPORT_SYMBOL(axisflash_mtd);