First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / cris / arch-v32 / kernel / time.c
blobb1920d8de403acbcdac0c5ab0a3248acfd93748f
1 /*
2 * linux/arch/cris/arch-v32/kernel/time.c
4 * Copyright (C) 2003-2007 Axis Communications AB
6 */
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/jiffies.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
19 #include <asm/io.h>
20 #include <asm/delay.h>
21 #include <asm/rtc.h>
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
25 #include <hwregs/reg_map.h>
26 #include <hwregs/reg_rdwr.h>
27 #include <hwregs/timer_defs.h>
28 #include <hwregs/intr_vect_defs.h>
29 #ifdef CONFIG_CRIS_MACH_ARTPEC3
30 #include <hwregs/clkgen_defs.h>
31 #endif
33 /* Watchdog defines */
34 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
35 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
36 /* Number of 763 counts before watchdog bites */
37 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
39 unsigned long timer_regs[NR_CPUS] =
41 regi_timer0,
42 #ifdef CONFIG_SMP
43 regi_timer2
44 #endif
47 extern void update_xtime_from_cmos(void);
48 extern int set_rtc_mmss(unsigned long nowtime);
49 extern int have_rtc;
51 #ifdef CONFIG_CPU_FREQ
52 static int
53 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
54 void *data);
56 static struct notifier_block cris_time_freq_notifier_block = {
57 .notifier_call = cris_time_freq_notifier,
59 #endif
61 unsigned long get_ns_in_jiffie(void)
63 reg_timer_r_tmr0_data data;
64 unsigned long ns;
66 data = REG_RD(timer, regi_timer0, r_tmr0_data);
67 ns = (TIMER0_DIV - data) * 10;
68 return ns;
71 unsigned long do_slow_gettimeoffset(void)
73 unsigned long count;
74 unsigned long usec_count = 0;
76 /* For the first call after boot */
77 static unsigned long count_p = TIMER0_DIV;
78 static unsigned long jiffies_p = 0;
80 /* Cache volatile jiffies temporarily; we have IRQs turned off. */
81 unsigned long jiffies_t;
83 /* The timer interrupt comes from Etrax timer 0. In order to get
84 * better precision, we check the current value. It might have
85 * underflowed already though. */
86 count = REG_RD(timer, regi_timer0, r_tmr0_data);
87 jiffies_t = jiffies;
89 /* Avoiding timer inconsistencies (they are rare, but they happen)
90 * There is one problem that must be avoided here:
91 * 1. the timer counter underflows
93 if( jiffies_t == jiffies_p ) {
94 if( count > count_p ) {
95 /* Timer wrapped, use new count and prescale.
96 * Increase the time corresponding to one jiffy.
98 usec_count = 1000000/HZ;
100 } else
101 jiffies_p = jiffies_t;
102 count_p = count;
103 /* Convert timer value to usec */
104 /* 100 MHz timer, divide by 100 to get usec */
105 usec_count += (TIMER0_DIV - count) / 100;
106 return usec_count;
109 /* From timer MDS describing the hardware watchdog:
110 * 4.3.1 Watchdog Operation
111 * The watchdog timer is an 8-bit timer with a configurable start value.
112 * Once started the watchdog counts downwards with a frequency of 763 Hz
113 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
114 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
115 * chip.
117 /* This gives us 1.3 ms to do something useful when the NMI comes */
119 /* Right now, starting the watchdog is the same as resetting it */
120 #define start_watchdog reset_watchdog
122 #if defined(CONFIG_ETRAX_WATCHDOG)
123 static short int watchdog_key = 42; /* arbitrary 7 bit number */
124 #endif
126 /* Number of pages to consider "out of memory". It is normal that the memory
127 * is used though, so set this really low. */
128 #define WATCHDOG_MIN_FREE_PAGES 8
130 void
131 reset_watchdog(void)
133 #if defined(CONFIG_ETRAX_WATCHDOG)
134 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
136 /* Only keep watchdog happy as long as we have memory left! */
137 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
138 /* Reset the watchdog with the inverse of the old key */
139 /* Invert key, which is 7 bits */
140 watchdog_key ^= ETRAX_WD_KEY_MASK;
141 wd_ctrl.cnt = ETRAX_WD_CNT;
142 wd_ctrl.cmd = regk_timer_start;
143 wd_ctrl.key = watchdog_key;
144 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
146 #endif
149 /* stop the watchdog - we still need the correct key */
151 void
152 stop_watchdog(void)
154 #if defined(CONFIG_ETRAX_WATCHDOG)
155 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
156 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
157 wd_ctrl.cnt = ETRAX_WD_CNT;
158 wd_ctrl.cmd = regk_timer_stop;
159 wd_ctrl.key = watchdog_key;
160 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
161 #endif
164 extern void show_registers(struct pt_regs *regs);
166 void
167 handle_watchdog_bite(struct pt_regs* regs)
169 #if defined(CONFIG_ETRAX_WATCHDOG)
170 extern int cause_of_death;
172 oops_in_progress = 1;
173 printk(KERN_WARNING "Watchdog bite\n");
175 /* Check if forced restart or unexpected watchdog */
176 if (cause_of_death == 0xbedead) {
177 #ifdef CONFIG_CRIS_MACH_ARTPEC3
178 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
179 * us to go to lower frequency for the reset to be reliable
181 reg_clkgen_rw_clk_ctrl ctrl =
182 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
183 ctrl.pll = 0;
184 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
185 #endif
186 while(1);
189 /* Unexpected watchdog, stop the watchdog and dump registers. */
190 stop_watchdog();
191 printk(KERN_WARNING "Oops: bitten by watchdog\n");
192 show_registers(regs);
193 oops_in_progress = 0;
194 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
195 reset_watchdog();
196 #endif
197 while(1) /* nothing */;
198 #endif
201 /* Last time the cmos clock got updated. */
202 static long last_rtc_update = 0;
205 * timer_interrupt() needs to keep up the real-time clock,
206 * as well as call the "do_timer()" routine every clocktick.
208 extern void cris_do_profile(struct pt_regs *regs);
210 static inline irqreturn_t
211 timer_interrupt(int irq, void *dev_id)
213 struct pt_regs *regs = get_irq_regs();
214 int cpu = smp_processor_id();
215 reg_timer_r_masked_intr masked_intr;
216 reg_timer_rw_ack_intr ack_intr = { 0 };
218 /* Check if the timer interrupt is for us (a tmr0 int) */
219 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
220 if (!masked_intr.tmr0)
221 return IRQ_NONE;
223 /* Acknowledge the timer irq. */
224 ack_intr.tmr0 = 1;
225 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
227 /* Reset watchdog otherwise it resets us! */
228 reset_watchdog();
230 /* Update statistics. */
231 update_process_times(user_mode(regs));
233 cris_do_profile(regs); /* Save profiling information */
235 /* The master CPU is responsible for the time keeping. */
236 if (cpu != 0)
237 return IRQ_HANDLED;
239 /* Call the real timer interrupt handler */
240 do_timer(1);
243 * If we have an externally synchronized Linux clock, then update
244 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
245 * called as close as possible to 500 ms before the new second starts.
247 * The division here is not time critical since it will run once in
248 * 11 minutes
250 if ((time_status & STA_UNSYNC) == 0 &&
251 xtime.tv_sec > last_rtc_update + 660 &&
252 (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
253 (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
254 if (set_rtc_mmss(xtime.tv_sec) == 0)
255 last_rtc_update = xtime.tv_sec;
256 else
257 /* Do it again in 60 s */
258 last_rtc_update = xtime.tv_sec - 600;
260 return IRQ_HANDLED;
263 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
264 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
266 static struct irqaction irq_timer = {
267 .handler = timer_interrupt,
268 .flags = IRQF_SHARED | IRQF_DISABLED,
269 .name = "timer"
272 void __init
273 cris_timer_init(void)
275 int cpu = smp_processor_id();
276 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
277 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
278 reg_timer_rw_intr_mask timer_intr_mask;
280 /* Setup the etrax timers.
281 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
282 * We use timer0, so timer1 is free.
283 * The trig timer is used by the fasttimer API if enabled.
286 tmr0_ctrl.op = regk_timer_ld;
287 tmr0_ctrl.freq = regk_timer_f100;
288 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
289 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
290 tmr0_ctrl.op = regk_timer_run;
291 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
293 /* Enable the timer irq. */
294 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
295 timer_intr_mask.tmr0 = 1;
296 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
299 void __init
300 time_init(void)
302 reg_intr_vect_rw_mask intr_mask;
304 /* Probe for the RTC and read it if it exists.
305 * Before the RTC can be probed the loops_per_usec variable needs
306 * to be initialized to make usleep work. A better value for
307 * loops_per_usec is calculated by the kernel later once the
308 * clock has started.
310 loops_per_usec = 50;
312 if(RTC_INIT() < 0) {
313 /* No RTC, start at 1980 */
314 xtime.tv_sec = 0;
315 xtime.tv_nsec = 0;
316 have_rtc = 0;
317 } else {
318 /* Get the current time */
319 have_rtc = 1;
320 update_xtime_from_cmos();
324 * Initialize wall_to_monotonic such that adding it to
325 * xtime will yield zero, the tv_nsec field must be normalized
326 * (i.e., 0 <= nsec < NSEC_PER_SEC).
328 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
330 /* Start CPU local timer. */
331 cris_timer_init();
333 /* Enable the timer irq in global config. */
334 intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
335 intr_mask.timer0 = 1;
336 REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
338 /* Now actually register the timer irq handler that calls
339 * timer_interrupt(). */
340 setup_irq(TIMER0_INTR_VECT, &irq_timer);
342 /* Enable watchdog if we should use one. */
344 #if defined(CONFIG_ETRAX_WATCHDOG)
345 printk(KERN_INFO "Enabling watchdog...\n");
346 start_watchdog();
348 /* If we use the hardware watchdog, we want to trap it as an NMI
349 * and dump registers before it resets us. For this to happen, we
350 * must set the "m" NMI enable flag (which once set, is unset only
351 * when an NMI is taken). */
353 unsigned long flags;
354 local_save_flags(flags);
355 flags |= (1<<30); /* NMI M flag is at bit 30 */
356 local_irq_restore(flags);
358 #endif
360 #ifdef CONFIG_CPU_FREQ
361 cpufreq_register_notifier(&cris_time_freq_notifier_block,
362 CPUFREQ_TRANSITION_NOTIFIER);
363 #endif
366 #ifdef CONFIG_CPU_FREQ
367 static int
368 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
369 void *data)
371 struct cpufreq_freqs *freqs = data;
372 if (val == CPUFREQ_POSTCHANGE) {
373 reg_timer_r_tmr0_data data;
374 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
375 do {
376 data = REG_RD(timer, timer_regs[freqs->cpu],
377 r_tmr0_data);
378 } while (data > 20);
379 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
381 return 0;
383 #endif