First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / ia64 / pci / pci.c
blob7de76dd352fe4e6350ee0a8bf6d366fe05c66f35
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
24 #include <asm/machvec.h>
25 #include <asm/page.h>
26 #include <asm/system.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 /* SAL 3.2 adds support for extended config space. */
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
50 u64 addr, data = 0;
51 int mode, result;
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
63 result = ia64_sal_pci_config_read(addr, mode, len, &data);
64 if (result != 0)
65 return -EINVAL;
67 *value = (u32) data;
68 return 0;
71 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
72 int reg, int len, u32 value)
74 u64 addr;
75 int mode, result;
77 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
78 return -EINVAL;
80 if ((seg | reg) <= 255) {
81 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
82 mode = 0;
83 } else {
84 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
85 mode = 1;
87 result = ia64_sal_pci_config_write(addr, mode, len, value);
88 if (result != 0)
89 return -EINVAL;
90 return 0;
93 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
94 int size, u32 *value)
96 return raw_pci_read(pci_domain_nr(bus), bus->number,
97 devfn, where, size, value);
100 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
101 int size, u32 value)
103 return raw_pci_write(pci_domain_nr(bus), bus->number,
104 devfn, where, size, value);
107 struct pci_ops pci_root_ops = {
108 .read = pci_read,
109 .write = pci_write,
112 /* Called by ACPI when it finds a new root bus. */
114 static struct pci_controller * __devinit
115 alloc_pci_controller (int seg)
117 struct pci_controller *controller;
119 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
120 if (!controller)
121 return NULL;
123 controller->segment = seg;
124 controller->node = -1;
125 return controller;
128 struct pci_root_info {
129 struct pci_controller *controller;
130 char *name;
133 static unsigned int
134 new_space (u64 phys_base, int sparse)
136 u64 mmio_base;
137 int i;
139 if (phys_base == 0)
140 return 0; /* legacy I/O port space */
142 mmio_base = (u64) ioremap(phys_base, 0);
143 for (i = 0; i < num_io_spaces; i++)
144 if (io_space[i].mmio_base == mmio_base &&
145 io_space[i].sparse == sparse)
146 return i;
148 if (num_io_spaces == MAX_IO_SPACES) {
149 printk(KERN_ERR "PCI: Too many IO port spaces "
150 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
151 return ~0;
154 i = num_io_spaces++;
155 io_space[i].mmio_base = mmio_base;
156 io_space[i].sparse = sparse;
158 return i;
161 static u64 __devinit
162 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
164 struct resource *resource;
165 char *name;
166 unsigned long base, min, max, base_port;
167 unsigned int sparse = 0, space_nr, len;
169 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
170 if (!resource) {
171 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
172 info->name);
173 goto out;
176 len = strlen(info->name) + 32;
177 name = kzalloc(len, GFP_KERNEL);
178 if (!name) {
179 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
180 info->name);
181 goto free_resource;
184 min = addr->minimum;
185 max = min + addr->address_length - 1;
186 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
187 sparse = 1;
189 space_nr = new_space(addr->translation_offset, sparse);
190 if (space_nr == ~0)
191 goto free_name;
193 base = __pa(io_space[space_nr].mmio_base);
194 base_port = IO_SPACE_BASE(space_nr);
195 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
196 base_port + min, base_port + max);
199 * The SDM guarantees the legacy 0-64K space is sparse, but if the
200 * mapping is done by the processor (not the bridge), ACPI may not
201 * mark it as sparse.
203 if (space_nr == 0)
204 sparse = 1;
206 resource->name = name;
207 resource->flags = IORESOURCE_MEM;
208 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
209 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
210 insert_resource(&iomem_resource, resource);
212 return base_port;
214 free_name:
215 kfree(name);
216 free_resource:
217 kfree(resource);
218 out:
219 return ~0;
222 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
223 struct acpi_resource_address64 *addr)
225 acpi_status status;
228 * We're only interested in _CRS descriptors that are
229 * - address space descriptors for memory or I/O space
230 * - non-zero size
231 * - producers, i.e., the address space is routed downstream,
232 * not consumed by the bridge itself
234 status = acpi_resource_to_address64(resource, addr);
235 if (ACPI_SUCCESS(status) &&
236 (addr->resource_type == ACPI_MEMORY_RANGE ||
237 addr->resource_type == ACPI_IO_RANGE) &&
238 addr->address_length &&
239 addr->producer_consumer == ACPI_PRODUCER)
240 return AE_OK;
242 return AE_ERROR;
245 static acpi_status __devinit
246 count_window (struct acpi_resource *resource, void *data)
248 unsigned int *windows = (unsigned int *) data;
249 struct acpi_resource_address64 addr;
250 acpi_status status;
252 status = resource_to_window(resource, &addr);
253 if (ACPI_SUCCESS(status))
254 (*windows)++;
256 return AE_OK;
259 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
261 struct pci_root_info *info = data;
262 struct pci_window *window;
263 struct acpi_resource_address64 addr;
264 acpi_status status;
265 unsigned long flags, offset = 0;
266 struct resource *root;
268 /* Return AE_OK for non-window resources to keep scanning for more */
269 status = resource_to_window(res, &addr);
270 if (!ACPI_SUCCESS(status))
271 return AE_OK;
273 if (addr.resource_type == ACPI_MEMORY_RANGE) {
274 flags = IORESOURCE_MEM;
275 root = &iomem_resource;
276 offset = addr.translation_offset;
277 } else if (addr.resource_type == ACPI_IO_RANGE) {
278 flags = IORESOURCE_IO;
279 root = &ioport_resource;
280 offset = add_io_space(info, &addr);
281 if (offset == ~0)
282 return AE_OK;
283 } else
284 return AE_OK;
286 window = &info->controller->window[info->controller->windows++];
287 window->resource.name = info->name;
288 window->resource.flags = flags;
289 window->resource.start = addr.minimum + offset;
290 window->resource.end = window->resource.start + addr.address_length - 1;
291 window->resource.child = NULL;
292 window->offset = offset;
294 if (insert_resource(root, &window->resource)) {
295 printk(KERN_ERR "alloc 0x%llx-0x%llx from %s for %s failed\n",
296 window->resource.start, window->resource.end,
297 root->name, info->name);
300 return AE_OK;
303 static void __devinit
304 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
306 int i, j;
308 j = 0;
309 for (i = 0; i < ctrl->windows; i++) {
310 struct resource *res = &ctrl->window[i].resource;
311 /* HP's firmware has a hack to work around a Windows bug.
312 * Ignore these tiny memory ranges */
313 if ((res->flags & IORESOURCE_MEM) &&
314 (res->end - res->start < 16))
315 continue;
316 if (j >= PCI_BUS_NUM_RESOURCES) {
317 printk("Ignoring range [%#llx-%#llx] (%lx)\n",
318 res->start, res->end, res->flags);
319 continue;
321 bus->resource[j++] = res;
325 struct pci_bus * __devinit
326 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
328 struct pci_controller *controller;
329 unsigned int windows = 0;
330 struct pci_bus *pbus;
331 char *name;
332 int pxm;
334 controller = alloc_pci_controller(domain);
335 if (!controller)
336 goto out1;
338 controller->acpi_handle = device->handle;
340 pxm = acpi_get_pxm(controller->acpi_handle);
341 #ifdef CONFIG_NUMA
342 if (pxm >= 0)
343 controller->node = pxm_to_node(pxm);
344 #endif
346 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
347 &windows);
348 if (windows) {
349 struct pci_root_info info;
351 controller->window =
352 kmalloc_node(sizeof(*controller->window) * windows,
353 GFP_KERNEL, controller->node);
354 if (!controller->window)
355 goto out2;
357 name = kmalloc(16, GFP_KERNEL);
358 if (!name)
359 goto out3;
361 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
362 info.controller = controller;
363 info.name = name;
364 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
365 add_window, &info);
368 * See arch/x86/pci/acpi.c.
369 * The desired pci bus might already be scanned in a quirk. We
370 * should handle the case here, but it appears that IA64 hasn't
371 * such quirk. So we just ignore the case now.
373 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
375 return pbus;
377 out3:
378 kfree(controller->window);
379 out2:
380 kfree(controller);
381 out1:
382 return NULL;
385 void pcibios_resource_to_bus(struct pci_dev *dev,
386 struct pci_bus_region *region, struct resource *res)
388 struct pci_controller *controller = PCI_CONTROLLER(dev);
389 unsigned long offset = 0;
390 int i;
392 for (i = 0; i < controller->windows; i++) {
393 struct pci_window *window = &controller->window[i];
394 if (!(window->resource.flags & res->flags))
395 continue;
396 if (window->resource.start > res->start)
397 continue;
398 if (window->resource.end < res->end)
399 continue;
400 offset = window->offset;
401 break;
404 region->start = res->start - offset;
405 region->end = res->end - offset;
407 EXPORT_SYMBOL(pcibios_resource_to_bus);
409 void pcibios_bus_to_resource(struct pci_dev *dev,
410 struct resource *res, struct pci_bus_region *region)
412 struct pci_controller *controller = PCI_CONTROLLER(dev);
413 unsigned long offset = 0;
414 int i;
416 for (i = 0; i < controller->windows; i++) {
417 struct pci_window *window = &controller->window[i];
418 if (!(window->resource.flags & res->flags))
419 continue;
420 if (window->resource.start - window->offset > region->start)
421 continue;
422 if (window->resource.end - window->offset < region->end)
423 continue;
424 offset = window->offset;
425 break;
428 res->start = region->start + offset;
429 res->end = region->end + offset;
431 EXPORT_SYMBOL(pcibios_bus_to_resource);
433 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
435 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
436 struct resource *devr = &dev->resource[idx];
438 if (!dev->bus)
439 return 0;
440 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
441 struct resource *busr = dev->bus->resource[i];
443 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
444 continue;
445 if ((devr->start) && (devr->start >= busr->start) &&
446 (devr->end <= busr->end))
447 return 1;
449 return 0;
452 static void __devinit
453 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
455 struct pci_bus_region region;
456 int i;
458 for (i = start; i < limit; i++) {
459 if (!dev->resource[i].flags)
460 continue;
461 region.start = dev->resource[i].start;
462 region.end = dev->resource[i].end;
463 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
464 if ((is_valid_resource(dev, i)))
465 pci_claim_resource(dev, i);
469 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
471 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
473 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
475 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
477 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
481 * Called after each bus is probed, but before its children are examined.
483 void __devinit
484 pcibios_fixup_bus (struct pci_bus *b)
486 struct pci_dev *dev;
488 if (b->self) {
489 pci_read_bridge_bases(b);
490 pcibios_fixup_bridge_resources(b->self);
491 } else {
492 pcibios_setup_root_windows(b, b->sysdata);
494 list_for_each_entry(dev, &b->devices, bus_list)
495 pcibios_fixup_device_resources(dev);
496 platform_pci_fixup_bus(b);
498 return;
501 void __devinit
502 pcibios_update_irq (struct pci_dev *dev, int irq)
504 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
506 /* ??? FIXME -- record old value for shutdown. */
510 pcibios_enable_device (struct pci_dev *dev, int mask)
512 int ret;
514 ret = pci_enable_resources(dev, mask);
515 if (ret < 0)
516 return ret;
518 if (!dev->msi_enabled)
519 return acpi_pci_irq_enable(dev);
520 return 0;
523 void
524 pcibios_disable_device (struct pci_dev *dev)
526 BUG_ON(atomic_read(&dev->enable_cnt));
527 if (!dev->msi_enabled)
528 acpi_pci_irq_disable(dev);
531 void
532 pcibios_align_resource (void *data, struct resource *res,
533 resource_size_t size, resource_size_t align)
538 * PCI BIOS setup, always defaults to SAL interface
540 char * __init
541 pcibios_setup (char *str)
543 return str;
547 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
548 enum pci_mmap_state mmap_state, int write_combine)
550 unsigned long size = vma->vm_end - vma->vm_start;
551 pgprot_t prot;
554 * I/O space cannot be accessed via normal processor loads and
555 * stores on this platform.
557 if (mmap_state == pci_mmap_io)
559 * XXX we could relax this for I/O spaces for which ACPI
560 * indicates that the space is 1-to-1 mapped. But at the
561 * moment, we don't support multiple PCI address spaces and
562 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
564 return -EINVAL;
566 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
567 return -EINVAL;
569 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
570 vma->vm_page_prot);
573 * If the user requested WC, the kernel uses UC or WC for this region,
574 * and the chipset supports WC, we can use WC. Otherwise, we have to
575 * use the same attribute the kernel uses.
577 if (write_combine &&
578 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
579 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
580 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
581 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
582 else
583 vma->vm_page_prot = prot;
585 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
586 vma->vm_end - vma->vm_start, vma->vm_page_prot))
587 return -EAGAIN;
589 return 0;
593 * ia64_pci_get_legacy_mem - generic legacy mem routine
594 * @bus: bus to get legacy memory base address for
596 * Find the base of legacy memory for @bus. This is typically the first
597 * megabyte of bus address space for @bus or is simply 0 on platforms whose
598 * chipsets support legacy I/O and memory routing. Returns the base address
599 * or an error pointer if an error occurred.
601 * This is the ia64 generic version of this routine. Other platforms
602 * are free to override it with a machine vector.
604 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
606 return (char *)__IA64_UNCACHED_OFFSET;
610 * pci_mmap_legacy_page_range - map legacy memory space to userland
611 * @bus: bus whose legacy space we're mapping
612 * @vma: vma passed in by mmap
614 * Map legacy memory space for this device back to userspace using a machine
615 * vector to get the base address.
618 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
619 enum pci_mmap_state mmap_state)
621 unsigned long size = vma->vm_end - vma->vm_start;
622 pgprot_t prot;
623 char *addr;
625 /* We only support mmap'ing of legacy memory space */
626 if (mmap_state != pci_mmap_mem)
627 return -ENOSYS;
630 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
631 * for more details.
633 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
634 return -EINVAL;
635 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
636 vma->vm_page_prot);
638 addr = pci_get_legacy_mem(bus);
639 if (IS_ERR(addr))
640 return PTR_ERR(addr);
642 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
643 vma->vm_page_prot = prot;
645 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
646 size, vma->vm_page_prot))
647 return -EAGAIN;
649 return 0;
653 * ia64_pci_legacy_read - read from legacy I/O space
654 * @bus: bus to read
655 * @port: legacy port value
656 * @val: caller allocated storage for returned value
657 * @size: number of bytes to read
659 * Simply reads @size bytes from @port and puts the result in @val.
661 * Again, this (and the write routine) are generic versions that can be
662 * overridden by the platform. This is necessary on platforms that don't
663 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
665 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
667 int ret = size;
669 switch (size) {
670 case 1:
671 *val = inb(port);
672 break;
673 case 2:
674 *val = inw(port);
675 break;
676 case 4:
677 *val = inl(port);
678 break;
679 default:
680 ret = -EINVAL;
681 break;
684 return ret;
688 * ia64_pci_legacy_write - perform a legacy I/O write
689 * @bus: bus pointer
690 * @port: port to write
691 * @val: value to write
692 * @size: number of bytes to write from @val
694 * Simply writes @size bytes of @val to @port.
696 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
698 int ret = size;
700 switch (size) {
701 case 1:
702 outb(val, port);
703 break;
704 case 2:
705 outw(val, port);
706 break;
707 case 4:
708 outl(val, port);
709 break;
710 default:
711 ret = -EINVAL;
712 break;
715 return ret;
718 /* It's defined in drivers/pci/pci.c */
719 extern u8 pci_cache_line_size;
722 * set_pci_cacheline_size - determine cacheline size for PCI devices
724 * We want to use the line-size of the outer-most cache. We assume
725 * that this line-size is the same for all CPUs.
727 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
729 static void __init set_pci_cacheline_size(void)
731 unsigned long levels, unique_caches;
732 long status;
733 pal_cache_config_info_t cci;
735 status = ia64_pal_cache_summary(&levels, &unique_caches);
736 if (status != 0) {
737 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
738 "(status=%ld)\n", __func__, status);
739 return;
742 status = ia64_pal_cache_config_info(levels - 1,
743 /* cache_type (data_or_unified)= */ 2, &cci);
744 if (status != 0) {
745 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
746 "(status=%ld)\n", __func__, status);
747 return;
749 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
752 u64 ia64_dma_get_required_mask(struct device *dev)
754 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
755 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
756 u64 mask;
758 if (!high_totalram) {
759 /* convert to mask just covering totalram */
760 low_totalram = (1 << (fls(low_totalram) - 1));
761 low_totalram += low_totalram - 1;
762 mask = low_totalram;
763 } else {
764 high_totalram = (1 << (fls(high_totalram) - 1));
765 high_totalram += high_totalram - 1;
766 mask = (((u64)high_totalram) << 32) + 0xffffffff;
768 return mask;
770 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
772 u64 dma_get_required_mask(struct device *dev)
774 return platform_dma_get_required_mask(dev);
776 EXPORT_SYMBOL_GPL(dma_get_required_mask);
778 static int __init pcibios_init(void)
780 set_pci_cacheline_size();
781 return 0;
784 subsys_initcall(pcibios_init);