First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / mips / alchemy / common / irq.c
blobc88c821b4c36c00398b66b8a53fcc1d75c07531f
1 /*
2 * Copyright 2001, 2007-2008 MontaVista Software Inc.
3 * Author: MontaVista Software, Inc. <source@mvista.com>
5 * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
12 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
13 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
15 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
16 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
17 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
18 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
19 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
20 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/bitops.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
33 #include <asm/irq_cpu.h>
34 #include <asm/mipsregs.h>
35 #include <asm/mach-au1x00/au1000.h>
36 #ifdef CONFIG_MIPS_PB1000
37 #include <asm/mach-pb1x00/pb1000.h>
38 #endif
40 static int au1x_ic_settype(unsigned int irq, unsigned int flow_type);
42 /* per-processor fixed function irqs */
43 struct au1xxx_irqmap au1xxx_ic0_map[] __initdata = {
45 #if defined(CONFIG_SOC_AU1000)
46 { AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
47 { AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
48 { AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
49 { AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
50 { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
51 { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
52 { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
53 { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
54 { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
55 { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
56 { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
57 { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
58 { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
59 { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
60 { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
61 { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
62 { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
63 { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
64 { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
65 { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
66 { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
67 { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
68 { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
69 { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
70 { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
71 { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
72 { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
73 { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
74 { AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
75 { AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
76 { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
78 #elif defined(CONFIG_SOC_AU1500)
80 { AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
81 { AU1000_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
82 { AU1000_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
83 { AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
84 { AU1000_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
85 { AU1000_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
86 { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
87 { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
88 { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
89 { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
90 { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
91 { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
92 { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
93 { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
94 { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
95 { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
96 { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
97 { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
98 { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
99 { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
100 { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
101 { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
102 { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
103 { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
104 { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
105 { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
106 { AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
107 { AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
108 { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
110 #elif defined(CONFIG_SOC_AU1100)
112 { AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
113 { AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
114 { AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
115 { AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
116 { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
117 { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
118 { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
119 { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
120 { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
121 { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
122 { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
123 { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
124 { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
125 { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
126 { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
127 { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
128 { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
129 { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
130 { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
131 { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
132 { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
133 { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
134 { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
135 { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
136 { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
137 { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
138 { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
139 { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
140 { AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
141 { AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
142 { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
144 #elif defined(CONFIG_SOC_AU1550)
146 { AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
147 { AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
148 { AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
149 { AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
150 { AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
151 { AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
152 { AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
153 { AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
154 { AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
155 { AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
156 { AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
157 { AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
158 { AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
159 { AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
160 { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
161 { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
162 { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
163 { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
164 { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
165 { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
166 { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
167 { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
168 { AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
169 { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
170 { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
171 { AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
172 { AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
173 { AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
175 #elif defined(CONFIG_SOC_AU1200)
177 { AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
178 { AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 },
179 { AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
180 { AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
181 { AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
182 { AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
183 { AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
184 { AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
185 { AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
186 { AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
187 { AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
188 { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
189 { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
190 { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
191 { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
192 { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
193 { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
194 { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
195 { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
196 { AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
197 { AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
198 { AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
199 { AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
201 #else
202 #error "Error: Unknown Alchemy SOC"
203 #endif
207 #ifdef CONFIG_PM
210 * Save/restore the interrupt controller state.
211 * Called from the save/restore core registers as part of the
212 * au_sleep function in power.c.....maybe I should just pm_register()
213 * them instead?
215 static unsigned int sleep_intctl_config0[2];
216 static unsigned int sleep_intctl_config1[2];
217 static unsigned int sleep_intctl_config2[2];
218 static unsigned int sleep_intctl_src[2];
219 static unsigned int sleep_intctl_assign[2];
220 static unsigned int sleep_intctl_wake[2];
221 static unsigned int sleep_intctl_mask[2];
223 void save_au1xxx_intctl(void)
225 sleep_intctl_config0[0] = au_readl(IC0_CFG0RD);
226 sleep_intctl_config1[0] = au_readl(IC0_CFG1RD);
227 sleep_intctl_config2[0] = au_readl(IC0_CFG2RD);
228 sleep_intctl_src[0] = au_readl(IC0_SRCRD);
229 sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD);
230 sleep_intctl_wake[0] = au_readl(IC0_WAKERD);
231 sleep_intctl_mask[0] = au_readl(IC0_MASKRD);
233 sleep_intctl_config0[1] = au_readl(IC1_CFG0RD);
234 sleep_intctl_config1[1] = au_readl(IC1_CFG1RD);
235 sleep_intctl_config2[1] = au_readl(IC1_CFG2RD);
236 sleep_intctl_src[1] = au_readl(IC1_SRCRD);
237 sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD);
238 sleep_intctl_wake[1] = au_readl(IC1_WAKERD);
239 sleep_intctl_mask[1] = au_readl(IC1_MASKRD);
243 * For most restore operations, we clear the entire register and
244 * then set the bits we found during the save.
246 void restore_au1xxx_intctl(void)
248 au_writel(0xffffffff, IC0_MASKCLR); au_sync();
250 au_writel(0xffffffff, IC0_CFG0CLR); au_sync();
251 au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync();
252 au_writel(0xffffffff, IC0_CFG1CLR); au_sync();
253 au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync();
254 au_writel(0xffffffff, IC0_CFG2CLR); au_sync();
255 au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync();
256 au_writel(0xffffffff, IC0_SRCCLR); au_sync();
257 au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync();
258 au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync();
259 au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync();
260 au_writel(0xffffffff, IC0_WAKECLR); au_sync();
261 au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync();
262 au_writel(0xffffffff, IC0_RISINGCLR); au_sync();
263 au_writel(0xffffffff, IC0_FALLINGCLR); au_sync();
264 au_writel(0x00000000, IC0_TESTBIT); au_sync();
266 au_writel(0xffffffff, IC1_MASKCLR); au_sync();
268 au_writel(0xffffffff, IC1_CFG0CLR); au_sync();
269 au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync();
270 au_writel(0xffffffff, IC1_CFG1CLR); au_sync();
271 au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync();
272 au_writel(0xffffffff, IC1_CFG2CLR); au_sync();
273 au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync();
274 au_writel(0xffffffff, IC1_SRCCLR); au_sync();
275 au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync();
276 au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync();
277 au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync();
278 au_writel(0xffffffff, IC1_WAKECLR); au_sync();
279 au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync();
280 au_writel(0xffffffff, IC1_RISINGCLR); au_sync();
281 au_writel(0xffffffff, IC1_FALLINGCLR); au_sync();
282 au_writel(0x00000000, IC1_TESTBIT); au_sync();
284 au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync();
286 au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync();
288 #endif /* CONFIG_PM */
291 static void au1x_ic0_unmask(unsigned int irq_nr)
293 unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
294 au_writel(1 << bit, IC0_MASKSET);
295 au_writel(1 << bit, IC0_WAKESET);
296 au_sync();
299 static void au1x_ic1_unmask(unsigned int irq_nr)
301 unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE;
302 au_writel(1 << bit, IC1_MASKSET);
303 au_writel(1 << bit, IC1_WAKESET);
305 /* very hacky. does the pb1000 cpld auto-disable this int?
306 * nowhere in the current kernel sources is it disabled. --mlau
308 #if defined(CONFIG_MIPS_PB1000)
309 if (irq_nr == AU1000_GPIO_15)
310 au_writel(0x4000, PB1000_MDR); /* enable int */
311 #endif
312 au_sync();
315 static void au1x_ic0_mask(unsigned int irq_nr)
317 unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
318 au_writel(1 << bit, IC0_MASKCLR);
319 au_writel(1 << bit, IC0_WAKECLR);
320 au_sync();
323 static void au1x_ic1_mask(unsigned int irq_nr)
325 unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE;
326 au_writel(1 << bit, IC1_MASKCLR);
327 au_writel(1 << bit, IC1_WAKECLR);
328 au_sync();
331 static void au1x_ic0_ack(unsigned int irq_nr)
333 unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
336 * This may assume that we don't get interrupts from
337 * both edges at once, or if we do, that we don't care.
339 au_writel(1 << bit, IC0_FALLINGCLR);
340 au_writel(1 << bit, IC0_RISINGCLR);
341 au_sync();
344 static void au1x_ic1_ack(unsigned int irq_nr)
346 unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE;
349 * This may assume that we don't get interrupts from
350 * both edges at once, or if we do, that we don't care.
352 au_writel(1 << bit, IC1_FALLINGCLR);
353 au_writel(1 << bit, IC1_RISINGCLR);
354 au_sync();
357 static int au1x_ic1_setwake(unsigned int irq, unsigned int on)
359 unsigned int bit = irq - AU1000_INTC1_INT_BASE;
360 unsigned long wakemsk, flags;
362 /* only GPIO 0-7 can act as wakeup source: */
363 if ((irq < AU1000_GPIO_0) || (irq > AU1000_GPIO_7))
364 return -EINVAL;
366 local_irq_save(flags);
367 wakemsk = au_readl(SYS_WAKEMSK);
368 if (on)
369 wakemsk |= 1 << bit;
370 else
371 wakemsk &= ~(1 << bit);
372 au_writel(wakemsk, SYS_WAKEMSK);
373 au_sync();
374 local_irq_restore(flags);
376 return 0;
380 * irq_chips for both ICs; this way the mask handlers can be
381 * as short as possible.
383 * NOTE: the ->ack() callback is used by the handle_edge_irq
384 * flowhandler only, the ->mask_ack() one by handle_level_irq,
385 * so no need for an irq_chip for each type of irq (level/edge).
387 static struct irq_chip au1x_ic0_chip = {
388 .name = "Alchemy-IC0",
389 .ack = au1x_ic0_ack, /* edge */
390 .mask = au1x_ic0_mask,
391 .mask_ack = au1x_ic0_mask, /* level */
392 .unmask = au1x_ic0_unmask,
393 .set_type = au1x_ic_settype,
396 static struct irq_chip au1x_ic1_chip = {
397 .name = "Alchemy-IC1",
398 .ack = au1x_ic1_ack, /* edge */
399 .mask = au1x_ic1_mask,
400 .mask_ack = au1x_ic1_mask, /* level */
401 .unmask = au1x_ic1_unmask,
402 .set_type = au1x_ic_settype,
403 .set_wake = au1x_ic1_setwake,
406 static int au1x_ic_settype(unsigned int irq, unsigned int flow_type)
408 struct irq_chip *chip;
409 unsigned long icr[6];
410 unsigned int bit, ic;
411 int ret;
413 if (irq >= AU1000_INTC1_INT_BASE) {
414 bit = irq - AU1000_INTC1_INT_BASE;
415 chip = &au1x_ic1_chip;
416 ic = 1;
417 } else {
418 bit = irq - AU1000_INTC0_INT_BASE;
419 chip = &au1x_ic0_chip;
420 ic = 0;
423 if (bit > 31)
424 return -EINVAL;
426 icr[0] = ic ? IC1_CFG0SET : IC0_CFG0SET;
427 icr[1] = ic ? IC1_CFG1SET : IC0_CFG1SET;
428 icr[2] = ic ? IC1_CFG2SET : IC0_CFG2SET;
429 icr[3] = ic ? IC1_CFG0CLR : IC0_CFG0CLR;
430 icr[4] = ic ? IC1_CFG1CLR : IC0_CFG1CLR;
431 icr[5] = ic ? IC1_CFG2CLR : IC0_CFG2CLR;
433 ret = 0;
435 switch (flow_type) { /* cfgregs 2:1:0 */
436 case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */
437 au_writel(1 << bit, icr[5]);
438 au_writel(1 << bit, icr[4]);
439 au_writel(1 << bit, icr[0]);
440 set_irq_chip_and_handler_name(irq, chip,
441 handle_edge_irq, "riseedge");
442 break;
443 case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */
444 au_writel(1 << bit, icr[5]);
445 au_writel(1 << bit, icr[1]);
446 au_writel(1 << bit, icr[3]);
447 set_irq_chip_and_handler_name(irq, chip,
448 handle_edge_irq, "falledge");
449 break;
450 case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */
451 au_writel(1 << bit, icr[5]);
452 au_writel(1 << bit, icr[1]);
453 au_writel(1 << bit, icr[0]);
454 set_irq_chip_and_handler_name(irq, chip,
455 handle_edge_irq, "bothedge");
456 break;
457 case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */
458 au_writel(1 << bit, icr[2]);
459 au_writel(1 << bit, icr[4]);
460 au_writel(1 << bit, icr[0]);
461 set_irq_chip_and_handler_name(irq, chip,
462 handle_level_irq, "hilevel");
463 break;
464 case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */
465 au_writel(1 << bit, icr[2]);
466 au_writel(1 << bit, icr[1]);
467 au_writel(1 << bit, icr[3]);
468 set_irq_chip_and_handler_name(irq, chip,
469 handle_level_irq, "lowlevel");
470 break;
471 case IRQ_TYPE_NONE: /* 0:0:0 */
472 au_writel(1 << bit, icr[5]);
473 au_writel(1 << bit, icr[4]);
474 au_writel(1 << bit, icr[3]);
475 /* set at least chip so we can call set_irq_type() on it */
476 set_irq_chip(irq, chip);
477 break;
478 default:
479 ret = -EINVAL;
481 au_sync();
483 return ret;
486 asmlinkage void plat_irq_dispatch(void)
488 unsigned int pending = read_c0_status() & read_c0_cause();
489 unsigned long s, off, bit;
491 if (pending & CAUSEF_IP7) {
492 do_IRQ(MIPS_CPU_IRQ_BASE + 7);
493 return;
494 } else if (pending & CAUSEF_IP2) {
495 s = IC0_REQ0INT;
496 off = AU1000_INTC0_INT_BASE;
497 } else if (pending & CAUSEF_IP3) {
498 s = IC0_REQ1INT;
499 off = AU1000_INTC0_INT_BASE;
500 } else if (pending & CAUSEF_IP4) {
501 s = IC1_REQ0INT;
502 off = AU1000_INTC1_INT_BASE;
503 } else if (pending & CAUSEF_IP5) {
504 s = IC1_REQ1INT;
505 off = AU1000_INTC1_INT_BASE;
506 } else
507 goto spurious;
509 bit = 0;
510 s = au_readl(s);
511 if (unlikely(!s)) {
512 spurious:
513 spurious_interrupt();
514 return;
516 #ifdef AU1000_USB_DEV_REQ_INT
518 * Because of the tight timing of SETUP token to reply
519 * transactions, the USB devices-side packet complete
520 * interrupt needs the highest priority.
522 bit = 1 << (AU1000_USB_DEV_REQ_INT - AU1000_INTC0_INT_BASE);
523 if ((pending & CAUSEF_IP2) && (s & bit)) {
524 do_IRQ(AU1000_USB_DEV_REQ_INT);
525 return;
527 #endif
528 do_IRQ(__ffs(s) + off);
531 /* setup edge/level and assign request 0/1 */
532 void __init au1xxx_setup_irqmap(struct au1xxx_irqmap *map, int count)
534 unsigned int bit, irq_nr;
536 while (count--) {
537 irq_nr = map[count].im_irq;
539 if (((irq_nr < AU1000_INTC0_INT_BASE) ||
540 (irq_nr >= AU1000_INTC0_INT_BASE + 32)) &&
541 ((irq_nr < AU1000_INTC1_INT_BASE) ||
542 (irq_nr >= AU1000_INTC1_INT_BASE + 32)))
543 continue;
545 if (irq_nr >= AU1000_INTC1_INT_BASE) {
546 bit = irq_nr - AU1000_INTC1_INT_BASE;
547 if (map[count].im_request)
548 au_writel(1 << bit, IC1_ASSIGNCLR);
549 } else {
550 bit = irq_nr - AU1000_INTC0_INT_BASE;
551 if (map[count].im_request)
552 au_writel(1 << bit, IC0_ASSIGNCLR);
555 au1x_ic_settype(irq_nr, map[count].im_type);
559 void __init arch_init_irq(void)
561 int i;
564 * Initialize interrupt controllers to a safe state.
566 au_writel(0xffffffff, IC0_CFG0CLR);
567 au_writel(0xffffffff, IC0_CFG1CLR);
568 au_writel(0xffffffff, IC0_CFG2CLR);
569 au_writel(0xffffffff, IC0_MASKCLR);
570 au_writel(0xffffffff, IC0_ASSIGNSET);
571 au_writel(0xffffffff, IC0_WAKECLR);
572 au_writel(0xffffffff, IC0_SRCSET);
573 au_writel(0xffffffff, IC0_FALLINGCLR);
574 au_writel(0xffffffff, IC0_RISINGCLR);
575 au_writel(0x00000000, IC0_TESTBIT);
577 au_writel(0xffffffff, IC1_CFG0CLR);
578 au_writel(0xffffffff, IC1_CFG1CLR);
579 au_writel(0xffffffff, IC1_CFG2CLR);
580 au_writel(0xffffffff, IC1_MASKCLR);
581 au_writel(0xffffffff, IC1_ASSIGNSET);
582 au_writel(0xffffffff, IC1_WAKECLR);
583 au_writel(0xffffffff, IC1_SRCSET);
584 au_writel(0xffffffff, IC1_FALLINGCLR);
585 au_writel(0xffffffff, IC1_RISINGCLR);
586 au_writel(0x00000000, IC1_TESTBIT);
588 mips_cpu_irq_init();
590 /* register all 64 possible IC0+IC1 irq sources as type "none".
591 * Use set_irq_type() to set edge/level behaviour at runtime.
593 for (i = AU1000_INTC0_INT_BASE;
594 (i < AU1000_INTC0_INT_BASE + 32); i++)
595 au1x_ic_settype(i, IRQ_TYPE_NONE);
597 for (i = AU1000_INTC1_INT_BASE;
598 (i < AU1000_INTC1_INT_BASE + 32); i++)
599 au1x_ic_settype(i, IRQ_TYPE_NONE);
602 * Initialize IC0, which is fixed per processor.
604 au1xxx_setup_irqmap(au1xxx_ic0_map, ARRAY_SIZE(au1xxx_ic0_map));
606 /* Boards can register additional (GPIO-based) IRQs.
608 board_init_irq();
610 set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);