First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / mips / math-emu / cp1emu.c
blob890f77927d628b0c203c92c7712415a9c52a819f
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
37 #include <linux/sched.h>
38 #include <linux/debugfs.h>
40 #include <asm/inst.h>
41 #include <asm/bootinfo.h>
42 #include <asm/processor.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/mipsregs.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/uaccess.h>
48 #include <asm/branch.h>
50 #include "ieee754.h"
52 /* Strap kernel emulator for full MIPS IV emulation */
54 #ifdef __mips
55 #undef __mips
56 #endif
57 #define __mips 4
59 /* Function which emulates a floating point instruction. */
61 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
62 mips_instruction);
64 #if __mips >= 4 && __mips != 32
65 static int fpux_emu(struct pt_regs *,
66 struct mips_fpu_struct *, mips_instruction);
67 #endif
69 /* Further private data for which no space exists in mips_fpu_struct */
71 struct mips_fpu_emulator_stats fpuemustats;
73 /* Control registers */
75 #define FPCREG_RID 0 /* $0 = revision id */
76 #define FPCREG_CSR 31 /* $31 = csr */
78 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
79 static const unsigned char ieee_rm[4] = {
80 [FPU_CSR_RN] = IEEE754_RN,
81 [FPU_CSR_RZ] = IEEE754_RZ,
82 [FPU_CSR_RU] = IEEE754_RU,
83 [FPU_CSR_RD] = IEEE754_RD,
85 /* Convert IEEE library modes to Mips rounding mode (0..3). */
86 static const unsigned char mips_rm[4] = {
87 [IEEE754_RN] = FPU_CSR_RN,
88 [IEEE754_RZ] = FPU_CSR_RZ,
89 [IEEE754_RD] = FPU_CSR_RD,
90 [IEEE754_RU] = FPU_CSR_RU,
93 #if __mips >= 4
94 /* convert condition code register number to csr bit */
95 static const unsigned int fpucondbit[8] = {
96 FPU_CSR_COND0,
97 FPU_CSR_COND1,
98 FPU_CSR_COND2,
99 FPU_CSR_COND3,
100 FPU_CSR_COND4,
101 FPU_CSR_COND5,
102 FPU_CSR_COND6,
103 FPU_CSR_COND7
105 #endif
109 * Redundant with logic already in kernel/branch.c,
110 * embedded in compute_return_epc. At some point,
111 * a single subroutine should be used across both
112 * modules.
114 static int isBranchInstr(mips_instruction * i)
116 switch (MIPSInst_OPCODE(*i)) {
117 case spec_op:
118 switch (MIPSInst_FUNC(*i)) {
119 case jalr_op:
120 case jr_op:
121 return 1;
123 break;
125 case bcond_op:
126 switch (MIPSInst_RT(*i)) {
127 case bltz_op:
128 case bgez_op:
129 case bltzl_op:
130 case bgezl_op:
131 case bltzal_op:
132 case bgezal_op:
133 case bltzall_op:
134 case bgezall_op:
135 return 1;
137 break;
139 case j_op:
140 case jal_op:
141 case jalx_op:
142 case beq_op:
143 case bne_op:
144 case blez_op:
145 case bgtz_op:
146 case beql_op:
147 case bnel_op:
148 case blezl_op:
149 case bgtzl_op:
150 return 1;
152 case cop0_op:
153 case cop1_op:
154 case cop2_op:
155 case cop1x_op:
156 if (MIPSInst_RS(*i) == bc_op)
157 return 1;
158 break;
161 return 0;
165 * In the Linux kernel, we support selection of FPR format on the
166 * basis of the Status.FR bit. This does imply that, if a full 32
167 * FPRs are desired, there needs to be a flip-flop that can be written
168 * to one at that bit position. In any case, O32 MIPS ABI uses
169 * only the even FPRs (Status.FR = 0).
172 #define CP0_STATUS_FR_SUPPORT
174 #ifdef CP0_STATUS_FR_SUPPORT
175 #define FR_BIT ST0_FR
176 #else
177 #define FR_BIT 0
178 #endif
180 #define SIFROMREG(si, x) ((si) = \
181 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
182 (int)ctx->fpr[x] : \
183 (int)(ctx->fpr[x & ~1] >> 32 ))
184 #define SITOREG(si, x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
185 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
186 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
187 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
189 #define DIFROMREG(di, x) ((di) = \
190 ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
191 #define DITOREG(di, x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
192 = (di))
194 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
195 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
196 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
197 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
200 * Emulate the single floating point instruction pointed at by EPC.
201 * Two instructions if the instruction is in a branch delay slot.
204 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
206 mips_instruction ir;
207 unsigned long emulpc, contpc;
208 unsigned int cond;
210 if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
211 fpuemustats.errors++;
212 return SIGBUS;
215 /* XXX NEC Vr54xx bug workaround */
216 if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
217 xcp->cp0_cause &= ~CAUSEF_BD;
219 if (xcp->cp0_cause & CAUSEF_BD) {
221 * The instruction to be emulated is in a branch delay slot
222 * which means that we have to emulate the branch instruction
223 * BEFORE we do the cop1 instruction.
225 * This branch could be a COP1 branch, but in that case we
226 * would have had a trap for that instruction, and would not
227 * come through this route.
229 * Linux MIPS branch emulator operates on context, updating the
230 * cp0_epc.
232 emulpc = xcp->cp0_epc + 4; /* Snapshot emulation target */
234 if (__compute_return_epc(xcp)) {
235 #ifdef CP1DBG
236 printk("failed to emulate branch at %p\n",
237 (void *) (xcp->cp0_epc));
238 #endif
239 return SIGILL;
241 if (get_user(ir, (mips_instruction __user *) emulpc)) {
242 fpuemustats.errors++;
243 return SIGBUS;
245 /* __compute_return_epc() will have updated cp0_epc */
246 contpc = xcp->cp0_epc;
247 /* In order not to confuse ptrace() et al, tweak context */
248 xcp->cp0_epc = emulpc - 4;
249 } else {
250 emulpc = xcp->cp0_epc;
251 contpc = xcp->cp0_epc + 4;
254 emul:
255 fpuemustats.emulated++;
256 switch (MIPSInst_OPCODE(ir)) {
257 case ldc1_op:{
258 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
259 MIPSInst_SIMM(ir));
260 u64 val;
262 fpuemustats.loads++;
263 if (get_user(val, va)) {
264 fpuemustats.errors++;
265 return SIGBUS;
267 DITOREG(val, MIPSInst_RT(ir));
268 break;
271 case sdc1_op:{
272 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
273 MIPSInst_SIMM(ir));
274 u64 val;
276 fpuemustats.stores++;
277 DIFROMREG(val, MIPSInst_RT(ir));
278 if (put_user(val, va)) {
279 fpuemustats.errors++;
280 return SIGBUS;
282 break;
285 case lwc1_op:{
286 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
287 MIPSInst_SIMM(ir));
288 u32 val;
290 fpuemustats.loads++;
291 if (get_user(val, va)) {
292 fpuemustats.errors++;
293 return SIGBUS;
295 SITOREG(val, MIPSInst_RT(ir));
296 break;
299 case swc1_op:{
300 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
301 MIPSInst_SIMM(ir));
302 u32 val;
304 fpuemustats.stores++;
305 SIFROMREG(val, MIPSInst_RT(ir));
306 if (put_user(val, va)) {
307 fpuemustats.errors++;
308 return SIGBUS;
310 break;
313 case cop1_op:
314 switch (MIPSInst_RS(ir)) {
316 #if defined(__mips64)
317 case dmfc_op:
318 /* copregister fs -> gpr[rt] */
319 if (MIPSInst_RT(ir) != 0) {
320 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
321 MIPSInst_RD(ir));
323 break;
325 case dmtc_op:
326 /* copregister fs <- rt */
327 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
328 break;
329 #endif
331 case mfc_op:
332 /* copregister rd -> gpr[rt] */
333 if (MIPSInst_RT(ir) != 0) {
334 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
335 MIPSInst_RD(ir));
337 break;
339 case mtc_op:
340 /* copregister rd <- rt */
341 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
342 break;
344 case cfc_op:{
345 /* cop control register rd -> gpr[rt] */
346 u32 value;
348 if (MIPSInst_RD(ir) == FPCREG_CSR) {
349 value = ctx->fcr31;
350 value = (value & ~0x3) | mips_rm[value & 0x3];
351 #ifdef CSRTRACE
352 printk("%p gpr[%d]<-csr=%08x\n",
353 (void *) (xcp->cp0_epc),
354 MIPSInst_RT(ir), value);
355 #endif
357 else if (MIPSInst_RD(ir) == FPCREG_RID)
358 value = 0;
359 else
360 value = 0;
361 if (MIPSInst_RT(ir))
362 xcp->regs[MIPSInst_RT(ir)] = value;
363 break;
366 case ctc_op:{
367 /* copregister rd <- rt */
368 u32 value;
370 if (MIPSInst_RT(ir) == 0)
371 value = 0;
372 else
373 value = xcp->regs[MIPSInst_RT(ir)];
375 /* we only have one writable control reg
377 if (MIPSInst_RD(ir) == FPCREG_CSR) {
378 #ifdef CSRTRACE
379 printk("%p gpr[%d]->csr=%08x\n",
380 (void *) (xcp->cp0_epc),
381 MIPSInst_RT(ir), value);
382 #endif
383 value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
384 ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
385 /* convert to ieee library modes */
386 ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
388 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
389 return SIGFPE;
391 break;
394 case bc_op:{
395 int likely = 0;
397 if (xcp->cp0_cause & CAUSEF_BD)
398 return SIGILL;
400 #if __mips >= 4
401 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
402 #else
403 cond = ctx->fcr31 & FPU_CSR_COND;
404 #endif
405 switch (MIPSInst_RT(ir) & 3) {
406 case bcfl_op:
407 likely = 1;
408 case bcf_op:
409 cond = !cond;
410 break;
411 case bctl_op:
412 likely = 1;
413 case bct_op:
414 break;
415 default:
416 /* thats an illegal instruction */
417 return SIGILL;
420 xcp->cp0_cause |= CAUSEF_BD;
421 if (cond) {
422 /* branch taken: emulate dslot
423 * instruction
425 xcp->cp0_epc += 4;
426 contpc = (xcp->cp0_epc +
427 (MIPSInst_SIMM(ir) << 2));
429 if (get_user(ir,
430 (mips_instruction __user *) xcp->cp0_epc)) {
431 fpuemustats.errors++;
432 return SIGBUS;
435 switch (MIPSInst_OPCODE(ir)) {
436 case lwc1_op:
437 case swc1_op:
438 #if (__mips >= 2 || defined(__mips64))
439 case ldc1_op:
440 case sdc1_op:
441 #endif
442 case cop1_op:
443 #if __mips >= 4 && __mips != 32
444 case cop1x_op:
445 #endif
446 /* its one of ours */
447 goto emul;
448 #if __mips >= 4
449 case spec_op:
450 if (MIPSInst_FUNC(ir) == movc_op)
451 goto emul;
452 break;
453 #endif
457 * Single step the non-cp1
458 * instruction in the dslot
460 return mips_dsemul(xcp, ir, contpc);
462 else {
463 /* branch not taken */
464 if (likely) {
466 * branch likely nullifies
467 * dslot if not taken
469 xcp->cp0_epc += 4;
470 contpc += 4;
472 * else continue & execute
473 * dslot as normal insn
477 break;
480 default:
481 if (!(MIPSInst_RS(ir) & 0x10))
482 return SIGILL;
484 int sig;
486 /* a real fpu computation instruction */
487 if ((sig = fpu_emu(xcp, ctx, ir)))
488 return sig;
491 break;
493 #if __mips >= 4 && __mips != 32
494 case cop1x_op:{
495 int sig;
497 if ((sig = fpux_emu(xcp, ctx, ir)))
498 return sig;
499 break;
501 #endif
503 #if __mips >= 4
504 case spec_op:
505 if (MIPSInst_FUNC(ir) != movc_op)
506 return SIGILL;
507 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
508 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
509 xcp->regs[MIPSInst_RD(ir)] =
510 xcp->regs[MIPSInst_RS(ir)];
511 break;
512 #endif
514 default:
515 return SIGILL;
518 /* we did it !! */
519 xcp->cp0_epc = contpc;
520 xcp->cp0_cause &= ~CAUSEF_BD;
522 return 0;
526 * Conversion table from MIPS compare ops 48-63
527 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
529 static const unsigned char cmptab[8] = {
530 0, /* cmp_0 (sig) cmp_sf */
531 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
532 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
533 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
534 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
535 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
536 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
537 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
541 #if __mips >= 4 && __mips != 32
544 * Additional MIPS4 instructions
547 #define DEF3OP(name, p, f1, f2, f3) \
548 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
549 ieee754##p t) \
551 struct _ieee754_csr ieee754_csr_save; \
552 s = f1(s, t); \
553 ieee754_csr_save = ieee754_csr; \
554 s = f2(s, r); \
555 ieee754_csr_save.cx |= ieee754_csr.cx; \
556 ieee754_csr_save.sx |= ieee754_csr.sx; \
557 s = f3(s); \
558 ieee754_csr.cx |= ieee754_csr_save.cx; \
559 ieee754_csr.sx |= ieee754_csr_save.sx; \
560 return s; \
563 static ieee754dp fpemu_dp_recip(ieee754dp d)
565 return ieee754dp_div(ieee754dp_one(0), d);
568 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
570 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
573 static ieee754sp fpemu_sp_recip(ieee754sp s)
575 return ieee754sp_div(ieee754sp_one(0), s);
578 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
580 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
583 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
584 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
585 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
586 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
587 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
588 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
589 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
590 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
592 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
593 mips_instruction ir)
595 unsigned rcsr = 0; /* resulting csr */
597 fpuemustats.cp1xops++;
599 switch (MIPSInst_FMA_FFMT(ir)) {
600 case s_fmt:{ /* 0 */
602 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
603 ieee754sp fd, fr, fs, ft;
604 u32 __user *va;
605 u32 val;
607 switch (MIPSInst_FUNC(ir)) {
608 case lwxc1_op:
609 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
610 xcp->regs[MIPSInst_FT(ir)]);
612 fpuemustats.loads++;
613 if (get_user(val, va)) {
614 fpuemustats.errors++;
615 return SIGBUS;
617 SITOREG(val, MIPSInst_FD(ir));
618 break;
620 case swxc1_op:
621 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
622 xcp->regs[MIPSInst_FT(ir)]);
624 fpuemustats.stores++;
626 SIFROMREG(val, MIPSInst_FS(ir));
627 if (put_user(val, va)) {
628 fpuemustats.errors++;
629 return SIGBUS;
631 break;
633 case madd_s_op:
634 handler = fpemu_sp_madd;
635 goto scoptop;
636 case msub_s_op:
637 handler = fpemu_sp_msub;
638 goto scoptop;
639 case nmadd_s_op:
640 handler = fpemu_sp_nmadd;
641 goto scoptop;
642 case nmsub_s_op:
643 handler = fpemu_sp_nmsub;
644 goto scoptop;
646 scoptop:
647 SPFROMREG(fr, MIPSInst_FR(ir));
648 SPFROMREG(fs, MIPSInst_FS(ir));
649 SPFROMREG(ft, MIPSInst_FT(ir));
650 fd = (*handler) (fr, fs, ft);
651 SPTOREG(fd, MIPSInst_FD(ir));
653 copcsr:
654 if (ieee754_cxtest(IEEE754_INEXACT))
655 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
656 if (ieee754_cxtest(IEEE754_UNDERFLOW))
657 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
658 if (ieee754_cxtest(IEEE754_OVERFLOW))
659 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
660 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
661 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
663 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
664 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
665 /*printk ("SIGFPE: fpu csr = %08x\n",
666 ctx->fcr31); */
667 return SIGFPE;
670 break;
672 default:
673 return SIGILL;
675 break;
678 case d_fmt:{ /* 1 */
679 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
680 ieee754dp fd, fr, fs, ft;
681 u64 __user *va;
682 u64 val;
684 switch (MIPSInst_FUNC(ir)) {
685 case ldxc1_op:
686 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
687 xcp->regs[MIPSInst_FT(ir)]);
689 fpuemustats.loads++;
690 if (get_user(val, va)) {
691 fpuemustats.errors++;
692 return SIGBUS;
694 DITOREG(val, MIPSInst_FD(ir));
695 break;
697 case sdxc1_op:
698 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
699 xcp->regs[MIPSInst_FT(ir)]);
701 fpuemustats.stores++;
702 DIFROMREG(val, MIPSInst_FS(ir));
703 if (put_user(val, va)) {
704 fpuemustats.errors++;
705 return SIGBUS;
707 break;
709 case madd_d_op:
710 handler = fpemu_dp_madd;
711 goto dcoptop;
712 case msub_d_op:
713 handler = fpemu_dp_msub;
714 goto dcoptop;
715 case nmadd_d_op:
716 handler = fpemu_dp_nmadd;
717 goto dcoptop;
718 case nmsub_d_op:
719 handler = fpemu_dp_nmsub;
720 goto dcoptop;
722 dcoptop:
723 DPFROMREG(fr, MIPSInst_FR(ir));
724 DPFROMREG(fs, MIPSInst_FS(ir));
725 DPFROMREG(ft, MIPSInst_FT(ir));
726 fd = (*handler) (fr, fs, ft);
727 DPTOREG(fd, MIPSInst_FD(ir));
728 goto copcsr;
730 default:
731 return SIGILL;
733 break;
736 case 0x7: /* 7 */
737 if (MIPSInst_FUNC(ir) != pfetch_op) {
738 return SIGILL;
740 /* ignore prefx operation */
741 break;
743 default:
744 return SIGILL;
747 return 0;
749 #endif
754 * Emulate a single COP1 arithmetic instruction.
756 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
757 mips_instruction ir)
759 int rfmt; /* resulting format */
760 unsigned rcsr = 0; /* resulting csr */
761 unsigned cond;
762 union {
763 ieee754dp d;
764 ieee754sp s;
765 int w;
766 #ifdef __mips64
767 s64 l;
768 #endif
769 } rv; /* resulting value */
771 fpuemustats.cp1ops++;
772 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
773 case s_fmt:{ /* 0 */
774 union {
775 ieee754sp(*b) (ieee754sp, ieee754sp);
776 ieee754sp(*u) (ieee754sp);
777 } handler;
779 switch (MIPSInst_FUNC(ir)) {
780 /* binary ops */
781 case fadd_op:
782 handler.b = ieee754sp_add;
783 goto scopbop;
784 case fsub_op:
785 handler.b = ieee754sp_sub;
786 goto scopbop;
787 case fmul_op:
788 handler.b = ieee754sp_mul;
789 goto scopbop;
790 case fdiv_op:
791 handler.b = ieee754sp_div;
792 goto scopbop;
794 /* unary ops */
795 #if __mips >= 2 || defined(__mips64)
796 case fsqrt_op:
797 handler.u = ieee754sp_sqrt;
798 goto scopuop;
799 #endif
800 #if __mips >= 4 && __mips != 32
801 case frsqrt_op:
802 handler.u = fpemu_sp_rsqrt;
803 goto scopuop;
804 case frecip_op:
805 handler.u = fpemu_sp_recip;
806 goto scopuop;
807 #endif
808 #if __mips >= 4
809 case fmovc_op:
810 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
811 if (((ctx->fcr31 & cond) != 0) !=
812 ((MIPSInst_FT(ir) & 1) != 0))
813 return 0;
814 SPFROMREG(rv.s, MIPSInst_FS(ir));
815 break;
816 case fmovz_op:
817 if (xcp->regs[MIPSInst_FT(ir)] != 0)
818 return 0;
819 SPFROMREG(rv.s, MIPSInst_FS(ir));
820 break;
821 case fmovn_op:
822 if (xcp->regs[MIPSInst_FT(ir)] == 0)
823 return 0;
824 SPFROMREG(rv.s, MIPSInst_FS(ir));
825 break;
826 #endif
827 case fabs_op:
828 handler.u = ieee754sp_abs;
829 goto scopuop;
830 case fneg_op:
831 handler.u = ieee754sp_neg;
832 goto scopuop;
833 case fmov_op:
834 /* an easy one */
835 SPFROMREG(rv.s, MIPSInst_FS(ir));
836 goto copcsr;
838 /* binary op on handler */
839 scopbop:
841 ieee754sp fs, ft;
843 SPFROMREG(fs, MIPSInst_FS(ir));
844 SPFROMREG(ft, MIPSInst_FT(ir));
846 rv.s = (*handler.b) (fs, ft);
847 goto copcsr;
849 scopuop:
851 ieee754sp fs;
853 SPFROMREG(fs, MIPSInst_FS(ir));
854 rv.s = (*handler.u) (fs);
855 goto copcsr;
857 copcsr:
858 if (ieee754_cxtest(IEEE754_INEXACT))
859 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
860 if (ieee754_cxtest(IEEE754_UNDERFLOW))
861 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
862 if (ieee754_cxtest(IEEE754_OVERFLOW))
863 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
864 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
865 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
866 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
867 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
868 break;
870 /* unary conv ops */
871 case fcvts_op:
872 return SIGILL; /* not defined */
873 case fcvtd_op:{
874 ieee754sp fs;
876 SPFROMREG(fs, MIPSInst_FS(ir));
877 rv.d = ieee754dp_fsp(fs);
878 rfmt = d_fmt;
879 goto copcsr;
881 case fcvtw_op:{
882 ieee754sp fs;
884 SPFROMREG(fs, MIPSInst_FS(ir));
885 rv.w = ieee754sp_tint(fs);
886 rfmt = w_fmt;
887 goto copcsr;
890 #if __mips >= 2 || defined(__mips64)
891 case fround_op:
892 case ftrunc_op:
893 case fceil_op:
894 case ffloor_op:{
895 unsigned int oldrm = ieee754_csr.rm;
896 ieee754sp fs;
898 SPFROMREG(fs, MIPSInst_FS(ir));
899 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
900 rv.w = ieee754sp_tint(fs);
901 ieee754_csr.rm = oldrm;
902 rfmt = w_fmt;
903 goto copcsr;
905 #endif /* __mips >= 2 */
907 #if defined(__mips64)
908 case fcvtl_op:{
909 ieee754sp fs;
911 SPFROMREG(fs, MIPSInst_FS(ir));
912 rv.l = ieee754sp_tlong(fs);
913 rfmt = l_fmt;
914 goto copcsr;
917 case froundl_op:
918 case ftruncl_op:
919 case fceill_op:
920 case ffloorl_op:{
921 unsigned int oldrm = ieee754_csr.rm;
922 ieee754sp fs;
924 SPFROMREG(fs, MIPSInst_FS(ir));
925 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
926 rv.l = ieee754sp_tlong(fs);
927 ieee754_csr.rm = oldrm;
928 rfmt = l_fmt;
929 goto copcsr;
931 #endif /* defined(__mips64) */
933 default:
934 if (MIPSInst_FUNC(ir) >= fcmp_op) {
935 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
936 ieee754sp fs, ft;
938 SPFROMREG(fs, MIPSInst_FS(ir));
939 SPFROMREG(ft, MIPSInst_FT(ir));
940 rv.w = ieee754sp_cmp(fs, ft,
941 cmptab[cmpop & 0x7], cmpop & 0x8);
942 rfmt = -1;
943 if ((cmpop & 0x8) && ieee754_cxtest
944 (IEEE754_INVALID_OPERATION))
945 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
946 else
947 goto copcsr;
950 else {
951 return SIGILL;
953 break;
955 break;
958 case d_fmt:{
959 union {
960 ieee754dp(*b) (ieee754dp, ieee754dp);
961 ieee754dp(*u) (ieee754dp);
962 } handler;
964 switch (MIPSInst_FUNC(ir)) {
965 /* binary ops */
966 case fadd_op:
967 handler.b = ieee754dp_add;
968 goto dcopbop;
969 case fsub_op:
970 handler.b = ieee754dp_sub;
971 goto dcopbop;
972 case fmul_op:
973 handler.b = ieee754dp_mul;
974 goto dcopbop;
975 case fdiv_op:
976 handler.b = ieee754dp_div;
977 goto dcopbop;
979 /* unary ops */
980 #if __mips >= 2 || defined(__mips64)
981 case fsqrt_op:
982 handler.u = ieee754dp_sqrt;
983 goto dcopuop;
984 #endif
985 #if __mips >= 4 && __mips != 32
986 case frsqrt_op:
987 handler.u = fpemu_dp_rsqrt;
988 goto dcopuop;
989 case frecip_op:
990 handler.u = fpemu_dp_recip;
991 goto dcopuop;
992 #endif
993 #if __mips >= 4
994 case fmovc_op:
995 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
996 if (((ctx->fcr31 & cond) != 0) !=
997 ((MIPSInst_FT(ir) & 1) != 0))
998 return 0;
999 DPFROMREG(rv.d, MIPSInst_FS(ir));
1000 break;
1001 case fmovz_op:
1002 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1003 return 0;
1004 DPFROMREG(rv.d, MIPSInst_FS(ir));
1005 break;
1006 case fmovn_op:
1007 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1008 return 0;
1009 DPFROMREG(rv.d, MIPSInst_FS(ir));
1010 break;
1011 #endif
1012 case fabs_op:
1013 handler.u = ieee754dp_abs;
1014 goto dcopuop;
1016 case fneg_op:
1017 handler.u = ieee754dp_neg;
1018 goto dcopuop;
1020 case fmov_op:
1021 /* an easy one */
1022 DPFROMREG(rv.d, MIPSInst_FS(ir));
1023 goto copcsr;
1025 /* binary op on handler */
1026 dcopbop:{
1027 ieee754dp fs, ft;
1029 DPFROMREG(fs, MIPSInst_FS(ir));
1030 DPFROMREG(ft, MIPSInst_FT(ir));
1032 rv.d = (*handler.b) (fs, ft);
1033 goto copcsr;
1035 dcopuop:{
1036 ieee754dp fs;
1038 DPFROMREG(fs, MIPSInst_FS(ir));
1039 rv.d = (*handler.u) (fs);
1040 goto copcsr;
1043 /* unary conv ops */
1044 case fcvts_op:{
1045 ieee754dp fs;
1047 DPFROMREG(fs, MIPSInst_FS(ir));
1048 rv.s = ieee754sp_fdp(fs);
1049 rfmt = s_fmt;
1050 goto copcsr;
1052 case fcvtd_op:
1053 return SIGILL; /* not defined */
1055 case fcvtw_op:{
1056 ieee754dp fs;
1058 DPFROMREG(fs, MIPSInst_FS(ir));
1059 rv.w = ieee754dp_tint(fs); /* wrong */
1060 rfmt = w_fmt;
1061 goto copcsr;
1064 #if __mips >= 2 || defined(__mips64)
1065 case fround_op:
1066 case ftrunc_op:
1067 case fceil_op:
1068 case ffloor_op:{
1069 unsigned int oldrm = ieee754_csr.rm;
1070 ieee754dp fs;
1072 DPFROMREG(fs, MIPSInst_FS(ir));
1073 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1074 rv.w = ieee754dp_tint(fs);
1075 ieee754_csr.rm = oldrm;
1076 rfmt = w_fmt;
1077 goto copcsr;
1079 #endif
1081 #if defined(__mips64)
1082 case fcvtl_op:{
1083 ieee754dp fs;
1085 DPFROMREG(fs, MIPSInst_FS(ir));
1086 rv.l = ieee754dp_tlong(fs);
1087 rfmt = l_fmt;
1088 goto copcsr;
1091 case froundl_op:
1092 case ftruncl_op:
1093 case fceill_op:
1094 case ffloorl_op:{
1095 unsigned int oldrm = ieee754_csr.rm;
1096 ieee754dp fs;
1098 DPFROMREG(fs, MIPSInst_FS(ir));
1099 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1100 rv.l = ieee754dp_tlong(fs);
1101 ieee754_csr.rm = oldrm;
1102 rfmt = l_fmt;
1103 goto copcsr;
1105 #endif /* __mips >= 3 */
1107 default:
1108 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1109 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1110 ieee754dp fs, ft;
1112 DPFROMREG(fs, MIPSInst_FS(ir));
1113 DPFROMREG(ft, MIPSInst_FT(ir));
1114 rv.w = ieee754dp_cmp(fs, ft,
1115 cmptab[cmpop & 0x7], cmpop & 0x8);
1116 rfmt = -1;
1117 if ((cmpop & 0x8)
1119 ieee754_cxtest
1120 (IEEE754_INVALID_OPERATION))
1121 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1122 else
1123 goto copcsr;
1126 else {
1127 return SIGILL;
1129 break;
1131 break;
1134 case w_fmt:{
1135 ieee754sp fs;
1137 switch (MIPSInst_FUNC(ir)) {
1138 case fcvts_op:
1139 /* convert word to single precision real */
1140 SPFROMREG(fs, MIPSInst_FS(ir));
1141 rv.s = ieee754sp_fint(fs.bits);
1142 rfmt = s_fmt;
1143 goto copcsr;
1144 case fcvtd_op:
1145 /* convert word to double precision real */
1146 SPFROMREG(fs, MIPSInst_FS(ir));
1147 rv.d = ieee754dp_fint(fs.bits);
1148 rfmt = d_fmt;
1149 goto copcsr;
1150 default:
1151 return SIGILL;
1153 break;
1156 #if defined(__mips64)
1157 case l_fmt:{
1158 switch (MIPSInst_FUNC(ir)) {
1159 case fcvts_op:
1160 /* convert long to single precision real */
1161 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1162 rfmt = s_fmt;
1163 goto copcsr;
1164 case fcvtd_op:
1165 /* convert long to double precision real */
1166 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1167 rfmt = d_fmt;
1168 goto copcsr;
1169 default:
1170 return SIGILL;
1172 break;
1174 #endif
1176 default:
1177 return SIGILL;
1181 * Update the fpu CSR register for this operation.
1182 * If an exception is required, generate a tidy SIGFPE exception,
1183 * without updating the result register.
1184 * Note: cause exception bits do not accumulate, they are rewritten
1185 * for each op; only the flag/sticky bits accumulate.
1187 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1188 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1189 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1190 return SIGFPE;
1194 * Now we can safely write the result back to the register file.
1196 switch (rfmt) {
1197 case -1:{
1198 #if __mips >= 4
1199 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1200 #else
1201 cond = FPU_CSR_COND;
1202 #endif
1203 if (rv.w)
1204 ctx->fcr31 |= cond;
1205 else
1206 ctx->fcr31 &= ~cond;
1207 break;
1209 case d_fmt:
1210 DPTOREG(rv.d, MIPSInst_FD(ir));
1211 break;
1212 case s_fmt:
1213 SPTOREG(rv.s, MIPSInst_FD(ir));
1214 break;
1215 case w_fmt:
1216 SITOREG(rv.w, MIPSInst_FD(ir));
1217 break;
1218 #if defined(__mips64)
1219 case l_fmt:
1220 DITOREG(rv.l, MIPSInst_FD(ir));
1221 break;
1222 #endif
1223 default:
1224 return SIGILL;
1227 return 0;
1230 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1231 int has_fpu)
1233 unsigned long oldepc, prevepc;
1234 mips_instruction insn;
1235 int sig = 0;
1237 oldepc = xcp->cp0_epc;
1238 do {
1239 prevepc = xcp->cp0_epc;
1241 if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1242 fpuemustats.errors++;
1243 return SIGBUS;
1245 if (insn == 0)
1246 xcp->cp0_epc += 4; /* skip nops */
1247 else {
1249 * The 'ieee754_csr' is an alias of
1250 * ctx->fcr31. No need to copy ctx->fcr31 to
1251 * ieee754_csr. But ieee754_csr.rm is ieee
1252 * library modes. (not mips rounding mode)
1254 /* convert to ieee library modes */
1255 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1256 sig = cop1Emulate(xcp, ctx);
1257 /* revert to mips rounding mode */
1258 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1261 if (has_fpu)
1262 break;
1263 if (sig)
1264 break;
1266 cond_resched();
1267 } while (xcp->cp0_epc > prevepc);
1269 /* SIGILL indicates a non-fpu instruction */
1270 if (sig == SIGILL && xcp->cp0_epc != oldepc)
1271 /* but if epc has advanced, then ignore it */
1272 sig = 0;
1274 return sig;
1277 #ifdef CONFIG_DEBUG_FS
1278 extern struct dentry *mips_debugfs_dir;
1279 static int __init debugfs_fpuemu(void)
1281 struct dentry *d, *dir;
1282 int i;
1283 static struct {
1284 const char *name;
1285 unsigned int *v;
1286 } vars[] __initdata = {
1287 { "emulated", &fpuemustats.emulated },
1288 { "loads", &fpuemustats.loads },
1289 { "stores", &fpuemustats.stores },
1290 { "cp1ops", &fpuemustats.cp1ops },
1291 { "cp1xops", &fpuemustats.cp1xops },
1292 { "errors", &fpuemustats.errors },
1295 if (!mips_debugfs_dir)
1296 return -ENODEV;
1297 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1298 if (!dir)
1299 return -ENOMEM;
1300 for (i = 0; i < ARRAY_SIZE(vars); i++) {
1301 d = debugfs_create_u32(vars[i].name, S_IRUGO, dir, vars[i].v);
1302 if (!d)
1303 return -ENOMEM;
1305 return 0;
1307 __initcall(debugfs_fpuemu);
1308 #endif