2 * arch/sh/mm/cache-sh4.c
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2007 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
13 #include <linux/init.h>
16 #include <linux/mutex.h>
18 #include <asm/mmu_context.h>
19 #include <asm/cacheflush.h>
22 * The maximum number of pages we support up to when doing ranged dcache
23 * flushing. Anything exceeding this will simply flush the dcache in its
26 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */
27 #define MAX_ICACHE_PAGES 32
29 static void __flush_cache_4096(unsigned long addr
, unsigned long phys
,
30 unsigned long exec_offset
);
33 * This is initialised here to ensure that it is not placed in the BSS. If
34 * that were to happen, note that cache_init gets called before the BSS is
35 * cleared, so this would get nulled out which would be hopeless.
37 static void (*__flush_dcache_segment_fn
)(unsigned long, unsigned long) =
38 (void (*)(unsigned long, unsigned long))0xdeadbeef;
41 * Write back the range of D-cache, and purge the I-cache.
43 * Called from kernel/module.c:sys_init_module and routine for a.out format,
44 * signal handler code and kprobes code
46 static void __uses_jump_to_uncached
sh4_flush_icache_range(void *args
)
48 struct flusher_data
*data
= args
;
49 unsigned long start
, end
;
50 unsigned long flags
, v
;
56 /* If there are too many pages then just blow away the caches */
57 if (((end
- start
) >> PAGE_SHIFT
) >= MAX_ICACHE_PAGES
) {
58 local_flush_cache_all(NULL
);
63 * Selectively flush d-cache then invalidate the i-cache.
64 * This is inefficient, so only use this for small ranges.
66 start
&= ~(L1_CACHE_BYTES
-1);
67 end
+= L1_CACHE_BYTES
-1;
68 end
&= ~(L1_CACHE_BYTES
-1);
70 local_irq_save(flags
);
73 for (v
= start
; v
< end
; v
+= L1_CACHE_BYTES
) {
74 unsigned long icacheaddr
;
78 icacheaddr
= CACHE_IC_ADDRESS_ARRAY
| (v
&
79 cpu_data
->icache
.entry_mask
);
81 /* Clear i-cache line valid-bit */
82 for (i
= 0; i
< cpu_data
->icache
.ways
; i
++) {
83 __raw_writel(0, icacheaddr
);
84 icacheaddr
+= cpu_data
->icache
.way_incr
;
89 local_irq_restore(flags
);
92 static inline void flush_cache_4096(unsigned long start
,
95 unsigned long flags
, exec_offset
= 0;
98 * All types of SH-4 require PC to be in P2 to operate on the I-cache.
99 * Some types of SH-4 require PC to be in P2 to operate on the D-cache.
101 if ((boot_cpu_data
.flags
& CPU_HAS_P2_FLUSH_BUG
) ||
102 (start
< CACHE_OC_ADDRESS_ARRAY
))
103 exec_offset
= 0x20000000;
105 local_irq_save(flags
);
106 __flush_cache_4096(start
| SH_CACHE_ASSOC
,
107 P1SEGADDR(phys
), exec_offset
);
108 local_irq_restore(flags
);
112 * Write back & invalidate the D-cache of the page.
113 * (To avoid "alias" issues)
115 static void sh4_flush_dcache_page(void *arg
)
117 struct page
*page
= arg
;
119 struct address_space
*mapping
= page_mapping(page
);
121 if (mapping
&& !mapping_mapped(mapping
))
122 set_bit(PG_dcache_dirty
, &page
->flags
);
126 unsigned long phys
= PHYSADDR(page_address(page
));
127 unsigned long addr
= CACHE_OC_ADDRESS_ARRAY
;
130 /* Loop all the D-cache */
131 n
= boot_cpu_data
.dcache
.n_aliases
;
132 for (i
= 0; i
< n
; i
++, addr
+= 4096)
133 flush_cache_4096(addr
, phys
);
139 /* TODO: Selective icache invalidation through IC address array.. */
140 static void __uses_jump_to_uncached
flush_icache_all(void)
142 unsigned long flags
, ccr
;
144 local_irq_save(flags
);
149 ccr
|= CCR_CACHE_ICI
;
153 * back_to_cached() will take care of the barrier for us, don't add
158 local_irq_restore(flags
);
161 static inline void flush_dcache_all(void)
163 (*__flush_dcache_segment_fn
)(0UL, boot_cpu_data
.dcache
.way_size
);
167 static void sh4_flush_cache_all(void *unused
)
173 static void __flush_cache_mm(struct mm_struct
*mm
, unsigned long start
,
176 unsigned long d
= 0, p
= start
& PAGE_MASK
;
177 unsigned long alias_mask
= boot_cpu_data
.dcache
.alias_mask
;
178 unsigned long n_aliases
= boot_cpu_data
.dcache
.n_aliases
;
179 unsigned long select_bit
;
180 unsigned long all_aliases_mask
;
181 unsigned long addr_offset
;
188 dir
= pgd_offset(mm
, p
);
189 pud
= pud_offset(dir
, p
);
190 pmd
= pmd_offset(pud
, p
);
191 end
= PAGE_ALIGN(end
);
193 all_aliases_mask
= (1 << n_aliases
) - 1;
196 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
))) {
204 pte
= pte_offset_kernel(pmd
, p
);
210 if (!(pte_val(entry
) & _PAGE_PRESENT
)) {
216 phys
= pte_val(entry
) & PTE_PHYS_MASK
;
218 if ((p
^ phys
) & alias_mask
) {
219 d
|= 1 << ((p
& alias_mask
) >> PAGE_SHIFT
);
220 d
|= 1 << ((phys
& alias_mask
) >> PAGE_SHIFT
);
222 if (d
== all_aliases_mask
)
228 } while (p
< end
&& ((unsigned long)pte
& ~PAGE_MASK
));
236 for (i
= 0; i
< n_aliases
; i
++) {
237 if (d
& select_bit
) {
238 (*__flush_dcache_segment_fn
)(addr_offset
, PAGE_SIZE
);
243 addr_offset
+= PAGE_SIZE
;
248 * Note : (RPC) since the caches are physically tagged, the only point
249 * of flush_cache_mm for SH-4 is to get rid of aliases from the
250 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
251 * lines can stay resident so long as the virtual address they were
252 * accessed with (hence cache set) is in accord with the physical
253 * address (i.e. tag). It's no different here. So I reckon we don't
254 * need to flush the I-cache, since aliases don't matter for that. We
257 * Caller takes mm->mmap_sem.
259 static void sh4_flush_cache_mm(void *arg
)
261 struct mm_struct
*mm
= arg
;
263 if (cpu_context(smp_processor_id(), mm
) == NO_CONTEXT
)
267 * If cache is only 4k-per-way, there are never any 'aliases'. Since
268 * the cache is physically tagged, the data can just be left in there.
270 if (boot_cpu_data
.dcache
.n_aliases
== 0)
274 * Don't bother groveling around the dcache for the VMA ranges
275 * if there are too many PTEs to make it worthwhile.
277 if (mm
->nr_ptes
>= MAX_DCACHE_PAGES
)
280 struct vm_area_struct
*vma
;
283 * In this case there are reasonably sized ranges to flush,
284 * iterate through the VMA list and take care of any aliases.
286 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
287 __flush_cache_mm(mm
, vma
->vm_start
, vma
->vm_end
);
290 /* Only touch the icache if one of the VMAs has VM_EXEC set. */
296 * Write back and invalidate I/D-caches for the page.
298 * ADDR: Virtual Address (U0 address)
299 * PFN: Physical page number
301 static void sh4_flush_cache_page(void *args
)
303 struct flusher_data
*data
= args
;
304 struct vm_area_struct
*vma
;
305 unsigned long address
, pfn
, phys
;
306 unsigned int alias_mask
;
309 address
= data
->addr1
;
311 phys
= pfn
<< PAGE_SHIFT
;
313 if (cpu_context(smp_processor_id(), vma
->vm_mm
) == NO_CONTEXT
)
316 alias_mask
= boot_cpu_data
.dcache
.alias_mask
;
318 /* We only need to flush D-cache when we have alias */
319 if ((address
^phys
) & alias_mask
) {
320 /* Loop 4K of the D-cache */
322 CACHE_OC_ADDRESS_ARRAY
| (address
& alias_mask
),
324 /* Loop another 4K of the D-cache */
326 CACHE_OC_ADDRESS_ARRAY
| (phys
& alias_mask
),
330 alias_mask
= boot_cpu_data
.icache
.alias_mask
;
331 if (vma
->vm_flags
& VM_EXEC
) {
333 * Evict entries from the portion of the cache from which code
334 * may have been executed at this address (virtual). There's
335 * no need to evict from the portion corresponding to the
336 * physical address as for the D-cache, because we know the
337 * kernel has never executed the code through its identity
341 CACHE_IC_ADDRESS_ARRAY
| (address
& alias_mask
),
347 * Write back and invalidate D-caches.
349 * START, END: Virtual Address (U0 address)
351 * NOTE: We need to flush the _physical_ page entry.
352 * Flushing the cache lines for U0 only isn't enough.
353 * We need to flush for P1 too, which may contain aliases.
355 static void sh4_flush_cache_range(void *args
)
357 struct flusher_data
*data
= args
;
358 struct vm_area_struct
*vma
;
359 unsigned long start
, end
;
365 if (cpu_context(smp_processor_id(), vma
->vm_mm
) == NO_CONTEXT
)
369 * If cache is only 4k-per-way, there are never any 'aliases'. Since
370 * the cache is physically tagged, the data can just be left in there.
372 if (boot_cpu_data
.dcache
.n_aliases
== 0)
376 * Don't bother with the lookup and alias check if we have a
377 * wide range to cover, just blow away the dcache in its
378 * entirety instead. -- PFM.
380 if (((end
- start
) >> PAGE_SHIFT
) >= MAX_DCACHE_PAGES
)
383 __flush_cache_mm(vma
->vm_mm
, start
, end
);
385 if (vma
->vm_flags
& VM_EXEC
) {
387 * TODO: Is this required??? Need to look at how I-cache
388 * coherency is assured when new programs are loaded to see if
398 * @addr: address in memory mapped cache array
399 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
400 * set i.e. associative write)
401 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
404 * The offset into the cache array implied by 'addr' selects the
405 * 'colour' of the virtual address range that will be flushed. The
406 * operation (purge/write-back) is selected by the lower 2 bits of
409 static void __flush_cache_4096(unsigned long addr
, unsigned long phys
,
410 unsigned long exec_offset
)
413 unsigned long base_addr
= addr
;
414 struct cache_info
*dcache
;
415 unsigned long way_incr
;
416 unsigned long a
, ea
, p
;
417 unsigned long temp_pc
;
419 dcache
= &boot_cpu_data
.dcache
;
420 /* Write this way for better assembly. */
421 way_count
= dcache
->ways
;
422 way_incr
= dcache
->way_incr
;
425 * Apply exec_offset (i.e. branch to P2 if required.).
429 * If I write "=r" for the (temp_pc), it puts this in r6 hence
430 * trashing exec_offset before it's been added on - why? Hence
431 * "=&r" as a 'workaround'
433 asm volatile("mov.l 1f, %0\n\t"
439 "2:\n" : "=&r" (temp_pc
) : "r" (exec_offset
));
442 * We know there will be >=1 iteration, so write as do-while to avoid
443 * pointless nead-of-loop check for 0 iterations.
446 ea
= base_addr
+ PAGE_SIZE
;
451 *(volatile unsigned long *)a
= p
;
453 * Next line: intentionally not p+32, saves an add, p
454 * will do since only the cache tag bits need to
457 *(volatile unsigned long *)(a
+32) = p
;
462 base_addr
+= way_incr
;
463 } while (--way_count
!= 0);
467 * Break the 1, 2 and 4 way variants of this out into separate functions to
468 * avoid nearly all the overhead of having the conditional stuff in the function
469 * bodies (+ the 1 and 2 way cases avoid saving any registers too).
471 * We want to eliminate unnecessary bus transactions, so this code uses
472 * a non-obvious technique.
474 * Loop over a cache way sized block of, one cache line at a time. For each
475 * line, use movca.a to cause the current cache line contents to be written
476 * back, but without reading anything from main memory. However this has the
477 * side effect that the cache is now caching that memory location. So follow
478 * this with a cache invalidate to mark the cache line invalid. And do all
479 * this with interrupts disabled, to avoid the cache line being accidently
480 * evicted while it is holding garbage.
482 * This also breaks in a number of circumstances:
483 * - if there are modifications to the region of memory just above
484 * empty_zero_page (for example because a breakpoint has been placed
485 * there), then these can be lost.
487 * This is because the the memory address which the cache temporarily
488 * caches in the above description is empty_zero_page. So the
489 * movca.l hits the cache (it is assumed that it misses, or at least
490 * isn't dirty), modifies the line and then invalidates it, losing the
493 * - If caches are disabled or configured in write-through mode, then
494 * the movca.l writes garbage directly into memory.
496 static void __flush_dcache_segment_writethrough(unsigned long start
,
497 unsigned long extent_per_way
)
502 addr
= CACHE_OC_ADDRESS_ARRAY
| (start
& cpu_data
->dcache
.entry_mask
);
504 while (extent_per_way
) {
505 for (i
= 0; i
< cpu_data
->dcache
.ways
; i
++)
506 __raw_writel(0, addr
+ cpu_data
->dcache
.way_incr
* i
);
508 addr
+= cpu_data
->dcache
.linesz
;
509 extent_per_way
-= cpu_data
->dcache
.linesz
;
513 static void __flush_dcache_segment_1way(unsigned long start
,
514 unsigned long extent_per_way
)
516 unsigned long orig_sr
, sr_with_bl
;
517 unsigned long base_addr
;
518 unsigned long way_incr
, linesz
, way_size
;
519 struct cache_info
*dcache
;
520 register unsigned long a0
, a0e
;
522 asm volatile("stc sr, %0" : "=r" (orig_sr
));
523 sr_with_bl
= orig_sr
| (1<<28);
524 base_addr
= ((unsigned long)&empty_zero_page
[0]);
527 * The previous code aligned base_addr to 16k, i.e. the way_size of all
528 * existing SH-4 D-caches. Whilst I don't see a need to have this
529 * aligned to any better than the cache line size (which it will be
530 * anyway by construction), let's align it to at least the way_size of
531 * any existing or conceivable SH-4 D-cache. -- RPC
533 base_addr
= ((base_addr
>> 16) << 16);
536 dcache
= &boot_cpu_data
.dcache
;
537 linesz
= dcache
->linesz
;
538 way_incr
= dcache
->way_incr
;
539 way_size
= dcache
->way_size
;
542 a0e
= base_addr
+ extent_per_way
;
544 asm volatile("ldc %0, sr" : : "r" (sr_with_bl
));
545 asm volatile("movca.l r0, @%0\n\t"
546 "ocbi @%0" : : "r" (a0
));
548 asm volatile("movca.l r0, @%0\n\t"
549 "ocbi @%0" : : "r" (a0
));
551 asm volatile("movca.l r0, @%0\n\t"
552 "ocbi @%0" : : "r" (a0
));
554 asm volatile("movca.l r0, @%0\n\t"
555 "ocbi @%0" : : "r" (a0
));
556 asm volatile("ldc %0, sr" : : "r" (orig_sr
));
561 static void __flush_dcache_segment_2way(unsigned long start
,
562 unsigned long extent_per_way
)
564 unsigned long orig_sr
, sr_with_bl
;
565 unsigned long base_addr
;
566 unsigned long way_incr
, linesz
, way_size
;
567 struct cache_info
*dcache
;
568 register unsigned long a0
, a1
, a0e
;
570 asm volatile("stc sr, %0" : "=r" (orig_sr
));
571 sr_with_bl
= orig_sr
| (1<<28);
572 base_addr
= ((unsigned long)&empty_zero_page
[0]);
574 /* See comment under 1-way above */
575 base_addr
= ((base_addr
>> 16) << 16);
578 dcache
= &boot_cpu_data
.dcache
;
579 linesz
= dcache
->linesz
;
580 way_incr
= dcache
->way_incr
;
581 way_size
= dcache
->way_size
;
585 a0e
= base_addr
+ extent_per_way
;
587 asm volatile("ldc %0, sr" : : "r" (sr_with_bl
));
588 asm volatile("movca.l r0, @%0\n\t"
589 "movca.l r0, @%1\n\t"
595 asm volatile("movca.l r0, @%0\n\t"
596 "movca.l r0, @%1\n\t"
602 asm volatile("movca.l r0, @%0\n\t"
603 "movca.l r0, @%1\n\t"
609 asm volatile("movca.l r0, @%0\n\t"
610 "movca.l r0, @%1\n\t"
614 asm volatile("ldc %0, sr" : : "r" (orig_sr
));
620 static void __flush_dcache_segment_4way(unsigned long start
,
621 unsigned long extent_per_way
)
623 unsigned long orig_sr
, sr_with_bl
;
624 unsigned long base_addr
;
625 unsigned long way_incr
, linesz
, way_size
;
626 struct cache_info
*dcache
;
627 register unsigned long a0
, a1
, a2
, a3
, a0e
;
629 asm volatile("stc sr, %0" : "=r" (orig_sr
));
630 sr_with_bl
= orig_sr
| (1<<28);
631 base_addr
= ((unsigned long)&empty_zero_page
[0]);
633 /* See comment under 1-way above */
634 base_addr
= ((base_addr
>> 16) << 16);
637 dcache
= &boot_cpu_data
.dcache
;
638 linesz
= dcache
->linesz
;
639 way_incr
= dcache
->way_incr
;
640 way_size
= dcache
->way_size
;
646 a0e
= base_addr
+ extent_per_way
;
648 asm volatile("ldc %0, sr" : : "r" (sr_with_bl
));
649 asm volatile("movca.l r0, @%0\n\t"
650 "movca.l r0, @%1\n\t"
651 "movca.l r0, @%2\n\t"
652 "movca.l r0, @%3\n\t"
657 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
662 asm volatile("movca.l r0, @%0\n\t"
663 "movca.l r0, @%1\n\t"
664 "movca.l r0, @%2\n\t"
665 "movca.l r0, @%3\n\t"
670 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
675 asm volatile("movca.l r0, @%0\n\t"
676 "movca.l r0, @%1\n\t"
677 "movca.l r0, @%2\n\t"
678 "movca.l r0, @%3\n\t"
683 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
688 asm volatile("movca.l r0, @%0\n\t"
689 "movca.l r0, @%1\n\t"
690 "movca.l r0, @%2\n\t"
691 "movca.l r0, @%3\n\t"
696 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
697 asm volatile("ldc %0, sr" : : "r" (orig_sr
));
705 extern void __weak
sh4__flush_region_init(void);
708 * SH-4 has virtually indexed and physically tagged cache.
710 void __init
sh4_cache_init(void)
712 unsigned int wt_enabled
= !!(__raw_readl(CCR
) & CCR_CACHE_WT
);
714 printk("PVR=%08x CVR=%08x PRR=%08x\n",
720 __flush_dcache_segment_fn
= __flush_dcache_segment_writethrough
;
722 switch (boot_cpu_data
.dcache
.ways
) {
724 __flush_dcache_segment_fn
= __flush_dcache_segment_1way
;
727 __flush_dcache_segment_fn
= __flush_dcache_segment_2way
;
730 __flush_dcache_segment_fn
= __flush_dcache_segment_4way
;
733 panic("unknown number of cache ways\n");
738 local_flush_icache_range
= sh4_flush_icache_range
;
739 local_flush_dcache_page
= sh4_flush_dcache_page
;
740 local_flush_cache_all
= sh4_flush_cache_all
;
741 local_flush_cache_mm
= sh4_flush_cache_mm
;
742 local_flush_cache_dup_mm
= sh4_flush_cache_mm
;
743 local_flush_cache_page
= sh4_flush_cache_page
;
744 local_flush_cache_range
= sh4_flush_cache_range
;
746 sh4__flush_region_init();