First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / sh / mm / cache-sh4.c
bloba98c7d8984fa160d095fab7472d1c162049a25e8
1 /*
2 * arch/sh/mm/cache-sh4.c
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2007 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <asm/mmu_context.h>
19 #include <asm/cacheflush.h>
22 * The maximum number of pages we support up to when doing ranged dcache
23 * flushing. Anything exceeding this will simply flush the dcache in its
24 * entirety.
26 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */
27 #define MAX_ICACHE_PAGES 32
29 static void __flush_cache_4096(unsigned long addr, unsigned long phys,
30 unsigned long exec_offset);
33 * This is initialised here to ensure that it is not placed in the BSS. If
34 * that were to happen, note that cache_init gets called before the BSS is
35 * cleared, so this would get nulled out which would be hopeless.
37 static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) =
38 (void (*)(unsigned long, unsigned long))0xdeadbeef;
41 * Write back the range of D-cache, and purge the I-cache.
43 * Called from kernel/module.c:sys_init_module and routine for a.out format,
44 * signal handler code and kprobes code
46 static void __uses_jump_to_uncached sh4_flush_icache_range(void *args)
48 struct flusher_data *data = args;
49 unsigned long start, end;
50 unsigned long flags, v;
51 int i;
53 start = data->addr1;
54 end = data->addr2;
56 /* If there are too many pages then just blow away the caches */
57 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
58 local_flush_cache_all(NULL);
59 return;
63 * Selectively flush d-cache then invalidate the i-cache.
64 * This is inefficient, so only use this for small ranges.
66 start &= ~(L1_CACHE_BYTES-1);
67 end += L1_CACHE_BYTES-1;
68 end &= ~(L1_CACHE_BYTES-1);
70 local_irq_save(flags);
71 jump_to_uncached();
73 for (v = start; v < end; v += L1_CACHE_BYTES) {
74 unsigned long icacheaddr;
76 __ocbwb(v);
78 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
79 cpu_data->icache.entry_mask);
81 /* Clear i-cache line valid-bit */
82 for (i = 0; i < cpu_data->icache.ways; i++) {
83 __raw_writel(0, icacheaddr);
84 icacheaddr += cpu_data->icache.way_incr;
88 back_to_cached();
89 local_irq_restore(flags);
92 static inline void flush_cache_4096(unsigned long start,
93 unsigned long phys)
95 unsigned long flags, exec_offset = 0;
98 * All types of SH-4 require PC to be in P2 to operate on the I-cache.
99 * Some types of SH-4 require PC to be in P2 to operate on the D-cache.
101 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
102 (start < CACHE_OC_ADDRESS_ARRAY))
103 exec_offset = 0x20000000;
105 local_irq_save(flags);
106 __flush_cache_4096(start | SH_CACHE_ASSOC,
107 P1SEGADDR(phys), exec_offset);
108 local_irq_restore(flags);
112 * Write back & invalidate the D-cache of the page.
113 * (To avoid "alias" issues)
115 static void sh4_flush_dcache_page(void *arg)
117 struct page *page = arg;
118 #ifndef CONFIG_SMP
119 struct address_space *mapping = page_mapping(page);
121 if (mapping && !mapping_mapped(mapping))
122 set_bit(PG_dcache_dirty, &page->flags);
123 else
124 #endif
126 unsigned long phys = PHYSADDR(page_address(page));
127 unsigned long addr = CACHE_OC_ADDRESS_ARRAY;
128 int i, n;
130 /* Loop all the D-cache */
131 n = boot_cpu_data.dcache.n_aliases;
132 for (i = 0; i < n; i++, addr += 4096)
133 flush_cache_4096(addr, phys);
136 wmb();
139 /* TODO: Selective icache invalidation through IC address array.. */
140 static void __uses_jump_to_uncached flush_icache_all(void)
142 unsigned long flags, ccr;
144 local_irq_save(flags);
145 jump_to_uncached();
147 /* Flush I-cache */
148 ccr = ctrl_inl(CCR);
149 ccr |= CCR_CACHE_ICI;
150 ctrl_outl(ccr, CCR);
153 * back_to_cached() will take care of the barrier for us, don't add
154 * another one!
157 back_to_cached();
158 local_irq_restore(flags);
161 static inline void flush_dcache_all(void)
163 (*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size);
164 wmb();
167 static void sh4_flush_cache_all(void *unused)
169 flush_dcache_all();
170 flush_icache_all();
173 static void __flush_cache_mm(struct mm_struct *mm, unsigned long start,
174 unsigned long end)
176 unsigned long d = 0, p = start & PAGE_MASK;
177 unsigned long alias_mask = boot_cpu_data.dcache.alias_mask;
178 unsigned long n_aliases = boot_cpu_data.dcache.n_aliases;
179 unsigned long select_bit;
180 unsigned long all_aliases_mask;
181 unsigned long addr_offset;
182 pgd_t *dir;
183 pmd_t *pmd;
184 pud_t *pud;
185 pte_t *pte;
186 int i;
188 dir = pgd_offset(mm, p);
189 pud = pud_offset(dir, p);
190 pmd = pmd_offset(pud, p);
191 end = PAGE_ALIGN(end);
193 all_aliases_mask = (1 << n_aliases) - 1;
195 do {
196 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
197 p &= PMD_MASK;
198 p += PMD_SIZE;
199 pmd++;
201 continue;
204 pte = pte_offset_kernel(pmd, p);
206 do {
207 unsigned long phys;
208 pte_t entry = *pte;
210 if (!(pte_val(entry) & _PAGE_PRESENT)) {
211 pte++;
212 p += PAGE_SIZE;
213 continue;
216 phys = pte_val(entry) & PTE_PHYS_MASK;
218 if ((p ^ phys) & alias_mask) {
219 d |= 1 << ((p & alias_mask) >> PAGE_SHIFT);
220 d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT);
222 if (d == all_aliases_mask)
223 goto loop_exit;
226 pte++;
227 p += PAGE_SIZE;
228 } while (p < end && ((unsigned long)pte & ~PAGE_MASK));
229 pmd++;
230 } while (p < end);
232 loop_exit:
233 addr_offset = 0;
234 select_bit = 1;
236 for (i = 0; i < n_aliases; i++) {
237 if (d & select_bit) {
238 (*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE);
239 wmb();
242 select_bit <<= 1;
243 addr_offset += PAGE_SIZE;
248 * Note : (RPC) since the caches are physically tagged, the only point
249 * of flush_cache_mm for SH-4 is to get rid of aliases from the
250 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
251 * lines can stay resident so long as the virtual address they were
252 * accessed with (hence cache set) is in accord with the physical
253 * address (i.e. tag). It's no different here. So I reckon we don't
254 * need to flush the I-cache, since aliases don't matter for that. We
255 * should try that.
257 * Caller takes mm->mmap_sem.
259 static void sh4_flush_cache_mm(void *arg)
261 struct mm_struct *mm = arg;
263 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
264 return;
267 * If cache is only 4k-per-way, there are never any 'aliases'. Since
268 * the cache is physically tagged, the data can just be left in there.
270 if (boot_cpu_data.dcache.n_aliases == 0)
271 return;
274 * Don't bother groveling around the dcache for the VMA ranges
275 * if there are too many PTEs to make it worthwhile.
277 if (mm->nr_ptes >= MAX_DCACHE_PAGES)
278 flush_dcache_all();
279 else {
280 struct vm_area_struct *vma;
283 * In this case there are reasonably sized ranges to flush,
284 * iterate through the VMA list and take care of any aliases.
286 for (vma = mm->mmap; vma; vma = vma->vm_next)
287 __flush_cache_mm(mm, vma->vm_start, vma->vm_end);
290 /* Only touch the icache if one of the VMAs has VM_EXEC set. */
291 if (mm->exec_vm)
292 flush_icache_all();
296 * Write back and invalidate I/D-caches for the page.
298 * ADDR: Virtual Address (U0 address)
299 * PFN: Physical page number
301 static void sh4_flush_cache_page(void *args)
303 struct flusher_data *data = args;
304 struct vm_area_struct *vma;
305 unsigned long address, pfn, phys;
306 unsigned int alias_mask;
308 vma = data->vma;
309 address = data->addr1;
310 pfn = data->addr2;
311 phys = pfn << PAGE_SHIFT;
313 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
314 return;
316 alias_mask = boot_cpu_data.dcache.alias_mask;
318 /* We only need to flush D-cache when we have alias */
319 if ((address^phys) & alias_mask) {
320 /* Loop 4K of the D-cache */
321 flush_cache_4096(
322 CACHE_OC_ADDRESS_ARRAY | (address & alias_mask),
323 phys);
324 /* Loop another 4K of the D-cache */
325 flush_cache_4096(
326 CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask),
327 phys);
330 alias_mask = boot_cpu_data.icache.alias_mask;
331 if (vma->vm_flags & VM_EXEC) {
333 * Evict entries from the portion of the cache from which code
334 * may have been executed at this address (virtual). There's
335 * no need to evict from the portion corresponding to the
336 * physical address as for the D-cache, because we know the
337 * kernel has never executed the code through its identity
338 * translation.
340 flush_cache_4096(
341 CACHE_IC_ADDRESS_ARRAY | (address & alias_mask),
342 phys);
347 * Write back and invalidate D-caches.
349 * START, END: Virtual Address (U0 address)
351 * NOTE: We need to flush the _physical_ page entry.
352 * Flushing the cache lines for U0 only isn't enough.
353 * We need to flush for P1 too, which may contain aliases.
355 static void sh4_flush_cache_range(void *args)
357 struct flusher_data *data = args;
358 struct vm_area_struct *vma;
359 unsigned long start, end;
361 vma = data->vma;
362 start = data->addr1;
363 end = data->addr2;
365 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
366 return;
369 * If cache is only 4k-per-way, there are never any 'aliases'. Since
370 * the cache is physically tagged, the data can just be left in there.
372 if (boot_cpu_data.dcache.n_aliases == 0)
373 return;
376 * Don't bother with the lookup and alias check if we have a
377 * wide range to cover, just blow away the dcache in its
378 * entirety instead. -- PFM.
380 if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES)
381 flush_dcache_all();
382 else
383 __flush_cache_mm(vma->vm_mm, start, end);
385 if (vma->vm_flags & VM_EXEC) {
387 * TODO: Is this required??? Need to look at how I-cache
388 * coherency is assured when new programs are loaded to see if
389 * this matters.
391 flush_icache_all();
396 * __flush_cache_4096
398 * @addr: address in memory mapped cache array
399 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
400 * set i.e. associative write)
401 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
402 * region else 0x0
404 * The offset into the cache array implied by 'addr' selects the
405 * 'colour' of the virtual address range that will be flushed. The
406 * operation (purge/write-back) is selected by the lower 2 bits of
407 * 'phys'.
409 static void __flush_cache_4096(unsigned long addr, unsigned long phys,
410 unsigned long exec_offset)
412 int way_count;
413 unsigned long base_addr = addr;
414 struct cache_info *dcache;
415 unsigned long way_incr;
416 unsigned long a, ea, p;
417 unsigned long temp_pc;
419 dcache = &boot_cpu_data.dcache;
420 /* Write this way for better assembly. */
421 way_count = dcache->ways;
422 way_incr = dcache->way_incr;
425 * Apply exec_offset (i.e. branch to P2 if required.).
427 * FIXME:
429 * If I write "=r" for the (temp_pc), it puts this in r6 hence
430 * trashing exec_offset before it's been added on - why? Hence
431 * "=&r" as a 'workaround'
433 asm volatile("mov.l 1f, %0\n\t"
434 "add %1, %0\n\t"
435 "jmp @%0\n\t"
436 "nop\n\t"
437 ".balign 4\n\t"
438 "1: .long 2f\n\t"
439 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
442 * We know there will be >=1 iteration, so write as do-while to avoid
443 * pointless nead-of-loop check for 0 iterations.
445 do {
446 ea = base_addr + PAGE_SIZE;
447 a = base_addr;
448 p = phys;
450 do {
451 *(volatile unsigned long *)a = p;
453 * Next line: intentionally not p+32, saves an add, p
454 * will do since only the cache tag bits need to
455 * match.
457 *(volatile unsigned long *)(a+32) = p;
458 a += 64;
459 p += 64;
460 } while (a < ea);
462 base_addr += way_incr;
463 } while (--way_count != 0);
467 * Break the 1, 2 and 4 way variants of this out into separate functions to
468 * avoid nearly all the overhead of having the conditional stuff in the function
469 * bodies (+ the 1 and 2 way cases avoid saving any registers too).
471 * We want to eliminate unnecessary bus transactions, so this code uses
472 * a non-obvious technique.
474 * Loop over a cache way sized block of, one cache line at a time. For each
475 * line, use movca.a to cause the current cache line contents to be written
476 * back, but without reading anything from main memory. However this has the
477 * side effect that the cache is now caching that memory location. So follow
478 * this with a cache invalidate to mark the cache line invalid. And do all
479 * this with interrupts disabled, to avoid the cache line being accidently
480 * evicted while it is holding garbage.
482 * This also breaks in a number of circumstances:
483 * - if there are modifications to the region of memory just above
484 * empty_zero_page (for example because a breakpoint has been placed
485 * there), then these can be lost.
487 * This is because the the memory address which the cache temporarily
488 * caches in the above description is empty_zero_page. So the
489 * movca.l hits the cache (it is assumed that it misses, or at least
490 * isn't dirty), modifies the line and then invalidates it, losing the
491 * required change.
493 * - If caches are disabled or configured in write-through mode, then
494 * the movca.l writes garbage directly into memory.
496 static void __flush_dcache_segment_writethrough(unsigned long start,
497 unsigned long extent_per_way)
499 unsigned long addr;
500 int i;
502 addr = CACHE_OC_ADDRESS_ARRAY | (start & cpu_data->dcache.entry_mask);
504 while (extent_per_way) {
505 for (i = 0; i < cpu_data->dcache.ways; i++)
506 __raw_writel(0, addr + cpu_data->dcache.way_incr * i);
508 addr += cpu_data->dcache.linesz;
509 extent_per_way -= cpu_data->dcache.linesz;
513 static void __flush_dcache_segment_1way(unsigned long start,
514 unsigned long extent_per_way)
516 unsigned long orig_sr, sr_with_bl;
517 unsigned long base_addr;
518 unsigned long way_incr, linesz, way_size;
519 struct cache_info *dcache;
520 register unsigned long a0, a0e;
522 asm volatile("stc sr, %0" : "=r" (orig_sr));
523 sr_with_bl = orig_sr | (1<<28);
524 base_addr = ((unsigned long)&empty_zero_page[0]);
527 * The previous code aligned base_addr to 16k, i.e. the way_size of all
528 * existing SH-4 D-caches. Whilst I don't see a need to have this
529 * aligned to any better than the cache line size (which it will be
530 * anyway by construction), let's align it to at least the way_size of
531 * any existing or conceivable SH-4 D-cache. -- RPC
533 base_addr = ((base_addr >> 16) << 16);
534 base_addr |= start;
536 dcache = &boot_cpu_data.dcache;
537 linesz = dcache->linesz;
538 way_incr = dcache->way_incr;
539 way_size = dcache->way_size;
541 a0 = base_addr;
542 a0e = base_addr + extent_per_way;
543 do {
544 asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
545 asm volatile("movca.l r0, @%0\n\t"
546 "ocbi @%0" : : "r" (a0));
547 a0 += linesz;
548 asm volatile("movca.l r0, @%0\n\t"
549 "ocbi @%0" : : "r" (a0));
550 a0 += linesz;
551 asm volatile("movca.l r0, @%0\n\t"
552 "ocbi @%0" : : "r" (a0));
553 a0 += linesz;
554 asm volatile("movca.l r0, @%0\n\t"
555 "ocbi @%0" : : "r" (a0));
556 asm volatile("ldc %0, sr" : : "r" (orig_sr));
557 a0 += linesz;
558 } while (a0 < a0e);
561 static void __flush_dcache_segment_2way(unsigned long start,
562 unsigned long extent_per_way)
564 unsigned long orig_sr, sr_with_bl;
565 unsigned long base_addr;
566 unsigned long way_incr, linesz, way_size;
567 struct cache_info *dcache;
568 register unsigned long a0, a1, a0e;
570 asm volatile("stc sr, %0" : "=r" (orig_sr));
571 sr_with_bl = orig_sr | (1<<28);
572 base_addr = ((unsigned long)&empty_zero_page[0]);
574 /* See comment under 1-way above */
575 base_addr = ((base_addr >> 16) << 16);
576 base_addr |= start;
578 dcache = &boot_cpu_data.dcache;
579 linesz = dcache->linesz;
580 way_incr = dcache->way_incr;
581 way_size = dcache->way_size;
583 a0 = base_addr;
584 a1 = a0 + way_incr;
585 a0e = base_addr + extent_per_way;
586 do {
587 asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
588 asm volatile("movca.l r0, @%0\n\t"
589 "movca.l r0, @%1\n\t"
590 "ocbi @%0\n\t"
591 "ocbi @%1" : :
592 "r" (a0), "r" (a1));
593 a0 += linesz;
594 a1 += linesz;
595 asm volatile("movca.l r0, @%0\n\t"
596 "movca.l r0, @%1\n\t"
597 "ocbi @%0\n\t"
598 "ocbi @%1" : :
599 "r" (a0), "r" (a1));
600 a0 += linesz;
601 a1 += linesz;
602 asm volatile("movca.l r0, @%0\n\t"
603 "movca.l r0, @%1\n\t"
604 "ocbi @%0\n\t"
605 "ocbi @%1" : :
606 "r" (a0), "r" (a1));
607 a0 += linesz;
608 a1 += linesz;
609 asm volatile("movca.l r0, @%0\n\t"
610 "movca.l r0, @%1\n\t"
611 "ocbi @%0\n\t"
612 "ocbi @%1" : :
613 "r" (a0), "r" (a1));
614 asm volatile("ldc %0, sr" : : "r" (orig_sr));
615 a0 += linesz;
616 a1 += linesz;
617 } while (a0 < a0e);
620 static void __flush_dcache_segment_4way(unsigned long start,
621 unsigned long extent_per_way)
623 unsigned long orig_sr, sr_with_bl;
624 unsigned long base_addr;
625 unsigned long way_incr, linesz, way_size;
626 struct cache_info *dcache;
627 register unsigned long a0, a1, a2, a3, a0e;
629 asm volatile("stc sr, %0" : "=r" (orig_sr));
630 sr_with_bl = orig_sr | (1<<28);
631 base_addr = ((unsigned long)&empty_zero_page[0]);
633 /* See comment under 1-way above */
634 base_addr = ((base_addr >> 16) << 16);
635 base_addr |= start;
637 dcache = &boot_cpu_data.dcache;
638 linesz = dcache->linesz;
639 way_incr = dcache->way_incr;
640 way_size = dcache->way_size;
642 a0 = base_addr;
643 a1 = a0 + way_incr;
644 a2 = a1 + way_incr;
645 a3 = a2 + way_incr;
646 a0e = base_addr + extent_per_way;
647 do {
648 asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
649 asm volatile("movca.l r0, @%0\n\t"
650 "movca.l r0, @%1\n\t"
651 "movca.l r0, @%2\n\t"
652 "movca.l r0, @%3\n\t"
653 "ocbi @%0\n\t"
654 "ocbi @%1\n\t"
655 "ocbi @%2\n\t"
656 "ocbi @%3\n\t" : :
657 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
658 a0 += linesz;
659 a1 += linesz;
660 a2 += linesz;
661 a3 += linesz;
662 asm volatile("movca.l r0, @%0\n\t"
663 "movca.l r0, @%1\n\t"
664 "movca.l r0, @%2\n\t"
665 "movca.l r0, @%3\n\t"
666 "ocbi @%0\n\t"
667 "ocbi @%1\n\t"
668 "ocbi @%2\n\t"
669 "ocbi @%3\n\t" : :
670 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
671 a0 += linesz;
672 a1 += linesz;
673 a2 += linesz;
674 a3 += linesz;
675 asm volatile("movca.l r0, @%0\n\t"
676 "movca.l r0, @%1\n\t"
677 "movca.l r0, @%2\n\t"
678 "movca.l r0, @%3\n\t"
679 "ocbi @%0\n\t"
680 "ocbi @%1\n\t"
681 "ocbi @%2\n\t"
682 "ocbi @%3\n\t" : :
683 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
684 a0 += linesz;
685 a1 += linesz;
686 a2 += linesz;
687 a3 += linesz;
688 asm volatile("movca.l r0, @%0\n\t"
689 "movca.l r0, @%1\n\t"
690 "movca.l r0, @%2\n\t"
691 "movca.l r0, @%3\n\t"
692 "ocbi @%0\n\t"
693 "ocbi @%1\n\t"
694 "ocbi @%2\n\t"
695 "ocbi @%3\n\t" : :
696 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
697 asm volatile("ldc %0, sr" : : "r" (orig_sr));
698 a0 += linesz;
699 a1 += linesz;
700 a2 += linesz;
701 a3 += linesz;
702 } while (a0 < a0e);
705 extern void __weak sh4__flush_region_init(void);
708 * SH-4 has virtually indexed and physically tagged cache.
710 void __init sh4_cache_init(void)
712 unsigned int wt_enabled = !!(__raw_readl(CCR) & CCR_CACHE_WT);
714 printk("PVR=%08x CVR=%08x PRR=%08x\n",
715 ctrl_inl(CCN_PVR),
716 ctrl_inl(CCN_CVR),
717 ctrl_inl(CCN_PRR));
719 if (wt_enabled)
720 __flush_dcache_segment_fn = __flush_dcache_segment_writethrough;
721 else {
722 switch (boot_cpu_data.dcache.ways) {
723 case 1:
724 __flush_dcache_segment_fn = __flush_dcache_segment_1way;
725 break;
726 case 2:
727 __flush_dcache_segment_fn = __flush_dcache_segment_2way;
728 break;
729 case 4:
730 __flush_dcache_segment_fn = __flush_dcache_segment_4way;
731 break;
732 default:
733 panic("unknown number of cache ways\n");
734 break;
738 local_flush_icache_range = sh4_flush_icache_range;
739 local_flush_dcache_page = sh4_flush_dcache_page;
740 local_flush_cache_all = sh4_flush_cache_all;
741 local_flush_cache_mm = sh4_flush_cache_mm;
742 local_flush_cache_dup_mm = sh4_flush_cache_mm;
743 local_flush_cache_page = sh4_flush_cache_page;
744 local_flush_cache_range = sh4_flush_cache_range;
746 sh4__flush_region_init();